Quadreal Property Group Limited Partnership & Tribal Partners Canada Inc.

12668 & 12862 Dixie Road - Caledon Feature Based Water Balance Analysis

March 28, 2024

Original

12668 & 12862 Dixie Road -Caledon

Feature Based Water Balance Analysis

Quadreal Property Group Limited Partnership & Tribal Partners Canada Inc.

Original

Project No.: 201-11545-00 Date: March 2024

WSP 100 Commerce Valley Drive West Thornhill, ON Canada L3T 0A1

T: +1 905 882-1100 F: +1 905 882-0055 wsp.com

Quality Management

FIRST ISSUE (ORIGINAL)				
2024.03.28	OPZBA			
Prepared by	Reviewed by	Approved by		
	Albert Zhuge, Sr. Project Manager, Water Resources	Albert Zhuge, Sr. Project Manager, Water Resources		
REVISION 1				
FINAL				

Signatures

Approved by¹

Albert Zhuge, P.Eng., M.A.Sc., PMP Senior Project Manager, Water Resources

Date

WSP Canada Inc. (WSP) prepared this report solely for the use of the intended recipient, Quadreal Property Group Limited Partnership & Tribal Partners Canada Inc., in accordance with the professional services agreement. The intended recipient is solely responsible for the disclosure of any information contained in this report. The content and opinions contained in the present report are based on the observations and/or information available to WSP at the time of preparation. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report. This limitations statement is considered an integral part of this report.

The original of this digital file will be conserved by WSP for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP, its integrity cannot be assured. As such, WSP does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

¹ Approval of this document is an administrative function indicating readiness for release and does not impart legal liability on the Approver for any technical content contained herein. Technical accuracy and fit-for-purpose of this content is obtained through the review process. The Approver shall ensure the applicable review process has occurred prior to signing the document.

Contributors

Client

Quadreal Property Group Limited Partnership & Tribal Partners Canada Inc.

WSP

Senior Project Manager, Water Resources	Albert Zhuge, P.Eng., M.A.Sc., PMP
Modeller	Jenny Chui, M.Sc.
Principal Engineer, Water Resources	Steve van Haren, P.Eng.
Proof (non-technical) / Format	Melinda Nowak

TABLE OF CONTENTS

vsp

1	INTRODUCTION AND BACKGROUND	1
2	OBJECTIVES AND POLICIES	3
2.1	Water Balance Objectives and Policies	3
2.2	Wetland Monitoring Objectives and Policies	3
2.3	Technical Guidance Document	4
3	MONITORING PROGRAM	5
3.1	Program Setup	5
3.2	Monitoring Results	5
4	DEVELOPMENT OF CONTINUOUS HYDROLOGICAL MODELLING	7
4.1	Modelling Methodology	7
4.2	Model Calibration	8
4.3	Long-Term Dataset to Establish Hydroperiod	. 12
5	RESULTS OF FEATURE-BASED WATER	
	BALANCE ANALYSIS	.13
5.1	Mitigation Measures	. 13
5.2	Results of Proposed Mitigation Options	. 14
6	MONITORING AND ADAPTIVE MANAGEMENT PLAN	.20
7	SUMMARY	.21
BIBLI	OGRAPHY	.23

vsp

Tables

Table 3.1	Water Level Monitoring Gauges Details (provided by MTE)
Table 5.1:	Comparison of Monthly Average Annual Volume (m ³) for HDF314
Table 5.2:	Comparison of Monthly Average Annual Volume (m ³) for HDF9c
Table 5.3:	Comparison of Monthly Average Annual Volume (m ³) for HDF8a-417
Table 5.4:	Comparison of Monthly Average Annual Volume (m ³) for Significant Woodland
	FUDD-1

Figures

Figure 1.1	Site Location and Existing Surface	1
Figure 3.1	Dixie FBWB (2021-2023 Monitoring Year) Water Depths and Temperature -	-
	SG6 SW2	5
Figure 3.2	Dixie FBWB (2021-2023 Monitoring Year) Water Depths and Precipitation -	
	SG6 SW2	6
Figure 4.1	Existing Conditions	7
Figure 4.2	Proposed Development Conditions	7
Figure 5.1	Proposed Development Conditions	
-	Mitigation Measures1	3

Illustrations

Illustration 4.1	Comparison of Water Levels for Model Calibration. 20219
Illustration 4.2	Comparison of Water Levels for Model
	Calibration, 202210
Illustration 4.3	Comparison of Water Levels for Model
	Calibration, 2023
Illustration 5.1	Time Series of Flow Hydrograph
	Comparison (Existing and Recommended
	Mitigated Scenarios) – HDF315

vsp

Illustration 5.2	Time Series of Flow Hydrograph Comparison (Existing and Recommended	
	Mitigated Scenarios) – HDF9c	15
Illustration 5.3	Time Series of Flow Hydrograph	
	Comparison (Existing and Recommended	
	Mitigated Scenarios) – HDF8a-4	17
Illustration 5.4	Storage Depths Hydroperiod Comparison	
	with 95% Confidence Interval – Woodland	
	FOD5-1	19
Illustration 5.5	Time Series of Flow Hydrograph	
	Comparison (Existing and Recommended Mitigated Scenarios) – Woodland FOD5-1	19

Charts

Chart 5.1	Comparison of Runoff Volume Inflow to Feature HDF3 (SW-1/SG5)	4
Chart 5.2	Comparison of Runoff Volume Inflow to	
	Feature HDF9c (SW-3/SG4)1	5
Chart 5.3	Comparison of Runoff Volume Inflow to	
	Feature HDF8a-4 (SW-4/SG3) 1	6
Chart 5.4	Comparison of Runoff Volume at	
	Downstream of Woodlot Feature (SW-	
	2/SG6)1	8

Appendices

- A VO Continuous Model Development
- **B** VO Continuous Model Calibration
- **C** Results of Feature Based Water Balance Analysis

1 INTRODUCTION AND BACKGROUND

WSP Canada Inc. (WSP) has been retained by QuadReal Property Group Limited Partnership & Tribal Partners Canada Inc. to develop a Feature Based Water Balance Analysis in support of the proposed development at 12668 & 12862 Dixie Road in the Town of Caledon, Ontario.

As shown in **Figure 1.1**, the proposed development site is located in the Town of Caledon and bounded by Old School Road to the North, Dixie Road to the East, and undeveloped lands to the West and South. The site is currently used for agricultural purposes, and is primarily vacant with the exception of a farmhouse and some associated structures. The proposed development will consist of three (3) large industrial warehouse buildings with their associated loading dock areas, trailer and car parking spaces, etc. Two (2) Stormwater Management Ponds together with Low Impact Developments (e.g., infiltration galleries, underground storm chambers) will be constructed to achieve the required stormwater management control targets specified for the proposed site (refer to the "*Stormwater Management Report*" prepared for the site, prepared by WSP, dated March 01, 2024).

A "Comprehensive Environmental Impact Study and Management Plan (CEISMP)" was prepared for the subject site by WSP dated March 2024. As part of CEISMP, a preliminary Headwater Drainage Feature (HDF) assessment was conducted on the subject property. The assessment confirmed the recommendations for retention of identified HDFs within the subject site (i.e., Tributary 2 / HDF3, Tributary 3 / HDF9c and Tributary 4 / HDF8a-4). Tributaries 2 and 3 convey surface flows through the identified centre Significant Woodland, which was also identified as a natural feature to be retained (i.e., FOD5-1). **Figure 1.1** shows the locations of these identified features.

CEISMP further states that "The preliminary water balance analysis presented in the Preliminary Hydrogeological Assessment (MTE; Feb. 2021) notes that none of the tributaries and associated wetlands on the subject properties is groundwater dependent. To mitigate potential impacts, it is recommended that future studies incorporate strategies to maintain surface water inputs to the watercourses that originate on the subject property (i.e., Tributaries 2, 3, and 4)."

On April 29, 2021, a consultation meeting with TRCA technical staff was conducted to discuss the potential impacts to the identified nature features (i.e., HDFs and Woodland) within the subject site due to the proposed development. The meeting confirmed that a Feature Based Water Balance study by using the approved continuous hydrologic modelling would be required to support the proposed development. The study shall apply the best management practices to provide adequate compensations since there would be unavoidable major

- Marine			
Kilamanagh Creek	Source: Esri, Maxar, Earthsta	r Geographics, and the	GIS User Community
Legend	CLIENT QUADREL PROPERTY GROUP LIMITED PARTISANSHIP & TRIBAL PARNERS CANADA INC.	11.	
 SurfaceWaterMonitoringGauges — Water courses Development boundary Natural Drainage Features to be Retained 	12668 & 12862 DIXIE ROAD - CALEDON	Checked	Drawn
Significant Woodland (FOD5-1)	Site Location and Existing Surface Drainage Natural Feature Inventory	A.Z.Z. Date March 2024 Scale 1:4,000	Proj. No. 201-11545-00 Figure No. 1.1

alteration to the drainage boundaries of these identified natural features. The meeting further confirmed that a typical 3 years of monitoring data would be required to properly establish the baseline conditions of the features. Such monitoring program shall be designed on long term basis and continue through the construction cycle. Adaptive Management Plan (AMP) would also be required to ensure that the proposed mitigation measures could be modified to accommodate future adaptive management recommendations.

Upon acknowledgement of the technical requirements by TRCA, MTE Consultants completed the scoped surface water monitoring program (as part of the comprehensive hydrogeological assessment) for a period of 3 years (i.e., May 2021 to December 2023). The collected monitoring data was provided to WSP on February 12, 2024 for the purpose of developing a calibrated existing conditions hydrologic model to support the study.

This report includes the technical details of the Feature Based Water Balance analysis, discusses the continuous hydrological model, summarizes the potential impacts, and provides recommendations on appropriate mitigation measures to preserve and maintain the identified nature features. Note that the report was prepared by following TRCA's *"Wetland Water Balance Modelling Guidance Document – Draft"* dated August 2019.

2 OBJECTIVES AND POLICIES

2.1 Water Balance Objectives and Policies

Water balance requirements for the natural features detailed in the TRCA's *Stormwater Management Criteria* (August 2012) are as follows:

Woodlands: Manage the water balance with the intent to maintain the volume, timing and spatial distribution of surface water and groundwater contributions that ensures that hydrological changes do not cause a negative impact on the form and/or function of the woodland.

Wetlands: Manage the water balance with the intent to maintain the quantity (i.e. volume, timing and spatial distribution) of surface water and groundwater contributions that ensures the pre-development hydro-period (seasonal pattern of water level fluctuation) of the wetland is protected.

Any proposed development in the vicinity of a natural feature should ideally follow the following Best Management Practices, as applicable:

- 1. No net reduction in surficial aquifer recharge
- 2. Minimize potential for contamination of groundwater
- 3. No loss of wetland function or area
- 4. Minimize alteration to the natural drainage boundaries
- **5.** Provide adequate compensation in case of any unavoidable major alteration to the natural drainage boundaries

2.2 Wetland Monitoring Objectives and Policies

The "*Wetland Water Balance Monitoring Protocol*" dated September 2016 and "*Wetland Water Balance Risk Evaluation*" dated November 2017 were published by TRCA, and were produced to provide guidance regarding potential impact to wetland features due to the proponents of urban development, infrastructure or water extraction applications. The document indicates that pre-development monitoring programs shall include 1 - 3 years of monitoring. The pre-development monitoring data collected are to be used to:

1. Develop a calibrated existing conditions wetland water balance model

- 2. Collect data that can be used to compare pre-to-post development conditions
- **3.** Guide mitigation efforts during and after construction

2.3 Technical Guidance Document

The "*Wetland Water Balance Modelling Guidance Document - Draft*" prepared by TRCA, dated August 2019 outlines the approach and procedure for conducting a feature-based water balance modelling exercise for the protection of wetland hydrology. The purpose of the modelling exercise is to inform the need for, and the design of, mitigation measures to ensure a minimal difference between the post-development and pre-development water balance of a wetland. The Document provides an overview of wetland hydrology modelling, the strengths and weaknesses of various hydrological models, and the information that needs to be included in a feature-based water analysis report.

This Feature Based Water Balance study was prepared by generally following the template format as outlined in Appendix A of the "*Wetland Water Balance Modelling Guidance Document*".

3 MONITORING PROGRAM

3.1 Program Setup

MTE Consultants completed the scoped surface water monitoring program (as part of its comprehensive hydrogeological assessment) for a period of 3 years (i.e., May 2021 to December 2023). The monitoring program was designed in accordance with the *Wetland Water Balance Monitoring Protocol* prepared by TRCA dated September 2016. As previously indicated in **Section 2.2**, the objective of the monitoring program is to calibrate the wetland water balance model under existing conditions, and evaluate the effectiveness of the proposed mitigation measures to maintain the hydrological cycle of the wetland feature.

A total of four (4) water level gauges were established. The locations of these gauges are shown in **Figure 1.1**. **Table 3.1** provides a summary of the gauge details.

Gauge Name - WSP	Gauge Name - MTE	Location (Feature)	Monitoring Parameters
SW-1	SG5	Surface Water Entrance to Tributary 2 (HDF3)	Water Level, Temperature. Hourly Data.
SW-2	SG6	Surface Water Exit from Tributary 2 (HDF3) / Downstream of Significant Woodland (FOD5-1)	Water Level, Temperature. Hourly Data.
SW-3	SG4	Surface Water Entrance to Tributary 3 (HDF9c)	Water Level, Temperature. Hourly Data.
SW-4	SG3	Surface Water Entrance to Tributary 4 (HDF8a-4)	Water Level, Temperature. Hourly Data.

	Table 3.1	Water Level Monitoring	Gauges Details	(provided by MTE)
--	-----------	------------------------	-----------------------	-------------------

3.2 Monitoring Results

WSP received the monitoring data from MTE on February 12, 2024. The hourly data covers a period from May 3, 2021 to December 11, 2023. For demonstration purposes, the recorded continuous water levels with temperature at SW-2 (SG6) are plotted in **Figure 3.1.** In order to

better understand the runoff response in relationship with the rainfall, the corresponding hourly precipitation data was purchased from Environment Canada at its Weather Station of King City (ID 6154150), the nearest station to the study area that has the available hourly weather data for the identified period (e.g., 2021 to 2023). The recorded continuous water levels with precipitation at SW-2 (SG6) are plotted in **Figure 3.2**.

Note that, because the level logger (pressure transducer) is an electronic device to record water pressure, the collected data is not valid if water is frozen. Therefore, the data collected during the Winter season is not reliable and cannot be used for the purpose of model calibration.

4 DEVELOPMENT OF CONTINUOUS HYDROLOGICAL MODELLING

4.1 Modelling Methodology

As identified previously, three (3) Headwater Drainage Features (HDFs) together with the central Significant Woodland require water balance analyses. **Figures 4.1** and **4.2** show the drainage catchments of the identified features under the pre-development and post-development conditions respectively. As shown, during the post-development conditions, upstream contributing area will be developed and therefore, surface runoff from such areas will be captured by the proposed infrastructure system (e.g., storm sewer system, etc.) and therefore be diverted away from these features.

The methodology for the feature-based water balance analysis is based on guidance outlined in both "*Wetland Water Balance Risk Evaluation*" (TRCA, November 2017), and "*Wetland Water Balance Modelling Guidance Document - Draft*" (TRCA, August 2019). The continuous model selected for the surface runoff water balance study is the Visual OTTHYMO 6 (VO6) hydrological model developed by Civica Infrastructure. The model was approved by TRCA for the purpose of Feature Based Water Balance analysis. The continuous version of VO was released in 2017 with the ability to simulate snow melt, infiltration, evapotranspiration and groundwater infiltration. Continuous VO uses the same commands as the single event simulation (with some additional parameters required for continuous modelling). The wetland command is a new feature added to VO in 2018. This command is designed to model all the hydrological processes in a wetland including inflow, evaporation, seepage and outflow.

The water balance / budget equation adopted by the VO model is described as:

Precipitation = Evaporation + Infiltration + Runoff + Storage Change (Δ)

The development of the VO continuous model follows the "Technical Guidelines for Flood Hazard Mapping" (EWRG, March 2017) and the Visual OTTHYMO technical and reference manuals. Model development details, including the model parameters, model schematics, rating curve development, etc., are included in **Appendix A**.

As discussed in **Section 1**, the Preliminary Hydrogeological Assessment (MTE, Feb. 2021) notes that none of the tributaries and associated wetlands on the subject properties is groundwater dependent. Therefore, the evaluation of groundwater components/impacts is not included in the continuous model for the purpose of subject FBWB study.

	203_5 5.5ha		- VCP
	m h		
managh Creek			
Legend	CLIENT QUADREL PROPERTY GROUP LIMITED PARTISANSHIP & TRIBAL PARNERS CANADA INC.	Geographics, and the	
SurfaceWaterMonitoringGauges — Water courses Development boundary Natural Drainage Features to be Retained	12668 & 12862 DIXIE ROAD - CALEDON	Checked A.Z.Z.	Drawn J.C
Significant Woodland (FOD5-1) Drainage Flow (existing) Directions	Existing Conditions	Date March 2024 Scale 1:6,000	Proj. No. 201-11545-00 Figure No. 4.1

Kilamanagh Greek ALEXEN Esri, Maxar, Earthstar Geographics, and the GIS User Community

Legend

- SurfaceWaterMonitoringGauges
- Development boundary
- Water courses

Streets

Proposed Catchments
Proposed buildings
Proposed SWM Pond

Significant Woodland (FOD5-1)

	QUADREL PROPERTY GROUP LIMITED TISANSHIP & TRIBAL PARNERS CANADA INC.	\
TITLE	12668 & 12862 DIXIE ROAD - CALEDON	Chaokad

Proposed Development Conditions

\\\\					
Checked A.Z.Z.	Drawn J.C				
Date March 2024	Proj. No. 201-11545-00				
Scale 1:4,000	Figure No. 4.2				

4.2 Model Calibration

The model calibration is typically achieved by utilizing field observations and comparing the outputs generated by fine tuning the model parameters iteratively and comparing simulated and observed values of interest both qualitative and quantitative measures. The calibration and validation process is an important step to assist in producing a reliable and representative hydrological model for a watershed.

As indicated **Section 3**, the data applied for calibration was the hourly water depths at the established gauges provided by MTE for a period from May 3, 2021 to December 11, 2023. The corresponding hourly precipitation data was further purchased from Environment Canada at its Weather Station of King City (ID 6154150), the nearest station to the study area that has the available hourly weather data for the identified period (e.g., 2021 to 2023).

The calibration procedure follows "*Wetland Water Balance Modelling Guidance Document - Draft*" (TRCA, August 2019) and adopts trial-and-error manual parameter adjustment approach. Graphical comparison of the observed and calibrated hydrographs was conducted to confirm the effectiveness of the calibration process. Graphical display of calibrated and observed flows is very important because the traditional method of evaluating model performance by statistical measures has limitations.

Best efforts have been conducted to produce meaningful calibration results. **Illustrations 4.1 through 4.3** show the water levels comparisons between the observed and calibrated scenarios at Gauge SW-2/SG6 (Surface Water Exit from Tributary 2 (HDF3) / Downstream of Significant Woodland FOD5-1) for 2021, 2022 and 2023 respectively. Note that, the data collected during the Winter season is not reliable and therefore was removed for the purpose of model calibration. Detailed results including the quantitative data comparison are summarized in **Appendix B**.

Graphical comparisons demonstrate that the calibrated model has the ability in mimicking the hydrological processes within the study catchment, and therefore, is proper to be applied for the purpose of Feature Based Water Balance analysis for the subject site.

Illustration 4.1 Comparison of Water Levels for Model Calibration, 2021

Illustration 4.2 Comparison of Water Levels for Model Calibration, 2022

Illustration 4.3 Comparison of Water Levels for Model Calibration, 2023

4.3 Long-Term Dataset to Establish Hydroperiod

The target hydroperiod was established by running the calibrated pre-development model using a long-term dataset. The Stormwater Management Criteria Document (TRCA, 2012) states that the overall objective of FBWB analysis is to "manage the water balance with the intent to maintain the quantity (i.e. volume, timing, and spatial distribution) of surface water and groundwater contributions that ensures the pre-development hydroperiod (seasonal pattern of water level fluctuation) of the wetland is protected". The proposed development must not cause significant changes to the hydroperiod that negatively impact the ecological and hydrological functions of the feature.

To achieve the requirements, the long-term meteorological data inputs to the continuous simulation, including precipitation, temperature, etc., was based on the observed daily data recorded at Toronto Int'l Airport (IDs 6158733 and 6158731) from 1940 to 2023 for a long-term period of 82 continuous years (note that data during year 1993 was removed from the dataset due to significant data missing). The VO model automatically uses the results of the calibrated pre-development scenario to calculate the confidence interval for the hydroperiod analysis.

The identical the long-term meteorological data was used to calculate both post-development unmitigated and mitigated hydroperiods.

The proposed development will consist of three (3) large industrial warehouse buildings with their associated loading dock areas, trailer and car parking spaces, etc. As shown in **Figure 4.2**, under post-development conditions, the majority surface runoff will be diverted away from the identified features. VO continuous simulation was conducted to calculate the post development hydroperiods by using the same 82 years of long-term dataset. The modelling results (to be discussed in **Section 5**) confirm that the reduction of the runoff to these features under post-development conditions requires compensation management via mitigation measures.

5 RESULTS OF FEATURE-BASED WATER BALANCE ANALYSIS

5.1 Mitigation Measures

The approach to managing surface water flow contributions to the retained features is to identify measures to direct adequate surface runoff volumes to maintain their functions. The objective is to manage post-development runoff volumes through the hydroperiod (i.e., seasonal pattern of water level fluctuation). Comparisons (both graphically and in tabular format) between the simulated target hydroperiod, the post-development unmitigated hydroperiod and post-development mitigated hydroperiod were completed to evaluate the potential ecological significance of differences for the features.

Mitigation measures were iteratively modeled in the VO continuous simulations. Theoretically speaking, the ideal mitigation measures are achieved when the calculated runoff volumes closely matched those under the pre-development conditions. TRCA recognizes that in most cases it will not be possible to achieve a post-development hydroperiod that matches exactly the pre-development hydroperiod. TRCA is conducting research to support more robust decision making around levels of ecological risk, based on the natural range of observed variation within and among different wetland communities. The selection of the recommended mitigation option should focus on minimizing the difference in hydroperiod timing and magnitude in order to minimize negative impacts to the feature.

The proposed mitigation includes directing runoff from clean areas (e.g., existing undeveloped area, rooftops of proposed buildings, etc.). The compensation runoff discharge locations are shown in **Figure 5.1**. Water quality treatment may be required to ensure clean runoff compensation. One of commonly adopted approach is to divert the runoff from rooftop area. Since the roof flow is considered "clean" and therefore no water quality treatment will be required.

The following eight (8) Mitigation Options are proposed:

- Divert Clean Flows from 0.5 ha Impervious Area
- Divert Clean Flows from 1.0 ha Impervious Area
- Divert Clean Flows from 5.0 ha Impervious Area
- Divert Clean Flows from 7.5 ha Impervious Area
- Divert Clean Flows from 10.0 ha Impervious Area

	- man			Manager -	
Kilamanagh Creek		3 miles	Source: Esri, Maxar, Earthstar	Geographics, and the	GIS User Community
Monitoring Locations	Proposed Catchments	Potential Surface	CLIENT QUADREL PROPERTY GROUP LIMITED PARTISANSHIP & TRIBAL PARNERS CANADA INC.	119	
Development boundary	Proposed buildings	Drainage Compensation Discharge Location	12668 & 12862 DIXIE ROAD - CALEDON	Checked	Drawn
Water courses Natural Drainage Features to be Retained	Drainage flow (future) directions	Significant Woodland (FOD5-1) Streets	Proposed Development Conditions Mitigation Measures	A.Z.Z. Date March 2024 Scale 1:4,000	J.C Proj. No. 201-11545-00 Figure No. 5.1

- Divert Clean Flows from 12.5 ha Impervious Area
- Divert Clean Flows from 15.0 ha Impervious Area
- Divert Clean Flows from 20.0 ha Impervious Area

5.2 Results of Proposed Mitigation Options

Mitigation Measures for HDF3 (Entrance to Tributary 2)

The results of continuous modelling under the pre- and post-development with mitigation conditions for runoff volumes to HDF3 are presented based on a monthly average annual basis as summarized in **Table 5.1** and **Chart 5.1**. Note that the results based on a weekly average annual basis are recommended by TRCA to be presented. Since VO continuous simulation model only produces monthly water balance results, monthly average annual data are presented in the table for comparison purposes. A complete set of the results is included in **Appendix C**.

Month	Existing	Proposed with No Mitigation	Proposed with Mitigation of Compensation Area = 1.0 ha	Proposed with Mitigation of Compensation Area = 10 ha	Proposed with Mitigation of Compensation Area = 15 ha	Proposed with Mitigation of Compensation Area = 20 ha
Jan	17756	383	728	3825	5545	7265
Feb	19776	491	906	4635	6707	8779
Mar	32555	803	1519	7965	11546	15127
Apr	23369	495	1176	7301	10703	14105
May	16136	388	1057	7066	10405	13743
Jun	11098	253	892	6640	9833	13027
Jul	12468	301	995	7238	10706	14173
Aug	12553	298	980	7110	10515	13920
Sep	12634	296	935	6680	9872	13063
Oct	13375	312	883	6025	8881	11737
Nov	15749	387	959	6103	8961	11818
Dec	19120	460	918	5035	7322	9609
Average	17216	406	996	6302	9250	12197
Total	206590	4867	11948	75624	110995	146366

Table 5.1: Comparison of Monthly Average Annual Volume (m³) for HDF3

😭 Scenario Comparison

Name

Time Series Water Balance

Variables

?

Flow (m^3/s)

Save

- 0 ×

TRCA recognizes that in most cases it will not be possible to achieve a post-development hydroperiod that matches exactly the pre-development hydroperiod. TRCA is conducting research to support more robust decision making around levels of ecological risk, based on the natural range of observed variation within and among different wetland communities. The selection of the recommended mitigation option should focus on minimizing the difference in hydroperiod timing and magnitude in order to minimize negative impacts to the feature. Therefore, for the HDF3 feature, based on the preliminary analysis, diverting clean flows equivalent from 15.0 ha of impervious area is recommended.

Illustration 5.1 presents time series of flow hydrograph comparison for HDF3 (between existing and recommended mitigated scenarios) based on the daily dataset for a long-term period from 1940-2023. All other VO Continuous Simulation Model Scenario Comparison Charts, including Hydrograph Time Series for all mitigation options are included in **Appendix C**.

Mitigation Measures for HDF9c (Entrance to Tributary 3)

The results of continuous modelling under the pre- and post-development with mitigation conditions for runoff volumes to HDF9c are presented based on a monthly average annual basis as summarized in **Table 5.2** and **Chart 5.2**. Note that the results based on a weekly average annual basis are recommended by TRCA to be presented. Since VO continuous simulation model only produces monthly water balance results, monthly average annual data are presented in the table for comparison purposes. A complete set of the results is included in **Appendix C**.

As described previously, TRCA recognizes that in most cases it will not be possible to achieve a post-development hydroperiod that matches exactly the pre-development hydroperiod. The selection of the recommended mitigation option should focus on minimizing the difference in hydroperiod timing and magnitude in order to minimize negative impacts to the feature. Therefore, for the HDF9c feature, based on the preliminary analysis, diverting clean flows equivalent from 0.5 ha of impervious area is recommended.

Illustration 5.2 presents time series of flow hydrograph comparison for HDF9c (between existing and recommended mitigated scenarios) based on the daily dataset for a long-term period from 1940-2023. All other VO Continuous Simulation Model Scenario Comparison Charts, including Hydrograph Time Series for all mitigation options are included in **Appendix C**.

Name ☑ DixieRoadEx - Existing 1940-202 Time Series

DixieRoadPost_Mitigation_1ha -DixieRoadPost_Mitigation_5ha -DixieRoadPost_Mitigation_7.5ha DixieRoadPost_Mitigation_10ha

4

Commands O SW-4 O SW-1 O Wetland / SW-2

SW-3

Variables

?

Flow (m^3/s)

Illustration 5.2 Time Series of Flow Hydrograph Comparison (Existing and Recommended Mitigated Scenarios) – HDF9c

đ ×

_

Month	Existing	Proposed with No Mitigation	Proposed with Mitigation of Compensation Area = 0.5 ha	Proposed with Mitigation of Compensation Area = 1.0 ha
Jan	676	114	286	458
Feb	866	147	354	561
Mar	1417	239	597	955
Apr	873	142	482	823
May	685	110	444	778
Jun	446	68	387	707
Jul	530	81	428	775
Aug	526	78	419	759
Sep	522	78	398	717
Oct	550	84	369	655
Nov	684	107	393	679
Dec	812	135	364	593
Average	716	115	410	705
Total	8588	1384	4922	8459

Table 5.2: Comparison of Monthly Average Annual Volume (m³) for HDF9c

Mitigation Measures for HDF8a-4 (Entrance to Tributary 4)

The results of continuous modelling under the pre- and post-development with mitigation conditions for runoff volumes to HDF8a-4 are presented based on a monthly average annual basis as summarized in **Table 5.3** and **Chart 5.3**. Note that the results based on a weekly average annual basis are recommended by TRCA to be presented. Since VO continuous simulation model only produces monthly water balance results, monthly average annual data are presented in the table for comparison purposes. A complete set of the results is included in **Appendix C**. VO Continuous Simulation Model Scenario Comparison Charts of Hydrograph Time Series are also included in **Appendix C**.

Name

☑ DixieRoadEx - Existing 1940-202

Time Series Water Balance

Graph

DixieRoadPost_Mitigation_0.5ha DixieRoadPost_Mitigation_1ha -DixieRoadPost_Mitigation_5ha -V DixieRoadPost_Mitigat

Time Series of Flow Hydrograph Comparison (Existing and Recommended Mitigated Scenarios) – HDF8a-4 **Illustration 5.3**

đ ×

-
Month	Existing	Proposed with No Mitigation	Proposed with Mitigation of Compensation Area = 1.0 ha	Proposed with Mitigation of Compensation Area = 5.0 ha	Proposed with Mitigation of Compensation Area = 7.5 ha	Proposed with Mitigation of Compensation Area = 10 ha
Jan	6886	134	478	1854	2714	3574
Feb	8465	178	592	2250	3286	4322
Mar	13815	290	1006	3871	5661	7451
Apr	9156	164	845	3566	5267	6968
May	6911	128	796	3466	5135	6804
Jun	4842	86	724	3278	4875	6471
Jul	5538	106	799	3573	5307	7041
Aug	5726	103	784	3508	5210	6913
Sep	5615	101	739	3292	4888	6484
Oct	5821	104	675	2960	4388	5816
Nov	7128	125	696	2982	4411	5839
Dec	8142	157	614	2444	3587	4731
Average	7337	140	729	3087	4561	6034
Total	88045	1676	8749	37044	54729	72414

Table 5.3: Comparison of Monthly Average Annual Volume (m³) for HDF8a-4

Again, TRCA recognizes that in most cases it will not be possible to achieve a postdevelopment hydroperiod that matches exactly the pre-development hydroperiod. The selection of the recommended mitigation option should focus on minimizing the difference in hydroperiod timing and magnitude in order to minimize negative impacts to the feature. Therefore, for the HDF8a-4 feature, based on the preliminary analysis, diverting clean flows equivalent from 7.5 ha of impervious area is recommended.

Illustration 5.3 presents time series of flow hydrograph comparison for HDF8a-4 (between existing and recommended mitigated scenarios) based on the daily dataset for a long-term period from 1940-2023. All other VO Continuous Simulation Model Scenario Comparison Charts, including Hydrograph Time Series for all mitigation options are included in **Appendix C**.

Mitigation Measures for Significant Woodland FOD5-1 (Exit from Tributary 2)

The results of continuous modelling under the pre- and post-development with mitigation conditions for runoff volumes at Significant Woodland FOD5-1 (located at the exit from Tributary 2) are presented based on a monthly average annual basis as summarized in **Table 5.4** and **Chart 5.4**. Note that the results based on a weekly average annual basis are recommended by TRCA to be presented. Since VO continuous simulation model only produces monthly water balance results, monthly average annual data are presented in the table for comparison purposes. A complete set of the results is included in **Appendix C**.

				1	r	1
Month	Existing	Proposed with No Mitigation	Proposed with Mitigation of Compensation Area = 1.0 ha	Proposed with Mitigation of Compensation Area = 10 ha	Proposed with Mitigation of Compensation Area = 15 ha	Proposed with Mitigation of Compensation Area = 20 ha
Jan	3232	234	293	822	1117	1411
Feb	3632	307	378	1015	1369	1723
Mar	5971	498	620	1722	2333	2945
Apr	4238	291	407	1454	2036	2618
May	2937	223	337	1364	1935	2505
Jun	2007	137	246	1229	1776	2322
Jul	2258	162	281	1347	1940	2533
Aug	2265	153	269	1318	1900	2482
Sep	2281	154	264	1246	1791	2337
Oct	2417	165	262	1141	1630	2118
Nov	2862	213	310	1190	1678	2167
Dec	3495	276	355	1059	1450	1841
Average	3133	234	335	1242	1746	2250
Total	37595	2813	4022	14907	20955	27002

Table 5.4:Comparison of Monthly Average Annual Volume (m³) for Significant
Woodland FOD5-1

TRCA recognizes that in most cases it will not be possible to achieve a post-development hydroperiod that matches exactly the pre-development hydroperiod. TRCA is conducting research to support more robust decision making around levels of ecological risk, based on the natural range of observed variation within and among different wetland communities. The selection of the recommended mitigation option should focus on minimizing the difference in hydroperiod timing and magnitude in order to minimize negative impacts to the feature. Therefore, for the Significant Woodland FOD5-1 feature, based on the preliminary analysis, diverting clean flows equivalent from 15.0 ha of impervious area is recommended.

Illustration 5.4 presents storage depth hydroperiod comparison for Woodland FOD5-1 (between existing, post unmitigated and recommended mitigated scenarios) with confidence interval of 95% based on the daily dataset for a long-term period from 1940-2023. **Illustration 5.5** presents time series of flow hydrograph comparison (between existing and recommended mitigated scenarios). All other VO Continuous Simulation Model Scenario Comparison Charts, including Hydrograph Time Series, Hydroperiod and Inflow Mass Curve are included in **Appendix C**.

Storage Depths Hydroperiod Comparison with 95% Confidence Interval – Woodland FOD5-1 **Illustration 5.4**

🗊 Scenario Comparison

Name

Time Series Water Balance Hydroperiod Inflow Mass Curve

Graph						
DixieRoad_E	x - Existing 1940-2023	DixieRoad_P	ost_Mitigation_15ha - Post 1	1940-2023	VA 80 AS 28 VA	
-						
-						
-						
-						
0.4						
(s, C, w) 1.3, - 1.3, - 1.4, - 1.4						
01-Jan-40	01-Jan-53		01-Jan-66	01-Jan-79 Time	01-Jan-92	
4						
Statistics						
ordustics						
Scenario - I	Run Min	Max	Average			
	Graph	Graph DixieRoad_Ex-Existing 1940-2023 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	Graph	Creph DiseRoad_Ex-Existing 1940-2023 DiseRoad_Post_Mitigation_15ha-Post 0 8 0 8 0 8 0 8 0 8 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	Graph DivideRoad Ex-Existing 1940-2023 DivideRoad Post Mitigation_15ha-Post 1940-2023 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	

Illustration 5.5 Time Series of Flow Hydrograph Comparison (Existing and Recommended Mitigated Scenarios) – Woodland FOD5-1

6 MONITORING AND ADAPTIVE MANAGEMENT PLAN

According to relevant TRCA guidance, an Adaptive Management Plan (AMP) will be prepared during the detailed design stage for the identified natural features. An adaptive management approach will be used to monitor and assess potential changes in runoff volumes and vegetation conditions in these features, and to the extent feasible, provide the opportunity to modify the drainage system design to respond to monitoring data, if/where appropriate. Please note that the detailed design on these systems will take place along with the detailed design of the development.

To achieve the Adaptive Management Plan, a post-implementation monitoring plan will also be required during and post-construction periods. Again, detailed monitoring components, methods, duration and key locations for monitoring will be determined during the detailed design stage. The monitoring key factors may include, but not limited to, hydrology / hydraulics, stream morphology, terrestrial Natural Heritage System, fisheries and aquatic habitat, and groundwater. Such monitoring is intended to inform adaptive management if required.

7 SUMMARY

WSP Canada Inc. (WSP) has been retained by QuadReal Property Group Limited Partnership & Tribal Partners Canada Inc. to develop a Feature Based Water Balance Analysis in support of the proposed development at 12668 & 12862 Dixie Road in the Town of Caledon, Ontario.

A "*Comprehensive Environmental Impact Study and Management Plan (CEISMP)*" was prepared for the subject site by WSP dated March 2024. The Plan confirmed the recommendations for retention of identified HDFs within the subject site (i.e., Tributary 2 / HDF3, Tributary 3 / HDF9c and Tributary 4 / HDF8a-4). Tributaries 2 and 3 convey surface flows through the identified centre Significant Woodland, which was also identified as a natural feature to be retained (i.e., FOD5-1).

On April 29, 2021, a consultation meeting with TRCA technical staff was conducted to discuss the potential impacts to the identified nature features (i.e., HDFs and Woodland) within the subject site due to the proposed development. The meeting confirmed that a Feature Based Water Balance study by using the approved continuous hydrologic modelling would be required to support the proposed development.

This report includes the technical details of the Feature Based Water Balance analysis, discusses the continuous hydrological model, summarizes the potential impacts, and provides recommendations on appropriate mitigation measures to preserve and maintain the identified nature features. It was prepared by following TRCA's "*Wetland Water Balance Modelling Guidance Document – Draft*" dated August 2019.

A Monitoring and Adaptive Management Plan (AMP) was discussed in the report. The AMP was designed to ensure that the proposed mitigation measures could be modified to accommodate future adaptive management recommendations.

The following summarizes key highlights and findings of the study:

- There are four (4) identified natural features within the subject study area: Tributary 2 / HDF3 (Tribuary 2), HDF9c (Tributary 3), HDF8a-4 (Tributary 4) and a centre Significant Woodland FOD5-1. Preliminary Hydrogeological Assessment states that none of features on the subject properties is groundwater dependent.
- 2. The continuous hydrologic model was developed based on the continuous version of VO6 model which was approved TRCA for the purpose of Feature Based Water Balance analysis.
- **3.** The established VO6 continuous model was calibrated based on the hourly water depths at the established gauges provided by MTE for a period from May 3, 2021 to December 11,

2023. The corresponding hourly precipitation data was further purchased from Environment Canada at its Weather Station of King City (ID 6154150), the nearest station to the study area that has the available hourly weather data for the identified period (e.g., 2021 to 2023).

- 4. The target hydroperiod was established by running the calibrated pre-development model using a long-term dataset. The long-term meteorological data including precipitation, temperature, etc., was based on the observed daily data recorded at Toronto Int'l Airport (IDs 6158733 and 6158731) from 1940 to 2023 for a long-term period of 82 continuous years.
- **5.** Since under post-development conditions, the majority surface runoff will be diverted away from the identified features, the VO continuous simulation confirms that the reduction of the runoff to these features under post-development conditions requires compensation management via mitigation measures.
- 6. During the post-development conditions, the surface runoff compensation would be provided by diverting clean flows equivalent from the calculated impervious areas. TRCA recognizes that in most cases it will not be possible to achieve a post-development hydroperiod that matches exactly the pre-development hydroperiod. The selection of the recommended mitigation option should focus on minimizing the difference in hydroperiod timing and magnitude in order to minimize negative impacts to the feature.
- 7. The recommended mitigation options for the identified features are summarized as follows.
 - a. HDF3: diverting clean flows equivalent from 15.0 ha of impervious area
 - b. HDF9c: diverting clean flows equivalent from 0.5 ha of impervious area
 - c. HDF8a-4: diverting clean flows equivalent from 7.5 ha of impervious area
 - d. Woodland FOD5-1: diverting clean flows equivalent from 15.0 ha of impervious area
- 8. A Monitoring Plan will be required for the identified features for during and post construction periods. Detailed monitoring components, methods, duration and key locations for monitoring will be determined during the detailed design stage. The monitoring key factors may include, but not be limited to, hydrology / hydraulics, stream morphology, terrestrial Natural Heritage System, fisheries and aquatic habitat, and groundwater.
- **9.** An Adaptive Management Plan (AMP) will also be prepared for the identified features. An adaptive management approach will be used to monitor and assess potential changes in runoff volumes and vegetation conditions in these wetlands, and to the extent feasible, provide the opportunity to modify the drainage system design to respond to monitoring data, if/where appropriate.

BIBLIOGRAPHY

- Ministry of Natural Resources Ontario, 2002. Ontario Ministry of Natural resources Technical Guide -River & Stream Systems: Flooding Hazard Limit.
- CIVICA, Modelling a Wetland: Continuous Simulation, Calibration and Hydroperiod Analysis (Tutorial Guide)
- MOECC, March 2003. Stormwater Management Planning and Design Manual.
- TRCA, August 2012. Stormwater Management Criteria.
- TRCA, September 2016. Wetland Water Balance Monitoring Protocol.
- Environmental Water Resources Group Ltd., March 2017. Technical Guidelines for Flood Hazard Mapping.
- TRCA, November 2017. Wetland Water Balance Risk Evaluation.
- TRCA, August 2019. Wetland Water Balance Modelling Guidance Document Draft
- TRCA and CIVICA, June 2020. Wetland Water Balance Modelling Guidance and its implementation in a computer modelling (Presentation)
- WSP Canada Group Limited, March 2024. Stormwater Management Report for 12668 & 12862 Dixie Road.
- WSP Canada Group Limited, March 2024. Comprehensive Environmental Impact Study and Management Plan (CEISMP) for 12668 & 12862 Dixie Road.
- Visual OTTHYMOTO V6.0. Reference Manual and User's Guide.

A VO Continuous Model Development

Existing Conditions

Name	NHYD	OUTLET	AREA [ha]	CNII	Inter- Event Time [hr]	IA [mm]	N	TP [hr]	Soil Texture	Total Porosity	Field Capacity	Wilting Point	Saturated K	Temp ID	Evap ID	Land Cover	GI/PAN	VEGK3	Precip ID
202_1	2021		14.71233	82	4	4.4	3	0.58	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
202_2	2022		1.53118	82	4	4.4	3	0.19	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
203_1	2031		3.67116	81	4	4.4	3	0.19	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
203_2	2032		2.15757	73	4	7.6	3	0.49	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
203_3	2033		23.42608	82	4	4.4	3	0.99	Clay Loam	0.464	0.31	0.187	24.384	1	1	Light Forest	1.6	7.11	1
203_4	2034		7.04078	75	4	6.9	3	0.38	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
203_5	2035		5.47155	82	4	4.4	3	0.63	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
EXT1	001		20.32898	84	4	3.8	3	1.12	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
EXT2	002		33.8519	82	4	4.4	3	3.70	Clay Loam	0.464	0.31	0.187	24.384	1	1	Light Forest	1.6	7.11	1
EXT3	003		31.52246	79	4	5.0	3	9.51	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1

vo 📑 - 📜 📰 📑 =

Visual OTTHYMO- Continuous Project - 2024.03.26 DixieRoad FBWB_LongTerms.AZ

а. <i>н</i>			
er- Continuous	•	џ	х
e Network Scenarios			
ieRoad_Ex			
ieRoad_Post			
ieRoad_Post_Mitigation(Copy)			
ieRoad_Post_Mitigation_0.5ha			
ieRoad_Post_Mitigation_1ha			
ieRoad_Post_Mitigation_5ha			
ieRoad_Post_Mitigation_7.5ha			
ieRoad_Post_Mitigation_10ha			
ieRoad_Post_Mitigation_12.5ha			
ieRoad_Post_Mitigation_15ha			
ieRoad_Post_Mitigation_20ha			
ta			
gTermRain			
pKingCity			
A Forcing Dataset			
iture Data			
gTermTemp			
5_Max_Min_Daily_Temp			
CA Forcing Dataset			
tion Data			
g lerm_PET_Hargreaves			
_PEI_Hargreaves			
A Forcing Dataset			
water Data GTerm Groupdwater			
GugoGround			
A Foreign Dataset			
ta ta uality Data o Comparison Data			

📴 Project Manager- Continuous Properties: Scenario Continu...

Post Development Conditions

Name	AREA [ha]	CNII	CNII+20%	Inter- Event Time [hr]	IA [mm]	IA -80%	N	TP [hr] TP*	5 TP*8	TP*10	Soil Texture	Total Porosity	Field Capacity	Wilting Point	Saturated K	Temp ID	Evap ID	Land Cover	GI/PAN	VEGK3	Precip ID
101	0.86	82	98	4	4.4	0.9	3	0.12 0.6	2 0.99	1.23	Sandy Loam	0.453	0.19	0.085	262.128	1	1	Grass Land	1.2	5.84	1
102	1.49	82	98	4	4.4	0.9	3	0.28 1.3	9 2.22	2.77	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
103	2.21	81	97	4	4.4	0.9	3	0.13 0.6	5 1.04	1.30	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
201	0.66	78	94	4	5.6	1.1	3	0.25 1.2	6 2.02	2.52	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
202	2.16	73	88	4	7.6	1.5	3	0.48 2.4	1 3.85	4.82	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
203	2.92	81	97	4	4.4	0.9	3	0.19 0.9	6 1.54	1.92	Clay Loam	0.464	0.31	0.187	24.384	1	1	Light Forest	1.6	7.11	1
301	2.08	81	98	4	4.4	0.9	3	0.34 1.6	8 2.70	3.37	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
302	6.30	74	89	4	6.9	1.4	3	0.57 2.8	3 4.52	5.65	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1
303	2.55	81	98	4	4.4	0.9	3	0.62 3.1	0 4.97	6.21	Clay Loam	0.464	0.31	0.187	24.384	1	1	Grass Land	1.2	5.84	1

Visual OTTHYMO- Continuous Project - 2024.03.26 DixieRoad FBWB_LongTerms.AZ

Home

Simulation

🦳 Parameter Tables 🛕 Error List 🔜 Water Balance Results 📮 Water Balance Results

- 8 × ◇ 🍐 🕕 🕜

Continuous	•	џ	×
FFF ?			
etwork Scenarios			
oad_Ex			
oad_Post			
oad_Post_Mitigation(Copy)			
oad_Post_Mitigation_0.5ha			
oad_Post_Mitigation_1ha			
oad_Post_Mitigation_5ha			
oad_Post_Mitigation_7.5ha			
oad_Post_Mitigation_10ha			
oad_Post_Mitigation_12.5ha			
oad_Post_Mitigation_15ha			
oad_Post_Mitigation_20ha			
ermRain			
ngCity			
orcing Dataset			
e Data			
ermTemp			
ax_Min_Daily_Temp			
orcing Dataset			
Data			
erm_PET_Hargreaves			
- I_Hargreaves			
orcing Dataset			
er Data erm Groundwater			
augeGround			
orcing Dataset			
ity Data			
omparison			
ata			

🗐 Project Manager- Continuous 🕈 Properties: Scenario Continu...

Model Calibration Summary

		Monitoring vs Simulated								
Scenario Name	Parameter Changed	Volume (Change	Peak flo	w Change					
		Year 2021	35.5	Year 2021	237.4					
DivicRoad	Pasa parameter	Year 2022	27.0	Year 2022	55.2					
Dixieroau	Base parameter	Year 2023	34.3	Year 2023	262.6					
		Average	32.3	Average	185.1					
		Year 2021	2.658	Year 2021	189.369					
DivisBood 1	Stage Discharge Discharge increased by 50%	Year 2022	-8.87	Year 2022	34.437					
DIXIEROAU_1	Stage Discharge – Discharge Increased by 50%	Year 2023	-2.791	Year 2023	213.953					
		Average	-3.0	Average	145.9					
		Year 2021	27.08	Year 2021	104.686					
DivisDood 2	Stage Discharge Discharge increased by E00/ TD*E	Year 2022	-3.851	Year 2022	-39.654					
DIXIEROAU_2	Stage Discharge – Discharge increased by 50%, TP 5	Year 2023	4.829	Year 2023	105.124					
		Average	9.4	Average	56.7					
		Year 2021	32.336	Year 2021	80.261					
DivisBood 2	Stage Discharge Discharge increased by E0% TD*8	Year 2022	-3.941	Year 2022	-64.561					
Divierodu_5	Stage Discharge – Discharge increased by 50%, TP*8	Year 2023	4.905	Year 2023	37.082					
		Average	11.1	Average	17.6					
		Year 2021	33.401	Year 2021	70.892					
DivisBood 4	Stage Discharge Discharge increased by EOW TD*10	Year 2022	-4.02	Year 2022	-71.349					
DixieRoad_4	Stage Discharge – Discharge Increased by 50%, TP 10	Year 2023	4.885	Year 2023	14.601					
		Average	11.4	Average	4.7					

Selected for the Calibrated Model \rightarrow D

Post-Development Mitigation Option - VO Continuous Model - Schematic

vo 📑 - 📜 📑 File Hom	🕂 📑 📽 🔻 Visual OTTHYMO- Continuous Project - 2024.03.26 DixieRoad FBWB_LongTerms.AZ	- 🗗 × a 💧 🕕 😨
New Project + Project Project	Save th ProjectSave Project AsSave CopySave PasteCut CopyPasteProject ProjectProject ProjectProjectProject ProjectProject ProjectProject ProjectProject ProjectProject 	
Tool Box 🔻 🖡 🗙	X DixieRoad_Post_Mitigation_20ha X	▼ Project Manager- Continuous ▼ ↓ ×
 Hydrographs 	S Schematic	
		▲ L th Drainage Network Scenarios
		ピ DixieRoad_Post ピ DixieRoad_Post_Mitigation(Copy)
▼ Routes		DixieRoad_Post_Mitigation_0.5ha
80	902 Rooftop 901 Rooftop 101	Contract Con
RC1		DixieRoad_Post_Mitigation_5ha
		PixieKoad_Post_Mitigation_7.5ha
		DivieRoad Post Mitigation 12.5ha
 Operations 		P DixieRoad_Post_Mitigation_15ha
		P DixieRoad_Post_Mitigation_20ha
		4 👼 Rain Data
		LongTermRain
	4202 4102	PrepringCity
▼ LID		▲ ↓ Temperature Data
	$ \qquad \qquad$	LongTermTemp
SP SC		SG6_Max_Min_Daily_Temp
5.55	203 10 202 105 5 102	TRCA Forcing Dataset
RG		T1 LongTerm_PET_Hargreaves
		T1 SG6_PET_Hargreaves
GR BR		TT TRCA Forcing Dataset
	903 Rooftop 302	✓ Groundwater Data ▶ 11 LongTerm Groundwater
▼ Utilities		11 SG6_GaugeGround TTCA Facility Dataset
		✓ III INCA Forcing Dataset
	$22 \frac{5}{12} 15 \frac{1}{12} 19$	Water Quality Data
		Selected Data
	5 Wetland / SW-2	
	301	
	Parameter Tables	▼ ‡ X
	🔄 Parameter Tables 🚹 Error List 💷 Water Balance Results 📮 Water Balance Results	Project Manager- Continuous Properties: Scenario Continu

Water Balance Summary

Existing Conditions

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Rain (mm)	Snow (mm)	Snowmelt (mm)	ET (mm)	Infiltration (mm)	GW Infiltration (mm)	Runoff (mm)	Delta Storage	Runoff Coef.
					Jan	52.941	20.379	32.562	24.282	7.450	13.885	14.939	19.996	10.556	0.378
					Feb	48.800	19.501	29.299	39.306	11.242	13.063	10.914	22.270	4.375	0.456
					Mar	55.950	34.107	21.843	57.636	24.628	23.943	15.183	36.661	-20.522	0.655
					Apr	68.495	62.711	5.784	12.707	45.417	32.068	15.104	26.316	-18.343	0.384
					May	72.206	71.988	0.218	0.220	70.047	34.487	7.023	18.171	-23.034	0.252
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	69.339	36.967	1.589	12.498	-14.250	0.181
SW-1/SG5	HDF3	2	60	88.8	Jul	74.867	74.867	0.000	0.000	64.058	40.057	0.377	14.041	-3.609	0.188
		2			Aug	73.402	73.402	0.000	0.000	57.396	40.045	0.332	14.136	1.540	0.193
					Sep	68.990	68.944	0.047	0.048	42.040	36.677	1.453	14.228	11.271	0.206
					Oct	62.429	61.644	0.785	0.787	25.760	32.297	4.960	15.062	16.647	0.241
					Nov	64.806	55.279	9.527	8.276	12.276	33.121	12.408	17.735	22.387	0.274
					Dec	60.057	31.498	28.559	22.981	7.498	21.531	17.054	21.532	13.973	0.359
					Average	64.343	53.625	10.719	13.854	36.429	29.845	8.445	19.387	0.082	0.301
					Jan	52.941	20.379	32.562	24.282	7.430	13.866	14.987	18.429	12.096	0.348
					Feb	48.800	19.501	29.299	39.306	11.193	13.093	10.918	23.605	3.084	0.484
					Mar	55.950	34.107	21.843	57.636	24.574	24.047	15.127	38.598	-22.350	0.690
					Apr	68.495	62.711	5.784	12.707	45.418	32.393	14.983	23.787	-15.693	0.347
					May	72.206	71.988	0.218	0.220	70.029	34.914	6.915	18.676	-23.414	0.259
	HDF9c	Entrance to Tributary	2031		Jun	69.176	69.176	0.000	0.000	69.113	37.544	1.541	12.143	-13.621	0.176
SW-3/SG4				3.67	Jul	74.867	74.867	0.000	0.000	63.649	40.635	0.356	14.455	-3.593	0.193
		5			Aug	73.402	73.402	0.000	0.000	57.153	40.526	0.323	14.346	1.581	0.195
					Sep	68.990	68.944	0.047	0.048	41.970	37.127	1.440	14.231	11.350	0.206
					Oct	62.429	61.644	0.785	0.787	25.743	32.584	4.959	14.979	16.747	0.240
					Nov	64.806	55.279	9.527	8.276	12.269	33.222	12.457	18.626	21.454	0.287
					Dec	60.057	31.498	28.559	22.981	7.498	21.505	17.125	22.129	13.306	0.368
					Average	64.343	53.625	10.719	13.854	36.336	30.121	8.428	19.500	0.079	0.303
					Jan	52.941	20.379	32.562	24.282	7.384	13.071	14.502	19.653	11.402	0.371
					Feb	48.800	19.501	29.299	39.306	11.107	12.420	10.292	24.157	3.244	0.495
					Mar	55.950	34.107	21.843	57.636	24.456	23.017	14.153	39.426	-22.085	0.705
					Apr	68.495	62.711	5.784	12.707	45.209	31.797	13.750	26.130	-16.595	0.381
					May	72.206	71.988	0.218	0.220	67.046	34.693	6.012	19.722	-20.573	0.273
		Entranço to Tributary			Jun	69.176	69.176	0.000	0.000	64.035	37.462	1.297	13.818	-9.974	0.200
SW-4/SG3	HDF8a-4		55	35.04	Jul	74.867	74.867	0.000	0.000	60.671	40.281	0.334	15.806	-1.945	0.211
		4			Aug	73.402	73.402	0.000	0.000	55.144	39.836	0.365	16.341	1.553	0.223
					Sep	68.990	68.944	0.047	0.048	41.337	36.418	1.605	16.024	10.024	0.232
					Oct	62.429	61.644	0.785	0.787	25.563	31.555	5.379	16.613	14.874	0.266
					Nov	64.806	55.279	9.527	8.276	12.212	31.743	13.346	20.342	18.907	0.314
					Dec	60.057	31.498	28.559	22.981	7.490	20.311	17.341	23.237	11.990	0.387
					Average	64.343	53.625	10.719	13.854	35.138	29.384	8.198	20.939	0.068	0.325

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Wetland Inflow	ET (mm)	Wetland Seeppage	Welland Outflow	Wetland Storage Changes
					Jan	52.941	3231.859	7.640	20.684	3244.173	12.303
					Feb	48.800	3631.503	11.871	19.897	3647.906	0.630
					Mar	55.950	5971.084	25.277	34.570	5997.152	-29.965
					Apr	68.495	4237.629	45.823	34.875	4251.153	-25.727
					May	72.206	2936.676	75.881	31.952	2947.256	-46.208
		Exit from Tributory 2 /			Jun	69.176	2006.823	95.822	29.552	2012.611	-61.986
SW-2/SG6	HDF3 and Significant	Downstroom of	Ę	05.94	Jul	74.867	2258.193	88.854	34.156	2265.099	-55.049
300-2/300	Woodland (FOD5-1)	Significant Woodland	5	55.64	Aug	73.402	2265.379	72.808	35.593	2271.562	-41.182
					Sep	68.990	2281.308	47.850	34.088	2287.677	-19.317
					Oct	62.429	2416.765	27.046	34.190	2423.733	-5.777
					Nov	64.806	2862.240	12.380	40.275	2872.069	2.321
					Dec	60.057	3495.357	7.515	29.757	3509.945	8.198
					Average	64.343	3132.901	43.231	31.633	3144.195	-21.813
					Total	772.120	37594.814	518.767	379.590	37730.334	-261.756

Water Balance Summary Proposed Conditions _ Unmitigated

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Rain (mm)	Snow (mm)	Snowmelt (mm)	ET (mm)	Infiltration (mm)	GW Infiltration (mm)	Runoff (mm)	Delta Storage	Runoff Coef.
					Jan	52.941	20.379	32.562	24.282	7.430	13.866	14.987	18.429	12.096	0.348
					Feb	48.800	19.501	29.299	39.306	11.193	13.093	10.918	23.605	3.084	0.484
					Mar	55.950	34.107	21.843	57.636	24.574	24.047	15.127	38.598	-22.350	0.690
					Apr	68.495	62.711	5.784	12.707	45.418	32.393	14.983	23.787	-15.693	0.347
					May	72.206	71.988	0.218	0.220	70.029	34.914	6.915	18.676	-23.414	0.259
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	69.113	37.544	1.541	12.143	-13.621	0.176
SW-1/SG5	HDF3	2	301	2.08	Jul	74.867	74.867	0.000	0.000	63.649	40.635	0.356	14.455	-3.593	0.193
		2			Aug	73.402	73.402	0.000	0.000	57.153	40.526	0.323	14.346	1.581	0.195
					Sep	68.990	68.944	0.047	0.048	41.970	37.127	1.440	14.231	11.350	0.206
					Oct	62.429	61.644	0.785	0.787	25.743	32.584	4.959	14.979	16.747	0.240
					Nov	64.806	55.279	9.527	8.276	12.269	33.222	12.457	18.626	21.454	0.287
					Dec	60.057	31.498	28.559	22.981	7.498	21.505	17.125	22.129	13.306	0.368
					Average	64.343	53.625	10.719	13.854	36.336	30.121	8.428	19.500	0.079	0.303
					Jan	52.941	20.379	32.562	24.282	7.524	14.960	15.171	17.232	13.014	0.325
					Feb	48.800	19.501	29.299	39.306	11.433	13.873	11.517	22.265	3.585	0.456
					Mar	55.950	34.107	21.843	57.636	24.839	25.089	16.368	36.177	-21.434	0.647
					Apr	68.495	62.711	5.784	12.707	45.570	32.061	16.841	21.540	-15.457	0.314
			, 201		May	72.206	71.988	0.218	0.220	73.017	33.732	8.433	16.683	-25.928	0.231
	HDF9c	Entrance to Tributary 3			Jun	69.176	69.176	0.000	0.000	76.511	35.602	2.048	10.314	-19.697	0.149
SW-3/SG4				0.66	Jul	74.867	74.867	0.000	0.000	68.962	39.021	0.494	12.285	-6.873	0.164
					Aug	73.402	73.402	0.000	0.000	60.608	39.581	0.307	11.883	0.604	0.162
					Sep	68.990	68.944	0.047	0.048	43.029	36.355	1.250	11.889	12.822	0.172
					Oct	62.429	61.644	0.785	0.787	25.972	32.835	4.330	12.702	19.424	0.203
					Nov	64.806	55.279	9.527	8.276	12.316	34.721	10.923	16.266	25.300	0.251
					Dec	60.057	31.498	28.559	22.981	7.499	23.107	16.323	20.475	15.761	0.341
					Average	64.343	53.625	10.719	13.854	38.107	30.078	8.667	17.476	0.094	0.272
					Jan	52.941	20.379	32.562	24.282	7.429	16.757	18.113	15.539	11.860	0.294
					Feb	48.800	19.501	29.299	39.306	11.193	15.991	13.355	20.707	3.545	0.424
					Mar	55.950	34.107	21.843	57.636	24.572	28.916	19.304	33.729	-21.656	0.603
					Apr	68.495	62.711	5.784	12.707	45.403	37.053	19.664	19.127	-15.700	0.279
					May	72.206	71.988	0.218	0.220	71.241	38.687	9.998	14.903	-23.936	0.206
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	72.523	39.725	2.506	9.962	-15.815	0.144
SW-4/SG3	HDF8a-4	4	101	0.86	Jul	74.867	74.867	0.000	0.000	66.574	42.801	0.745	12.288	-4.741	0.164
		т Т			Aug	73.402	73.402	0.000	0.000	59.743	42.874	0.557	11.998	1.104	0.163
					Sep	68.990	68.944	0.047	0.048	42.657	39.599	2.251	11.759	12.324	0.170
					Oct	62.429	61.644	0.785	0.787	25.917	35.494	6.709	12.069	17.734	0.193
					Nov	64.806	55.279	9.527	8.276	12.290	37.329	15.509	14.519	22.488	0.224
					Dec	60.057	31.498	28.559	22.981	7.498	25.390	20.499	18.244	13.817	0.304
					Average	64.343	53.625	10.719	13.854	37.253	33.385	10.768	16.237	0.085	0.252

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Wetland Inflow	ET (mm)	Wetland Seeppage	Welland Outflow	Wetland Storage Changes
					Jan	52.941	233.942	7.636	18.669	247.314	13.264
					Feb	48.800	306.737	11.863	16.922	325.110	1.642
					Mar	55.950	497.780	25.251	29.507	527.197	-28.225
					Apr	68.495	290.908	45.772	31.936	306.746	-25.051
					May	72.206	223.104	75.805	30.522	234.653	-45.671
SW 2/SG6	HDF3 and Significant	Exit from Tributory 2 /			Jun	69.176	136.948	95.760	28.776	143.491	-61.902
		Downstroom of	Ę	0 20	Jul	74.867	162.457	88.788	32.948	170.458	-54.870
300-2/300	Woodland (FOD5-1)	Significant Woodland	5	0.50	Aug	73.402	152.935	72.750	34.589	159.716	-40.719
					Sep	68.990	154.424	47.809	32.867	161.647	-18.909
					Oct	62.429	164.668	27.022	32.943	172.343	-5.211
					Nov	64.806	212.520	12.370	38.948	222.828	3.181
					Dec	60.057	276.440	7.510	27.956	291.952	9.080
					Average	64.343	234.405	43.195	29.715	246.954	-21.116
					Total	772.120	2812.861	518.336	356.583	2963.452	-253.389

Water Balance Summary	Water Balance Summary											
Proposed Conditions _ Mitigated with Compensation Area=	0.5	ha										

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Rain (mm)	Snow (mm)	Snowmelt (mm)	ET (mm)	Infiltration (mm)	GW Infiltration (mm)	Runoff (mm)	Delta Storage	Runoff Coef.
					Jan	52.941	20.379	32.562	24.282	6.729	11.180	12.080	21.531	12.601	0.407
					Feb	48.800	19.501	29.299	39.306	9.851	10.557	8.800	27.067	3.083	0.555
					Mar	55.950	34.107	21.843	57.636	21.234	19.391	12.193	45.007	-22.483	0.804
					Apr	68.495	62.711	5.784	12.707	37.905	26.124	12.076	32.379	-13.865	0.473
					May	72.206	71.988	0.218	0.220	57.477	28.155	5.574	28.011	-18.856	0.388
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	56.765	30.274	1.242	22.184	-11.014	0.321
SW-1/SG5	HDF3		22	2.58	Jul	74.867	74.867	0.000	0.000	52.355	32.765	0.287	25.112	-2.887	0.335
		2			Aug	73.402	73.402	0.000	0.000	47.095	32.677	0.261	24.782	1.265	0.338
					Sep	68.990	68.944	0.047	0.048	34.817	29.938	1.162	23.860	9.152	0.346
					Oct	62.429	61.644	0.785	0.787	21.760	26.274	3.998	23.160	13.510	0.371
					Nov	64.806	55.279	9.527	8.276	10.967	26.786	10.044	26.104	17.690	0.403
					Dec	60.057	31.498	28.559	22.981	6.970	17.338	13.806	26.712	12.570	0.445
					Average	64.343	53.625	10.719	13.854	30.327	24.288	6.794	27.159	0.064	0.422
					Jan	52.941	20.379	32.562	24.282	5.927	8.522	8.637	24.636	13.740	0.465
					Feb	48.800	19.501	29.299	39.306	8.349	7.905	6.554	30.531	3.366	0.626
					Mar	55.950	34.107	21.843	57.636	17.306	14.301	9.316	51.454	-22.126	0.920
					Apr	68.495	62.711	5.784	12.707	28.821	18.282	9.585	41.588	-11.499	0.607
					May	72.206	71.988	0.218	0.220	43.855	19.232	4.799	38.273	-14.722	0.530
		Entranço to Tributary			Jun	69.176	69.176	0.000	0.000	45.899	20.297	1.166	33.398	-11.287	0.483
SW-3/SG4	HDF9c		24	1.16	Jul	74.867	74.867	0.000	0.000	41.591	22.241	0.282	36.887	-3.893	0.493
		5			Aug	73.402	73.402	0.000	0.000	36.784	22.558	0.176	36.118	0.324	0.492
					Sep	68.990	68.944	0.047	0.048	26.688	20.722	0.714	34.281	7.308	0.497
					Oct	62.429	61.644	0.785	0.787	17.027	18.715	2.468	31.851	11.082	0.510
					Nov	64.806	55.279	9.527	8.276	9.406	19.783	6.226	33.890	15.284	0.523
					Dec	60.057	31.498	28.559	22.981	6.326	13.163	9.297	31.366	13.069	0.522
					Average	64.343	53.625	10.719	13.854	23.998	17.143	4.935	35.356	0.054	0.549
					Jan	52.941	20.379	32.562	24.282	6.103	10.608	11.461	22.474	12.903	0.425
					Feb	48.800	19.501	29.299	39.306	8.652	10.124	8.449	28.327	3.373	0.580
					Mar	55.950	34.107	21.843	57.636	18.248	18.312	12.212	47.654	-22.165	0.852
					Apr	68.495	62.711	5.784	12.707	31.184	23.470	12.440	37.107	-12.236	0.542
					May	72.206	71.988	0.218	0.220	47.031	24.503	6.324	33.965	-15.114	0.470
		Entranço to Tributary			Jun	69.176	69.176	0.000	0.000	47.890	25.160	1.586	29.772	-10.072	0.430
SW-4/SG3	HDF8a-4		23	1.36	Jul	74.867	74.867	0.000	0.000	44.116	27.106	0.472	33.263	-2.984	0.444
		4			Aug	73.402	73.402	0.000	0.000	39.749	27.150	0.353	32.618	0.682	0.444
				Í Í	Sep	68.990	68.944	0.047	0.048	28.862	25.078	1.425	30.898	7.806	0.448
					Oct	62.429	61.644	0.785	0.787	18.311	22.478	4.247	28.628	11.242	0.459
					Nov	64.806	55.279	9.527	8.276	9.818	23.635	9.819	30.186	14.982	0.466
					Dec	60.057	31.498	28.559	22.981	6.498	16.073	12.974	28.350	12.236	0.472
					Average	64.343	53.625	10.719	13.854	25.539	21.141	6.814	31.937	0.055	0.496

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Wetland Inflow	ET (mm)	Wetland Seeppage	Welland Outflow	Wetland Storage Changes
					Jan	52.941	263.365	7.636	18.677	276.722	13.271
					Feb	48.800	342.148	11.863	16.937	360.531	1.618
					Mar	55.950	558.969	25.252	29.531	588.279	-28.142
					Apr	68.495	349.074	45.774	31.944	364.879	-25.028
SW 2/866	HDF3 and Significant				May	72.206	280.154	75.809	30.524	291.704	-45.677
		Exit from Tributory 2 /			Jun	69.176	191.575	95.764	28.773	198.121	-61.907
		Downstroom of	5	0 00	Jul	74.867	221.708	88.793	32.948	229.712	-54.878
300-2/300	Woodland (FOD5-1)		J	0.00	Aug	73.402	211.173	72.754	34.585	217.960	-40.724
					Sep	68.990	208.991	47.812	32.865	216.228	-18.923
					Oct	62.429	213.496	27.023	32.944	221.185	-5.227
					Nov	64.806	261.383	12.370	38.949	271.680	3.190
					Dec	60.057	315.549	7.510	27.962	331.040	9.094
					Average	64.343	284.799	43.197	29.720	297.337	-21.111
					Total	772.120	3417.586	518.360	356.639	3568.041	-253.334

Water Balance Summary Proposed Conditions _ Mitigated with Compensation Area= 1 ha

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Rain (mm)	Snow (mm)	Snowmelt (mm)	ET (mm)	Infiltration (mm)	GW Infiltration (mm)	Runoff (mm)	Delta Storage	Runoff Coef.
					Jan	52.941	20.379	32.562	24.282	6.256	9.367	10.119	23.624	12.942	0.446
					Feb	48.800	19.501	29.299	39.306	8.946	8.846	7.370	29.403	3.082	0.603
					Mar	55.950	34.107	21.843	57.636	18.979	16.249	10.212	49.333	-22.574	0.882
					Apr	68.495	62.711	5.784	12.707	32.835	21.893	10.115	38.177	-12.632	0.557
					May	72.206	71.988	0.218	0.220	49.007	23.594	4.668	34.311	-15.780	0.475
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	48.431	25.369	1.041	28.959	-9.254	0.419
SW-1/SG5	HDF3		22	3.08	Jul	74.867	74.867	0.000	0.000	44.733	27.455	0.241	32.304	-2.412	0.431
		2			Aug	73.402	73.402	0.000	0.000	40.308	27.380	0.219	31.824	1.052	0.434
					Sep	68.990	68.944	0.047	0.048	29.990	25.086	0.974	30.357	7.670	0.440
					Oct	62.429	61.644	0.785	0.787	19.071	22.016	3.350	28.681	11.326	0.459
					Nov	64.806	55.279	9.527	8.276	10.089	22.443	8.416	31.151	15.150	0.481
					Dec	60.057	31.498	28.559	22.981	6.613	14.526	11.565	29.805	12.073	0.496
					Average	64.343	53.625	10.719	13.854	26.272	20.352	5.691	32.327	0.054	0.502
					Jan	52.941	20.379	32.562	24.282	5.293	5.963	6.040	27.580	14.029	0.521
					Feb	48.800	19.501	29.299	39.306	7.124	5.533	4.582	33.816	3.279	0.693
					Mar	55.950	34.107	21.843	57.636	14.312	10.013	6.513	57.527	-22.402	1.028
					Apr	68.495	62.711	5.784	12.707	22.163	12.805	6.701	49.557	-9.926	0.724
					May	72.206	71.988	0.218	0.220	32.263	13.468	3.355	46.855	-10.267	0.649
		Fatura en to Taile store .			Jun	69.176	69.176	0.000	0.000	33.731	14.213	0.815	42.574	-7.944	0.615
SW-3/SG4	HDF9c	Entrance to Tributary	24	1.66	Jul	74.867	74.867	0.000	0.000	30.711	15.571	0.198	46.667	-2.709	0.623
		3			Aug	73.402	73.402	0.000	0.000	27.313	15.791	0.124	45.752	0.213	0.623
					Sep	68.990	68.944	0.047	0.048	20.193	14.508	0.500	43.181	5.116	0.626
					Oct	62.429	61.644	0.785	0.787	13.472	13.102	1.728	39.463	7.766	0.632
					Nov	64.806	55.279	9.527	8.276	8.249	13.845	4.359	40.895	11.303	0.631
					Dec	60.057	31.498	28.559	22.981	5.860	9.210	6.504	35.696	11.998	0.594
					Average	64.343	53.625	10.719	13.854	18.390	12.002	3.451	42.464	0.038	0.660
					Jan	52.941	20.379	32.562	24.282	5.490	7.764	8.385	25.681	13.386	0.485
					Feb	48.800	19.501	29.299	39.306	7.477	7.411	6.179	31.850	3.294	0.653
					Mar	55.950	34.107	21.843	57.636	15.324	13.408	8.933	54.093	-22.400	0.967
					Apr	68.495	62.711	5.784	12.707	24.609	17.189	9.099	45.421	-10.634	0.663
					May	72.206	71.988	0.218	0.220	35.835	17.944	4.626	42.780	-11.035	0.592
		Entrança ta Tributary			Jun	69.176	69.176	0.000	0.000	36.498	18.425	1.160	38.934	-7.416	0.563
SW-4/SG3	HDF8a-4		23	1.86	Jul	74.867	74.867	0.000	0.000	33.730	19.847	0.346	42.962	-2.171	0.574
		4			Aug	73.402	73.402	0.000	0.000	30.502	19.878	0.259	42.154	0.487	0.574
					Sep	68.990	68.944	0.047	0.048	22.482	18.363	1.044	39.748	5.716	0.576
					Oct	62.429	61.644	0.785	0.787	14.793	16.459	3.109	36.286	8.241	0.581
					Nov	64.806	55.279	9.527	8.276	8.675	17.302	7.188	37.432	11.511	0.578
					Dec	60.057	31.498	28.559	22.981	6.036	11.764	9.494	33.024	11.504	0.550
					Average	64.343	53.625	10.719	13.854	20.121	15.479	4.985	39.197	0.040	0.609

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Wetland Inflow	ET (mm)	Wetland Seeppage	Welland Outflow	Wetland Storage Changes
					Jan	52.941	292.788	7.636	18.686	306.125	13.282
					Feb	48.800	377.560	11.864	16.952	395.872	1.672
					Mar	55.950	620.159	25.253	29.559	649.577	-28.279
					Apr	68.495	407.241	45.775	31.954	423.072	-25.066
	HDF3 and Significant				May	72.206	337.204	75.812	30.528	348.738	-45.668
SW-2/SG6		Exit from Tributory 2 /			Jun	69.176	246.202	95.768	28.773	252.749	-61.911
		Downstroom of	Ę	0.28	Jul	74.867	280.960	88.797	32.951	288.951	-54.873
300-2/300	Woodland (FOD5-1)		5	9.38	Aug	73.402	269.411	72.758	34.583	276.201	-40.729
					Sep	68.990	263.559	47.814	32.865	270.778	-18.907
					Oct	62.429	262.324	27.024	32.946	269.999	-5.216
					Nov	64.806	310.246	12.371	38.952	320.546	3.184
					Dec	60.057	354.658	7.510	27.970	370.133	9.102
					Average	64.343	335.193	43.198	29.727	347.728	-21.117
					Total	772.120	4022.311	518.382	356.719	4172.739	-253.409

Water Balance Summary Proposed Conditions _ Mitigated with Compensation Area= 5 ha

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Rain (mm)	Snow (mm)	Snowmelt (mm)	ET (mm)	Infiltration (mm)	GW Infiltration (mm)	Runoff (mm)	Delta Storage	Runoff Coef.
					Jan	52.941	20.379	32.562	24.282	4.879	4.087	4.407	29.720	13.935	0.561
					Feb	48.800	19.501	29.299	39.306	6.308	3.862	3.207	36.206	3.079	0.742
					Mar	55.950	34.107	21.843	57.636	12.415	7.100	4.445	61.928	-22.837	1.107
					Apr	68.495	62.711	5.784	12.707	18.071	9.573	4.402	55.060	-9.039	0.804
					May	72.206	71.988	0.218	0.220	24.340	10.311	2.031	52.657	-6.822	0.729
		Entranco to Tributary			Jun	69.176	69.176	0.000	0.000	24.164	11.084	0.454	48.689	-4.130	0.704
SW-1/SG5	HDF3		22	7.08	Jul	74.867	74.867	0.000	0.000	22.539	11.990	0.106	53.248	-1.026	0.711
		2			Aug	73.402	73.402	0.000	0.000	20.543	11.955	0.097	52.330	0.432	0.713
					Sep	68.990	68.944	0.047	0.048	15.934	10.957	0.426	49.279	3.352	0.714
					Oct	62.429	61.644	0.785	0.787	11.243	9.617	1.463	44.758	4.965	0.717
					Nov	64.806	55.279	9.527	8.276	7.532	9.796	3.674	45.846	7.754	0.707
					Dec	60.057	31.498	28.559	22.981	5.576	6.338	5.042	38.813	10.627	0.646
					Average	64.343	53.625	10.719	13.854	14.462	8.889	2.479	47.378	0.024	0.736
					Jan	52.941	20.379	32.562	24.282	4.252	1.768	1.782	32.404	14.502	0.612
					Feb	48.800	19.501	29.299	39.306	5.114	1.644	1.348	39.202	3.137	0.803
					Mar	55.950	34.107	21.843	57.636	9.404	2.983	1.917	67.482	-22.853	1.206
					Apr	68.495	62.711	5.784	12.707	11.249	3.826	1.972	62.620	-7.347	0.914
					May	72.206	71.988	0.218	0.220	13.260	4.019	0.986	60.924	-2.965	0.844
		Entranco to Tributary			Jun	69.176	69.176	0.000	0.000	13.783	4.239	0.241	57.616	-2.464	0.833
SW-3/SG4	HDF9c		24	5.66	Jul	74.867	74.867	0.000	0.000	12.875	4.637	0.060	62.699	-0.767	0.837
		J			Aug	73.402	73.402	0.000	0.000	11.789	4.697	0.039	61.544	0.031	0.838
					Sep	68.990	68.944	0.047	0.048	9.545	4.321	0.150	57.772	1.523	0.837
					Oct	62.429	61.644	0.785	0.787	7.643	3.901	0.515	51.942	2.330	0.832
					Nov	64.806	55.279	9.527	8.276	6.352	4.111	1.299	52.379	4.776	0.808
					Dec	60.057	31.498	28.559	22.981	5.095	2.731	1.926	42.793	10.243	0.713
					Average	64.343	53.625	10.719	13.854	9.197	3.573	1.020	54.115	0.012	0.841
					Jan	52.941	20.379	32.562	24.282	4.350	2.483	2.672	31.637	14.282	0.598
					Feb	48.800	19.501	29.299	39.306	5.295	2.373	1.966	38.394	3.146	0.787
					Mar	55.950	34.107	21.843	57.636	9.893	4.301	2.843	66.051	-22.837	1.181
					Apr	68.495	62.711	5.784	12.707	12.398	5.525	2.896	60.861	-7.660	0.889
					May	72.206	71.988	0.218	0.220	15.044	5.763	1.471	59.149	-3.459	0.819
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	15.344	5.917	0.370	55.946	-2.484	0.809
SW-4/SG3	HDF8a-4		23	5.86	Jul	74.867	74.867	0.000	0.000	14.444	6.368	0.111	60.974	-0.663	0.814
		4			Aug	73.402	73.402	0.000	0.000	13.332	6.375	0.084	59.862	0.124	0.816
					Sep	68.990	68.944	0.047	0.048	10.636	5.893	0.335	56.183	1.837	0.814
					Oct	62.429	61.644	0.785	0.787	8.262	5.282	0.995	50.506	2.666	0.809
					Nov	64.806	55.279	9.527	8.276	6.553	5.541	2.301	50.887	5.065	0.785
					Dec	60.057	31.498	28.559	22.981	5.177	3.763	3.031	41.702	10.147	0.694
					Average	64.343	53.625	10.719	13.854	10.061	4.965	1.590	52.679	0.014	0.819

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Wetland Inflow	ET (mm)	Wetland Seeppage	Welland Outflow	Wetland Storage Changes
					Jan	52.941	528.174	7.637	18.800	541.436	13.241
					Feb	48.800	660.851	11.866	17.140	679.134	1.512
					Mar	55.950	1109.673	25.258	29.880	1138.802	-28.318
					Apr	68.495	872.571	45.791	32.103	888.364	-25.192
					May	72.206	793.606	75.838	30.621	805.108	-45.754
SW 2/506	HDF3 and Significant	Evit from Tributory 2 /			Jun	69.176	683.216	95.800	28.825	689.724	-61.957
		Downstroom of	Ę	12 29	Jul	74.867	754.971	88.834	33.054	762.890	-54.940
300-2/300	Woodland (FOD5-1)	Significant Woodland	5	15.50	Aug	73.402	735.317	72.789	34.653	742.108	-40.830
					Sep	68.990	700.098	47.833	32.939	707.345	-19.028
					Oct	62.429	652.949	27.032	33.007	660.616	-5.278
					Nov	64.806	701.154	12.374	39.029	711.429	3.128
					Dec	60.057	667.530	7.512	28.076	683.015	8.985
					Average	64.343	738.343	43.214	29.844	750.831	-21.203
					Total	772.120	8860.110	518.564	358.125	9009.971	-254.430

Water Balance Summary											
Proposed Conditions _ Mitigated with Compensation Area=	7.5	ha									

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Rain (mm)	Snow (mm)	Snowmelt (mm)	ET (mm)	Infiltration (mm)	GW Infiltration (mm)	Runoff (mm)	Delta Storage	Runoff Coef.
					Jan	52.941	20.379	32.562	24.282	4.603	3.027	3.260	30.943	14.134	0.584
					Feb	48.800	19.501	29.299	39.306	5.778	2.862	2.371	37.572	3.079	0.770
					Mar	55.950	34.107	21.843	57.636	11.097	5.264	3.287	64.456	-22.890	1.152
					Apr	68.495	62.711	5.784	12.707	15.108	7.100	3.256	58.449	-8.318	0.853
					May	72.206	71.988	0.218	0.220	19.389	7.645	1.502	56.339	-5.024	0.780
		Entranço to Tributary			Jun	69.176	69.176	0.000	0.000	19.293	8.216	0.336	52.649	-3.102	0.761
SW-1/SG5	HDF3		22	9.58	Jul	74.867	74.867	0.000	0.000	18.083	8.886	0.079	57.452	-0.748	0.767
		2			Aug	73.402	73.402	0.000	0.000	16.575	8.858	0.072	56.447	0.308	0.769
					Sep	68.990	68.944	0.047	0.048	13.112	8.121	0.316	53.077	2.485	0.769
					Oct	62.429	61.644	0.785	0.787	9.672	7.128	1.084	47.985	3.688	0.769
					Nov	64.806	55.279	9.527	8.276	7.018	7.257	2.722	48.796	6.270	0.753
					Dec	60.057	31.498	28.559	22.981	5.367	4.694	3.732	40.621	10.337	0.676
					Average	64.343	53.625	10.719	13.854	12.091	6.588	1.835	50.399	0.018	0.783
					Jan	52.941	20.379	32.562	24.282	4.120	1.235	1.241	33.018	14.562	0.624
					Feb	48.800	19.501	29.299	39.306	4.858	1.149	0.937	39.887	3.118	0.817
					Mar	55.950	34.107	21.843	57.636	8.780	2.089	1.333	68.747	-22.910	1.229
					Apr	68.495	62.711	5.784	12.707	9.861	2.684	1.371	64.281	-7.019	0.938
					May	72.206	71.988	0.218	0.220	10.844	2.818	0.685	62.713	-2.037	0.869
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	11.247	2.971	0.168	59.529	-1.768	0.861
SW-3/SG4	HDF9c	2	24	8.16	Jul	74.867	74.867	0.000	0.000	10.607	3.247	0.042	64.737	-0.520	0.865
		5			Aug	73.402	73.402	0.000	0.000	9.815	3.287	0.028	63.552	0.008	0.866
					Sep	68.990	68.944	0.047	0.048	8.191	3.025	0.106	59.627	1.066	0.864
					Oct	62.429	61.644	0.785	0.787	6.902	2.731	0.361	53.528	1.639	0.857
					Nov	64.806	55.279	9.527	8.276	6.111	2.874	0.909	53.839	3.946	0.831
					Dec	60.057	31.498	28.559	22.981	4.998	1.907	1.344	43.696	10.020	0.728
					Average	64.343	53.625	10.719	13.854	8.028	2.502	0.710	55.596	0.009	0.864
					Jan	52.941	20.379	32.562	24.282	4.192	1.749	1.878	32.465	14.406	0.613
					Feb	48.800	19.501	29.299	39.306	4.991	1.673	1.380	39.304	3.126	0.805
					Mar	55.950	34.107	21.843	57.636	9.138	3.035	1.996	67.714	-22.898	1.210
					Apr	68.495	62.711	5.784	12.707	10.700	3.903	2.033	63.008	-7.246	0.920
					May	72.206	71.988	0.218	0.220	12.153	4.069	1.032	61.426	-2.405	0.851
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	12.402	4.178	0.260	58.312	-1.798	0.843
SW-4/SG3	HDF8a-4		23	8.36	Jul	74.867	74.867	0.000	0.000	11.761	4.494	0.079	63.479	-0.453	0.848
		7			Aug	73.402	73.402	0.000	0.000	10.944	4.497	0.060	62.324	0.074	0.849
					Sep	68.990	68.944	0.047	0.048	8.989	4.159	0.236	58.469	1.297	0.847
					Oct	62.429	61.644	0.785	0.787	7.353	3.727	0.701	52.484	1.891	0.841
					Nov	64.806	55.279	9.527	8.276	6.257	3.906	1.622	52.758	4.169	0.814
					Dec	60.057	31.498	28.559	22.981	5.058	2.650	2.133	42.909	9.958	0.714
					Average	64.343	53.625	10.719	13.854	8.662	3.503	1.117	54.554	0.010	0.848

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Wetland Inflow	ET (mm)	Wetland Seeppage	Welland Outflow	Wetland Storage Changes
					Jan	52.941	675.289	7.638	18.907	688.586	13.100
					Feb	48.800	837.909	11.867	17.308	856.138	1.396
					Mar	55.950	1415.619	25.262	30.169	1444.749	-28.611
					Apr	68.495	1163.402	45.800	32.257	1179.096	-25.256
	HDF3 and Significant				May	72.206	1078.856	75.854	30.736	1090.426	-45.955
		Evit from Tributory 2 /			Jun	69.176	956.352	95.821	28.911	962.827	-62.030
SW 2/SCE		Downstroom of	E	1 5 0 0	Jul	74.867	1051.228	88.857	33.176	1059.188	-55.125
300-2/300	Woodland (FOD5-1)		5	15.88	Aug	73.402	1026.507	72.808	34.772	1033.287	-40.958
					Sep	68.990	972.936	47.845	33.050	980.148	-19.116
					Oct	62.429	897.089	27.038	33.077	904.666	-5.264
					Nov	64.806	945.472	12.377	39.126	955.656	3.119
					Dec	60.057	863.076	7.513	28.182	878.456	8.983
					Average	64.343	990.311	43.223	29.973	1002.769	-21.310
					Total	772.120	11883.735	518.678	359.672	12033.222	-255.717

Water Balance Summary Proposed Conditions _ Mitigated with Compensation Area= 10 ha

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Rain (mm)	Snow (mm)	Snowmelt (mm)	ET (mm)	Infiltration (mm)	GW Infiltration (mm)	Runoff (mm)	Delta Storage	Runoff Coef.
					Jan	52.941	20.379	32.562	24.282	4.441	2.406	2.589	31.660	14.251	0.598
					Feb	48.800	19.501	29.299	39.306	5.468	2.275	1.882	38.372	3.079	0.786
					Mar	55.950	34.107	21.843	57.636	10.325	4.188	2.609	65.938	-22.921	1.179
					Apr	68.495	62.711	5.784	12.707	13.371	5.651	2.584	60.435	-7.895	0.882
					May	72.206	71.988	0.218	0.220	16.488	6.082	1.192	58.497	-3.971	0.810
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	16.439	6.536	0.267	54.970	-2.499	0.795
SW-1/SG5	HDF3	2	22	12.08	Jul	74.867	74.867	0.000	0.000	15.473	7.067	0.063	59.916	-0.585	0.800
		2			Aug	73.402	73.402	0.000	0.000	14.251	7.044	0.058	58.859	0.235	0.802
					Sep	68.990	68.944	0.047	0.048	11.459	6.459	0.252	55.302	1.977	0.802
					Oct	62.429	61.644	0.785	0.787	8.751	5.669	0.862	49.876	2.940	0.799
					Nov	64.806	55.279	9.527	8.276	6.717	5.770	2.165	50.524	5.400	0.780
					Dec	60.057	31.498	28.559	22.981	5.245	3.731	2.965	41.680	10.167	0.694
					Average	64.343	53.625	10.719	13.854	10.702	5.240	1.457	52.169	0.015	0.811
					Jan	52.941	20.379	32.562	24.282	4.050	0.952	0.953	33.344	14.594	0.630
					Feb	48.800	19.501	29.299	39.306	4.723	0.887	0.719	40.250	3.109	0.825
					Mar	55.950	34.107	21.843	57.636	8.449	1.615	1.023	69.419	-22.941	1.241
					Apr	68.495	62.711	5.784	12.707	9.124	2.078	1.052	65.163	-6.845	0.951
					May	72.206	71.988	0.218	0.220	9.562	2.180	0.525	63.663	-1.544	0.882
		Entranco to Tributary			Jun	69.176	69.176	0.000	0.000	9.901	2.298	0.129	60.544	-1.398	0.875
SW-3/SG4	HDF9c	2	24	10.66	Jul	74.867	74.867	0.000	0.000	9.403	2.509	0.033	65.819	-0.389	0.879
		5			Aug	73.402	73.402	0.000	0.000	8.767	2.538	0.022	64.618	-0.004	0.880
					Sep	68.990	68.944	0.047	0.048	7.473	2.338	0.082	60.612	0.824	0.879
					Oct	62.429	61.644	0.785	0.787	6.508	2.110	0.279	54.370	1.272	0.871
					Nov	64.806	55.279	9.527	8.276	5.983	2.217	0.703	54.615	3.505	0.843
					Dec	60.057	31.498	28.559	22.981	4.946	1.469	1.035	44.175	9.902	0.736
					Average	64.343	53.625	10.719	13.854	7.407	1.933	0.546	56.383	0.007	0.876
					Jan	52.941	20.379	32.562	24.282	4.106	1.353	1.449	32.912	14.474	0.622
					Feb	48.800	19.501	29.299	39.306	4.828	1.294	1.064	39.795	3.115	0.815
					Mar	55.950	34.107	21.843	57.636	8.730	2.352	1.539	68.611	-22.930	1.226
					Apr	68.495	62.711	5.784	12.707	9.784	3.027	1.567	64.166	-7.023	0.937
					May	72.206	71.988	0.218	0.220	10.593	3.155	0.795	62.654	-1.836	0.868
		Fatura es to Taibutour			Jun	69.176	69.176	0.000	0.000	10.815	3.239	0.201	59.589	-1.428	0.861
SW-4/SG3	HDF8a-4	Entrance to Tributary	23	10.86	Jul	74.867	74.867	0.000	0.000	10.314	3.482	0.061	64.831	-0.340	0.866
		4			Aug	73.402	73.402	0.000	0.000	9.656	3.483	0.047	63.653	0.046	0.867
					Sep	68.990	68.944	0.047	0.048	8.100	3.223	0.183	59.702	1.006	0.865
					Oct	62.429	61.644	0.785	0.787	6.863	2.888	0.542	53.551	1.473	0.858
					Nov	64.806	55.279	9.527	8.276	6.098	3.023	1.255	53.768	3.685	0.830
					Dec	60.057	31.498	28.559	22.981	4.993	2.050	1.648	43.560	9.856	0.725
					Average	64.343	53.625	10.719	13.854	7.907	2.714	0.863	55.566	0.008	0.864

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Wetland Inflow	ET (mm)	Wetland Seeppage	Welland Outflow	Wetland Storage Changes
					Jan	52.941	822.405	7.639	19.036	835.646	13.026
					Feb	48.800	1014.966	11.868	17.511	1033.148	1.238
					Mar	55.950	1721.564	25.266	30.513	1750.184	-28.449
					Apr	68.495	1454.233	45.810	32.451	1469.841	-25.375
					May	72.206	1364.106	75.870	30.888	1375.418	-45.864
		Evit from Tributory 2 /			Jun	69.176	1229.488	95.841	29.037	1235.928	-62.141
SW-2/SG6	HDF3 and Significant	Downstroom of	5	19.29	Jul	74.867	1347.485	88.879	33.346	1355.296	-55.169
300-2/300	Woodland (FOD5-1)		J	10.50	Aug	73.402	1317.698	72.827	34.950	1324.563	-41.240
					Sep	68.990	1245.773	47.856	33.205	1253.099	-19.397
					Oct	62.429	1141.229	27.043	33.181	1148.735	-5.301
					Nov	64.806	1189.790	12.379	39.254	1199.893	3.070
					Dec	60.057	1058.622	7.513	28.319	1073.942	8.905
					Average	64.343	1242.280	43.233	30.141	1254.641	-21.391
					Total	772.120	14907.360	518.792	361.692	15055.691	-256.696

Water Balance Summary		
Proposed Conditions _ Mitigated with Compensation Area=	12.5	ha

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Rain (mm)	Snow (mm)	Snowmelt (mm)	ET (mm)	Infiltration (mm)	GW Infiltration (mm)	Runoff (mm)	Delta Storage	Runoff Coef.
					Jan	52.941	20.379	32.562	24.282	4.335	1.998	2.147	32.131	14.328	0.607
					Feb	48.800	19.501	29.299	39.306	5.264	1.890	1.560	38.898	3.078	0.797
					Mar	55.950	34.107	21.843	57.636	9.818	3.481	2.163	66.911	-22.942	1.196
					Apr	68.495	62.711	5.784	12.707	12.230	4.699	2.142	61.740	-7.617	0.901
					May	72.206	71.988	0.218	0.220	14.582	5.056	0.988	59.915	-3.278	0.830
		Entranço to Tributary			Jun	69.176	69.176	0.000	0.000	14.563	5.432	0.221	56.495	-2.103	0.817
SW-1/SG5	HDF3		22	14.58	Jul	74.867	74.867	0.000	0.000	13.758	5.872	0.053	61.534	-0.478	0.822
		2			Aug	73.402	73.402	0.000	0.000	12.723	5.852	0.049	60.443	0.187	0.823
					Sep	68.990	68.944	0.047	0.048	10.373	5.367	0.209	56.765	1.644	0.823
					Oct	62.429	61.644	0.785	0.787	8.146	4.711	0.716	51.119	2.448	0.819
					Nov	64.806	55.279	9.527	8.276	6.520	4.792	1.798	51.660	4.828	0.797
					Dec	60.057	31.498	28.559	22.981	5.165	3.098	2.461	42.377	10.055	0.706
					Average	64.343	53.625	10.719	13.854	9.790	4.354	1.209	53.332	0.012	0.829
					Jan	52.941	20.379	32.562	24.282	4.006	0.776	0.775	33.545	14.614	0.634
					Feb	48.800	19.501	29.299	39.306	4.639	0.724	0.583	40.476	3.103	0.829
					Mar	55.950	34.107	21.843	57.636	8.243	1.321	0.830	69.836	-22.959	1.248
					Apr	68.495	62.711	5.784	12.707	8.668	1.703	0.854	65.710	-6.737	0.959
					May	72.206	71.988	0.218	0.220	8.766	1.784	0.426	64.251	-1.238	0.890
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	9.066	1.880	0.105	61.174	-1.169	0.884
SW-3/SG4	HDF9c		24	13.16	Jul	74.867	74.867	0.000	0.000	8.657	2.051	0.027	66.490	-0.308	0.888
		3			Aug	73.402	73.402	0.000	0.000	8.117	2.074	0.018	65.279	-0.012	0.889
					Sep	68.990	68.944	0.047	0.048	7.027	1.912	0.067	61.223	0.673	0.887
					Oct	62.429	61.644	0.785	0.787	6.264	1.725	0.228	54.892	1.044	0.879
					Nov	64.806	55.279	9.527	8.276	5.904	1.809	0.575	55.095	3.232	0.850
					Dec	60.057	31.498	28.559	22.981	4.914	1.198	0.843	44.472	9.828	0.740
					Average	64.343	53.625	10.719	13.854	7.023	1.580	0.444	56.870	0.006	0.884
					Jan	52.941	20.379	32.562	24.282	4.053	1.105	1.181	33.192	14.516	0.627
					Feb	48.800	19.501	29.299	39.306	4.725	1.058	0.866	40.102	3.108	0.822
					Mar	55.950	34.107	21.843	57.636	8.475	1.924	1.253	69.173	-22.951	1.236
					Apr	68.495	62.711	5.784	12.707	9.211	2.480	1.276	64.891	-6.883	0.947
					May	72.206	71.988	0.218	0.220	9.616	2.583	0.647	63.423	-1.480	0.878
		Fataona ta Tributan i			Jun	69.176	69.176	0.000	0.000	9.821	2.652	0.164	60.388	-1.197	0.873
SW-4/SG3	HDF8a-4	Entrance to Tributary	23	13.36	Jul	74.867	74.867	0.000	0.000	9.408	2.849	0.050	65.677	-0.269	0.877
		4			Aug	73.402	73.402	0.000	0.000	8.849	2.849	0.039	64.485	0.029	0.879
					Sep	68.990	68.944	0.047	0.048	7.543	2.637	0.150	60.474	0.824	0.877
					Oct	62.429	61.644	0.785	0.787	6.556	2.363	0.443	54.218	1.211	0.868
					Nov	64.806	55.279	9.527	8.276	5.998	2.471	1.025	54.400	3.382	0.839
					Dec	60.057	31.498	28.559	22.981	4.953	1.674	1.344	43.968	9.792	0.732
					Average	64.343	53.625	10.719	13.854	7.434	2.220	0.703	56.199	0.007	0.873

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Wetland Inflow	ET (mm)	Wetland Seeppage	Welland Outflow	Wetland Storage Changes
					Jan	52.941	969.520	7.639	19.190	982.702	12.930
					Feb	48.800	1192.022	11.869	17.747	1210.172	1.035
					Mar	55.950	2027.509	25.270	30.912	2056.155	-28.878
					Apr	68.495	1745.064	45.819	32.683	1760.403	-25.346
					May	72.206	1649.355	75.887	31.078	1660.665	-46.069
		Exit from Tributory 2 /			Jun	69.176	1502.626	95.861	29.204	1509.025	-62.288
SW-2/SG6	HDF3 and Significant	Downstroom of	Ę	20.88	Jul	74.867	1643.742	88.902	33.570	1651.818	-55.681
300-2/300	Woodland (FOD5-1)	Significant Woodland	5	20.88	Aug	73.402	1608.889	72.846	35.184	1615.873	-41.614
					Sep	68.990	1518.610	47.868	33.403	1525.722	-19.392
					Oct	62.429	1385.369	27.049	33.318	1393.062	-5.631
					Nov	64.806	1434.109	12.381	39.417	1444.505	2.612
					Dec	60.057	1254.169	7.514	28.487	1269.457	8.769
					Average	64.343	1494.249	43.242	30.349	1506.630	-21.630
					Total	772.120	17930.983	518.906	364.193	18079.559	-259.554

Water Balance Summary		
Proposed Conditions _ Mitigated with Compensation Area=	15	ha

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Rain (mm)	Snow (mm)	Snowmelt (mm)	ET (mm)	Infiltration (mm)	GW Infiltration (mm)	Runoff (mm)	Delta Storage	Runoff Coef.
					Jan	52.941	20.379	32.562	24.282	4.259	1.710	1.835	32.465	14.382	0.613
					Feb	48.800	19.501	29.299	39.306	5.120	1.618	1.333	39.269	3.078	0.805
					Mar	55.950	34.107	21.843	57.636	9.459	2.981	1.848	67.599	-22.956	1.208
					Apr	68.495	62.711	5.784	12.707	11.423	4.025	1.830	62.662	-7.421	0.915
					May	72.206	71.988	0.218	0.220	13.234	4.330	0.844	60.917	-2.789	0.844
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	13.237	4.651	0.189	57.573	-1.823	0.832
SW-1/SG5	HDF3	2	22	17.08	Jul	74.867	74.867	0.000	0.000	12.545	5.027	0.045	62.679	-0.402	0.837
		2			Aug	73.402	73.402	0.000	0.000	11.643	5.009	0.042	61.564	0.153	0.839
					Sep	68.990	68.944	0.047	0.048	9.605	4.595	0.179	57.799	1.408	0.838
					Oct	62.429	61.644	0.785	0.787	7.718	4.034	0.613	51.997	2.101	0.833
					Nov	64.806	55.279	9.527	8.276	6.380	4.101	1.539	52.463	4.424	0.810
					Dec	60.057	31.498	28.559	22.981	5.109	2.651	2.104	42.869	9.976	0.714
					Average	64.343	53.625	10.719	13.854	9.144	3.728	1.033	54.155	0.011	0.842
					Jan	52.941	20.379	32.562	24.282	3.977	0.657	0.654	33.683	14.628	0.636
					Feb	48.800	19.501	29.299	39.306	4.581	0.613	0.491	40.629	3.099	0.833
					Mar	55.950	34.107	21.843	57.636	8.103	1.120	0.699	70.119	-22.972	1.253
					Apr	68.495	62.711	5.784	12.707	8.357	1.447	0.720	66.082	-6.663	0.965
					May	72.206	71.988	0.218	0.220	8.225	1.515	0.359	64.652	-1.030	0.895
		Entrance to Tributory			Jun	69.176	69.176	0.000	0.000	8.498	1.596	0.089	61.603	-1.013	0.891
SW-3/SG4	HDF9c		24	15.66	Jul	74.867	74.867	0.000	0.000	8.149	1.740	0.023	66.947	-0.252	0.894
		3			Aug	73.402	73.402	0.000	0.000	7.675	1.758	0.016	65.729	-0.017	0.895
					Sep	68.990	68.944	0.047	0.048	6.724	1.621	0.058	61.639	0.571	0.893
					Oct	62.429	61.644	0.785	0.787	6.098	1.463	0.193	55.248	0.889	0.885
					Nov	64.806	55.279	9.527	8.276	5.850	1.532	0.488	55.423	3.046	0.855
					Dec	60.057	31.498	28.559	22.981	4.893	1.014	0.713	44.674	9.778	0.744
					Average	64.343	53.625	10.719	13.854	6.761	1.340	0.375	57.202	0.005	0.889
					Jan	52.941	20.379	32.562	24.282	4.016	0.935	0.997	33.383	14.545	0.631
					Feb	48.800	19.501	29.299	39.306	4.655	0.896	0.730	40.312	3.103	0.826
					Mar	55.950	34.107	21.843	57.636	8.301	1.631	1.057	69.557	-22.965	1.243
					Apr	68.495	62.711	5.784	12.707	8.818	2.105	1.077	65.388	-6.788	0.955
					May	72.206	71.988	0.218	0.220	8.948	2.191	0.546	63.949	-1.237	0.886
		Fatana ta Taibutan.			Jun	69.176	69.176	0.000	0.000	9.141	2.250	0.138	60.935	-1.038	0.881
SW-4/SG3	HDF8a-4	Entrance to Tributary	23	15.86	Jul	74.867	74.867	0.000	0.000	8.788	2.416	0.043	66.256	-0.220	0.885
		4			Aug	73.402	73.402	0.000	0.000	8.297	2.415	0.033	65.054	0.018	0.886
					Sep	68.990	68.944	0.047	0.048	7.162	2.236	0.127	61.002	0.699	0.884
					Oct	62.429	61.644	0.785	0.787	6.346	2.004	0.375	54.676	1.032	0.876
					Nov	64.806	55.279	9.527	8.276	5.930	2.093	0.868	54.833	3.175	0.846
					Dec	60.057	31.498	28.559	22.981	4.925	1.417	1.136	44.247	9.749	0.737
					Average	64.343	53.625	10.719	13.854	7.111	1.882	0.594	56.633	0.006	0.880

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Wetland Inflow	ET (mm)	Wetland Seeppage	Welland Outflow	Wetland Storage Changes
					Jan	52.941	1116.636	7.640	19.368	1129.860	12.709
					Feb	48.800	1369.079	11.870	18.008	1386.888	1.113
					Mar	55.950	2333.453	25.273	31.348	2361.744	-28.962
					Apr	68.495	2035.894	45.828	32.953	2051.092	-25.485
					May	72.206	1934.603	75.903	31.305	1945.575	-45.973
		Exit from Tributory 2 /			Jun	69.176	1775.765	95.881	29.414	1782.461	-62.815
SW-2/SG6	HDF3 and Significant	Downstroom of	5	22.20	Jul	74.867	1939.999	88.925	33.843	1947.765	-55.666
300-2/300	Woodland (FOD5-1)		J	23.30	Aug	73.402	1900.079	72.866	35.465	1906.941	-41.790
					Sep	68.990	1791.447	47.880	33.649	1798.897	-19.988
					Oct	62.429	1629.509	27.054	33.487	1637.345	-5.948
					Nov	64.806	1678.429	12.383	39.612	1688.675	2.564
					Dec	60.057	1449.715	7.515	28.685	1465.104	8.469
					Average	64.343	1746.217	43.252	30.595	1758.529	-21.814
					Total	772.120	20954.608	519.019	367.137	21102.346	-261.773

Water Balance Summary		
Proposed Conditions _ Mitigated with Compensation Area=	20	ha

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Rain (mm)	Snow (mm)	Snowmelt (mm)	ET (mm)	Infiltration (mm)	GW Infiltration (mm)	Runoff (mm)	Delta Storage	Runoff Coef.
					Jan	52.941	20.379	32.562	24.282	4.160	1.329	1.423	32.904	14.454	0.622
					Feb	48.800	19.501	29.299	39.306	4.930	1.258	1.032	39.760	3.078	0.815
					Mar	55.950	34.107	21.843	57.636	8.985	2.321	1.432	68.508	-22.975	1.224
					Apr	68.495	62.711	5.784	12.707	10.358	3.136	1.418	63.880	-7.162	0.933
					May	72.206	71.988	0.218	0.220	11.454	3.371	0.653	62.241	-2.142	0.862
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	11.486	3.621	0.147	58.997	-1.454	0.853
SW-1/SG5	HDF3	2	22	22.08	Jul	74.867	74.867	0.000	0.000	10.943	3.911	0.036	64.190	-0.302	0.857
		2			Aug	73.402	73.402	0.000	0.000	10.217	3.896	0.033	63.044	0.108	0.859
					Sep	68.990	68.944	0.047	0.048	8.591	3.575	0.140	59.164	1.096	0.858
					Oct	62.429	61.644	0.785	0.787	7.153	3.139	0.476	53.157	1.642	0.851
					Nov	64.806	55.279	9.527	8.276	6.196	3.189	1.197	53.524	3.890	0.826
					Dec	60.057	31.498	28.559	22.981	5.034	2.060	1.634	43.519	9.872	0.725
					Average	64.343	53.625	10.719	13.854	8.292	2.900	0.802	55.241	0.009	0.859
					Jan	52.941	20.379	32.562	24.282	3.939	0.504	0.499	33.858	14.645	0.640
					Feb	48.800	19.501	29.299	39.306	4.508	0.472	0.374	40.824	3.094	0.837
					Mar	55.950	34.107	21.843	57.636	7.925	0.865	0.533	70.480	-22.988	1.260
					Apr	68.495	62.711	5.784	12.707	7.960	1.121	0.548	66.556	-6.570	0.972
					May	72.206	71.988	0.218	0.220	7.535	1.172	0.273	65.163	-0.765	0.902
		Entranco to Tributary			Jun	69.176	69.176	0.000	0.000	7.774	1.234	0.068	62.149	-0.814	0.898
SW-3/SG4	HDF9c		24	20.66	Jul	74.867	74.867	0.000	0.000	7.501	1.343	0.018	67.529	-0.182	0.902
		J			Aug	73.402	73.402	0.000	0.000	7.111	1.355	0.013	66.302	-0.024	0.903
					Sep	68.990	68.944	0.047	0.048	6.337	1.252	0.045	62.168	0.441	0.901
					Oct	62.429	61.644	0.785	0.787	5.887	1.129	0.149	55.701	0.692	0.892
					Nov	64.806	55.279	9.527	8.276	5.781	1.178	0.376	55.840	2.809	0.862
					Dec	60.057	31.498	28.559	22.981	4.865	0.778	0.546	44.932	9.715	0.748
					Average	64.343	53.625	10.719	13.854	6.427	1.034	0.287	57.625	0.004	0.896
					Jan	52.941	20.379	32.562	24.282	3.969	0.718	0.762	33.628	14.582	0.635
					Feb	48.800	19.501	29.299	39.306	4.565	0.688	0.557	40.582	3.097	0.832
					Mar	55.950	34.107	21.843	57.636	8.077	1.256	0.806	70.050	-22.983	1.252
					Apr	68.495	62.711	5.784	12.707	8.315	1.624	0.821	66.024	-6.665	0.964
					May	72.206	71.988	0.218	0.220	8.092	1.690	0.416	64.623	-0.925	0.895
		Entrance to Tributary			Jun	69.176	69.176	0.000	0.000	8.270	1.734	0.106	61.636	-0.836	0.891
SW-4/SG3	HDF8a-4		23	20.86	Jul	74.867	74.867	0.000	0.000	7.994	1.861	0.033	66.998	-0.158	0.895
		4		[Aug	73.402	73.402	0.000	0.000	7.590	1.859	0.026	65.784	0.003	0.896
				[Sep	68.990	68.944	0.047	0.048	6.674	1.723	0.098	61.679	0.539	0.894
				[Oct	62.429	61.644	0.785	0.787	6.077	1.544	0.288	55.261	0.802	0.885
					Nov	64.806	55.279	9.527	8.276	5.843	1.609	0.667	55.387	2.909	0.855
					Dec	60.057	31.498	28.559	22.981	4.890	1.087	0.870	44.605	9.693	0.743
					Average	64.343	53.625	10.719	13.854	6.696	1.449	0.454	57.188	0.005	0.889

Flow Node ID	Feature	Location	VOID	Drainage Area (ha)	Month	Precipitation (mm)	Wetland Inflow	ET (mm)	Wetland Seeppage	Welland Outflow	Wetland Storage Changes
					Jan	52.941	1410.867	7.641	19.772	1423.690	12.705
					Feb	48.800	1723.190	11.873	18.574	1740.381	1.163
					Mar	55.950	2945.340	25.280	32.313	2972.459	-28.763
					Apr	68.495	2617.555	45.847	33.592	2632.568	-25.958
					May	72.206	2505.098	75.935	31.864	2516.194	-46.689
		Exit from Tributory 2 /			Jun	69.176	2322.044	95.922	29.947	2328.620	-63.268
SW-2/SG6	HDF3 and Significant	Downstroom of	Ę	20.20	Jul	74.867	2532.513	88.969	34.524	2540.067	-56.180
300-2/300	Woodland (FOD5-1)	Significant Woodland	5	28.36	Aug	73.402	2482.460	72.903	36.155	2489.392	-42.588
					Sep	68.990	2337.122	47.903	34.238	2344.352	-20.380
					Oct	62.429	2117.788	27.065	33.907	2125.355	-6.109
					Nov	64.806	2167.070	12.388	40.093	2177.158	2.237
					Dec	60.057	1840.810	7.517	29.149	1855.870	8.331
					Average	64.343	2250.155	43.270	31.177	2262.175	-22.125
					Total	772.120	27001.857	519.243	374.127	27146.106	-265.499

Water Balance Summary

COMPARISON TABLE with Mitigation

Flow Node ID	Feature	Location	Month	Existing	Prop	osed _ No Mitiga	tion	Proposed C Com	Conditions - With N pensation Area = 0	litigation _ .5 ha	Proposed (Com	Conditions - With N pensation Area = 1	litigation _ .0 ha
					Proposed	Changes	Changes (%)	Proposed	Changes	Changes (%)	Proposed	Changes	Changes (%)
			Jan	17756.4	383.3	-17373	-97.84%	555	-17201	-96.87%	728	-17029	-95.90%
			Feb	19775.8	491.0	-19285	-97.52%	698	-19077	-96.47%	906	-18870	-95.42%
			Mar	32555.0	802.8	-31752	-97.53%	1161	-31394	-96.43%	1519	-31036	-95.33%
			Apr	23368.6	494.8	-22874	-97.88%	835	-22533	-96.43%	1176	-22193	-94.97%
			May	16135.8	388.5	-15747	-97.59%	723	-15413	-95.52%	1057	-15079	-93.45%
		Entranco to Tributany	Jun	11098.2	252.6	-10846	-97.72%	572	-10526	-94.84%	892	-10206	-91.96%
SW-1/SG5	HDF3		Jul	12468.4	300.7	-12168	-97.59%	648	-11821	-94.80%	995	-11473	-92.02%
		2	Aug	12552.8	298.4	-12254	-97.62%	639	-11913	-94.91%	980	-11573	-92.19%
			Sep	12634.5	296.0	-12338	-97.66%	616	-12019	-95.13%	935	-11699	-92.60%
			Oct	13375.1	311.6	-13063	<u>-97.67%</u>	598	-12778	-95.53%	883	-12492	-93.40%
			Nov	15748.7	387.4	-15361	-97.54%	673	-15075	-95.72%	959	-14789	-93.91%
			Dec	19120.4	460.3	-18660	<u>-97.59%</u>	689	-18431	-96.40%	918	-18202	-95.20%
			Average	17215.7	405.6	-16810	-97.6%	701	-16515	-95.8%	996	-16220	-93.9%
			Jan	676.3	113.7	-563	-83.18%	286	-391	-57.75%	458	-219	-32.31%
			Feb	866.3	146.9	-719	-83.04%	354	-512	-59.12%	561	-305	-35.20%
			Mar	1416.5	238.8	-1178	-83.14%	597	-820	-57.86%	955	-462	-32.59%
			Apr	873.0	142.2	-731	-83.72%	482	-391	-44.74%	823	-50	-5.77%
			May	685.4	110.1	-575	-83.94%	444	-241	-35.23%	778	92	13.48%
		Entrance to Tributary	Jun	445.6	68.1	-378	-84.73%	387	-58	-13.07%	707	261	58.58%
SW-3/SG4	HDF9c	3	Jul	530.5	81.1	-449	-84.72%	428	-103	-19.34%	775	244	46.03%
			Aug	526.5	/8.4	-448	-85.10%	419	-108	-20.42%	759	233	44.25%
			Sep	522.3	78.5	-444	-84.98%	398	-125	-23.86%	717	195	37.25%
			Oct	549.7	83.8	-466	-84.75%	369	-180	-32.79%	655	105	19.17%
			Nov	683.6	107.4	-576	-84.29%	393	-290	-42.49%	679	-5	-0.69%
			Dec	812.1	135.1	-6//	-83.36%	364	-448	-55.20%	593	-220	-27.04%
			Average	/15./	115.3	-600	-84.1%	410	-306	-38.5%	/05	-11	7.1%
			Jan	9464 6	133.0	-0/33	-98.06%	200	-0561	-95.50%	478 E02	-0409	-93.06%
			Mar	12914.0	200.1	12525	-97.90%	565	12167	-53.43%	1006	12800	-93.00%
			Apr	9156.0	164.5	-13323	-97.30%	505	-13107	-94.49%	845	-8311	-90.77%
			Арі Мау	6910.6	128.2	-6782	-98.15%	462	-6449	-93.32%	796	-6311	-90.77%
			lun	4841.8	85.7	-0782	-98.23%	402	-0443	-91.64%	730	-0115	-85.04%
SW-4/SG3	HDF8a-4	Entrance to Tributary	Jul	5538.4	105.7	-5433	-98.09%	452	-5086	-91.83%	799	-4739	-85 57%
511 1/505	indi da l	4	Aug	5725.9	103.2	-5623	-98.20%	444	-5282	-92.25%	784	-4942	-86 31%
			Sep	5614.8	101.1	-5514	-98,20%	420	-5195	-92.52%	739	-4875	-86.83%
			Oct	5821.2	103.8	-5717	-98.22%	389	-5432	-93.31%	675	-5146	-88.41%
			Nov	7127.8	124.9	-7003	-98.25%	411	-6717	-94.24%	696	-6432	-90.23%
			Dec	8142.2	156.9	-7985	-98.07%	386	-7757	-95.26%	614	-7528	-92.46%
			Average	7337.0	139.6	-7197	-98.1%	434	-6903	-93.8%	729	-6608	-89.4%
			Jan	3231.9	233.9	-2998	-92.76%	263	-2968	-91.85%	293	-2939	-90.94%
			Feb	3631.5	306.7	-3325	-91.55%	342	-3289	-90.58%	378	-3254	-89.60%
			Mar	5971.1	497.8	-5473	-91.66%	559	-5412	-90.64%	620	-5351	-89.61%
			Apr	4237.6	290.9	-3947	-93.14%	349	-3889	-91.76%	407	-3830	-90.39%
			May	2936.7	223.1	-2714	-92.40%	280	-2657	-90.46%	337	-2599	-88.52%
	HDE3 and Significant	Exit from Tributary 2	Jun	2006.8	136.9	-1870	-93.18%	192	-1815	-90.45%	246	-1761	-87.73%
SW-2/SG6	Woodland (FODS 1)	/ Downstream of	Jul	2258.2	162.5	-2096	-92.81%	222	-2036	-90.18%	281	-1977	-87.56%
	woodand (FOD3-1)	Significant Woodland	Aug	2265.4	152.9	-2112	-93.25%	211	-2054	-90.68%	269	-1996	-88.11%
			Sep	2281.3	154.4	-2127	-93.23%	209	-2072	-90.84%	264	-2018	-88.45%
			Oct	2416.8	164.7	-2252	-93.19%	213	-2203	-91.17%	262	-2154	-89.15%
			Nov	2862.2	212.5	-2650	-92.58%	261	-2601	-90.87%	310	-2552	-89.16%
			Dec	3495.4	276.4	-3219	-92.09%	316	-3180	-90.97%	355	-3141	-89.85%
			Average	3132.9	234.4	-2898	-92.7%	285	-2848	-90.9%	335	-2798	-89.1%

			Runoff Vol	ume (cu.m.)										
Proposed C Comp	Conditions - With M pensation Area = 5.	litigation _ .0 ha	Proposed C Comp	Conditions - With N pensation Area = 7	litigation _ .5 ha	Proposed C Com	onditions - With N pensation Area = 1	litigation _ 0 ha	Proposed C Comp	Conditions - With N ensation Area = 12	1itigation _ 2.5 ha	Proposed C Com	onditions - With N pensation Area = 1	Aitigation _ 15 ha
Proposed	Changes	Changes (%)	Proposed	Changes	Changes (%)	Proposed	Changes	Changes (%)	Proposed	Changes	Changes (%)	Proposed	Changes	Changes (%)
2104	-15652	-88.15%	2964	-14792	-83.31%	3825	-13932	-78.46%	4685	-13072	-73.62%	5545	-12211	-68.77%
2563	-17212	-87.04%	3599	-16176	-81.80%	4635	-15140	-76.56%	5671	-14104	-71.32%	6707	-13069	-66.08%
4385	-28170	-86.53%	6175	-26380	-81.03%	7965	-24590	-75.53%	9756	-22799	-70.03%	11546	-21009	-64.53%
3898	-19470	-83.32%	5599	-17769	-76.04%	7301	-16068	-68.76%	9002	-14367	<u>-61.48%</u>	10703	-12666	-54.20%
3728	-12408	-76.90%	5397	-10739	-66.55%	7066	-9069	-56.21%	8736	-7400	-45.86%	10405	-5731	-35.52%
3447	-7651	-68.94%	5044	-6054	-54.55%	6640	-4458	-40.17%	8237	-2861	-25.78%	9833	-1265	-11.40%
3770	-8698	-69.76%	5504	-6965	-55.86%	7238	-5231	-41.95%	8972	-3497	-28.04%	10706	-1763	-14.14%
3705	-8848	-70.48%	5408	-7145	-56.92%	7110	-5443	-43.36%	8813	-3740	-29.80%	10515	-2038	-16.23%
3489	-9146	-72.39%	5085	-7550	-59.75%	6680	-5954	-47.12%	8276	-4358	-34.49%	9872	-2762	-21.86%
3169	-10206	-76.31%	4597	-8778	-65.63%	6025	-7350	-54.95%	7453	-5922	-44.28%	8881	-4494	-33.60%
3246	-12503	-79.39%	4675	-11074	-70.32%	6103	-9645	-61.25%	7532	-8217	-52.17%	8961	-6788	-43.10%
2/48	-16372	-85.63%	3891	-15229	-/9.65%	5035	-14085	-/3.6/%	6179	-12942	-67.69%	/322	-11/98	-61./1%
3354	-13861	-78.7%	4828	-12388	-69.3%	6302	-10914	-59.8%	///6	-9440	-50.4%	9250	-7966	-40.9%
1834	1158	1/1.1/%	2694	2018	298.36%	3554	2878	425.54%	4415	3/38	552.70%	5275	4598	679.89%
2219	1353	156.13%	3255	2388	275.71%	4291	3424	395.28%	5327	4460	514.87%	6363	5496	634.44%
3819	2403	169.63%	5610	4193	296.02%	7400	5984	422.40%	9190	7774	548.79%	10981	9564	1095.17%
3344	20/1	403.10%	5245	4372	500.85%	6946	6073	800.12%	8455	7774	890.36%	10348	9475	1065.41%
2261	2703	405.10%	3117	4452	000.00%	6454	6101	1249 22%	8455	7770	1706 47%	10125	9459	2064 72%
2540	2019	E69.05%	4030 E202	4412	990.00%	7016	6496	1348.23%	8030	8220	1540.41%	10494	9201	1976 24%
3/83	2057	561.61%	5186	4732	893.77%	6888	6362	1222.39%	8730	8064	1531.67%	10203	9555	1855.02%
3270	2748	526.08%	1866	4033	831.60%	6461	5030	1137 13%	8057	7535	1442.66%	9653	9130	17/8 19%
2940	2390	434 79%	4368	3818	694 55%	5796	5246	954 31%	7224	6674	1214.06%	8652	8102	1473 84%
2965	2330	333 70%	4393	3710	542 69%	5822	5138	751 69%	7251	6567	960.68%	8679	7996	1169 69%
2422	1610	198.24%	3566	2753	339.04%	4709	3897	479.84%	5853	5040	620.63%	6996	6184	761.43%
3063	2347	371.8%	4537	3821	599.7%	6010	5295	827.6%	7484	6768	1055.5%	8958	8242	1283.4%
1854	-5032	-73.08%	2714	-4172	-60.59%	3574	-3312	-48.10%	4434	-2452	-35.61%	5295	-1592	-23.12%
2250	-6215	-73.42%	3286	-5179	-61.18%	4322	-4143	-48.94%	5358	-3107	-36.71%	6393	-2071	-24.47%
3871	-9944	-71.98%	5661	-8154	-59.02%	7451	-6364	-46.06%	9242	-4573	-33.10%	11032	-2783	-20.15%
3566	-5589	-61.05%	5267	-3888	-42.47%	6968	-2188	-23.89%	8669	-487	-5.31%	10371	1215	13.27%
3466	-3444	-49.84%	5135	-1775	-25.69%	6804	-106	-1.54%	8473	1563	22.61%	10142	3232	46.76%
3278	-1563	-32.29%	4875	33	0.68%	6471	1630	33.66%	8068	3226	66.63%	9664	4822	99.60%
3573	-1965	-35.49%	5307	-232	<mark>-4.18%</mark>	7041	1502	27.12%	8774	3236	<u>58.43%</u>	10508	4970	89.73%
3508	-2218	-38.74%	5210	-516	-9.00%	6913	1187	20.73%	8615	2889	50.46%	10318	4592	80.19%
3292	-2322	-41.36%	4888	-727	-12.94%	6484	869	15.47%	8079	2465	43.89%	9675	4060	72.31%
2960	-2862	-49.16%	4388	-1434	-24.63%	5816	-6	-0.10%	7244	1422	24.43%	8672	2850	48.97%
2982	-4146	-58.16%	4411	-2717	-38.12%	5839	-1289	-18.08%	7268	140	1.96%	8697	1569	22.01%
2444	-5699	-69.99%	3587	-4555	-55.94%	4731	-3412	-41.90%	5874	-2268	-27.86%	7018	-1125	-13.81%
3087	-4250	-54.5%	4561	-2776	-32.8%	6034	-1303	-11.0%	/508	171	10.8%	8982	1645	32.6%
528	-2704	-83.66%	675	-2557	-79.11%	822	-2409	-74.55%	970	-2262	-70.00%	1117	-2115	-65.45%
1110	-29/1	-01.80%	038 1416	-2/94	-76.93%	1015	-2017	-72.05%	2028	-2439	-67.18%	7333	-2202	-62.30%
272	-4001	-70 /10/	1160	-4333	-70.29%	1/22	-4230	-/1.1/%	17/5	-3944	-58 920/	2002	-3030	-51.06%
794	-3303	-72.98%	1079	-3074	-63.26%	1364	-2703	-53 55%	1649	-2455	-43.84%	1935	-2202	-34 12%
683	-2143	-65.96%	956	-1050	-52.34%	1229	-1373	-38 73%	1503	-1207	-25 12%	1776	-1002	-11 51%
755	-1503	-66.57%	1051	-1207	-53.45%	1347	-911	-40,33%	1644	-614	-27,21%	1940	-318	-14.09%
735	-1530	-67.54%	1027	-1239	-54,69%	1318	-948	-41.83%	1609	-656	-28,98%	1900	-365	-16.13%
700	-1581	-69,31%	973	-1308	-57,35%	1246	-1036	-45,39%	1519	-763	-33,43%	1791	-490	-21,47%
653	-1764	-72,98%	897	-1520	-62,88%	1141	-1276	-52,78%	1385	-1031	-42,68%	1630	-787	-32,57%
701	-2161	-75.50%	945	-1917	-66.97%	1190	-1672	-58.43%	1434	-1428	-49.90%	1678	-1184	-41.36%
668	-2828	-80.90%	863	-2632	-75.31%	1059	-2437	-69.71%	1254	-2241	-64.12%	1450	-2046	-58.52%
738	-2395	-74.8%	990	-2143	-65.9%	1242	-1891	-57.0%	1494	-1639	-48.1%	1746	-1387	-39.2%

Proposed Conditions - With Mitigation _ Compensation Area = 20 ha								
Proposed	Changes	Changes (%)						
7265	-10491	-59.08%						
8779	-10997	-55.61%						
15127	-17428	-53.54%						
14105	-9264	-39.64%						
13743	-2393	-14,83%						
13027	1928	17.37%						
14173	1705	13.67%						
13920	1367	10.89%						
13063	429	3 40%						
11737	-1638	-12 25%						
11818	-3931	-24.96%						
9609	-9511	-49 74%						
12197	-5019	-22.0%						
6005	6319	934.25%						
8424	7569	972 E0%						
0404	12145	017.02%						
14301	13145	927.95%						
13750	12877	14/5.11%						
13463	12777	1864.18%						
12840	12394	2781.19%						
13951	13421	2529.88%						
13698	131/1	2501.72%						
12844	12322	2359.21%						
11508	10958	1993.36%						
11537	10853	1587.68%						
9283	8471	1043.03%						
11905	11190	1739.3%						
7015	128	1.86%						
8465	1	0.01%						
14612	798	5.77%						
13773	4617	50.42%						
13480	6570	95.07%						
12857	8015	165.55%						
13976	8437	152.34%						
13723	7997	139.66%						
12866	7251	129.15%						
11527	5706	98.03%						
11554	4426	62.09%						
9305	1162	14.28%						
11929	4592	76.2%						
1411	-1821	-56.35%						
1723	-1908	-52.55%						
2945	-3026	-50.67%						
2618	-1620	-38.23%						
2505	-432	-14.70%						
2322	315	15.71%						
2533	274	12.15%						
2482	217	9,58%						
2337	56	2,45%						
2118	-299	-12 37%						
2110	-695	-24 29%						
1841	-1655	-47 34%						
2250	-883	-21.4%						

Water Balance Summary COMPARISON TABLE with Mitigation - VO SUMMARY CHARTS

HDF3 (SW-1 / SG5)

Scenario-Run	Min	Max	Average	I
DixieRoad_Ex - Existing 1940-2023	0	0.451	0.007	
DixieRoad_Post - Post 1940-2023	0	0.028	0	
DixieRoad_Post_Mitigation_0.5ha - Post 1940-2023	0	0.035	0	
DixieRoad_Post_Mitigation_1ha - Post 1940-2023	0	0.042	0	
DixieRoad_Post_Mitigation_5ha - Post 1940-2023	0	0.101	0.001	
DixieRoad_Post_Mitigation_7.5ha - Post 1940-2023	0	0.137	0.002	
DixieRoad_Post_Mitigation_10ha - Post 1940-2023	0	0.173	0.002	
DixieRoad_Post_Mitigation_12.5ha - Post 1940-2023	0	0.21	0.003	
DixieRoad_Post_Mitigation_15ha - Post 1940-2023	0	0.246	0.004	← Recommended
DixieRoad_Post_Mitigation_20ha - Post 1940-2023	0	0.319	0.005	

HDF9c (SW-3 / SG4)

Scenario-Run	Min	Max	Average	
DixieRoad_Ex - Existing 1940-2023	0	0.05	0	
DixieRoad_Post - Post 1940-2023	0	0.009	0	
DixieRoad_Post_Mitigation_0.5ha - Post 1940-2023	0	0.016	0	← Recommended
DixieRoad_Post_Mitigation_1ha - Post 1940-2023	0	0.023	0	
DixieRoad_Post_Mitigation_5ha - Post 1940-2023	0	0.082	0.001	
DixieRoad_Post_Mitigation_7.5ha - Post 1940-2023	0	0.118	0.002	
DixieRoad_Post_Mitigation_10ha - Post 1940-2023	0	0.155	0.002	
DixieRoad_Post_Mitigation_12.5ha - Post 1940-2023	0	0.191	0.003	
DixieRoad_Post_Mitigation_15ha - Post 1940-2023	0	0.227	0.003	
DixieRoad_Post_Mitigation_20ha - Post 1940-2023	0	0.3	0.005	

HDF8a-4 (SW-4 / SG3)

Scenario-Run	Min	Max	Average	
DixieRoad_Ex - Existing 1940-2023	0	0.449	0.003	
DixieRoad_Post - Post 1940-2023	0	0.011	0	
DixieRoad_Post_Mitigation_0.5ha - Post 1940-2023	0	0.018	0	
DixieRoad_Post_Mitigation_1ha - Post 1940-2023	0	0.026	0	
DixieRoad_Post_Mitigation_5ha - Post 1940-2023	0	0.084	0.001	
DixieRoad_Post_Mitigation_7.5ha - Post 1940-2023	0	0.12	0.002	← Recommended
DixieRoad_Post_Mitigation_10ha - Post 1940-2023	0	0.157	0.002	
DixieRoad_Post_Mitigation_12.5ha - Post 1940-2023	0	0.193	0.003	
DixieRoad_Post_Mitigation_15ha - Post 1940-2023	0	0.23	0.003	
DixieRoad_Post_Mitigation_20ha - Post 1940-2023	0	0.303	0.005	I

Significant Woodland FOD5-1 (SW-2 / SG6)

Scenario-Run	Min	Max	Average	
DixieRoad_Ex - Existing 1940-2023	0	0.522	0.007	
DixieRoad_Post - Post 1940-2023	0	0.11	0.001	
DixieRoad_Post_Mitigation_0.5ha - Post 1940-2023	0	0.117	0.001	
DixieRoad_Post_Mitigation_1ha - Post 1940-2023	0	0.124	0.001	
DixieRoad_Post_Mitigation_5ha - Post 1940-2023	0	0.182	0.002	
DixieRoad_Post_Mitigation_7.5ha - Post 1940-2023	0	0.219	0.002	
DixieRoad_Post_Mitigation_10ha - Post 1940-2023	0	0.255	0.003	
DixieRoad_Post_Mitigation_12.5ha - Post 1940-2023	0	0.292	0.003	
DixieRoad_Post_Mitigation_15ha - Post 1940-2023	0	0.328	0.004	← Recommend
DixieRoad_Post_Mitigation_20ha - Post 1940-2023	0	0.401	0.005]

🗊 Scenario Comparison

🗊 Scenario Comparison

Name Time Series Water Balance DixieRoadEx - Existing 1940-202 Graph DixieRoad_Post_Mitigation_15ha - Post 1940-2023 DixieRoad_Ex - Existing 1940-2023 DixieRoadPost - Post 1940-2023 DixieRoadPost_Mitigation_0.5ha DixieRoadPost_Mitigation_1ha DixieRoadPost_Mitigation_5ha 0.4 -DixieRoadPost_Mitigation_7.5ha DixieRoadPost_Mitigation_10ha DixieRoadPost_Mitigation_12.5h DixieRoadPost_Mitigation_15ha DixieRoadPost_Mitigation_20ha 0.3 -Flow (m^{A3/s}) 0.2 0. 4 Þ Commands O SW-4 • SW-1 O Wetland / SW-2 ○ SW-3 0.0 -01-Jan-53 01-Jan-79 01-Jan-92 01-Jan-66 01-Jan-40 Time . Statistics Variables Scenario - Run Min Average Max Flow (m^3/s) DixieRoad_Ex - Existing 1940-2023 0 0.451 0.007 • DixieRoad_Post_Mitigation_15ha - Post 1940-2023 0 0.246 0.004 Save

🚮 Scenario Comparison

D

🗊 Scenario Comparison

Name	Time Series									
✓ DixieRoadEx - Existing 1940-202	Graph									
DixieRoadPost - Post 1940-2023	8	DixieRoad_Ex - Existing 1940-202	3	DixieRoad	Post_Mitigation	_0.5ha - Post 1940-20	023			
✓ DixieRoadPost_Mitigation_0.5ha	0.05 -									
DixieRoadPost_Mitigation_1ha -	8									
DixieRoadPost_Mitigation_5ha -	0									
DixieRoadPost_Mitigation_7.5ha	2									
DixieRoadPost_Mitigation_10ha	8									
DixieRoadPost_Mitigation_12.5h	0.04 -									
DixieRoadPost_Mitigation_15ha	÷									
DixieRoadPost_Mitigation_20ha	1		1 1 1			H E A		i i i		1 1 ₁
✓ Commands SW-4 SW-1 Wetland / SW-2 ③ SW-3	0.03 - (v U U U U U U U U U U U U U U U U U U	an-40	01-Jan-53		01-Jan-66		01-Ja	-79 Time	01-Jan-92	
	4									
	Statistics									
Variables	0	Scenario - Run	Min	Max	Average					
Flow (m^3/s)		DixieRoad_Ex - Existing 1940-2023	0	0.05	0					
Save		ad_rost_minigation_0.5na - Post 1940-2023		0.010	, v					

🗊 Scenario Comparison

Time Series Water Balance Name DixieRoadEx - Existing 1940-202 Graph DixieRoad_Post_Mitigation_7.5ha - Post 1940-2023 DixieRoad_Ex - Existing 1940-2023 DixieRoadPost - Post 1940-2023 DixieRoadPost_Mitigation_0.5ha DixieRoadPost_Mitigation_1ha DixieRoadPost_Mitigation_5ha 0.4 -DixieRoadPost_Mitigation_7.5 DixieRoadPost_Mitigation_10ha DixieRoadPost_Mitigation_12.5h DixieRoadPost_Mitigation_15ha DixieRoadPost_Mitigation_20ha 0.3 Flow (m^A3/s) 0.2 -0.1 4 Þ Commands ● SW-4 O SW-1 O Wetland / SW-2 0.0 -○ SW-3 01-Jan-53 01-Jan-66 01-Jan-79 01-Jan-92 01-Jan-40 Time . Statistics Variables Scenario - Run Min Average Max Flow (m^3/s) DixieRoad_Ex - Existing 1940-2023 0 0.449 0.003 • DixieRoad_Post_Mitigation_7.5ha - Post 1940-2023 0 0.12 0.002 ? Save

ercent of days	out of confidence interval (%)	
	0	
	0	
	0	
	0	
	0	
	0	
	0	
	0	
	0	
	0	

Percent of days out of co	onfidence interval (%)	
0		
0		
0		

			~~	•	
	<i>,</i>	$\overline{}$			
	~				
<u> </u>					
				~	-
				_	

×

D

Name Time Series Water Balance Hydroperiod Inflow Mass Curve ☑ DixieRoadEx - Existing 1940-20 Graph DixieRoad_Post - Post 1940-2023
 DixieRoad_Post_Mitigation_7.5ha - Post 1940-2023
 DixieRoad_Post_Mitigation_20ha - Post 1940-2023 DixieRoad_Ex - Existing 1940-2023 DixieRoad_Post_Mitigation_5ha - Post 1940-2023 DixieRoad_Post_Mitigation_15ha - Post 1940-2023 DixieRoad_Post_Mitigation_0.5ha - Post 1940-2023 DixieRoad_Post_Mitigation_10ha - Post 1940-2023 DixieRoad_Post_Mitigation_1ha - Post 1940-2023 DixieRoad_Post_Mitigation_12.5ha - Post 1940-2023 DixieRoadPost - Post 1940-202 ✓ DixieRoadPost_Mitigation_0.5ha V DixieRoadPost_Mitigation_1ha 0.5 -DixieRoadPost_Mitigation_5ha DixieRoadPost_Mitigation_7.5ha DixieRoadPost_Mitigation_10ha 0.4 ✓ DixieRoadPost_Mitigation_12.5 DixieRoadPost_Mitigation_15ha (m^3/s) DixieRoadPost_Mitigation_20ha Inflow from external 0.0 01-Jan-53 01-Jan-79 01-Jan-66 01-Jan-92 01-Jan-05 01-Jan-18 01-Jan-40 Time Þ 4 4 Þ Commands O SW-4 Statistics O SW-1 Scenario - Run Min Max Average Wetland / SW-2 DixieRoad_Ex - Existing 1940-2023 0 0.522 0.007 O SW-3 DixieRoad_Post - Post 1940-2023 0 0.11 0.001 DixieRoad_Post_Mitigation_0.5ha - Post 1940-2023 0 0.117 0.001 DixieRoad_Post_Mitigation_1ha - Post 1940-2023 0 0.124 0.001 DixieRoad_Post_Mitigation_5ha - Post 1940-2023 0 0.182 0.002 DixieRoad_Post_Mitigation_7.5ha - Post 1940-2023 0 0.219 0.002 DixieRoad_Post_Mitigation_10ha - Post 1940-2023 0 0.255 0.003 Variables DixieRoad_Post_Mitigation_12.5ha - Post 1940-2023 0.292 0 0.003 Inflow from external (m^3 🔻 DixieRoad_Post_Mitigation_15ha - Post 1940-2023 0.328 0.004 0 DixieRoad_Post_Mitigation_20ha - Post 1940-2023 0 0.401 0.005 Save

Time Series Water Balance Hydroperiod Inflow Mass Curve Name DixieRoadEx - Existing 1940-202 Graph DixieRoad_Ex - Existing 1940-2023 DixieRoad_Post_Mitigation_15ha - Post 1940-2023 DixieRoadPost - Post 1940-2023 DixieRoadPost_Mitigation_0.5ha DixieRoadPost_Mitigation_1ha 0.5 -DixieRoadPost_Mitigation_5ha DixieRoadPost_Mitigation_7.5ha DixieRoadPost_Mitigation_10ha DixieRoadPost_Mitigation_12.5h 0.4 DixieRoadPost_Mitigation_15ha DixieRoadPost_Mitigation_20ha Inflow from external (m^3/s) 0.2 0 Þ 4 Commands O SW-4 O SW-1 Wetland / SW-2 O SW-3 0.0 -01-Jan-53 01-Jan-79 01-Jan-66 01-Jan-92 01-Jan-40 Time . Statistics Variables Scenario - Run Min Max Average Inflow from external (m^3 -DixieRoad_Ex - Existing 1940-2023 0 0.522 0.007 DixieRoad_Post_Mitigation_15ha - Post 1940-2023 0 0.328 0.004 Save

