TOWN OF CALEDON
PLANNING
RECEIVED
Dec 19, 2024

Phase Two Environmental Site Assessment

12156 Chinguacousy Road Caledon, Ontario

Prepared For:

Mayfield West III 4900 Palladium Way, Unit 105 Burlington, Ontario L7M 0W7

DS Project No : 23-266-100

Date: 2023-10-16

DS CONSULTANTS LTD. 6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

i

Executive Summary

DS Consultants Ltd. (DS) was retained by Mayfield West III (the "Client") to conduct a Phase Two Environmental Site Assessment (ESA) of the Property located at 12156 Chinguacousy Road, Caledon, Ontario, herein referred to as the "Phase Two Property" or "Site". DS understands that this Phase Two ESA may be used to support the filing of a Record of Site Condition (RSC) as part of the proposed redevelopment of the Phase Two Property for residential purposes. It is further understood that the proposed development will consist of a low-rise development.

It is understood that the intended future property use (residential) is not considered to be a more sensitive property use as defined under O.Reg. 153/04 (as amended); therefore the filing of a Record of Site Condition (RSC) with the Ontario Ministry of Environment, Conservation and Parks (MECP) is not mandated under O.Reg. 153/04.

The Phase Two ESA was completed to satisfy the intent of the requirements, methodology and practices for a Phase Two ESA as described in Ontario Regulation 153/04 (as amended). The objective of this Phase Two ESA is to confirm whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

The Phase Two Property is approximately 5.787-hectares (14.299 acres) parcel of land situated within a rural neighbourhood in the Town of Caledon, Ontario. The Phase Two Property is located approximately 490 m northwest of the intersection of Chinguacousy Road and Mayfield Road.

A Phase One ESA completed in September 2023 indicated that the Phase Two Property was first developed for residential purposes between 1989 and 1993, and has been used for agricultural and residential purposes since then. A total of five (5) Potentially Contaminating Activities (PCAs) were identified in the Phase One ESA. Four (4) of the PCAs were considered to be contributing to four (4) APECs on the Phase Two Property. A summary of the APECs, associated PCAs, and contaminants of potential concern (copc) identified is presented in the table below:

Table E-1: Summary of APECs

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on- site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	North portion of Site	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-1	OCPs, Metals, As, Sb, Se, CN-	Soil
APEC-2A	North portion of Site	#N/S – Application of De- icing Agents	On Site PCA-2	EC, SAR	Soil
APEC-2B		#30 – Importation of Fill Material of Unknown Quality	On Site PCA-3	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B- HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR, PAHs	Soil
APEC-3	Entire Property	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-4	OCPs, Metals, As, Sb, Se, CN-	Soil

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

Based on the findings of the Phase One ESA it was concluded that a Phase Two ESA is warranted in order to assess the soil conditions on the Phase Two Property.

The Phase Two ESA was completed in conjuncture of Geotechnical Investigation and involved the advancement of three (3) boreholes, which was completed on August 15, 2023, and five (5) hand dug test pits. The boreholes were advanced to a maximum depth of 6.7 metres below ground surface (mbgs) and test pits to 0.3 mbgs under the supervision of DS personnel. A groundwater monitoring well was installed in one (1) of the boreholes. The borehole and test pit locations were determined based on the findings of the Phase One ESA. All APECs were investigated with boreholes and/or test pits in accordance with the requirements of O.Reg. 153/04 (as amended). Soil samples were collected and submitted for analysis of all PCOCs, including: Metals, As, Sb, Se, CN-, pH, electrical conductivity (EC), sodium adsorption ration (SAR), petroleum hydrocarbons (PHCs) including benzene, toluene, ethylbenzene and xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs).

The soil analytical results were compared to the "Table 2: Generic Site Condition Standards in a Potable Groundwater Condition for Residential/Parkland/ Institutional use" provided

in the MECP document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011 (Table 2 Standards) for medium and fine-textured soils and residential/parkland/ institutional property use.

Based on the findings of the Phase Two ESA, DS presents the following findings:

- ♦ A surficial layer of topsoil approximately 200 to 250 mm in thickness was encountered in all of the boreholes and test pit advanced at the Site. Reworked native material consisting of clayey silt with trace organics was encountered below the topsoil. The reworked native material was generally heterogeneous and ranged in thickness from 0.5 to 2.1 metres. A silty sand seam was encountered in the reworked material in BH23-303 with a thickness of 0.7 m. The native overburden material encountered below the reworked native material and fill material consisted of clayey silt to silty clay till. The clayey silt to silty clay till unit extended to borehole termination at a maximum depth of 6.7 mbgs. Bedrock was not encountered at the end of the boreholes;
- The depth to groundwater was measured in one (1) monitoring well installed during the course of this investigation. The monitoring well was screened to intercept the groundwater water table. The groundwater levels were found to range from 1.73 to 2.29 mbgs on August 18 and 29, 2023, with a corresponding elevation of 257.66 and 258.22 metres above sea level (masl). The groundwater flow direction was inferred to be southeast, in a similar direction as the slope in the area, towards a tributary of Fletcher's Creek based on the Phase One ESA. It is possible that the groundwater levels may vary seasonally. The groundwater levels may also be impacted by other factors such as historical infilling activities, subsurface utility trenches, and similar subsurface anomalies. The groundwater flow direction can only be confirmed through long term monitoring.
- Soil samples were collected from the boreholes and test pits advanced on the Phase Two Property and submitted for analysis of Metals, PHC, BTEX, VOCS, PAHs and OCPs. The results of the chemical analyses conducted indicated that all samples analyzed met the applicable Site Condition Standards.

Based on a review of the findings of this Phase Two ESA, DS presents the following conclusions and recommendations:

The results of the chemical analyses conducted on soil samples indicate that the applicable Site Condition Standards have been met;

- Based on the findings of this Phase Two ESA, a Record of Site Condition may be filed for the Phase Two Property.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

Table of Contents

Table	of Contents	1
1.0	Introduction	5
1.1	Site Description	
1.2	Property Ownership	6
1.3	Current and Proposed Future Use	
1.4	Applicable Site Condition Standards	
2.0	Background Information	
2.1	Physical Setting	
	2.1.1 Water Bodies and Areas of Natural Significance	
	2.1.2 Topography and Surface Water Draining Features	7
2.2	Past Investigations	
	2.2.1 Previous Report Summary	8
3.0	Scope of the Investigation	8
3.1	Overview of Site Investigation	
3.2	Media Investigated	
	3.2.1 Rationale for Inclusion or Exclusion of Media	
	3.2.2 Overview of Field Investigation of Media	
3.3	Phase One Conceptual Site Model	10
	3.3.1 Potentially Contaminating Activity Affecting the Phase One Property	10
	3.3.2 Contaminants of Potential Concern	11
	3.3.3 Underground Utilities and Contaminant Distribution and Transport	11
	3.3.4 Geological and Hydrogeological Information	11
	3.3.5 Uncertainty and Absence of Information	12
3.4	Deviations from Sampling and Analysis Plan	12
3.5	Impediments	
4.0	Investigation Method	12
4.1	General	
4.2	Drilling and Excavating	
4.3 4.4	Soil SamplingField Screening Measurements	
4. 4 4.5	Groundwater Monitoring Well Installation	
4.6	Groundwater Sampling	
4.7	Sediment Sampling	
4.8	Analytical Testing	15
4.9	Residue Management Procedures	16
	4.9.1 Soil Cuttings From Drilling and Excavations	16
	4.9.2 Fluids from Equipment Cleaning	16
4.10	Elevation Surveying	16

4.11	Quality Assurance and Quality Control Measures	16
	4.11.1Sample containers, preservation, labelling, handling and custody	for
	samples submitted for laboratory analysis, including any deviations from the S	SAP
		16
	4.11.2 Description of equipment cleaning procedures followed during	all
	sampling	17
	4.11.3 Description of how the field quality control measures referred to	
	subsection 3 (3) were carried out	
	4.11.4 Description of, and rational for, any deviations from the procedures set	
	in the quality assurance and quality control program set out in the SAP	
5.0	Review and Evaluation	
5.1	Geology	
5.2	Ground Water Elevations and Flow Direction	
	5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals	18
	5.2.2 Results of Interface Probe Measurements	18
	5.2.3 Product Thickness and Free Flowing Product	18
	5.2.4 Groundwater Elevation	18
	5.2.5 Groundwater Flow Direction	19
	5.2.6 Assessment of Potential for Temporal Variability in Groundwater Fl	ow
	Direction	
	5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the Wa	
	Table	
5.3	Ground Water Hydraulic Gradients	
	5.3.1 Horizontal Hydraulic Gradient	19
	5.3.2 Vertical Hydraulic Gradient	19
5.4	Fine-Medium Soil Texture	20
	5.4.1 Rational for use of Fine-Medium Soil Texture Category	20
	5.4.2 Results of Grain Size Analysis	20
	5.4.3 Rational for the Number of Samples Collected and Analyzed	20
5.5	Soil Field Screening	
5.6	Soil Quality	
	5.6.1 Metals and ORPs	
	5.6.2 Petroleum Hydrocarbons	21
	5.6.3 Volatile Organic Compounds	
	5.6.4 Polycyclic Aromatic Hydrocarbons	
	5.6.5 Organochlorinated Pesticides	21

	5.6.6 Commentary on Soil Quality	22
5.7	Ground Water Quality	
5.8	Sediment Quality	
5.9	Quality Assurance and Quality Control Results	22
5.10	Phase Two Conceptual Site Model	23
6.0	Conclusions	23
6.1	Qualifications of the Assessors	25
6.2	Signatures	26
6.3	Limitations	1
7.0	References	2
TABLES	S	
Table E-	1: Summary of APECs	2
Table 1-	1: Phase Two Property Information	6
Table 1-	2: Phase Two Property Ownership	6
Table 3-	1: Rationale of Sampling Media	9
Table 3-	2: Field Investigation of Media	10
Table 3-	3: Summary of PCAs Contributing to APECs	10
Table 4-	1: Summary of Drilling Activities	13
Table 4-	2: Field Screening Equipment	14
Table 4-	3: Summary of Sample Bottle Preservatives	16
Table 5-	1: Summary of Geologic Units Investigated	18
Table 5-	2: Summary of Grain Size Analyses	20
Table 5-	3: Summary of QA/QC Results	22

Enclosures

FIGURES

- Figure 1 Site Location Plan
- Figure 2 Phase One Property Site Plan
- Figure 3 Phase One Study Area
- Figure 4 PCA within Phase One Study Area
- Figure 5 Borehole/Monitoring Well Locations Plan with APECs
- Figure 6A Soil Characterization Metals and ORPs
- Figure 6B Soil Characterization PHCs and BTEX
- Figure 6C Soil Characterization VOCs
- Figure 6D Soil Characterization PAHs
- Figure 6E Soil Characterization OCPs
- Figure 7 Contaminant Transportation Diagram

ENCLOSED TABLES

- Table 1: Summary of Monitoring Well Installation and Groundwater Data
- Table 2: Summary of Soil Samples Submitted for Chemical Analysis
- Table 3: Summary of APECs Investigated
- Table 4: Summary of Metals and ORPs in Soil
- Table 5: Summary of PHCs and BTEX in Soil
- Table 6: Summary of VOCs in Soil
- Table 7: Summary of PAHs in Soil
- Table 8: Summary of OCPs in Soil
- Table 9: Summary of Maximum Concentrations in Soil
- Notes for Soil and Groundwater Summary Tables

APPENDICES

- Appendix A Plan of Survey
- Appendix B Sampling and Analysis Plan
- Appendix C Borehole Logs
- Appendix D Laboratory Certificates of Analysis
- Appendix E Phase Two Conceptual Site Model

1.0 Introduction

DS Consultants Ltd. (DS) was retained by Mayfield West III to complete a Phase Two Environmental Site Assessment (ESA) of the property located at 12156 Chinguacousy Road, Caledon, Ontario, herein referred to as the "Phase Two Property" or "Site". It is DS's understanding that this Phase Two ESA has been requested for due diligence purposes in association with the proposed redevelopment of the Property. DS understands that this Phase Two ESA may be used to support the filing of a Record of Site Condition (RSC) as part of the proposed redevelopment of the Site for residential purposes. It is further understood that the proposed development will consist of a low-rise development.

It is understood that the intended future property use (residential) is not considered to be a more sensitive property use as defined under O.Reg. 153/04 (as amended); therefore the filing of a Record of Site Condition (RSC) with the Ontario Ministry of Environment, Conservation and Parks (MECP) is not mandated under O.Reg. 153/04.

The Phase Two ESA was completed to satisfy the intent of the requirements, methodology and practices for a Phase One ESA as described in Ontario Regulation 153/04 (as amended). The objective of this Phase Two ESA is to confirm whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

1.1 Site Description

The Phase Two Property is approximately 5.787-hectares (14.299 acres) parcel of land situated within a rural-residential neighbourhood in the Town of Caledon, Ontario. The Phase Two Property is located approximately 490 m northwest of the intersection of Chinguacousy Road and Mayfield Road and was occupied by agricultural land and a residential house at the time of this investigation. A Site Location Plan is provided in Figure 1.

For the purposes of this report, Chinguacousy Road is assumed to be aligned in a southeast-northwest orientation, and Mayfield Road in a northeast-southwest orientation. A Plan of Survey for the Site was not provided at this time.

The Phase Two Property currently includes a two-storey brick house with a metal clad barn. The residential building contains one (1) level of basement and was constructed around the 1990s. The building is approximately 275 m² in area. The building is serviced with a

domestic well and septic system. The septic system was located southeast of the house and the domestic well was observed south of the house.

The metal clad barn is approximately 220 m² in area with a concrete floor and is used for storage of farming equipment.

Access to the Site is through an asphalt driveway which enters the Site from Chinguacousy Road. The remaining balance of the Site is primarily compromised of agricultural fields. A Site Plan depicting the orientation of the buildings on-site is provided in Figure 2.

Additional details regarding the Phase Two Property are provided in the table below.

Table 1-1: Phase Two Property Information

Criteria	Information	Source
Legal Description	Part of Lot 18 Concession 3 West of Hurontario Street Chinguacousy, Part 1 on 43R40488, Town of Caledon, Regional Municipality of Peel	Land Registry Office
Property Identification Number (PIN)	14252-1960	Land Registry Office
Current Site Occupants	Dave McClure (Farmer)	Questionnaire
Site Area	5.787 hectares (14.299 acres)	Google Earth

1.2 Property Ownership

The ownership details for the Phase Two Property are provided in the table below.

Table 1-2: Phase Two Property Ownership

Property Owner	Address	Contact
Argo Development Corporation	4900 Palladium Way, Unit 105 Burlington, ON, L7M 0W7	Justin Marr Phone: 647.389.3326 Email: justin@argoland.com

1.3 Current and Proposed Future Use

The Phase Two Property is currently occupied by agricultural fields, a barn and a residential building which is considered to be Agricultural and Other Property Use under O.Reg. 153/04 (as amended). It is DS's understanding that the Client intends to redevelop the Site for residential use.

1.4 Applicable Site Condition Standards

The applicable Site Condition Standards (SCS) for the Phase Two Property are considered by the Qualified Person (QP) to be the Table 2 SCS: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Use with medium-fine textured soils as contained in the April 15, 2011 Ontario Ministry of

Environment, Conservation and Parks (MECP) document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", herein referred to as the "Table 2 SCS".

The selection of the Table 2 SCS is considered appropriate based on the following rationale:

- The Town of Caledon relies on groundwater as a potable water source;
- The Site is not considered to be environmentally sensitive, as defined under O.Reg. 153/04 (as amended);
- The proposed future use of the Phase Two Property will be Residential;
- The Site is not located within 30 m of a water body;
- The soils on Site are considered to be medium-fine textured;
- The pH of the soils analyzed during this Phase Two ESA are within the accepted range specified under 0.Reg. 153/04 (as amended); and
- Bedrock was not encountered within 2 metres of the ground surface.

2.0 Background Information

2.1 Physical Setting

2.1.1 Water Bodies and Areas of Natural Significance

The nearest body of water to the Phase One Property is a tributary of Fletchers Creek, approximately 210 m southeast of the Site.

The Natural Heritage Areas database published by the Ministry of Natural Resources (MNR) was reviewed in order to identify the presence/absence of areas of natural significance including provincial parks, conservation reserves, areas of natural and scientific interest, wetlands, environmentally significant areas, habitats of threatened or endangered species, and wilderness areas. The regional and municipal Official Plans (Town of Caledon, and Peel Region Official Plans) were also reviewed as part of this assessment.

No areas of natural or scientific interest were identified within the Phase One Study Area.

2.1.2 Topography and Surface Water Draining Features

The Phase Two Property is located in a rural-residential setting, at an elevation of 258 metres above sea level (masl). The topography of the Phase Two Property is generally flat. The neighbouring property are generally at similar elevations, and the topography in the vicinity of the Phase Two Property generally slopes to the southeast. There are drainage features

such as ditches, are present on-Site. Surface water flow associated with precipitation events is anticipated to run overland and drain into the drainage features along the roadway.

2.2 Past Investigations

2.2.1 Previous Report Summary

The following environmental and geotechnical reports were provided for DS to review:

"Phase One Environmental Site Assessment, 12156 Chinguacousy Road, Caledon, Ontario", dated September 7, 2023, prepared for Argo Development Corporation, prepared by DS Consultants (DS 2023 Phase One ESA).

A summary of the details pertinent to this investigation is provided below.

DS 2023 Phase One ESA

The DS 2023 Phase One ESA report was completed in accordance with O.Reg 153/04 (as amended). The purpose of the Phase One ESA was to identify contaminating activities on or around the Phase One Property. The investigation included a compilation and review of records available, interviews, and site reconnaissance. The following information was noted by DS from the Phase One ESA:

- The Site is used for agricultural purposes and has been since the 1880s;
- A residential dwelling was constructed on the Site between 1989 and 1993;
- An orchard was present on the 1880 Peel County Atlas which was potentially subject to application of environmentally persistent pesticides;
- Fill material was likely used for grading purposes for the driveway; and
- The driveway is likely subject to seasonal de-icing activities.

The report recommended a Phase Two ESA be completed to investigate the PCA's identified.

3.0 Scope of the Investigation

The scope of the Phase Two ESA was designed to investigate the portions of the Site determined in the Phase One ESA to be Areas of Potential Environmental Concern. This Phase Two ESA was conducted in general accordance with O.Reg. 153/04 (as amended). The scope of the investigation including the subsurface investigation, sampling, and laboratory analysis was based on the findings of the Phase One ESA and was limited to the portions of the Site which were accessible.

3.1 Overview of Site Investigation

The following tasks were completed as part of the Phase Two ESA:

- Preparation of a Health and Safety Plan to ensure that all work was executed safely;
- Clearance of public private underground utility services prior to commencement of subsurface investigative operations;
- Preparation of a Sampling and Analysis Plan (SAP);
- Retained a MECP licenced driller to advance a total of three (3) boreholes on the Phase Two Property, to depths 6.7 mbgs. One (1) of the boreholes were instrumented with a groundwater monitoring well upon completion. The soil lithology was logged during drilling, and representative soil samples were collected at regular intervals. The soil samples were screened for organic vapours using a RKI Eagle 2 MultiGas Detector, and examined for visual and olfactory indications of soil impacts;
- Submitted "worst case" soil samples collected from the boreholes for laboratory analysis of relevant contaminants of potential concern (COPCs) as identified in the Phase One ESA;
- Surveyed all monitoring wells to a geodetic benchmark;
- Compared all soil analytical data to the applicable MECP SCS; and
- Prepared a Phase Two ESA Report in general accordance with O.Reg. 153/04 (as amended).

3.2 Media Investigated

3.2.1 Rationale for Inclusion or Exclusion of Media

Table 3-1: Rationale of Sampling Media

Media	Included or	Rationale
	Excluded	
Soil	Included	Soil was identified as a media of potential impact in the Phase One ESA, based on the historical operations conducted on-Site.
Groundwater	Excluded	Groundwater was not identified as a media of potential impact in the Phase One ESA.
Sediment	Excluded	Sediment is not present on the Phase Two Property.
Surface Water	Excluded	Surface water is not present on the Phase Two Property.

3.2.2 Overview of Field Investigation of Media

Table 3-2: Field Investigation of Media

Media	Methodology of Investigation
Soil	A total of three (3) boreholes were advanced on the Phase Two Property, to a maximum depth of 6.7 mbgs. and five (5) test pits to 0.3 mbgs Soil samples were collected and submitted for analysis of all relevant PCOCs.

3.3 Phase One Conceptual Site Model

A Conceptual Site Model was developed for the Phase One Property, located at 12156 Chinguacousy Road, Caledon, Ontario. The Phase One Conceptual Site Model is presented in Figure 2, 3, 4, and 5 and visually depict the following:

- Any existing buildings and structures
- Water bodies located in whole, or in part, on the Phase One Study Area
- Areas of natural significance located in whole, or in part, on the Phase One Study Area
- Water wells at the Phase One Property or within the Phase One Study Area
- Roads, including names, within the Phase One Study Area
- Uses of properties adjacent to the Phase One Property
- Areas where any PCAs have occurred, including location of any tanks
- Areas of Potential Environmental Concern

3.3.1 Potentially Contaminating Activity Affecting the Phase One Property

All PCAs identified within the Phase One Study Area are presented on Figure 4. The PCAs which are considered to contribute to APECs on, in or under the Phase One Property are summarized in the table below:

Table 3-3: Summary of PCAs Contributing to APECs

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
PCA-1	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	The Peel County Atlas shows an orchard on the north portion of the Site.	Yes – APEC-1
PCA-2	#N/S – Application of De-icing Agents	De-icing activities inferred along the driveway and paved areas.	Yes – APEC-2A
PCA-3	#30 – Importation of Fill Material of Unknown Quality	Possible fill material for grading under the asphalt driveway.	Yes – APEC-2B
PCA-4	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	Pesticides are used on the agricultural fields on Site.	Yes – APEC-3

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

3.3.2 Contaminants of Potential Concern

The following contaminants of potential concern were identified for the Phase One Property: PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, Na, Cl-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR, PAHs, and OCPs.

3.3.3 Underground Utilities and Contaminant Distribution and Transport

Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface.

The depth to groundwater at the Phase One Property is inferred to be approximately 0.6 to 1.5 metres below ground surface, however, no underground utilities were identified on the Phase One Property, therefore utility trenches would not act as preferential pathways for contaminant distribution and transport in the event that shallow subsurface contaminants exist at the Phase One Property.

3.3.4 Geological and Hydrogeological Information

The topography of the Phase One Property is generally flat, with a surface elevation of 258 metres above sea level (masl). The topography within the Phase One Study Area generally slopes to the southeast, towards a tributary of Fletchers Creek, located approximately 210 m southeast of the Phase One Property. The nearest body of water is a tributary of Fletchers Creek. Based on a review of the MECP well records, the depth to groundwater is approximately 0.6 - 1.5 mbgs.

The Site is situated within a drumlinized till plains physiographic region. The surficial geology within the majority of the Phase One Property is described as "clay to silt-textured till derived from glaciolacustrine deposits or shale" and as "Fine-textured glaciolacustrine deposits consisting of silt and clay, minor sand and gravel Interbedded silt and clay and gritty, pebbly flow till and rainout deposit" along the water bodies intersecting across the Property. The bedrock is described as "Shale, limestone, dolostone, siltstone and Queenston Formation". Based on a review of "Bedrock Topography and Overburden Thickness Mapping, Southern Ontario, prepared by Ontario Geological Survey, published 2006," the bedrock in the vicinity of the Site is anticipated to be encountered at a depth of approximately 20 to 25 metres below ground surface (mbgs).

3.3.5 Uncertainty and Absence of Information

DS has relied upon information obtained from federal, provincial, municipal, and private databases, in addition to records and summaries provided by ERIS. All information obtained was reviewed and assessed for consistency, however the conclusions drawn by DS are subject to the nature and accuracy of the records reviewed.

All reasonable inquiries were made to obtain reasonably accessible information, as mandated by O.Reg.153/04 (as amended). All responses to database requests were received prior to completion of this report. This report reflects the best judgement of DS based on the information available at the time of the investigation.

Information used in this report was evaluated based on proximity to the Phase One Property, anticipated direction of local groundwater flow, and the potential environmental impact on the Phase One Property as a result of potentially contaminating activities.

The QP has determined that the uncertainty does not affect the validity of the Phase One ESA Conceptual Site Model or the conclusions of this report.

3.4 Deviations from Sampling and Analysis Plan

The Phase Two ESA was completed in accordance with the SAP.

3.5 Impediments

DS was granted complete access to the Phase Two Property throughout the course of the investigation. No impediments were encountered.

4.0 Investigation Method

4.1 General

The Phase Two ESA followed the methodology outlined in the following documents:

- Ontario Ministry of the Environment "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996);
- Ontario Ministry of the Environment "Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04" (June 2011);
- Ontario Ministry of the Environment "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (July 2011) (Analytical Protocol);

The methods used in the Phase Two ESA investigation did not differ from the associated standard operating procedures.

4.2 Drilling and Excavating

A Site visit was conducted prior to drilling in order to identify the borehole locations based on the APECs identified in the Phase One ESA. The selected borehole locations are presented on Figure 5. The borehole locations were cleared of underground public and private utility services prior to commencement of drilling. A summary of the drilling activities is provided in the table below.

Table 4-1: Summary of Drilling Activities

Parameter	Borehole Details	Test Pits Details
Drilling Contractor	Young Drilling	DS Consultants Ltd
Drilling Dates	August 15, 2023	August 18, 2023
Drilling Equipment Used	Track-mounted CME 55	Hand tools (shovel)
Measures taken to minimize the potential for cross contamination	 Soil sampling was conducted using a 50 mm stainless steel split spoon sampler. The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination; ◆ Use of dedicated and disposable nitrile gloves for the handling of soil samples. A new set of gloves was used for each sample. 	 Soil sampling was conducted using hand tools. The tools were brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination; Use of dedicated and disposable nitrile gloves for the handling of soil samples. A new set of gloves was used for each sample.
Sample collection	Samples were collected at a	1 sample for 0.3 m
frequency frequency of every 0.6 m per 0.8 m from the ground surface to 3.1 mbgs, followed by one sample per 1.5 m to borehole termination depth.		

4.3 Soil Sampling

Soil samples were collected using hand tools, solid stem augers and split spoon samplers. Discrete soil samples were collected from the split-spoon samplers by DS personnel using dedicated nitrile gloves.

A portion of each sample was placed in a resealable plastic bag for field screening, and the remaining portion was placed into laboratory supplied glass sampling jars. Samples intended for VOC and the F1 fraction of petroleum hydrocarbons analysis were collected

using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. All sample jars were stored in dedicated coolers with ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

The subsurface soil conditions were logged by DS personnel at the time of drilling, and recorded on field borehole logs. The borehole logs are presented under Appendix C. Additional detail regarding the lithology encountered in the boreholes is presented under Section 6.1.

4.4 Field Screening Measurements

All retrieved soil samples were screened in the field for visual and olfactory observations. No obvious visual or olfactory evidence of potential contamination were noted. No aesthetic impacts (e.g. cinders, slag, hydrocarbon odours) were encountered during this investigation. The soil sample headspace vapour concentrations for all soil samples recovered during the investigation were screened using portable organic vapour testing equipment in accordance with the procedure outlined in the MECP's 'Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario'.

The soil samples were inspected and examined to assess soil type, ground water conditions, and possible chemical contamination by visual and olfactory observations or by organic vapour screening. Samples submitted for chemical analysis were collected from locations judged by the assessor to be most likely to exhibit the highest concentrations of contaminants based on several factors including (i) visual or olfactory observations, (ii) sample location, depth, and soil type (iii) ground water conditions and headspace reading. A summary of the equipment used for field screening is provided below:

Table 4-2: Field Screening Equipment

Parameter	Details
Make and Model of Field Screening	RKI Eagle 2, Model 5101-P2
Instrument	Serial Number: E2G721
Chemicals the equipment can detect	VOCs with dynamic range of 0 parts per million (ppm) to
and associated detection limits	2,000 ppm PHCs with range of 0 to 50, 000 ppm
Precision of the measurements	3 significant figures
Accuracy of the measurements	VOCs: ± 10% display reading + one digit
	Hydrocarbons: ± 5% display reading + one digit
Calibration reference standards	PID: Isobutylene
	CGD: Hexane

Parameter	Details
Procedures for checking calibration	In-field re-calibration of the CGI was conducted (using the gas
of equipment	standard in accordance with the operator's manual instructions) if
	the calibration check indicated that the calibration had drifted by
	more than +/- 10%.

A summary of the soil headspace measurements are provided in the borehole logs, provided under Appendix C.

4.5 Groundwater Monitoring Well Installation

Monitoring wells were installed upon completion of one (1) the borehole advanced on the Phase Two Property. The monitoring well was constructed of 51-millimetre (2-inch) inner diameter (ID) flush-threaded schedule 40 polyvinyl chloride (PVC) risers, equipped with a 1.5 m length of No. 10 slot PVC screen. The well screen was sealed at the bottom using a threaded cap and at the top with a lockable J-plug.

Silica sand was placed around and up to 0.6m above the well screen to act as a filter pack. Bentonite was placed from the ground surface to the top of the sand pack. The well was completed with protective aboveground monument casings.

Details regarding the monitoring well construction can be found in Table 1, and on the borehole logs provided in Appendix C.

Disposable nitrile gloves were used to minimize the potential for cross-contamination during well installation. Dedicated equipment was used for well development and sampling for further minimize the risk of cross contamination.

4.6 Groundwater Sampling

Groundwater was not identified as a media of concern on the Phase Two Property at the time of this investigation. Groundwater sampling was not conducted as a result.

4.7 Sediment Sampling

No sediment as defined under O.Reg. 153/04 (as amended) was present on the Phase Two Property at the time of this investigation. Sediment sampling was not conducted as a result.

4.8 Analytical Testing

The soil samples collected were submitted to Bureau Veritas (BV) under chain of custody protocols. BV is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation. BV conducted the analyses in accordance with the MECP

document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" dated March 9, 2004 (revised on July 1, 2011).

4.9 Residue Management Procedures

4.9.1 Soil Cuttings From Drilling and Excavations

The soil cuttings generated by the borehole drilling program were stored in 205 L drums, and left on-Site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.9.2 Fluids from Equipment Cleaning

Excess equipment cleaning fluids were stored in 20-L sealed plastic pails and temporarily stored on Site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.10 Elevation Surveying

The ground surface elevations of the boreholes/monitoring wells were surveyed using a Sokkia GCX-2 GNSS RTK receiver, based on global positioning systems satellites.

The ground surface elevations can be found on the borehole logs presented in Appendix C.

4.11 Quality Assurance and Quality Control Measures

4.11.1 Sample containers, preservation, labelling, handling and custody for samples submitted for laboratory analysis, including any deviations from the SAP

All soil and groundwater samples were stored in laboratory-supplied sample containers in accordance with the MECP Analytical Protocol. A summary of the preservatives supplied by the laboratory is provided in the table below.

Table 4-3: Summary of Sample Bottle Preservatives

Media	Parameter	Sample Container	
Soil	PHCs F1	40 mL methanol preserved glass vial with septum lid.	
	VOCs		
	PHCs F2-F4	120 mL or 250 mL unpreserved glass jar with Teflon™-lined lid.	
	metals and ORPs		
	PAHs		
3011	Hexavalent	125 mL high density polyethylene bottle containing ammonium	
	Chromium	sulphate/ammonium hydroxide preservative	
	Mercury	125 mL glass bottle containing hydrochloric acid preservative	
	Cyanide	125 mL high density polyethylene bottle containing sodium hydroxide	
		preservative	

4.11.2 Description of equipment cleaning procedures followed during all sampling

Dedicated, disposable nitrile gloves were used for each sampling event to reduce the potential for cross-contamination.

The split spoon sampler and hand tools was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination.

Non-dedicated equipment (i.e. interface probe) was cleaned before initial use and between all measurement points with a solution of $Alconox^{TM}$ and distilled water. The $Alconox^{TM}$ solution was rinsed off using distilled water.

4.11.3 Description of how the field quality control measures referred to in subsection 3 (3) were carried out

Field duplicate samples were collected at the time of sampling. In accordance with O.Reg. 153/04, one duplicate sample was analyzed per ten samples submitted for analysis. A laboratory prepared trip blank accompanied the groundwater samples during each sampling event and was submitted for laboratory analysis of VOCs.

All field screening devices (i.e. PID, CGD, YSI Water Quality Meter) were calibrated prior to use by the supplier. Calibration checks were completed, and re-calibrations were conducted as required.

4.11.4 Description of, and rational for, any deviations from the procedures set out in the quality assurance and quality control program set out in the SAP

There were no deviations from the QA/QC program described in the SAP.

5.0 Review and Evaluation

5.1 Geology

A summary of the subsurface conditions is presented below. Additional details may be found in the borehole logs appended in Appendix C. The boundaries of soil indicated on the borehole logs and described below are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

A surficial layer of topsoil approximately 200 to 250 mm in thickness was encountered in all of the boreholes advanced. Reworked native material consisting of clayey silt with trace

organics was encountered below the topsoil. The reworked native material was generally heterogeneous and ranged in thickness from 0.5 to 2.1 metres. A silty sand seam was encountered in the reworked material in BH23-303 with a thickness of 0.7 m. The native overburden material encountered below the reworked native and fill material consisted of clayey silt to silty clay till. The clayey silt to silty clay till unit extended to borehole termination at a maximum depth of 6.7 mbgs. Bedrock was not encountered an the maximum borehole depth of 6.7 mbgs.

Table 5-1: Summary of Geologic Units Investigated

Geologic Unit	Inferred Thickness (m)	Top Elevation (masl)	Bottom Elevation (masl)	Properties
Topsoil	0.20 - 0.25	260.0	258.9	Moisture Content: 15-27%
Reworked Clayey Silt	0.5 – 2.1	259.8	257.7	Water table encountered
Clayey Silt Till	4.4 – 5.9	258.5	252.5	Moisture Content: 11-24%

5.2 Ground Water Elevations and Flow Direction

5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals

One (1) monitoring well was installed on the Phase Two Property. The monitoring wells were screened to intersect the first water bearing formation encountered. The monitoring well was screened within the clayey silt to silty clay till unit encountered at an approximate depth of 0.20 to 6.7 mbgs. This unit is inferred to be an unconfined aquifer.

5.2.2 Results of Interface Probe Measurements

A summary of the groundwater level measurements is provided in Table 1. The groundwater level measurements were collected using a Solinst interface probe (model 122). The depth to groundwater was found to be 2.29 and 1.73 mbgs on August 18 and 29, 2023, respectively. There was no indication of DNAPL or LNAPL in the monitoring wells at this time.

5.2.3 Product Thickness and Free Flowing Product

No evidence of product was observed in the monitoring wells at the time of the investigation.

5.2.4 Groundwater Elevation

The groundwater elevation was calculated by subtracting the depth to groundwater from the surface elevation determined by the surface elevation survey conducted as part of this investigation. A summary of the groundwater elevations calculated is presented in Table 1.

The groundwater elevation was found to be 257.66 and 258.22 masl on August 18 and 29, 2023, respectively, in the upper aquifer investigated.

5.2.5 Groundwater Flow Direction

The groundwater flow direction was not calculated at this time. The groundwater flow direction was inferred to be southeast towards a tributary of Fletcher's Creek based on the Phase One ESA.

5.2.6 Assessment of Potential for Temporal Variability in Groundwater Flow Direction

The shallow aquifer investigated is inferred to be an unconfined aquifer, based on the soil stratigraphy observed in the boreholes advanced on the Phase Two Property. It is possible that temporal variations in groundwater elevations may occur on the Phase Two Property in response to seasonal weather patterns.

Temporal variability in groundwater level has the ability to influence the groundwater flow direction. The degree of variation in groundwater levels on the Phase Two Property can only be confirmed with long-term monitoring.

5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the Water Table

The groundwater table was encountered at a depth of 1.73 to 2.29 mbgs on the Phase Two Property. Buried utility services are present on the Phase Two Property, and are inferred to be situated at depths ranging between 2 and 3 mbgs. Based on this there is the potential for the utility trenches to act as preferential pathways. However groundwater was not identified as a media of concern at this time.

5.3 Ground Water Hydraulic Gradients

5.3.1 Horizontal Hydraulic Gradient

The horizontal hydraulic gradient was not calculated, as groundwater was not identified as a media of concern on the Phase Two Property.

5.3.2 Vertical Hydraulic Gradient

The vertical hydraulic gradient was not calculated, as groundwater was not identified as a media of concern on the Phase Two Property.

5.4 Fine-Medium Soil Texture

The soils encountered on the Phase Two Property are considered to be medium-fine textured. For the purposes of evaluating the SCS, all soils on the Phase Two Property are considered medium-fine textured.

5.4.1 Rational for use of Fine-Medium Soil Texture Category

A total of three (3) grain size analyses were conducted as part of the concurrent geotechnical investigation. The results of the grain size analyses indicate that more than two-thirds of the soils encountered are medium to fine textured.

5.4.2 Results of Grain Size Analysis

A summary of the soil samples analyzed and the corresponding grain size results is presented in the table below:

Table 5-2: Summary of Grain Size Analyses

Sample	% Gravel	% Sand	% Silt	% Clay	Classification
BH23-301 SS3	1	16	44	39	Medium-fine textured
BH23-302 SS4	3	16	56	25	Medium-fine textured
BH23-303 SS6	3	23	44	30	Medium-fine textured

5.4.3 Rational for the Number of Samples Collected and Analyzed

The grain size analyses were conducted for the purposes of this Phase Two ESA, in addition to a geotechnical investigation which was conducted concurrently. At least one sample was analyzed per stratigraphic unit encountered in order to characterize the various strata encountered.

5.5 Soil Field Screening

Soil vapour headspace readings were collected at the time of sample collection, the results of which are presented on the borehole logs (Appendix C). The soil vapour headspace readings were collected using a PID and CGD in methane elimination mode. The PID readings was non-detect (0 ppm). The CGD readings ranged between 0 and 20 ppm.

The soil samples were also screened for visual and olfactory indicators of impacts (e.g. staining, odours). No visual or olfactory impacts were observed.

5.6 Soil Quality

The results of the chemical analyses conducted are presented in Tables 4 and 5. A visual summary of the location of the sample locations is provided in Figures 6A and 6B. The laboratory certificates of analysis have been provided under Appendix D.

Note that two (2) samples were assigned the sample ID S4 with corresponding sampling dates of August 18, 2023 and September 25, 2023. The sampling points are distinguished by the laboratory analytical reference of C3P2568 and C3T5693 respectively. For the appended tables and figures the samples are identified as S4 and S4 (September) respectively.

5.6.1 Metals and ORPs

A total of six (6) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of metals, and an additional two (2) samples were submitted for pH. The results of the analyses are tabulated in Table 4, and presented on Figure 6A. The results of the chemical analyses conducted indicated that all samples analyzed met the MECP Table 2 SCS.

5.6.2 Petroleum Hydrocarbons

One (1) sample, was submitted for analysis of PHCs including BTEX. The results of the analyses are tabulated in Table 5, and presented on Figure 6B. The results of the chemical analyses conducted indicated that all samples analyzed met the MECP Table 2 SCS.

5.6.3 Volatile Organic Compounds

One (1) sample, was submitted for analysis of VOCs. The results of the analyses are tabulated in Table 6, and presented on Figure 6C. The results of the chemical analyses conducted indicated that all samples analyzed met the MECP Table 2 SCS.

5.6.4 Polycyclic Aromatic Hydrocarbons

One (1) sample, was submitted for analysis of PAHs. The results of the analyses are tabulated in Table 7, and presented on Figure 6D. The results of the chemical analyses conducted indicated that all samples analyzed met the MECP Table 2 SCS.

5.6.5 Organochlorinated Pesticides

A total of five (5) samples, including one (1) field duplicates for QA/QC purposes were submitted for analysis of OCPs. The results of the analyses are tabulated in Table 8, and presented on Figure 6E. The results of the chemical analyses conducted indicated that all samples analyzed met the MECP Table 2 SCS.

5.6.6 Commentary on Soil Quality

No evidence of chemical or biological transformations of the parameters analyzed was observed.

5.7 Ground Water Quality

Groundwater was not identified as a media of concern at the time of this investigation.

5.8 Sediment Quality

No sediment was present on the Phase Two Property at the time of the investigation.

5.9 Quality Assurance and Quality Control Results

Collection of soil and groundwater samples was conducted in general accordance with the MECP *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*. As described in Section 5.12, dedicated equipment was used where possible, and all non-dedicated equipment was decontaminated before and between sampling events. All soil and groundwater samples were transferred directly into laboratory-supplied containers. The laboratory containers were prepared by the laboratory with suitable preservative, as required. All samples were stored and transported under refrigerated conditions. Chain of custody protocols were maintained from the time of sampling to delivery to the analytical laboratory.

The field QA/QC program involved the collection of field duplicate soil and groundwater samples, and the use of a trip blank for each groundwater sampling event (when suitable). In addition to the controls listed above, the analytical laboratory employed method blanks, internal laboratory duplicates, surrogate spike samples, matrix spike samples, and standard reference materials.

A summary of the field duplicate samples analyzed and an interpretation of the efficacy of the QA/QC program is provided in the table below.

Table 5-3: Summary of QA/QC Results

Sample ID	QA/QC duplicate	Medium	Parameter Analyzed	QA/QC Result
DUP-1	S3	Soil	OCPs, Metals	All results were within the analytical protocol criteria for RPD.

Based on the interpretation of the laboratory results and the QA/QC program, it is the opinion of the QP that the laboratory analytical data can be relied upon.

All samples were handled in accordance with the MECP Analytical Protocol regarding sample holding time, preservation methods, storage requirements, and type of container.

BV routinely conducts internal QA/QC analyses in order to satisfy regulatory QA/QC requirements. The results of the BV QA/QC analyses for the submitted soil samples are summarized in the laboratory Certificates of Analyses provided in Appendix D.

The following comments were provided by BV on the laboratory Certificates of Analysis. Commentary on the comments has been provided below:

- ◆ Laboratory Certificate C3P2568 The sample S2 required dilution due to the sample matrix for OCP analysis. The detection limits were adjusted accordingly. The overall QA/QC analysis met acceptable laboratory criteria. As such, DS does not consider this to be an issue of significant concern and it has no impact on the overall interpretation of the analytical data; and
- ◆ Laboratory Certificate C3P2568 The analyte Aroclor 1254 was detected in the method blank at a level marginally above the detection limit which may represent a high bias in results unless the results were non-detect. As the results were non-detect, DS does not consider this to be an issue of significant concern and it has no impact on the overall interpretation of the analytical data.

With respect to subsection 47(3) of O.Reg 153/04 (as amended), all certificates of analysis or analytical reports pursuant to clause 47(2) (b) of the regulation comply with subsection 47(3). A certificate of analysis has been received for each sample submitted for analysis and have been provided (in full) in Appendix D.

A review of the QA/QC sample results indicated that no issues were identified with respect to both the field collection methodology and the laboratory reporting. It is the opinion of the QP that the analytical data obtained are representative of the soil and groundwater conditions at the Phase Two Property for the purpose of assessing whether the soil and groundwater at the Phase Property meets the applicable MECP SCS.

5.10 Phase Two Conceptual Site Model

The Phase Two Conceptual Site Model is presented under Appendix E.

6.0 Conclusions

This Phase Two ESA involved that advancement of three (3) boreholes, five (5) test pits, the installation of one (1) monitoring well on the Phase Two Property, and the collection of soil

samples for analysis of the potential contaminants of concern, including: Metals, As, Sb, Se, CN-, pH, EC, SAR, PHCs including BTEX, VOCs, PAHs and OCPs.

Based on the results of the information gathered through the course of the investigation, DS presents the following conclusions:

- A surficial layer of topsoil approximately 200 to 250 mm in thickness was encountered in all of the boreholes and test pit advanced at the Site. Reworked native material consisting of clayey silt with trace organics was encountered below the topsoil. The reworked native material was generally heterogeneous and ranged in thickness from 0.5 to 2.1 metres. A silty sand seam was encountered in the reworked material in BH23-303 with a thickness of 0.7 m. The native overburden material encountered below the reworked native material and fill material consisted of clayey silt to silty clay till. The clayey silt to silty clay till unit extended to borehole termination at a maximum depth of 6.7 mbgs. Bedrock was not encountered at the end of the boreholes.
- The groundwater flow direction was inferred to be southeast, in a similar direction as the slope in the area, towards a tributary of Fletcher's Creek based on the Phase One ESA.
- The results of the chemical analyses conducted on soil samples indicate that the applicable Site Condition Standards have been met;
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

It is the opinion of the QP_{ESA} that the applicable SCS for the soil and groundwater at the Phase Two Property have been met as of the Certification Date of October 6, 2023. No further subsurface investigation is required regarding the environmental quality of the soil and groundwater at the Phase Two Property.

6.1 Qualifications of the Assessors

Megan Bender, B.E.S, EPt

Ms. Bender is an Environmental Specialist with DS Consultants Ltd. Megan holds a Bachelor's degree in Environmental Studies, specializing in environmental assessments, a minor in geography from the University of Waterloo and a Post Graduate Certificate in Environmental Engineering Applications from Conestoga College. Megan is registered as an Environmental Professional in training (EPt) with ECO Canada. Megan has been involved with Phase One and Phase Two Environmental Site Assessments, data interpretation and reporting, and geotechnical projects.

Efuange Khumbah, M.Sc., P.Eng, QPESA

Efuange is a Senior Project Manager, providing environmental services at DS Consultants Ltd. He is the line of communication between clients, customers, and businesses to get projects done. With over 12 years working for the public and private sectors, Efuange has experience serving clients in constructional, financial institutions, insurance companies, legal firms, manufacturing industries, oil/gas/petrochemical as well as municipal, provincial and federal agencies. In Canada he has managed projects in British Columbia, Alberta, Ontario, Quebec, New Brunswick, Nova Scotia, Prince Edward Island, and Newfound land. His area of expertise includes, environmental site assessment, soil and groundwater remediation, litigation support, excess soil management, senior review of environmental reports, and air quality monitoring. Reports prepared by Efuange have been published by the Town of Newmarket, City of Mississauga, and the Ontario Ministry of Environment Conservation and Parks. Efuange hold a M.Sc. degree in Environmental Science and Resource management.

Mr. Patrick (Rick) Fioravanti, B.Sc., P.Geo., QPESA

Mr. Patrick (Rick) Fioravanti is an Environmental Geoscientist specializing in Environmental Site Assessments, Brownfields Remediation Projects and Excess Soil Management. He holds an Honours Bachelor of Science with distinction in Toxicology from the University of Guelph and is a practicing member of the Association of Professional Geoscientists of Ontario (APGO). Rick is the Manager of Environmental Services with DS, responsible for the supervision and management of Phase One and Two Environmental Site Assessments, assessment of soil/fill management for import/export of soils, soil vapour and indoor air quality assessments, and remediation.

Rick has over ten years of environmental consulting experience and has conducted and/or managed hundreds of projects in his professional experience. Rick has extensive experience conducting Phase One and Phase Two Environmental Site Assessments in support of brownfields redevelopment in urban settings, and been involved in numerous remediation and risk assessments projects. Rick specializes in utilizing emerging technologies such as high-resolution site characterization and contaminant forensics to help Clients achieve their development objectives. Rick is a Qualified Person (QP) to conduct Environmental Site Assessments as defined by Ontario Regulation 153/04 (as amended) and Ontario Regulation 406/19 and has successfully filed numerous Records of Site Condition with the Ministry of Environment, Conservation and Parks.

6.2 Signatures

This Phase Two ESA was conducted under the supervision of Patrick Fioravanti, B.Sc., P.Geo., QP_{ESA} in accordance with the requirements of O.Reg. 153/04 (as amended). The findings and conclusions presented have been determined based on the information obtained at the time of the investigation, and on an assessment of the conditions of the Site at this time.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

DS Consultants Ltd

Prepared By:

Megan Bender, B.E.S., EPt Environmental Specialist

Reviewed By:

Efuange Khumbah, M.Sc., P.Eng., QPESA

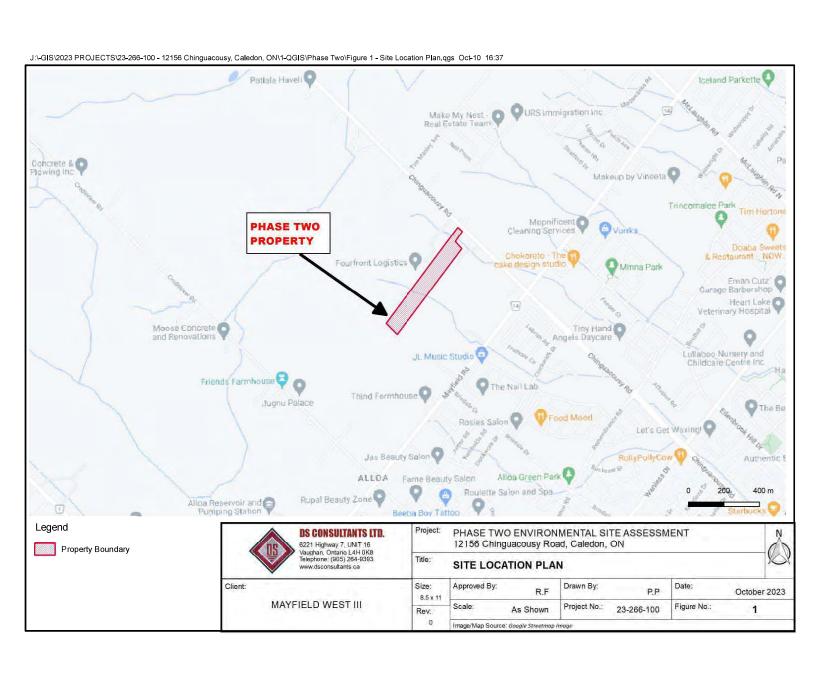
Senior Project Manager-Environmental Services

Patrick Fioravanti, B.Sc., P.Geo., QPESA

Manager – Environmental Services

6.3 Limitations

This report was prepared for the sole use of Mayfield West III and is intended to provide an assessment of the environmental condition on the property located at 12156 Chinguacousy Road, Caledon, Ontario. The information presented in this report is based on information collected during the completion of the Phase Two Environmental Site Assessment by DS Consultants Ltd. The material in this report reflects DS' judgment in light of the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this documents or findings, conclusions and recommendations represented herein, is at the sole risk of said users.


The conclusions drawn from the Phase Two ESA were based on information at selected observation and sampling locations. Conditions between and beyond these locations may become apparent during future investigations or on-Site work, which could not be detected or anticipated at the time of this investigation. The sampling locations were chosen based upon a cursory historical search, visual observations and limited information provided by persons knowledgeable about past and current activities on this Site during the Phase Two ESA activities. As such, DS Consultants Ltd. cannot be held responsible for environmental conditions at the Site that was not apparent from the available information.

7.0 References

- Armstrong, D.K. and Dodge, J.E.P. *Paleozoic Geology Map of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 219.
- Chapman, L.J. and Putnam, D.F. 2007. The Physiography of Southern Ontario. Ontario Geological Survey, Miscellaneous Release--Data 228.
- Freeze, R. Allen and Cherry, John A., 1979. Ground water. Page 29.
- Ontario Ministry of the Environment, December 1996. *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.*
- Ontario Ministry of Environment, 15 April 2011. Soil, Ground Water and Sediment Standards for use under part XV.10f the Environmental Protection Act.
- Ontario Ministry of the Environment, June 2011. Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04.
- Ontario Ministry of the Environment, July 2011. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.
- The Ontario Geological Survey. 2003. Surficial Geology of Southern Ontario.
- "Phase One Environmental Site Assessment, 12156 Chinguacousy Road, Caledon, Ontario", dated September 7, 2023, prepared for Argo Development Corporation, prepared by DS Consultants.

Figures

J'\GIS\2023 PROJECTS\23-266-100 - 12156 Chinguacousy, Caledon, ON\1-QGIS\Phase Two\Figure 2 - Phase One Property Site Plan.qgs Oct-10 16:36 200 m Former Barn 10 20 m Legend PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 12156 Chinguacousy Road, Caledon, ON Project: DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca Property Boundary Title: PHASE ONE PROPERTY SITE PLAN Drawn By: Client: Approved By: Date: Size: October 2023 8.5 x 11 MAYFIELD WEST III Scale: Project No.: Figure No.: 23-266-100 As Shown Rev:

Image/Map Source Google Satellite Image

J/wGIS/2023 PROJECTS/23-266-100 - 12156 Chinguacousy, Caledon, ON/1-QGIS/Phase Two/Figure 3 - Phase One Study Area.qgs Oct-10 16:36 Legend PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 12156 Chinguacousy Road, Caledon, ON Project: DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca Property Boundary Title: PHASE ONE STUDY AREA 250m Buffer Agricultural Use Drawn By: Client: Approved By: Date: Size: October 2023 8.5 x 11 Residential Use MAYFIELD WEST III Scale: Project No.: Figure No.: 23-266-100 3 As Shown Rev: Image/Map Source Google Satellite Image

J:\-GIS\2023 PROJECTS\23-266-100 - 12156 Chinguacousy, Caledon, ON\1-QGIS\Phase Two\Figure 4 - PCAs within Phase One Study Area.qgs Qct-10 16:35 4907220 4907003 200 400 m 7358559 7358558 7358557 7308420 40 m Legend PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 12156 Chinguacousy Road, Caledon, ON DS CONSULTANTS LTD. Project: 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca Property Boundary

Title:

Size:

Rev:

8.5 x 11

Approved By:

Image/Map Source Esri Topo Imag-

Scale:

PCAs WITHIN PHASE ONE STUDY AREA

As Shown

Drawn By:

Project No.:

Date:

23-266-100

Figure No.:

October 2023

250m Buffer

PCA Contributing to APEC

Registered Water Well (MECP WWR)

Inferred Groundwater Flow Direction

Client:

MAYFIELD WEST III

J/\GIS\2023 PROJECTS\23-266-100 - 12156 Chinguacousy, Caledon, ON\1-QGIS\Phase Two\Figure 5 - Borehole Location Plan with APECs.qgs Oct-13 15:01 4 | BH23-301 200 m Legend Property Boundary Borehole PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 12156 Chinguacousy Road, Caledon, ON Project: DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca Monitoring Well Title: OCP Samples **BOREHOLE LOCATION PLAN WITH APECS** APEC-1 Client: Approved By: Drawn By: Date: Size: October 2023 APEC-2A and APEC-2B 8.5 x 11 MAYFIELD WEST III Scale: Project No.: Figure No.: 23-266-100 5 As Shown Rev: APEC-3

Image/Map Source Google Satellite Image

J:\-GIS\2023 PROJECTS\23-266-100 - 12156 Chinguacousy, Caledon, ON\1-QGIS\Phase Two\Figure 6B - Soil Characterization - PHCs and BTEX.qgs Oct-10 16:30 S4 (september) Sample ID: S4 (September) Sample Depth: 0.0-0.3 PHCs & BTEX Met T2 SCS BH23-302 ⊕BH23-301 Legend PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 12156 Chinguacousy Road, Caledon, ON Project: DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca Property Boundary Title: Borehole SOIL CHARACTERIZATION - PHCs AND BTEX Monitoring Well Drawn By: Client: Approved By: Size: October 2023 OCP Samples 8.5 x 11 MAYFIELD WEST III

Scale:

Rev:

Sample Met Applicable Standards

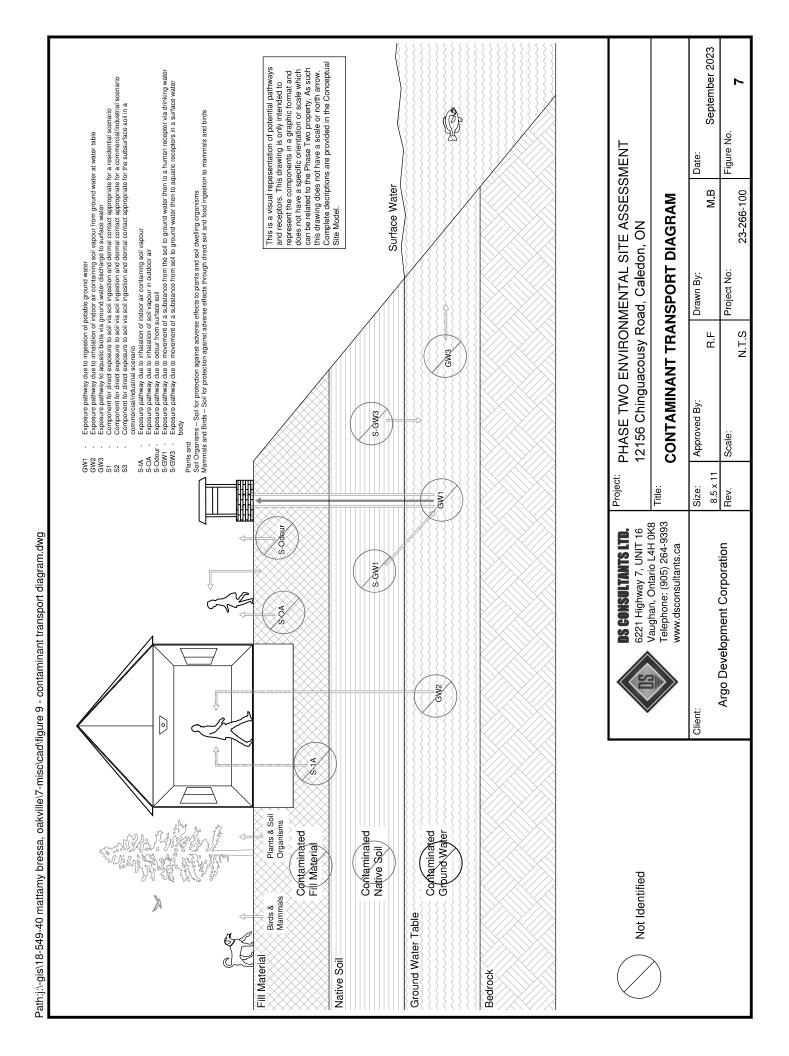
Project No.:

As Shown

Image/Map Source Google Satellite Image

23-266-100

Figure No.:


6B

J:\-GIS\2023 PROJECTS\23-266-100 - 12156 Chinguacousy, Caledon, ON\1-QGIS\Phase Two\Figure 6C - Soil Characterization - VOCs.qgs Oct-10 16:31 S4 (september) Sample ID: **S4** 0.0-0.3 Sample Depth: Met T2 SCS BH23-302 ⊕BH23-301 Legend PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 12156 Chinguacousy Road, Caledon, ON Project: DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca Property Boundary Title: Borehole **SOIL CHARACTERIZATION - VOCs** Monitoring Well Drawn By: Client: Approved By: Date: Size: October 2023 OCP Samples 8.5 x 11 MAYFIELD WEST III Scale: Project No.: Figure No.: 6C As Shown 23-266-100 Rev: Sample Met Applicable Standards

Image/Map Source Google Satellite Image

J:\-GIS\2023 PROJECTS\23-266-100 - 12156 Chinguacousy, Caledon, ON\1-QGIS\Phase Two\Figure 6D - Soil Characterization - PAHs.qgs Oct-10 16:32 S4 (september) Sample ID: **S4** S4 (September) 0.0-0.3 Sample Depth: Met T2 SCS BH23-302 ⊕BH23-301 Legend PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 12156 Chinguacousy Road, Caledon, ON Project: DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca Property Boundary Title: Borehole **SOIL CHARACTERIZATION - PAHs** Monitoring Well Drawn By: Client: Approved By: Date: Size: October 2023 OCP Samples 8.5 x 11 MAYFIELD WEST III Scale: Project No.: Figure No.: 6D As Shown 23-266-100 Rev: Sample Met Applicable Standards

Image/Map Source Google Satellite Image

Tables

Table 1: Summary of Monitoring Well Installation and Groundwater Data

Table 1. Summary of Monitoring Well instanation and o				
	BH23-303			
	Installed By:			
It	nstallation Date:		15-Aug-23	
	Well Status:		Active	
	EastUTM17		592564.893	
	NorthUTM17		4840992.384	
Inner Diameter		(mm)	50	
Surface Elevatio	n	(masl)	259.95	
Bottom of Conc	rete Seal/Top	mbgs	0.30	
of Bentonite Sea	ıl	masl	259.65	
Bottom of Bento	onite Seal/Top	mbgs	2,50	
of Sand Pack		masl	257.45	
Top of Well Scre		mbgs	3.10	
Top of Well Scre	een	masl	256.85	
Well Screen Len	gth	m	3.00	
Bottom of Well	Caucon	mbgs	6.10	
bottom of wen	screen	masl	253.85	
	GW Mo	nitoring		
10 Aug 22	Depth to GW	mbgs	2.29	
18-Aug-23	GW Elevation	masl	257,66	
	Depth to GW	mbgs	1.73	
29-Aug-23	GW Elevation	masl	258.22	

 $For \ Table \ Notes \ see \ \textbf{Notes for Soil and Groundwater Summary Tables}, included \ at \ the \ end \ of \ this \ Section.$

DS Consultants Ltd October 2023

DS

<u>Table 2: Summary of Soil Samples Submitted for Chemical Analysis</u>

Borehole ID	Sample No.	Sample Depth (mbgs)	Soil Description	Parameter Analyzed	APEC Investigated
BH23-301	SS5	3.1-3.7	Clayey Silt Till	pН	APEC-3
BH23-303	SS5	3.1-3.7	Clayey Silt Till	pН	AFEC-5
S1	S1	0.0-0.3	Topsoil	Metals, OCPs	APEC-1. APEC-3
S2	S2	0.0-0.3	Topsoil	Metals, OCPs	APEC-1, APEC-3
S3	S3	0.0-0.3	Topsoil	Metals, OCPs	
33	DUP-1	0.0-0.3	Topson	Metals, OCPs	APEC-3
S4	S4	0.0-0.3	Topsoil	Metals, OCPs	
S4 (september)	S4	0.0-0.3	Topsoil	Metals, PHCs, VOCs, PAHs	APEC-2A, APEC-2B

 $For Table\ Notes\ see\ \textbf{Notes}\ \textbf{for}\ \textbf{Soil}\ \textbf{and}\ \textbf{Groundwater}\ \textbf{Summary}\ \textbf{Tables}, included\ at\ the\ end\ of\ this\ Section.$

Table 3: Summary of APECs Investigated

APEC	Description	PCOCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed
APEC-1	The 1880 Peel County Atlas shows an	OCPs, Metals, As,	Soil	S1	S1	Metals, OCPs
AI LC-1	orchard on the north portion of the Site.	Sb, Se, CN-	3011	S2	S2	Metals, OCPs
APEC-2A	The driveway and roadway on the north portion of the Site are likely subject to seasonal de-icing agents.	EC, SAR	Soil	S4 (september)	S4	EC, SAR
APEC-2B	The driveway on the north portion of the Site may have fill material of unknown quality for grading purposes.	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, Low or high pH, SAR, PAHs	Soil	S4 (september)	S4	M&I, PHCs, VOCs, PAHs
				S1	S1	Metals, OCPs
				S2	S2	Metals, OCPs
				S3	S3	Metals, OCPs
APEC-3	Pesticides are used on the agricultural fields on Site.	OCPs, Metals, As, Sb, Se, CN-	Soil	33	DUP-1	Metals, OCPs
	l liste on site!	30, 3e, CN-	10, 50, 611	S4	S4	Metals, OCPs
				BH23-301	SS5	pН
				BH23-303	SS5	рН

Table 4: Summary of Metals and ORPs in Soil

· · · · · · · · · · · · · · · · · · ·										
Parameter		BH23-301 SS5	BH23-303 SS5	S1	S2	S 3	DUP-1 (S3)	S4	S4 (September)	
Date of Collection		15-Aug-23	15-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23	25-Sep-23	
Date Reported	MECP	23-Aug-23	23-Aug-23	29-Aug-23	29-Aug-23	29-Aug-23	29-Aug-23	29-Aug-23	6-Oct-23	
Sampling Depth (mbgs)	Table 2 SCS	3.1-3.7	3.1-3.7	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3	
Analytical Report Reference No.		C3P0410	C3P0410	C3P2568	C3P2568	C3P2568	C3P2568	C3P2568	C3T5693	
Antimony	7.5	-	-	<0.20	0.22	<0.20	<0.20	<0.20	<0.20	
Arsenic	18	-	-	3.7	3.2	3.9	3.7	3,8	3.9	
Barium	390	-	-	55	62	68	67	79	59	
Beryllium	5	-	-	0.59	0.52	0.7	0.71	0.7	0.52	
Boron	120	-	-	-	-	-	-	-	<5.0	
Boron (Hot Water Soluble)	1.5	-	-	<5.0	6.4	<5.0	<5.0	5.9	0.24	
Cadmium	1.2	-	-	0.18	0.15	0.17	0.17	0.17	0.18	
Chromium	160	-	-	18	18	20	20	21	18	
Chromium VI	10	-	-	-	-	-	-	-	<0.18	
Cobalt	22	-	-	7.7	7.2	8,8	8.9	11	7.6	
Copper	180	-	-	17	21	21	21	23	19	
Cyanide	0.051	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Lead	120	-	-	16	28	13	13	11	13	
Mercury	1.8	-	-	-	-	-	-	-	<0.050	
Molybdenum	6.9	-	-	<0.50	<0.50	<0.50	<0.50	<0.50	0.8	
Nickel	130	-	-	16	16	18	18	22	16	
Selenium	2.4	-	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Silver	25	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Thallium	1	-	-	-	-	-	-	-	0.1	
Uranium	23	-	-	0.1	0.087	0.13	0.11	0.13	0.61	
Vanadium	86	-	-	0.64	0.6	0.65	0.63	0.54	27	
Zinc	340	-	-	26	25	30	30	30	55	
Electrical Conductivity (2:1)	0.7	-	-	56	71	70	68	64	0.22	
Sodium Adsorption Ratio	5	-	-	-	-	-	-	-	0.54	
pH, 2:1 CaCl2 Extraction	NV	7.76	7.72	7.05	7.3	7.39	-	7.53	7.19	

For Table Notes see **Notes for Soil and Groundwater Summary Tables**, included at the end of this Section

DS Consultants Ltd October 2023

Table 5: Summary of PHCs and BTEX in Soil

Parameter		S4 (september)	
Date of Collection	МЕСР	25-Sep-23	
Date Reported	Table 2	6-0ct-23	
Screen Interval (mbgs)	SCS	0.0-0.3	
Analytical Report Reference No.		C3T5693	
Benzene	0.21	<0.0060	
Ethylbenzene	1.1	<0.010	
Toluene	2.3	<0.020	
Xylenes	3.1	<0.020	
F1 (C6-C10) - BTEX	55	<10	
F2 (C10-C16)	98	<10	
F3 (C16-C34)	300	<50	
F4 (C34-C50)	2800	<50	

Table 6: Summary of VOCs in Soil

Parameter		S4 (september)	
Date of Collection	MECD	25-Sep-23	
Date Reported	MECP Table 2	6-Oct-23	
Screen Interval (mbgs)	SCS	0.0-0.3	
Analytical Report Reference No.		C3T5693	
Acetone	16	<0.49	
Bromodichloromethane	1.5	<0.040	
Bromoform	0.27	<0.040	
Bromomethane	0.05	<0.040	
Carbon Tetrachloride	0.05	<0.040	
Chlorobenzene	2.4	<0.040	
Chloroform	0.05	< 0.040	
Dibromochloromethane	2.3	< 0.040	
1,2-Dichlorobenzene	1.2	<0.040	
1,3-Dichlorobenzene	4.8	<0.040	
1,4-Dichlorobenzene	0.083	<0.040	
1,1-Dichloroethane	0.47	< 0.040	
1,2-Dichloroethane	0.05	< 0.049	
1,1-Dichloroethylene	0.05	< 0.040	
Cis-1,2-Dichloroethylene	1.9	< 0.040	
Trans-1,2-Dichloroethylene	0.084	<0.040	
1,2-Dichloropropane	0.05	< 0.040	
Cis-1,3-Dichloropropylene	NV	<0.030	
Trans-1,3-Dichloropropylene	NV	<0.040	
Ethylene Dibromide	0.05	<0.040	
Methyl Ethyl Ketone	16	<0.40	
Methylene Chloride	0.1	< 0.049	
Methyl Isobutyl Ketone	1.7	<0.40	
Methyl-t-Butyl Ether	0.75	< 0.040	
Styrene	0.7	<0.040	
1,1,1,2-Tetrachloroethane	0.058	< 0.040	
1,1,2,2-Tetrachloroethane	0.05	< 0.040	
Tetrachloroethylene	0.28	< 0.040	
1,1,1-Trichloroethane	0.38	<0.040	
1,1,2-Trichloroethane	0.05	<0.040	
Trichloroethylene	0.061	< 0.010	
Vinyl Chloride	0.02	<0.019	
Dichlorodifluoromethane	16	<0.040	
Hexane(n)	2.8	<0.040	
Trichlorofluoromethane	4	<0.040	
1,3-Dichloropropene (cis + trans)	0.05	<0.050	

Table 7: Summary of PAHs in Soil

Parameter		S4 (september)	
Date of Collection	MECP	25-Sep-23	
Date Reported	Table 2	6-0ct-23	
Screen Interval (mbgs)	SCS	0.0-0.3	
Analytical Report Reference No.		C3T5693	
Acenaphthene	7.9	<0.0050	
Acenaphthylene	0.15	<0.0050	
Anthracene	0.67	<0.0050	
Benzo(a)anthracene	0,5	<0.0050	
Benzo(a)pyrene	0.3	<0.0050	
Benzo(b/j)fluoranthene	0,78	0.0079	
Benzo(ghi)perylene	6,6	0.0052	
Benzo(k)fluoranthene	0.78	<0.0050	
Chrysene	7	<0.0050	
Dibenzo(a,h)anthracene	0.1	<0.0050	
Fluoranthene	0.69	0.0083	
Fluorene	62	<0.0050	
Indeno(1,2,3-cd)pyrene	0.38	0.0061	
Naphthalene	0.6	<0.0050	
Phenanthrene	6.2	<0.0050	
Pyrene	78	0.0077	
Methylnaphthalene, 2-(1-)	0.99	<0.0071	

Table 8: Summary of OCPs in Soil

Parameter		S1	S2	S 3	DUP-1 (S3)	S4
Date of Collection	MECP	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23	18-Aug-23
Date Reported	Table 2	29-Aug-23	29-Aug-23	29-Aug-23	29-Aug-23	29-Aug-23
Screen Interval (mbgs)	SCS	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3	0.0-0.3
Analytical Report Reference No.		C3P2568	C3P2568	C3P2568	C3P2568	C3P2568
Aldrin	0.05	<0.0020	<0.010	<0.0020	<0.0020	<0.0020
Chlordane	0.05	<0.0020	<0.010	<0.0020	<0.0020	<0.0020
DDD	3,3	<0.0020	<0.010	<0.0020	<0.0020	<0.0020
DDE	0,33	<0.0020	<0.010	<0.0020	<0.0020	<0,0020
DDT	1.4	<0.0020	<0.010	<0.0020	<0.0020	<0.0020
Dieldrin	0,05	<0.0020	<0.010	<0.0020	<0.0020	<0,0020
Endosulfan	0.04	<0.0020	<0.010	<0.0020	<0.0020	<0.0020
Endrin	0.04	<0.0020	<0.010	<0.0020	<0.0020	<0.0020
Hexachlorocyclohexane Gamma-	0,063	<0.0020	<0.010	<0.0020	<0.0020	<0.0020
Heptachlor	0.15	<0.0020	<0.010	<0.0020	<0.0020	<0.0020
Heptachlor Epoxide	0.05	<0.0020	<0.010	<0.0020	<0.0020	<0.0020
Hexachlorobenzene	0.52	<0.0020	<0.010	<0.0020	<0.0020	<0.0020
Hexachlorobutadiene	0.014	<0.0020	<0.010	<0.0020	<0.0020	<0.0020
Hexachloroethane	0.071	<0.0020	<0.010	<0.0020	<0.0020	<0.0020
Methoxychlor	0.13	<0.0050	<0.025	<0.0050	<0.0050	<0.0050
PCBs	0.35	<0.015	< 0.075	<0.015	<0.015	<0.015

<u>Tab</u>

-266-100 ise Two ESA .56 Chinguacousy Road, Caledon, Ontario ble 9: Summary of Maximum Concentrations in Soil						
	Parameter	Standard	Maximum Concentration	Location		
	Antimony	7.5	0.22	S2]	
	Arsenic	18	3.9	S3		

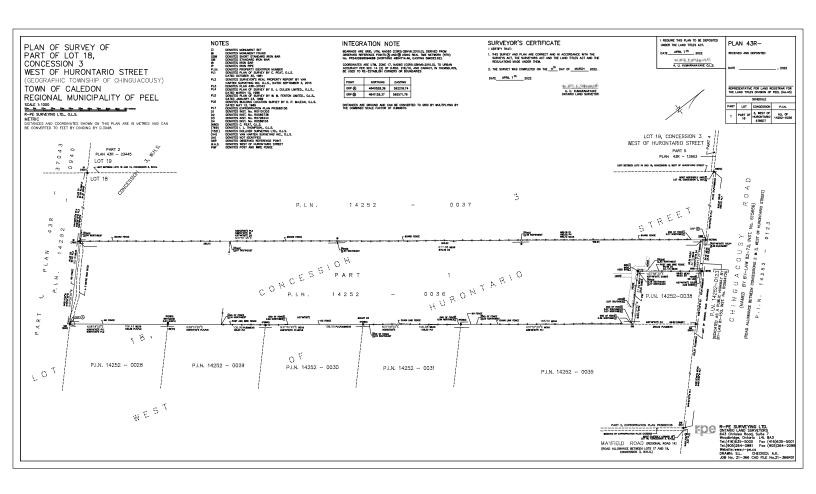
Parameter	Standard	Maximum Concentration	Location
Antimony	7.5	0.22	S2
Arsenic	18	3.9	S3
Barium	390	79	S4
Beryllium	5	0.71	DUP-1 (S3)
Boron	120	-	All Samples
Boron (Hot Water Soluble)	1.5	6.4	S2
Cadmium	1.2	0.18	S1
Chromium	160	21	S4
Chromium VI	10	-	All Samples
Cobalt	22	11	S4
Copper	180	23	S4
Cyanide	0.051	-	All Samples
Lead	120	28	S2
Copper Cyanide Lead Mercury Molybdenum	1.8	-	All Samples
Molybdenum	6.9	0.8	S4 (September)
Nickel	130	22	S4
Selenium	2.4	-	All Samples
Silver	25	-	All Samples
Thallium	1	0.1	S4 (September)
Uranium	23	0.61	S4 (September)
Vanadium	86	27	S4 (September)
Zinc	340	55	S4 (September)
Electrical Conductivity (2:1)	0.7	71	S2
Sodium Adsorption Ratio	5	0.54	S4 (September)
pH, 2:1 CaCl2 Extraction	NV	7.76	BH23-301 SS5
Benzene	0.21	<0.0060	All Samples
Ethylbenzene	1.1	<0.010	All Samples
Toluene	2.3	<0.020	All Samples
Xylenes F1 (C6-C10) - BTEX	3.1	<0.020	All Samples
F1 (C6-C10) - BTEX	55	<10	All Samples
F2 (C10-C16)	98	<10	All Samples
F3 (C16-C34)	300	<50	All Samples
F4 (C34-C50)	2800	<50	All Samples
Acetone	16	<0.49	All Samples
Bromodichloromethane	1.5	<0.040	All Samples
Bromoform	0.27	<0.040	All Samples
Bromomethane	0.05	<0.040	All Samples
Carbon Tetrachloride	0.05	<0.040	All Samples
Chlorobenzene	2.4	<0.040	All Samples
Chloroform	0.05	<0.040	All Samples
Dibromochloromethane	2.3	<0.040	All Samples
1,2-Dichlorobenzene	1.2	<0.040	All Samples
1,3-Dichlorobenzene	4.8	<0.040	All Samples
1,4-Dichlorobenzene	0.083	<0.040	All Samples
1,1-Dichloroethane	0.47	<0.040	All Samples

Table 9: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
	1,2-Dichloroethane	0.05	<0.049	All Samples
	1,1-Dichloroethylene	0.05	<0.040	All Samples
	Cis-1,2-Dichloroethylene	1.9	<0.040	All Samples
	Trans-1,2-Dichloroethylene	0.084	<0.040	All Samples
	1,2-Dichloropropane	0.05	<0.040	All Samples
Cs	Cis-1,3-Dichloropropylene	NV	<0.030	All Samples
VOCs	Trans-1,3-Dichloropropylene	NV	<0.040	All Samples
	Ethylene Dibromide	0.05	<0.040	All Samples
	Methyl Ethyl Ketone	16	<0.40	All Samples
	Methylene Chloride	0.1	<0.049	All Samples
	Methyl Isobutyl Ketone	1.7	<0.40	All Samples
	Methyl-t-Butyl Ether	0.75	<0.040	All Samples
	Styrene	0.7	<0.040	All Samples
	1,1,1,2-Tetrachloroethane	0.058	<0.040	All Samples
	1,1,2,2-Tetrachloroethane	0.05	<0.040	All Samples
	Tetrachloroethylene	0.28	<0.040	All Samples
	1,1,1-Trichloroethane	0.38	<0.040	All Samples
	1,1,2-Trichloroethane	0.05	<0.040	All Samples
	Trichloroethylene	0.061	<0.010	All Samples
	Vinyl Chloride	0.02	<0.019	All Samples
	Dichlorodifluoromethane	16	<0.040	All Samples
	Hexane(n)	2.8	<0.040	All Samples
	Trichlorofluoromethane	4	<0.040	All Samples
	1,3-Dichloropropene (cis + trans)	0.05	<0.050	All Samples
	Acenaphthene	7.9	<0.0050	All Samples
	Acenaphthylene	0.15	<0.0050	All Samples
	Anthracene	0.67	<0.0050	All Samples
	Benzo(a)anthracene	0.5	<0.0050	All Samples
	Benzo(a)pyrene	0.3	<0.0050	All Samples
	Benzo(b/j)fluoranthene	0.78	0.0079	S4 (september)
	Benzo(ghi)perylene	6.6	0.0052	S4 (september)
S	Benzo(k)fluoranthene	0.78	<0.0050	All Samples
PAHs	Chrysene	7	<0.0050	All Samples
щ	Dibenzo(a,h)anthracene	0.1	<0.0050	All Samples
	Fluoranthene	0.69	0.0083	S4 (september)
	Fluorene	62	<0.0050	All Samples
	Indeno(1,2,3-cd)pyrene	0.38	0.0061	S4 (september)
	Naphthalene	0.6	<0.0050	All Samples
	Phenanthrene	6.2	<0.0050	All Samples
	Pyrene	78	0.0077	S4 (september)
	Methylnaphthalene, 2-(1-)	0.99	<0.0071	All Samples
	Aldrin	0.05	<0.0020	All Samples
	Chlordane	0.05	<0.0020	All Samples
	DDD	3.3	<0.0020	All Samples
	DDE	0.33	<0.0020	All Samples

Table 9: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
	DDT	1.4	<0.0020	All Samples
	Dieldrin	0.05	<0.0020	All Samples
	Endosulfan	0.04	<0.0020	All Samples
0CPs	Endrin	0.04	<0.0020	All Samples
0	Hexachlorocyclohexane Gamma-	0.063	<0.0020	All Samples
	Heptachlor	0.15	<0.0020	All Samples
	Heptachlor Epoxide	0.05	<0.0020	All Samples
	Hexachlorobenzene	0.52	<0.0020	All Samples
	Hexachlorobutadiene	0.014	<0.0020	All Samples
	Hexachloroethane	0.071	<0.0020	All Samples
	Methoxychlor	0.13	<0.0050	All Samples
	PCBs	0.35	<0.015	All Samples


Notes for Soil and Groundwater Summary Tables

	For soil and groundwater analytical results, concentration exceeds the applicable Standards.
	For soil and groundwater analytical results, laboratory detection limits exceed the applicable Standards.
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes
masl	Meters above sea level
MECP Table 2 SCS	Generic Condition Standards in a Potable Groundwater Condition forResidential/Parkland/Institutional use and medium-fine textured soils as contained in Table 2 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", published by the MECP on April 15, 2011.
mbgs	Meters below ground surface
NM	Not Monitored
NA	Not Available
OCPs	Organochlorine Pesticides
ORPs	Other Regulated Parameters
PAHs	Polycyclic Aromatic Hydrocarbons
PHCs	Petroleum Hydrocarbons
VOCs	Volatile Organic Compounds
Units	Units for all soil analyses are in µg/g (ppm) unless otherwise indicated

Appendix A

Appendix B

23-266-100 July 25, 2023

Argo Development Corporation 4900 Palladium Way, Unit 105 Burlington, Ontario L7M 0W7

via email: justin@argoland.com

Attention: Justin Marr

Re: Sampling and Analysis Plan - Phase Two Environmental Site Assessment 12156 Chinguacousy Road, Caledon, Ontario

1. Introduction

DS Consultants Limited (DS) is pleased to present the Sampling and Analysis Plan (SAP) for the proposed Phase Two Environmental Site Assessment of 12156 Chinguacousy Road, Caledon, Ontario, (the Site). The purpose of the proposed Phase Two ESA program is to assess the current subsurface environmental conditions in support of the proposed redevelopment of the Site.

The Phase Two ESA will involve intrusive investigation in the areas determined in the Site visit to be Areas of Potential Environmental Concern (APECs), and will be completed in general accordance with O.Reg 153/04. Based on the findings of the field and laboratory analyses, a Phase Two ESA report will be prepared.

2. Background

Based on the Phase One Environmental Site Assessment completed by DS in September 2023, it is DS's understanding that the Site is a 5.787-hectare (14.299 acres) parcel of land which is currently used for residential and agricultural purposes. The first developed use of the Site is interpreted to be Residential based on the findings of the Phase One ESA. A total of four (4) potentially contaminating activities were identified on the Phase One Property or on neighbouring properties within the Phase One Study Area which are considered to be contributing to Areas of Potential Environmental Concern (APECs) on the Phase Two Property. A summary of the APECs identified, the potential contaminants of concern, and the media potentially impacted is presented in Table 1 below:

Table 1: Areas of Potential Environmental Concern

Area of Potential Environment al Concern	Location of Area of Potential Environment al Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminant s of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	North portion of Site	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-1	OCPs, Metals, As, Sb, Se, CN-	Soil
APEC-2A	North portion of Site	#N/S – Application of De- icing Agents	On Site PCA-2	EC, SAR	Soil
APEC-2B		#30 – Importation of Fill Material of Unknown Quality	On Site PCA-3	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B- HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR, PAHs	Soil
APEC-3	Entire Property	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-4	OCPs, Metals, As, Sb, Se, CN-	Soil

Notes:

- 1. N/S not specified in Table 2, Schedule D, of O.Reg. 153/04
- 2. PHC (F1-F4) = Petroleum Hydrocarbons in the F1-F4 fraction ranges
- 3. VOCs = Volatile Organic Compounds
- 4. PAHs = Polycyclic Aromatic Hydrocarbons
- 5. OCPs = Organochlorinated Pesticides

3. Site Investigation Program

The proposed field investigation will involve the advancement of boreholes and test pits, the installation of monitoring wells, and periodic monitoring of the installed wells. A total of two (2) boreholes, one monitoring well, and five (5) test pit locations have been identified. Details regarding the proposed boreholes/monitoring wells are provided in the following table:

Table 3-1: Summary of Proposed Investigation Program

ID	Proposed Depth	Well Installation (Y/N)	Well Install Depth	Purpose
BH23-301	6 m	N	N/A	Geotechnical

ID	Proposed Depth	Well Installation (Y/N)	Well Install Depth	Purpose
BH23-302	6 m	N	N/A	Geotechnical
MW23-303	6 m	Y	6 m	Geotechnical and Groundwater Monitoring
S1	0.3	N	N/A	Assess APEC-1, APEC-3
S2	0.3	N	N/A	Assess APEC-1, APEC-3
S3	0.3	N	N/A	Assess APEC-3
S4	0.3	N	N/A	Assess APEC-3
S4 (September)	0.3	N	N/A	Assess APEC-2A and APEC-2B

Prior to mobilizing a drilling rig, we will lay out the proposed borehole and clear the buried utilities and services by using Ontario One Call System in addition to private utility locates.

The borings will be advanced to the indicated depths using a track mounted continuous flight auger machine. Samples will be retrieved by means of a 50 mm O.D. split-spoon barrel sampler at 0.75 metre intervals in the upper 3 metres and at 1.5 metres intervals below this level. The monitoring well will be constructed using 50 mm I.D. PVC pipe, equipped with 3.1 m slotted screens and finished at the ground surface with monument well casings. A geodetic benchmark will be used to establish the elevation of each borehole. Drilling and sampling will conform to standard practice. The test pits will be advanced using hand tools.

The Phase Two ESA involves the following principal tasks:

- Retain the services of public and private utility locaters to identify the locations of buried and overhead utility services prior to any excavation or demolition activities;
 - Certain underground utilities (such as those constructed or encased in plastic, fibreglass, clay, concrete pipe, untraceable cast iron, steel, and/or repaired services) cannot be traced by standard locating practices. DS will review all available Site Plans and/or "As Built" figures in an attempt to identify the locations of potential untraceable services. DS will not be held responsible for any damages to utility services that are not on the figures provided or cannot be located by standard utility locating practices;
- Advancement of boreholes as specified in Table 3-1. The proposed boreholes will be used
 to facilitate the collection of representative soil and groundwater samples, and to provide
 information regarding the Site-specific geological and hydrogeological conditions;
- All soil samples recovered during the proposed drilling activities will be field screened for visual and olfactory evidence of deleterious impacts and for the presence of petroleum hydrocarbon (PHC) and volatile organic compound (VOC) derived vapours using either a

combustible gas detector (CGD) calibrated to hexane or a photo-ionization detector (PID) calibrated to isobutylene or equivalent;

- Measure the depth to groundwater levels in the monitoring wells installed, and monitor the wells for the presence/absence of non-aqueous phase liquid using an interface probe;
- Survey each of the monitoring wells to a geodetic datum;
- Develop and purge all of the monitoring wells installed;
- Submit soil samples from the newly advanced boreholes as follows:

Table 3-2: Summary of proposed soil chemical analyses

Borehole	Sample No	Sample Depth (mbgs)	Lab Analysis	Purpose
BH23-301	SS5	3.1-3.7	рН	Assess pH
BH23-303	SS5	3.1-3.7	рН	Assess pH
S1	S1	0.0-0.3	Metals, OCPs	Assess APEC-1, APEC-3
S2	S2	0.0-0.3	Metals, OCPs	Assess APEC-1, APEC-3
S3	S3	0.0-0.3	Metals, OCPs	Assess APEC-3
S4	S4	0.0-0.3	Metals, OCPs	Assess APEC-3
S4 (September)	S4	0.0-0.3	M&I, PHCs, VOCs, PAHs	Assess APEC-2A and APEC-2B

• Submit groundwater samples from the monitoring wells as follows:

A summary of the proposed soil analytical program is presented in the following table:

Table 3-3: Summary of Soil and Groundwater Analytical Program

Soil

- 5 Samples for analysis of metals and inorganics
- 2 Samples for analysis of PHCs
- 2 Samples for analysis of VOCs
- 2 Samples for analysis of PAHs
- 4 Samples for analysis of OC Pesticides
- 2 Subsurface soil samples for pH analysis
- 2 Duplicate samples
- A Quality Assurance and Quality Control (QAQC) program will be implemented, involving
 the collection and analysis of duplicate soil and groundwater samples and trip blanks at
 the frequency specified under O.Reg. 153/04 (as amended);
- A Phase Two ESA Report will be prepared upon receipt of all analytical results and groundwater monitoring data. The Phase Two ESA Report will be completed in general accordance with O.Reg. 153/04 (as amended).

It should be noted that drilling activities may result in some disturbance to the ground surface at the site. Precautions will be taken by the drilling contractor to minimize any damage. The Client will be notified should there be cause to extend the borehole termination depth based on field observations. It is assumed that the site can be accessed at our convenience, during regular business hours. Prior notice will be sent to the client and site representative

It is noted that if the Phase Two ESA reveals parameter concentrations greater than the applicable standards set out in *Ontario Regulation 153/04*, then additional work (i.e., supplemental delineation, additional drilling, sampling, analysis, and/or site remediation activities) will be deemed necessary prior to RSC filing, should an RSC be required. The costs for any additional work, if necessary, are beyond the current scope of work.

The SAP was created based on the request to complete a Phase Two ESA in support of the proposed redevelopment of the Site. The SAP was compiled to collect data to provide information on soil and/or groundwater quality in each APEC.

Additional delineation may be required following the implementation of this SAP to meet the requirements of O.Reg. 153/04 which requires delineation of all areas where concentrations are above the applicable SCS such as in the following conditions:

- Unexpected contamination not previously discovered, or not related to identified APECs, is discovered which will require further delineation to identify source(s); and
- If the sampling results indicate that the soil and/or groundwater impacts are deeper than initially expected.

4. Closure

We trust that this Sampling and Analysis Plan meets the objectives of the Client. If further assistance is required on this matter please do not hesitate to contact the undersigned.

Yours Very Truly,

DS Consultants Ltd.

Patrick Fioravanti, B.Sc., P.Geo., QP_{ESA}

Manager – Environmental Services 647-234-5131 rfioravanti@dsconsultants.ca

Appendix C

LOG OF BOREHOLE BH23-301

PROJECT: Phase Two Environmental Site Assessment

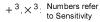
CLIENT: Argo Development Corporation

PROJECT LOCATION: 12156 Chinguacousy Rd., Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 23-266-100

Date: Aug-15-2023 ENCL NO.: 2

	SOIL PROFILE		S	AMPL	ES.	<u></u>					Head	l Sp	ace		•			PLAST	IC.NAT	URAL	LIQUIE		Ş	RE	MAR	
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	J.	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION			PID pm)) — =			() •	CGE ppm ≥•)) •••		W _P	IC NAT MOIS CON	w 0	WL	a E	NATURAL UNIT WT (kN/m³)		AND AIN S RIBU (%)	SIZE
259.2			N N	TYPE	ż	R 0		_	20	30	40		10) 2	0 3	0 40)	1	0 2	20 3	30			GR S	SA S	d
258.9	TOPSOIL: 250mm	1 1/y	1	SS	2		259	-				\dashv	4							0		$\left\{ \right.$				
0.3	REWORKED: clayey silt, trace organics, trace rootlets, brown, moist, soft (weathered/disturbed)		Ľ											•						b						
0.8	CLAYEY SILT TO SILTY CLAY TILL: some sand, trace gravel, brown, moist, stiff to very stiff		2	SS	19		258	- - 1					-	<u>, </u>					0			=				
			3	SS	18		057												4 ⊢		4			1 1	16 4	4
			4	SS	27	_	257	1					4						0							
						-	256	-																Нq		
			5	SS	29	_		-											0							
							255	-														_				
	grey below 4.6m		6	SS	14	-		_ _ _ _					•						c	2						
						-	254	-																		
			7	SS	11	_	253	- 1				4	,							0						
6.7	END OF BOREHOLE: Notes: 1) Borehole wet at the bottom upon completion.	(1/1.)						_																		
1																						1	l			

LOG OF BOREHOLE BH23-302

PROJECT: Phase Two Environmental Site Assessment

CLIENT: Argo Development Corporation

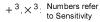
PROJECT LOCATION: 12156 Chinguacousy Rd., Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 23-266-100


ENCL NO.: 3

Date: Aug-15-2023

,	SOIL PROFILE		s	AMPL	ES	<u>α</u>					ad S	расе					PLAST	IC.NAT	URAL	LIQUI		<u>ا</u>	RE	MAR	KS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	BER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION] 2	PII (ppr	n)	,		(CGE ppm))		W _P		W •	WL	a EN	NATURAL UNIT WT (kN/m³)	GR/ DIST	AND AIN SI RIBUT (%)	
259.3		STRA	NUMBER	TYPE	ż	GROI	ELEV	10	20	30 4	•	1	0 2	20 3	0 4	0			ONTEN 20 :	IT (%) 30		Ž	GR S		ı
259.9	TOPSOIL: 200mm	<u>11/4</u>					250																		
0.2	REWORKED: clayey silt, trace organics, trace rootlets, brown, moist, firm (weathered/disturbed)		1	SS ——	4		259 1						8						0						
0.8	CLAYEY SILT TO SILTY CLAY TILL: some sand, trace gravel, brown, moist, stiff to very stiff		2	SS	22		258	1					•					0							
			3	SS	19]] -										0							
			4	SS	20	_	257	1					•					4	 				3 1	6 56	3 :
	grey below 3.1m						256	: : :																	
			5	SS	20] - - -										0							
							255	-													-				
			6	SS	10			- 1				•						0	1						
						_	254	- - - - -																	
			7	SS	20	-	253											0							
252.6				33	20			-																	
6.7	END OF BOREHOLE: Notes: 1) Borehole wet at the bottom upon completion.																								

LOG OF BOREHOLE BH23-303

PROJECT: Phase Two Environmental Site Assessment

CLIENT: Argo Development Corporation

PROJECT LOCATION: 12156 Chinguacousy Rd., Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 23-266-100

Date: Aug-15-2023 ENCL NO.: 4

	SOIL PROFILE		s	AMPL	.ES				S	oi l F	Head	Spa	ace \	/apo	ors		L	NA	TURA				REMARKS
(m)		F				ATER 3			F	PID				CC	D D		Livin	TICMC	ATURAI ISTUR ONTEN	T LIN	a) PEN DI	W TIN	AND
LEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	10		pm)) — ≖ 0 40		10	(pp	m) ● 30	⊕ 40	W _P ► W		W OONTE	ENT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UN I T WT (KN/m³)	GRAIN SIZE DISTRIBUTIC (%) GR SA SI (
59.8	TOPSOIL: 200mm	<u>x1 1//.</u>			1				+		+	+	+	+	+	+		+	+	+			011 071 01
0.2	FILL: clayey silt, trace organics, trace rootlets, brown, moist, firm		1	SS	6		D	1 - -					*					0					
8.0	FILL: silty sand, trace organics, some clay, brown, moist, very loose		2	SS	2		259 1	3				•	+						О		1		
58.5 1.5	FILL: silty clay, trace organics, brown to dark brown, moist, firm		3	SS	6	Ţ	W. L. 2	- 258.2	2 mas	sl			*						0				
57.7 2.3	CLAYEY SILT TO SILTY CLAY					abla	Aug 29 W. L. 2			el			/										
2.0	TILL: some sand to sandy, trace gravel, brown, moist, very stiff to hard		4	SS	30		Aug 18			Ji		$\left\{\right.$						C	'				
			5	SS	50/ 100mr		ם											0					рН
		****					256	-						+							-		
	sandy below 4.6m grey below 4.8m	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6	SS	21													•					3 23 44
	grey below 4.0111				21		255	-															3 23 44
							254																
53.3			7	SS	23			1				(0					
6.7	END OF BOREHOLE:	7.0				•						T		T							T		
	Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																						
	Date: Water Level (mbgs): Aug 18, 2023 2.29 Aug 29, 2023 1.73																						
	7.dg 20, 2020 1.70																						

Appendix D

6740 Campobello Road, Mississauga, Ontario LSN 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266 ENV COC - 00014v2

Page 1 of ___

Invoice Inform	mation	Invoice to (r	equires report)	3		P	leport In	forma	tion (if d	iffers from inv	oice)								Pr	oject i	Informa	tion				T							
Company :		DS Cons	altants Ltd.		Company:				DS Co	nsultants Ltd					Quota	tion #	1												17	-Au	g-23	15:1	4
Contact		Bin	du Goel		Contact Name:		M	200		Bend	W				P.O. #	/ AFE	D:										A	shte	on	Gibs	on		
Name: Street Address:		6221 Hv	y 7, Unit 16	- 1	Street Address:			J		lwy 7, Unit 16					Projec	ct #:		25	7-	16	6-	10	0			- 11	1111		III	111011		1111	
City:	Vaughan	Prov:	ON Postal	L4H0K8	City:	Vac	ighan		Prov:	ON	Post		LAH	OK8	Site #	ī	1	12	154	- (L		-00	1.5	18	T	Ashton Gibson C3P0410						
Phone:	T		264-9393		Phone:					5-264-9393	Code		_	_	Site L	ocatio	n:	12	0	, ,	-	7	ice	0,	1	. T	TIL						
Email:		accounting®	dsconsultants.ca		Email:								_			ocatio	n				-	Ontario				۲	1112	-		LVI	1 15	15	
Coples:	1				Copies:			п	benderf	Pdsconsultanti	ca		-	$\overline{}$	Provid	led By		м	1400	16	0	Omal'	-	_		-							
			Regula	tory Crite	4.00						1	2	3								12	13	14 1	5 16	17	18 1	9 20	21	22		Regular Tu	rnaround	Time (TAT)
Table Table	2	Res/Park Ind/Comm Agri/other	☐ Med/Fine ☐ Course ☐ For RSC	ОТНЕЯ	CCME Reg 558* min 3 day MISA PWQO	TAT		n Sew Mun	ble: wer Byla er Bylaw icipality								n		S-8									Q		ET Sto	Rush Turr	naround Ti charges ap	
		tno	lude Criteria on Certi	ificate of A	nalysis (che	ck if yes	: 2						CO				ganic		S HWS		10							ATTE	141	☐ Sar	ne Day		1 Day
- 5	SAMPLES MU	ST BE KEPT COOL	(<10°C) FROM TIME	OF SAMPL	ING UNTIL	DELIVERY	TO BUE	EAU V	ERITAS				EQUI				egroui pu	etals	metal		lydrid							SUB	ANALYZE	□ 20	wy		3 Day
					Da	te Samp	led	Time	(24hr)	Matrix	LTERED	HELD PRESERVED	AB FILTRATION REQUIRED				Reg 153 metals and	leg 153 ICPMS m	A, ICPMS		SPLP Metals and Hydrides	4						# OF CONTAINERS SUBMITTED	DO NOT A	☐ 4 D	ay _	YY	MM DD
		Sample Identif	ication		14	мм	DD	нн	мм	Matrix	HELD FILTERED	RELD PF	LAB FILT	BTEX/F1	F2 - F4	VOCs	Reg 153	Reg 153	(Hg, Cr VI.	OCPs.	SPLP Me	PCBs	To					# OF CO	HOLD .	Required		Comments	
1	BHZ	23-301	555		23	08	15	P	m	5													~					1					
2	BH	23-30	3 SS 5	5	23	30	15	P	m	5													-					1					
3						1												П															
4																		1	1	1	+			1	\Box	1	1						
5																			1				T	1		1	T						
6																																	
7							1																										
8																																	
9																								1									
10																																	
11																			1	1	1			1		1							
12																																	
*UNLESS OT	HERWISE AG	REED TO IN WRIT	ING, WORK SUBMITT	ED ON THIS						U VERITAS STA BVNA.COM/TE																DGME	NT AND	ACCE	PTAN	CE OF OU	R TERMS A	ND COND	ITIONS WHICH A
LAB	USE ONLY	Yes 1	10		1		LAB US			Yes	No	T						1				USE				T							Temperature
Seal present Seal intact	Table Sales	7	* 7) 4	10	Seal p	resent					1	°C							al pre	sent	_			Ye	•	No	1	'C				reading by:
Cooling med			1	2	3 ate	Coolin	g media	prese Time	nt			1		1		2		3	C	odling	media		te		1	_	Time	1	_	1	Speria	3 Instruction	MS.
R	elinguished I	by: (Signature/ P	rint)		MM	DD	нн		ММ		Re	ceived	by: (Signat	ture/	Print)	t	N	OX		YN		MM		DD	HH	I	ММ			-pec		
1	Mago	- R	/	77	DO	7	+	+	-	~	=			4	1.0			-		1	M	F	280	-	2		-	14					(0)
2		LA	per-	23	Ne	t		1		2 -	0	_		1	2	V	K	~		V	/	1	ZX	1.6	/	11		1	1				MANAGE

Your Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY RD

Your C.O.C. #: n/a

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/08/29

Report #: R7787668 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3P2568 Received: 2023/08/18, 16:26

Sample Matrix: Soil # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Free (WAD) Cyanide	5	2023/08/23	2023/08/23	CAM SOP-00457	OMOE E3015 m
Acid Extractable Metals by ICPMS	1	2023/08/23	2023/08/24	CAM SOP-00447	EPA 6020B m
Acid Extractable Metals by ICPMS	4	2023/08/23	2023/08/25	CAM SOP-00447	EPA 6020B m
Moisture	5	N/A	2023/08/22	CAM SOP-00445	Carter 2nd ed 51.2 m
OC Pesticides (Selected) & PCB (1)	5	2023/08/25	2023/08/26	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides Summed Parameters	5	N/A	2023/08/24	CAM SOP-00307	EPA 8081B/ 8082A
pH CaCl2 EXTRACT	4	2023/08/24	2023/08/24	CAM SOP-00413	EPA 9045 D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

Your Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY RD

Your C.O.C. #: n/a

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/08/29

Report #: R7787668 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3P2568 Received: 2023/08/18, 16:26

Encryption Key

Bureau Veritas

29 Aug 2023 15:19:28

Please direct all questions regarding this Certificate of Analysis to:

Ashton Gibson, Project Manager

Email: Ashton.Gibson@bureauveritas.com

Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Site Location: 12156 CHINGUACOUSY RD

Sampler Initials: MB

O.REG 153 ICPMS METALS (SOIL)

Bureau Veritas ID			WSX776		WSX777		WSX778	WSX779		
Sampling Date			2023/08/18		2023/08/18		2023/08/18	2023/08/18		
COC Number			n/a		n/a		n/a	n/a		
	UNITS	Criteria	S1	QC Batch	S2	QC Batch	S3	S4	RDL	QC Batch
Metals										
Acid Extractable Antimony (Sb)	ug/g	1.3	<0.20	8870528	0.22	8870849	<0.20	<0.20	0.20	8870528
Acid Extractable Arsenic (As)	ug/g	18	3.7	8870528	3.2	8870849	3.9	3.8	1.0	8870528
Acid Extractable Barium (Ba)	ug/g	220	55	8870528	62	8870849	68	79	0.50	8870528
Acid Extractable Beryllium (Be)	ug/g	2.5	0.59	8870528	0.52	8870849	0.70	0.70	0.20	8870528
Acid Extractable Boron (B)	ug/g	36	<5.0	8870528	6.4	8870849	<5.0	5.9	5.0	8870528
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.18	8870528	0.15	8870849	0.17	0.17	0.10	8870528
Acid Extractable Chromium (Cr)	ug/g	70	18	8870528	18	8870849	20	21	1.0	8870528
Acid Extractable Cobalt (Co)	ug/g	21	7.7	8870528	7.2	8870849	8.8	11	0.10	8870528
Acid Extractable Copper (Cu)	ug/g	92	17	8870528	21	8870849	21	23	0.50	8870528
Acid Extractable Lead (Pb)	ug/g	120	16	8870528	28	8870849	13	11	1.0	8870528
Acid Extractable Molybdenum (Mo)	ug/g	2	<0.50	8870528	<0.50	8870849	<0.50	<0.50	0.50	8870528
Acid Extractable Nickel (Ni)	ug/g	82	16	8870528	16	8870849	18	22	0.50	8870528
Acid Extractable Selenium (Se)	ug/g	1.5	<0.50	8870528	<0.50	8870849	<0.50	<0.50	0.50	8870528
Acid Extractable Silver (Ag)	ug/g	0.5	<0.20	8870528	<0.20	8870849	<0.20	<0.20	0.20	8870528
Acid Extractable Thallium (Tl)	ug/g	1	0.10	8870528	0.087	8870849	0.13	0.13	0.050	8870528
Acid Extractable Uranium (U)	ug/g	2.5	0.64	8870528	0.60	8870849	0.65	0.54	0.050	8870528
Acid Extractable Vanadium (V)	ug/g	86	26	8870528	25	8870849	30	30	5.0	8870528
Acid Extractable Zinc (Zn)	ug/g	290	56	8870528	71	8870849	70	64	5.0	8870528

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)
Table 1: Full Depth Background Site Condition Standards

Site Location: 12156 CHINGUACOUSY RD

Sampler Initials: MB

O.REG 153 ICPMS METALS (SOIL)

Bureau Veritas ID			WSX780		
Sampling Date			2023/08/18		
COC Number			n/a		
	UNITS	Criteria	DUP-1	RDL	QC Batch
Metals					
Acid Extractable Antimony (Sb)	ug/g	1.3	<0.20	0.20	8870528
Acid Extractable Arsenic (As)	ug/g	18	3.7	1.0	8870528
Acid Extractable Barium (Ba)	ug/g	220	67	0.50	8870528
Acid Extractable Beryllium (Be)	ug/g	2.5	0.71	0.20	8870528
Acid Extractable Boron (B)	ug/g	36	<5.0	5.0	8870528
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.17	0.10	8870528
Acid Extractable Chromium (Cr)	ug/g	70	20	1.0	8870528
Acid Extractable Cobalt (Co)	ug/g	21	8.9	0.10	8870528
Acid Extractable Copper (Cu)	ug/g	92	21	0.50	8870528
Acid Extractable Lead (Pb)	ug/g	120	13	1.0	8870528
Acid Extractable Molybdenum (Mo)	ug/g	2	<0.50	0.50	8870528
Acid Extractable Nickel (Ni)	ug/g	82	18	0.50	8870528
Acid Extractable Selenium (Se)	ug/g	1.5	<0.50	0.50	8870528
Acid Extractable Silver (Ag)	ug/g	0.5	<0.20	0.20	8870528
Acid Extractable Thallium (TI)	ug/g	1	0.11	0.050	8870528
Acid Extractable Uranium (U)	ug/g	2.5	0.63	0.050	8870528
Acid Extractable Vanadium (V)	ug/g	86	30	5.0	8870528
Acid Extractable Zinc (Zn)	ug/g	290	68	5.0	8870528

No Fill Grey No Exceedance

Grey Exceeds 1 criteria policy/level
Black Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)
Table 1: Full Depth Background Site Condition Standards

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property

Use

Site Location: 12156 CHINGUACOUSY RD

Sampler Initials: MB

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID			WSX776		WSX777		WSX778	WSX779	WSX780		
Sampling Date			2023/08/18		2023/08/18		2023/08/18	2023/08/18	2023/08/18		
COC Number			n/a		n/a		n/a	n/a	n/a		
	UNITS	Criteria	S1	RDL	S2	RDL	S3	S4	DUP-1	RDL	QC Batch
Calculated Parameters	-	-		-	-					-	
Chlordane (Total)	ug/g	0.05	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8864845
o,p-DDD + p,p-DDD	ug/g	-	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8864845
o,p-DDE + p,p-DDE	ug/g	-	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8864845
o,p-DDT + p,p-DDT	ug/g	-	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8864845
Total Endosulfan	ug/g	-	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8864845
Total PCB	ug/g	0.3	<0.015	0.015	<0.075	0.075	<0.015	<0.015	<0.015	0.015	8864845
Pesticides & Herbicides	•			-	•	•			-		
Aldrin	ug/g	0.05	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
a-Chlordane	ug/g	0.05	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
g-Chlordane	ug/g	0.05	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
o,p-DDD	ug/g	0.05	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
p,p-DDD	ug/g	0.05	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
o,p-DDE	ug/g	0.05	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
p,p-DDE	ug/g	0.05	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
o,p-DDT	ug/g	1.4	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
p,p-DDT	ug/g	1.4	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
Dieldrin	ug/g	0.05	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
Lindane	ug/g	0.01	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
Endosulfan I (alpha)	ug/g	0.04	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
Endosulfan II (beta)	ug/g	0.04	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
Endrin	ug/g	0.04	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
Heptachlor	ug/g	0.05	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
Heptachlor epoxide	ug/g	0.05	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
Hexachlorobenzene	ug/g	0.01	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
Hexachlorobutadiene	ug/g	0.01	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
Hexachloroethane	ug/g	0.01	<0.0020	0.0020	<0.010	0.010	<0.0020	<0.0020	<0.0020	0.0020	8877937
Methoxychlor	ug/g	0.05	<0.0050	0.0050	<0.025	0.025	<0.0050	<0.0050	<0.0050	0.0050	8877937
Aroclor 1242	ug/g	-	<0.015	0.015	<0.075	0.075	<0.015	<0.015	<0.015	0.015	8877937
Aroclor 1248	ug/g	-	<0.015	0.015	<0.075	0.075	<0.015	<0.015	<0.015	0.015	8877937
No. Ett.											

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)
Table 1: Full Depth Background Site Condition Standards

Bureau Veritas Job #: C3P2568 Report Date: 2023/08/29 DS Consultants Limited Client Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY RD

Sampler Initials: MB

O.REG 153 OC PESTICIDES (SOIL)

		WSX776		WSX777		WSX778	WSX779	WSX780		
		2023/08/18		2023/08/18		2023/08/18	2023/08/18	2023/08/18		
		n/a		n/a		n/a	n/a	n/a		
UNITS	Criteria	S1	RDL	S2	RDL	S3	S4	DUP-1	RDL	QC Batch
ug/g	-	<0.015	0.015	<0.075	0.075	<0.015	<0.015	<0.015	0.015	8877937
ug/g	-	<0.015	0.015	<0.075	0.075	<0.015	<0.015	<0.015	0.015	8877937
%	1	95		95		88	84	86		8877937
%	-	124		114		112	112	114		8877937
	ug/g ug/g	ug/g - ug/g - % -	2023/08/18 n/a	2023/08/18	2023/08/18 2023/08/18	UNITS Criteria S1 RDL S2 RDL ug/g - <0.015	2023/08/18 2023/08/18 2023/08/18 2023/08/18	2023/08/18 2023/08/18 2023/08/18 2023/08/18 2023/08/18	2023/08/18 202	2023/08/18 2023/08/18 2023/08/18 2023/08/18 2023/08/18 2023/08/18

No Fill Grey No Exceedance

Exceeds 1 criteria policy/level

Black

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)
Table 1: Full Depth Background Site Condition Standards

Report Date: 2023/08/29

DS Consultants Limited Client Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY RD

Sampler Initials: MB

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID			WSX776	WSX777	WSX778	WSX779		WSX780		
Sampling Date			2023/08/18	2023/08/18	2023/08/18	2023/08/18		2023/08/18		
COC Number			n/a	n/a	n/a	n/a		n/a		
	UNITS	Criteria	S1	S2	S3	S4	QC Batch	DUP-1	RDL	QC Batch
Inorganics										
Moisture	%	-	23	18	19	21	8871035	18	1.0	8871035
Available (CaCl2) pH	рН	-	7.05	7.30	7.39	7.53	8873477			
WAD Cyanide (Free)	ug/g	0.051	< 0.01	< 0.01	< 0.01	< 0.01	8870632	< 0.01	0.01	8870632

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 1: Full Depth Background Site Condition Standards

Site Location: 12156 CHINGUACOUSY RD

Sampler Initials: MB

TEST SUMMARY

Bureau Veritas ID: WSX776

Sample ID: S1 Matrix: Soil Collected:

2023/08/18

Shipped:

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8870632	2023/08/23	2023/08/23	Prgya Panchal
Acid Extractable Metals by ICPMS	ICP/MS	8870528	2023/08/23	2023/08/25	Daniel Teclu
Moisture	BAL	8871035	N/A	2023/08/22	Simrat Bhathal
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8864845	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873477	2023/08/24	2023/08/24	Gurparteek KAUR

Bureau Veritas ID: WSX777

Sample ID: S2

Matrix: Soil

Collected: 2023/08/18

Shipped:

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8870632	2023/08/23	2023/08/23	Prgya Panchal
Acid Extractable Metals by ICPMS	ICP/MS	8870849	2023/08/23	2023/08/24	Indira HarryPaul
Moisture	BAL	8871035	N/A	2023/08/22	Simrat Bhathal
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8864845	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873477	2023/08/24	2023/08/24	Gurparteek KAUR

Bureau Veritas ID: WSX778

Sample ID: S3

Matrix: Soil Collected:

2023/08/18

Shipped:

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8870632	2023/08/23	2023/08/23	Prgya Panchal
Acid Extractable Metals by ICPMS	ICP/MS	8870528	2023/08/23	2023/08/25	Daniel Teclu
Moisture	BAL	8871035	N/A	2023/08/22	Simrat Bhathal
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8864845	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873477	2023/08/24	2023/08/24	Gurparteek KAUR

Bureau Veritas ID: WSX779

Sample ID: S4

Matrix: Soil

Collected: Shipped:

2023/08/18

Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8870632	2023/08/23	2023/08/23	Prgya Panchal
Acid Extractable Metals by ICPMS	ICP/MS	8870528	2023/08/23	2023/08/25	Daniel Teclu
Moisture	BAL	8871035	N/A	2023/08/22	Simrat Bhathal
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8864845	N/A	2023/08/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8873477	2023/08/24	2023/08/24	Gurparteek KAUR

Matrix: Soil

DS Consultants Limited Client Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY RD

Sampler Initials: MB

TEST SUMMARY

Bureau Veritas ID: WSX780 **Collected:** 2023/08/18 Sample ID: DUP-1

Shipped: Received: 2023/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	8870632	2023/08/23	2023/08/23	Prgya Panchal
Acid Extractable Metals by ICPMS	ICP/MS	8870528	2023/08/23	2023/08/25	Daniel Teclu
Moisture	BAL	8871035	N/A	2023/08/22	Simrat Bhathal
OC Pesticides (Selected) & PCB	GC/ECD	8877937	2023/08/25	2023/08/26	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	8864845	N/A	2023/08/24	Automated Statchk

Site Location: 12156 CHINGUACOUSY RD

Sampler Initials: MB

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 17.0°C

Sample WSX777 [S2]: OC Pesticide Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

Bureau Veritas Job #: C3P2568 Report Date: 2023/08/29

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY RD Sampler Initials: MB

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8877937	2,4,5,6-Tetrachloro-m-xylene	2023/08/29	90	50 - 130	83	50 - 130	81	%		
8877937	Decachlorobiphenyl	2023/08/29	114	50 - 130	108	50 - 130	114	%		1
8870528	Acid Extractable Antimony (Sb)	2023/08/25	92	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
8870528	Acid Extractable Arsenic (As)	2023/08/25	97	75 - 125	98	80 - 120	<1.0	ug/g	1.9	30
8870528	Acid Extractable Barium (Ba)	2023/08/25	NC	75 - 125	101	80 - 120	<0.50	ug/g	1.3	30
8870528	Acid Extractable Beryllium (Be)	2023/08/25	103	75 - 125	99	80 - 120	<0.20	ug/g	1.5	30
8870528	Acid Extractable Boron (B)	2023/08/25	103	75 - 125	96	80 - 120	<5.0	ug/g	3.4	30
8870528	Acid Extractable Cadmium (Cd)	2023/08/25	98	75 - 125	96	80 - 120	<0.10	ug/g	0.46	30
8870528	Acid Extractable Chromium (Cr)	2023/08/25	96	75 - 125	95	80 - 120	<1.0	ug/g	2.3	30
8870528	Acid Extractable Cobalt (Co)	2023/08/25	93	75 - 125	95	80 - 120	<0.10	ug/g	1.5	30
8870528	Acid Extractable Copper (Cu)	2023/08/25	96	75 - 125	106	80 - 120	<0.50	ug/g	2.1	30
8870528	Acid Extractable Lead (Pb)	2023/08/25	93	75 - 125	99	80 - 120	<1.0	ug/g	4.0	30
8870528	Acid Extractable Molybdenum (Mo)	2023/08/25	98	75 - 125	97	80 - 120	<0.50	ug/g	NC	30
8870528	Acid Extractable Nickel (Ni)	2023/08/25	92	75 - 125	96	80 - 120	<0.50	ug/g	2.3	30
8870528	Acid Extractable Selenium (Se)	2023/08/25	94	75 - 125	97	80 - 120	<0.50	ug/g	NC	30
8870528	Acid Extractable Silver (Ag)	2023/08/25	99	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
8870528	Acid Extractable Thallium (TI)	2023/08/25	95	75 - 125	99	80 - 120	<0.050	ug/g	4.1	30
8870528	Acid Extractable Uranium (U)	2023/08/25	93	75 - 125	95	80 - 120	<0.050	ug/g	0.35	30
8870528	Acid Extractable Vanadium (V)	2023/08/25	94	75 - 125	95	80 - 120	<5.0	ug/g	1.9	30
8870528	Acid Extractable Zinc (Zn)	2023/08/25	NC	75 - 125	95	80 - 120	<5.0	ug/g	2.8	30
8870632	WAD Cyanide (Free)	2023/08/23	91	75 - 125	98	80 - 120	<0.01	ug/g	NC	35
8870849	Acid Extractable Antimony (Sb)	2023/08/24	95	75 - 125	97	80 - 120	<0.20	ug/g	NC	30
8870849	Acid Extractable Arsenic (As)	2023/08/24	110	75 - 125	103	80 - 120	<1.0	ug/g	8.4	30
8870849	Acid Extractable Barium (Ba)	2023/08/24	NC	75 - 125	101	80 - 120	<0.50	ug/g	1.9	30
8870849	Acid Extractable Beryllium (Be)	2023/08/24	107	75 - 125	96	80 - 120	<0.20	ug/g	0.29	30
8870849	Acid Extractable Boron (B)	2023/08/24	99	75 - 125	96	80 - 120	<5.0	ug/g	4.7	30
8870849	Acid Extractable Cadmium (Cd)	2023/08/24	107	75 - 125	97	80 - 120	<0.10	ug/g	NC	30
8870849	Acid Extractable Chromium (Cr)	2023/08/24	NC	75 - 125	100	80 - 120	<1.0	ug/g	5.9	30
8870849	Acid Extractable Cobalt (Co)	2023/08/24	109	75 - 125	99	80 - 120	<0.10	ug/g	6.5	30
8870849	Acid Extractable Copper (Cu)	2023/08/24	99	75 - 125	98	80 - 120	<0.50	ug/g	0.83	30
8870849	Acid Extractable Lead (Pb)	2023/08/24	107	75 - 125	101	80 - 120	<1.0	ug/g	2.2	30

Page 11 of 15

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

Bureau Veritas Job #: C3P2568 Report Date: 2023/08/29

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY RD Sampler Initials: MB

			Matrix	Spike	SPIKED	SPIKED BLANK		lank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8870849	Acid Extractable Molybdenum (Mo)	2023/08/24	109	75 - 125	98	80 - 120	<0.50	ug/g	NC	30
8870849	Acid Extractable Nickel (Ni)	2023/08/24	NC	75 - 125	102	80 - 120	<0.50	ug/g	6.8	30
8870849	Acid Extractable Selenium (Se)	2023/08/24	112	75 - 125	100	80 - 120	<0.50	ug/g	NC	30
8870849	Acid Extractable Silver (Ag)	2023/08/24	108	75 - 125	99	80 - 120	<0.20	ug/g	NC	30
8870849	Acid Extractable Thallium (TI)	2023/08/24	109	75 - 125	102	80 - 120	<0.050	ug/g	6.0	30
8870849	Acid Extractable Uranium (U)	2023/08/24	113	75 - 125	101	80 - 120	<0.050	ug/g	2.4	30
8870849	Acid Extractable Vanadium (V)	2023/08/24	NC	75 - 125	100	80 - 120	<5.0	ug/g	4.1	30
8870849	Acid Extractable Zinc (Zn)	2023/08/24	NC	75 - 125	102	80 - 120	<5.0	ug/g	5.7	30
8871035	Moisture	2023/08/23							2.3	20
8873477	Available (CaCl2) pH	2023/08/24			101	97 - 103			0.43	N/A
8877937	a-Chlordane	2023/08/26	92	50 - 130	84	50 - 130	<0.0020	ug/g	NC	40
8877937	Aldrin	2023/08/26	83	50 - 130	77	50 - 130	<0.0020	ug/g	NC	40
8877937	Aroclor 1242	2023/08/26					<0.015	ug/g	NC	40
8877937	Aroclor 1248	2023/08/26					<0.015	ug/g	NC	40
8877937	Aroclor 1254	2023/08/26					0.022, RDL=0.015 (1)	ug/g	NC	40
8877937	Aroclor 1260	2023/08/26					<0.015	ug/g	NC	40
8877937	Dieldrin	2023/08/26	116	50 - 130	115	50 - 130	<0.0020	ug/g	NC	40
8877937	Endosulfan I (alpha)	2023/08/26	96	50 - 130	114	50 - 130	<0.0020	ug/g	NC	40
8877937	Endosulfan II (beta)	2023/08/26	113	50 - 130	106	50 - 130	<0.0020	ug/g	NC	40
8877937	Endrin	2023/08/26	113	50 - 130	110	50 - 130	<0.0020	ug/g	NC	40
8877937	g-Chlordane	2023/08/26	89	50 - 130	83	50 - 130	<0.0020	ug/g	NC	40
8877937	Heptachlor epoxide	2023/08/26	98	50 - 130	104	50 - 130	<0.0020	ug/g	NC	40
8877937	Heptachlor	2023/08/26	91	50 - 130	85	50 - 130	<0.0020	ug/g	NC	40
8877937	Hexachlorobenzene	2023/08/26	89	50 - 130	71	50 - 130	<0.0020	ug/g	NC	40
8877937	Hexachlorobutadiene	2023/08/26	88	50 - 130	90	50 - 130	<0.0020	ug/g	NC	40
8877937	Hexachloroethane	2023/08/26	66	50 - 130	70	50 - 130	<0.0020	ug/g	NC	40
8877937	Lindane	2023/08/26	84	50 - 130	79	50 - 130	<0.0020	ug/g	NC	40
8877937	Methoxychlor	2023/08/26	111	50 - 130	115	50 - 130	<0.0050	ug/g	NC	40
8877937	o,p-DDD	2023/08/26	108	50 - 130	103	50 - 130	<0.0020	ug/g	NC	40
8877937	o,p-DDE	2023/08/26	99	50 - 130	104	50 - 130	<0.0020	ug/g	NC	40

Page 12 of 15

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY RD

Sampler Initials: MB

			Matrix	Matrix Spike		BLANK	Method B	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8877937	o,p-DDT	2023/08/26	99	50 - 130	92	50 - 130	<0.0020	ug/g	NC	40
8877937	p,p-DDD	2023/08/26	108	50 - 130	110	50 - 130	<0.0020	ug/g	NC	40
8877937	p,p-DDE	2023/08/26	98	50 - 130	97	50 - 130	<0.0020	ug/g	NC	40
8877937	p,p-DDT	2023/08/26	103	50 - 130	94	50 - 130	<0.0020	ug/g	NC	40

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Analyte was detected in the method blank at a level marginally above the detection limit. This may represent a high bias in some results. For results that were not detected (ND), this potential bias has no impact.

Site Location: 12156 CHINGUACOUSY RD

Sampler Initials: MB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cuistin	Cause	
Cristina Carrie	re, Senior Scientific Specialist	_

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Site Location: 12156 CHINGUACOUSY RD

Sampler Initials: MB

Exceedance Summary Table – Reg153/04 T1-Soil/Res Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summa	ary table is for information num	oses only and should n	ot he considered a compreh	ansiva listing or	statement of	conformance to

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

	3	3	3			
	1		3	ñ		
	V	:1	Ź			
	0	-				
- 2	The		o	C1	×	

6740 Campobello Road, Mississauga, Ontario LSN 218
Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

AUTHORS OF	CAN	ne: 905-817-5700 1 FCD-01191/6	Fax: 905-817-57								СН	_	_		_	_	_	co	RD	Page of Turnaround Time (TAT) Required
	Invoice Information		Rep	ort Informati	on (it dit	fers fr	om in	voice)	-	-		Proje	ect Inf	orma	tion (w	vhere	appli	able)	-	
Company Name:	DS Consultants	C	ompany Name:	DS Consult	ants		_				Quotatio	n#:	_		_		_			Regular TAT (5-7 days) Most analyses
Contact Name:	Accounting.	c	ontact Name:	Mega	n Be	no	ly				P.O. #/ A	FE#:								PLEASE PROVIDE ADVANCE NOTICE FOR RUSH P
Address:		A	ddress:	,							Project I	1:	73	3- 3	266		100)		Rush TAT (Surcharges will be applied
											Project I	ition:	121.	56	CI	nin	340	co	usu	1 Day 2 Days 3-4 Day
Phone:	Fax:	PI	hone:			Fax:					Site #:)		1	
Email:		E	mail: mber	dera	dsco	insi	Ho	ant	S,C	a	Site Loca	tion P	rovine	:e:						Date Required:
MOE REGULATED C	DRINKING WATER OR WATER INTENDED FOR	HUMAN CONSUMPTION	MUST BE SUBMITTED	ON THE BUREA	VERITAS	DRINKIN	NG WAT	ER CHA	IN OF CL	ISTODY	Sampled	By:	Me	00	n					Rush Confirmation #:
The second of the second	Regulation 153		Other Regulation	5							Analysi									LABORATORY USE DNLY
Table 1	RES/Park Med/ Fine	CCME	Sanitary S											5						CUSTODY SEAL
100 × 5	ind/Comm Coarse	MISA	Storm Sew	er Bylaw	- 1	2		Н						O		- 1				Present Intact
Table 3	Agri/ Other	Dther (Spec	Region	-		Metais / Hg / Crvi				: 1				X						1.1
	EASE CIRCLE) Y / N	_	IN. 3 DAY TAT REC	(UIRED)	9	tas /	1	Н		S S	HWS-B			4		Н				18/16/17
		REG 406	Table		SUBMITTED	E) Me		П		DRGA LS	als, F			S		П			17.4	1 1 2 1
Include Criteria o	n Certificate of Analysis:	Nympi (mengapan)	a haar More two	toriam m	RS SU	, D				META	S Met	Ю		A		П			ANAL	
SAMPLES MUST	BE KEPT COOL (< 10°C) FROM TIME	OF SAMPLING UN	TIL DELIVERY TO	UREAU VERI	TAS	ERED	5	2		CPMS	METAL, ICPM		3	×					DO NOT ANALYZE	COOLING MEDIA PRESENT: Y / N
	SAMPLE IDENTIFICATION	DATE SAM (YYYY/MM,		MATRIX	OF CON	IELD FILTERED	STEX/PHCF1	HCs 52 - F4	200	REG 153 METALS & INORGANIC REG 153 ICPMS METALS	TEG 153 METALS Hg, Cr VI, ICPMS Metals,	AHS	8	mk	M		1		HOLD. DI	COMMENTS
1	SI	20231	1-11- 0	2	2	7	in.	0.	2	ac ac	# 5	a	7	4	4					
2	52			5	2								U	1	4					
3	53			5	7								2	4	V					
4	54			S	12					\top			2	10	W					
5				3	-	1		\vdash		+			1	U	_		1	+		
	DUP-1		1)	- 6	-	-	H	+	+		-			-34	-	+	+		
6		4		-	-	-	-		+	-		-		6	-	-	+	+	-	-
7										_							-	_		
8																				
9																				1
10																			Ш	18-Aug-23 16:26
RELINQ	UISHED BY: (Signature/Print)	DATE: (YYYY/MI	M/DD) TIME: (H	I:MM)	, !	RECEIV	ED BY	: (Sign	ature/	Print)	Viii	DA	TE: (Y	YYY/	MM/D	(0)	TIN	E; (HH	_	Ashton Gibson
They	- fresh	\$50)	118	A	ush	Til	Cu	SU	IKL	un		2	23	108	/1	8	16	: 26	3 1	C3P2568
(and			1	0											1				~	
			-													_			S	PJ ENV-1763

Your Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY ROAD

Your C.O.C. #: n/a

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/10/06

Report #: R7848601 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3T5693 Received: 2023/09/25, 16:44

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2023/10/02	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	1	2023/09/29	2023/09/29	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	1	N/A	2023/09/29		EPA 8260C m
Free (WAD) Cyanide	1	2023/09/28	2023/09/28	CAM SOP-00457	OMOE E3015 m
Conductivity	1	2023/09/29	2023/09/29	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	1	2023/09/28	2023/09/29	CAM SOP-00436	EPA 3060A/7199 m
Petroleum Hydrocarbons F2-F4 in Soil (2)	1	2023/09/27	2023/09/29	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS	1	2023/09/28	2023/09/29	CAM SOP-00447	EPA 6020B m
Moisture	1	N/A	2023/09/27	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	1	2023/09/28	2023/09/29	CAM SOP-00318	EPA 8270E
pH CaCl2 EXTRACT	1	2023/09/28	2023/09/28	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	1	N/A	2023/10/02	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	1	N/A	2023/09/28	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Your Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY ROAD

Your C.O.C. #: n/a

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/10/06

Report #: R7848601 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3T5693

Received: 2023/09/25, 16:44

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Bureau Veritas

06 Oct 2023 12:29:35

Please direct all questions regarding this Certificate of Analysis to:

Ashton Gibson, Project Manager

Email: Ashton.Gibson@bureauveritas.com

Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Site Location: 12156 CHINGUACOUSY ROAD

Sampler Initials: MW

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID			XCA269		
Sampling Date			2023/09/25		
Sampling Date			08:30		
COC Number			n/a		
	UNITS	Criteria	S4	RDL	QC Batch
Calculated Parameters					
Sodium Adsorption Ratio	N/A	5.0	0.54		8939542
Inorganics					
Conductivity	mS/cm	0.7	0.22	0.002	8949562
Available (CaCl2) pH	рН	-	7.19		8947313
WAD Cyanide (Free)	ug/g	0.051	<0.01	0.01	8946594
Chromium (VI)	ug/g	8	<0.18	0.18	8948326
Metals					
Hot Water Ext. Boron (B)	ug/g	1.5	0.24	0.050	8949653
Acid Extractable Antimony (Sb)	ug/g	7.5	<0.20	0.20	8947878
Acid Extractable Arsenic (As)	ug/g	18	3.9	1.0	8947878
Acid Extractable Barium (Ba)	ug/g	390	59	0.50	8947878
Acid Extractable Beryllium (Be)	ug/g	4	0.52	0.20	8947878
Acid Extractable Boron (B)	ug/g	120	<5.0	5.0	8947878
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.18	0.10	8947878
Acid Extractable Chromium (Cr)	ug/g	160	18	1.0	8947878
Acid Extractable Cobalt (Co)	ug/g	22	7.6	0.10	8947878
Acid Extractable Copper (Cu)	ug/g	140	19	0.50	8947878
Acid Extractable Lead (Pb)	ug/g	120	13	1.0	8947878
Acid Extractable Molybdenum (Mo)	ug/g	6.9	0.80	0.50	8947878
Acid Extractable Nickel (Ni)	ug/g	100	16	0.50	8947878
Acid Extractable Selenium (Se)	ug/g	2.4	<0.50	0.50	8947878
Acid Extractable Silver (Ag)	ug/g	20	<0.20	0.20	8947878
Acid Extractable Thallium (Tl)	ug/g	1	0.10	0.050	8947878
Acid Extractable Uranium (U)	ug/g	23	0.61	0.050	8947878
Acid Extractable Vanadium (V)	ug/g	86	27	5.0	8947878
Acid Extractable Zinc (Zn)	ug/g	340	55	5.0	8947878

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water

Condition

Site Location: 12156 CHINGUACOUSY ROAD

Sampler Initials: MW

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID			XCA269		
Sampling Date			2023/09/25		
Sampling Date			08:30		
COC Number			n/a		
	UNITS	Criteria	S4	RDL	QC Batch
Acid Extractable Mercury (Hg)	ug/g	0.27	<0.050	0.050	8947878

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water

Condition

Site Location: 12156 CHINGUACOUSY ROAD

Sampler Initials: MW

O.REG 153 PAHS (SOIL)

Bureau Veritas ID			XCA269		
Sampling Date			2023/09/25		
			08:30		
COC Number			n/a		
	UNITS	Criteria	S4	RDL	QC Batch
Calculated Parameters					
Methylnaphthalene, 2-(1-)	ug/g	-	<0.0071	0.0071	8939568
Polyaromatic Hydrocarbons					
Acenaphthene	ug/g	7.9	<0.0050	0.0050	8946524
Acenaphthylene	ug/g	0.15	<0.0050	0.0050	8946524
Anthracene	ug/g	0.67	<0.0050	0.0050	8946524
Benzo(a)anthracene	ug/g	0.5	<0.0050	0.0050	8946524
Benzo(a)pyrene	ug/g	0.3	<0.0050	0.0050	8946524
Benzo(b/j)fluoranthene	ug/g	0.78	0.0079	0.0050	8946524
Benzo(g,h,i)perylene	ug/g	6.6	0.0052	0.0050	8946524
Benzo(k)fluoranthene	ug/g	0.78	<0.0050	0.0050	8946524
Chrysene	ug/g	7	<0.0050	0.0050	8946524
Dibenzo(a,h)anthracene	ug/g	0.1	<0.0050	0.0050	8946524
Fluoranthene	ug/g	0.69	0.0083	0.0050	8946524
Fluorene	ug/g	62	<0.0050	0.0050	8946524
Indeno(1,2,3-cd)pyrene	ug/g	0.38	0.0061	0.0050	8946524
1-Methylnaphthalene	ug/g	0.99	<0.0050	0.0050	8946524
2-Methylnaphthalene	ug/g	0.99	<0.0050	0.0050	8946524
Naphthalene	ug/g	0.6	<0.0050	0.0050	8946524
Phenanthrene	ug/g	6.2	<0.0050	0.0050	8946524
Pyrene	ug/g	78	0.0077	0.0050	8946524
Surrogate Recovery (%)					
D10-Anthracene	%	-	88		8946524
D14-Terphenyl (FS)	%	-	92		8946524
D8-Acenaphthylene	%	-	72		8946524

No Fill

No Exceedance

Exceeds 1 criteria policy/level Grey Black

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water

Condition

Site Location: 12156 CHINGUACOUSY ROAD

Sampler Initials: MW

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			XCA269		
Sampling Date			2023/09/25 08:30		
COC Number			n/a		
	UNITS	Criteria	S4	RDL	QC Batch
Calculated Parameters	•			•	
1,3-Dichloropropene (cis+trans)	ug/g	0.05	<0.050	0.050	8939095
Volatile Organics					
Acetone (2-Propanone)	ug/g	16	<0.49	0.49	8944660
Benzene	ug/g	0.21	<0.0060	0.0060	8944660
Bromodichloromethane	ug/g	1.5	<0.040	0.040	8944660
Bromoform	ug/g	0.27	<0.040	0.040	8944660
Bromomethane	ug/g	0.05	<0.040	0.040	8944660
Carbon Tetrachloride	ug/g	0.05	<0.040	0.040	8944660
Chlorobenzene	ug/g	2.4	<0.040	0.040	8944660
Chloroform	ug/g	0.05	<0.040	0.040	8944660
Dibromochloromethane	ug/g	2.3	<0.040	0.040	8944660
1,2-Dichlorobenzene	ug/g	1.2	<0.040	0.040	8944660
1,3-Dichlorobenzene	ug/g	4.8	<0.040	0.040	8944660
1,4-Dichlorobenzene	ug/g	0.083	<0.040	0.040	8944660
Dichlorodifluoromethane (FREON 12)	ug/g	16	<0.040	0.040	8944660
1,1-Dichloroethane	ug/g	0.47	<0.040	0.040	8944660
1,2-Dichloroethane	ug/g	0.05	<0.049	0.049	8944660
1,1-Dichloroethylene	ug/g	0.05	<0.040	0.040	8944660
cis-1,2-Dichloroethylene	ug/g	1.9	<0.040	0.040	8944660
trans-1,2-Dichloroethylene	ug/g	0.084	<0.040	0.040	8944660
1,2-Dichloropropane	ug/g	0.05	<0.040	0.040	8944660
cis-1,3-Dichloropropene	ug/g	0.05	<0.030	0.030	8944660
trans-1,3-Dichloropropene	ug/g	0.05	<0.040	0.040	8944660
Ethylbenzene	ug/g	1.1	<0.010	0.010	8944660
Ethylene Dibromide	ug/g	0.05	<0.040	0.040	8944660
Hexane	ug/g	2.8	<0.040	0.040	8944660
Methylene Chloride(Dichloromethane)	ug/g	0.1	<0.049	0.049	8944660

No Fill No Exceedance

Grey Exceeds 1 criteria policy/level
Black Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: 12156 CHINGUACOUSY ROAD

Sampler Initials: MW

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			XCA269		
Sampling Date			2023/09/25 08:30		
COC Number			n/a		
	UNITS	Criteria	S4	RDL	QC Batch
Methyl Ethyl Ketone (2-Butanone)	ug/g	16	<0.40	0.40	8944660
Methyl Isobutyl Ketone	ug/g	1.7	<0.40	0.40	8944660
Methyl t-butyl ether (MTBE)	ug/g	0.75	<0.040	0.040	8944660
Styrene	ug/g	0.7	<0.040	0.040	8944660
1,1,1,2-Tetrachloroethane	ug/g	0.058	<0.040	0.040	8944660
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.040	0.040	8944660
Tetrachloroethylene	ug/g	0.28	<0.040	0.040	8944660
Toluene	ug/g	2.3	<0.020	0.020	8944660
1,1,1-Trichloroethane	ug/g	0.38	<0.040	0.040	8944660
1,1,2-Trichloroethane	ug/g	0.05	<0.040	0.040	8944660
Trichloroethylene	ug/g	0.061	<0.010	0.010	8944660
Trichlorofluoromethane (FREON 11)	ug/g	4	<0.040	0.040	8944660
Vinyl Chloride	ug/g	0.02	<0.019	0.019	8944660
p+m-Xylene	ug/g	-	<0.020	0.020	8944660
o-Xylene	ug/g	-	<0.020	0.020	8944660
Total Xylenes	ug/g	3.1	<0.020	0.020	8944660
F1 (C6-C10)	ug/g	55	<10	10	8944660
F1 (C6-C10) - BTEX	ug/g	55	<10	10	8944660
F2-F4 Hydrocarbons	•				
F2 (C10-C16 Hydrocarbons)	ug/g	98	<10	10	8944316
F3 (C16-C34 Hydrocarbons)	ug/g	300	<50	50	8944316
F4 (C34-C50 Hydrocarbons)	ug/g	2800	<50	50	8944316
Reached Baseline at C50	ug/g	-	Yes		8944316
Surrogate Recovery (%)	•	-		•	
o-Terphenyl	%	-	99		8944316
4-Bromofluorobenzene	%	-	98		8944660
D10-o-Xylene	%	-	97		8944660
D4-1,2-Dichloroethane	%	-	100		8944660

No Fill No Exceedance

Grey Exceeds 1 criteria policy/level Black

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: 12156 CHINGUACOUSY ROAD

Sampler Initials: MW

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			XCA269		
Sampling Date			2023/09/25		
Jumping Dute			08:30		
COC Number			n/a		
	UNITS	Criteria	S4	RDL	QC Batch
D8-Toluene	%	-	92		8944660

No Fill

No Exceedance

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: 12156 CHINGUACOUSY ROAD

Sampler Initials: MW

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		XCA269		
Sampling Date		2023/09/25 08:30		
COC Number		n/a		
	UNITS	S4	RDL	QC Batch
Inorganics				
Inorganics Moisture	%	12	1.0	8944118

Site Location: 12156 CHINGUACOUSY ROAD

Sampler Initials: MW

TEST SUMMARY

Bureau Veritas ID: XCA269

Collected: 2023/09/25

Sample ID: S4 Matrix: Soil Shipped: Received: 2023/09/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8939568	N/A	2023/10/02	Automated Statchk
Hot Water Extractable Boron	ICP	8949653	2023/09/29	2023/09/29	Japneet Gill
1,3-Dichloropropene Sum	CALC	8939095	N/A	2023/09/29	Automated Statchk
Free (WAD) Cyanide	TECH	8946594	2023/09/28	2023/09/28	Prgya Panchal
Conductivity	AT	8949562	2023/09/29	2023/09/29	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	8948326	2023/09/28	2023/09/29	Lusine Khachatryan
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8944316	2023/09/27	2023/09/29	(Kent) Maolin Li
Acid Extractable Metals by ICPMS	ICP/MS	8947878	2023/09/28	2023/09/29	Prempal Bhatti
Moisture	BAL	8944118	N/A	2023/09/27	Shivani Desai
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8946524	2023/09/28	2023/09/29	Jonghan Yoon
pH CaCl2 EXTRACT	AT	8947313	2023/09/28	2023/09/28	Gurparteek KAUR
Sodium Adsorption Ratio (SAR)	CALC/MET	8939542	N/A	2023/10/02	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8944660	N/A	2023/09/28	Blair Gannon

Site Location: 12156 CHINGUACOUSY ROAD

Sampler Initials: MW

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt						
	Package 1	2.0°C							
Result	Results relate only to the items tested.								

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY ROAD Sampler Initials: MW

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	k RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8944316	o-Terphenyl	2023/09/28	102	60 - 130	104	60 - 130	102	%		
8944660	4-Bromofluorobenzene	2023/09/28	100	60 - 140	100	60 - 140	96	%		
8944660	D10-o-Xylene	2023/09/28	95	60 - 130	105	60 - 130	93	%		
8944660	D4-1,2-Dichloroethane	2023/09/28	95	60 - 140	98	60 - 140	104	%		
8944660	D8-Toluene	2023/09/28	104	60 - 140	103	60 - 140	92	%		
8946524	D10-Anthracene	2023/09/28	89	50 - 130	98	50 - 130	106	%		
8946524	D14-Terphenyl (FS)	2023/09/28	98	50 - 130	106	50 - 130	106	%		
8946524	D8-Acenaphthylene	2023/09/28	71	50 - 130	83	50 - 130	79	%		
8944118	Moisture	2023/09/27							1.1	20
8944316	F2 (C10-C16 Hydrocarbons)	2023/09/29	102	60 - 130	104	80 - 120	<10	ug/g	NC	30
8944316	F3 (C16-C34 Hydrocarbons)	2023/09/29	104	60 - 130	106	80 - 120	<50	ug/g	NC (1)	30
8944316	F4 (C34-C50 Hydrocarbons)	2023/09/29	106	60 - 130	109	80 - 120	<50	ug/g	NC (1)	30
8944660	1,1,1,2-Tetrachloroethane	2023/09/28	94	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8944660	1,1,1-Trichloroethane	2023/09/28	98	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
8944660	1,1,2,2-Tetrachloroethane	2023/09/28	90	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8944660	1,1,2-Trichloroethane	2023/09/28	90	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8944660	1,1-Dichloroethane	2023/09/28	97	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
8944660	1,1-Dichloroethylene	2023/09/28	96	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8944660	1,2-Dichlorobenzene	2023/09/28	90	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8944660	1,2-Dichloroethane	2023/09/28	86	60 - 140	90	60 - 130	<0.049	ug/g	NC	50
8944660	1,2-Dichloropropane	2023/09/28	91	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8944660	1,3-Dichlorobenzene	2023/09/28	94	60 - 140	96	60 - 130	<0.040	ug/g	NC	50
8944660	1,4-Dichlorobenzene	2023/09/28	101	60 - 140	104	60 - 130	<0.040	ug/g	NC	50
8944660	Acetone (2-Propanone)	2023/09/28	89	60 - 140	94	60 - 140	<0.49	ug/g	NC	50
8944660	Benzene	2023/09/28	87	60 - 140	88	60 - 130	<0.0060	ug/g	NC	50
8944660	Bromodichloromethane	2023/09/28	99	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
8944660	Bromoform	2023/09/28	81	60 - 140	84	60 - 130	<0.040	ug/g	NC	50
8944660	Bromomethane	2023/09/28	99	60 - 140	98	60 - 140	<0.040	ug/g	NC	50
8944660	Carbon Tetrachloride	2023/09/28	96	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8944660	Chlorobenzene	2023/09/28	94	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8944660	Chloroform	2023/09/28	99	60 - 140	99	60 - 130	<0.040	ug/g	NC	50

Page 12 of 17

Bureau Veritas Job #: C3T5693 Report Date: 2023/10/06

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY ROAD Sampler Initials: MW

			Matrix	Matrix Spike SPIKED BLANK Me			Method E	Method Blank		D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8944660	cis-1,2-Dichloroethylene	2023/09/28	95	60 - 140	96	60 - 130	<0.040	ug/g	NC	50
8944660	cis-1,3-Dichloropropene	2023/09/28	89	60 - 140	93	60 - 130	<0.030	ug/g	NC	50
8944660	Dibromochloromethane	2023/09/28	90	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
8944660	Dichlorodifluoromethane (FREON 12)	2023/09/28	89	60 - 140	87	60 - 140	<0.040	ug/g	NC	50
8944660	Ethylbenzene	2023/09/28	84	60 - 140	85	60 - 130	<0.010	ug/g	NC	50
8944660	Ethylene Dibromide	2023/09/28	89	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8944660	F1 (C6-C10) - BTEX	2023/09/28					<10	ug/g	NC	30
8944660	F1 (C6-C10)	2023/09/28	77	60 - 140	80	80 - 120	<10	ug/g	NC	30
8944660	Hexane	2023/09/28	88	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
8944660	Methyl Ethyl Ketone (2-Butanone)	2023/09/28	88	60 - 140	94	60 - 140	<0.40	ug/g	NC	50
8944660	Methyl Isobutyl Ketone	2023/09/28	79	60 - 140	89	60 - 130	<0.40	ug/g	NC	50
8944660	Methyl t-butyl ether (MTBE)	2023/09/28	90	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8944660	Methylene Chloride(Dichloromethane)	2023/09/28	94	60 - 140	96	60 - 130	<0.049	ug/g	NC	50
8944660	o-Xylene	2023/09/28	78	60 - 140	80	60 - 130	<0.020	ug/g	NC	50
8944660	p+m-Xylene	2023/09/28	87	60 - 140	89	60 - 130	<0.020	ug/g	NC	50
8944660	Styrene	2023/09/28	93	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
8944660	Tetrachloroethylene	2023/09/28	96	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8944660	Toluene	2023/09/28	92	60 - 140	92	60 - 130	<0.020	ug/g	NC	50
8944660	Total Xylenes	2023/09/28					<0.020	ug/g	NC	50
8944660	trans-1,2-Dichloroethylene	2023/09/28	94	60 - 140	93	60 - 130	<0.040	ug/g	NC	50
8944660	trans-1,3-Dichloropropene	2023/09/28	92	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8944660	Trichloroethylene	2023/09/28	97	60 - 140	96	60 - 130	<0.010	ug/g	NC	50
8944660	Trichlorofluoromethane (FREON 11)	2023/09/28	101	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
8944660	Vinyl Chloride	2023/09/28	98	60 - 140	96	60 - 130	<0.019	ug/g	NC	50
8946524	1-Methylnaphthalene	2023/09/28	93	50 - 130	109	50 - 130	<0.0050	ug/g	NC	40
8946524	2-Methylnaphthalene	2023/09/28	83	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
8946524	Acenaphthene	2023/09/28	79	50 - 130	91	50 - 130	<0.0050	ug/g	42 (2)	40
8946524	Acenaphthylene	2023/09/28	73	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40
8946524	Anthracene	2023/09/28	78	50 - 130	96	50 - 130	<0.0050	ug/g	23	40
8946524	Benzo(a)anthracene	2023/09/28	78	50 - 130	93	50 - 130	<0.0050	ug/g	1.6	40
8946524	Benzo(a)pyrene	2023/09/28	71	50 - 130	88	50 - 130	<0.0050	ug/g	0.86	40

Page 13 of 17

Bureau Veritas Job #: C3T5693 Report Date: 2023/10/06

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY ROAD Sampler Initials: MW

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8946524	Benzo(b/j)fluoranthene	2023/09/28	78	50 - 130	93	50 - 130	<0.0050	ug/g	2.0	40
8946524	Benzo(g,h,i)perylene	2023/09/28	84	50 - 130	101	50 - 130	<0.0050	ug/g	2.3	40
8946524	Benzo(k)fluoranthene	2023/09/28	76	50 - 130	89	50 - 130	<0.0050	ug/g	3.5	40
8946524	Chrysene	2023/09/28	82	50 - 130	92	50 - 130	<0.0050	ug/g	2.6	40
8946524	Dibenzo(a,h)anthracene	2023/09/28	89	50 - 130	90	50 - 130	<0.0050	ug/g	13	40
8946524	Fluoranthene	2023/09/28	65	50 - 130	99	50 - 130	<0.0050	ug/g	11	40
8946524	Fluorene	2023/09/28	81	50 - 130	90	50 - 130	<0.0050	ug/g	30	40
8946524	Indeno(1,2,3-cd)pyrene	2023/09/28	80	50 - 130	98	50 - 130	<0.0050	ug/g	2.6	40
8946524	Naphthalene	2023/09/28	68	50 - 130	87	50 - 130	<0.0050	ug/g	75 (2)	40
8946524	Phenanthrene	2023/09/28	59	50 - 130	91	50 - 130	<0.0050	ug/g	20	40
8946524	Pyrene	2023/09/28	66	50 - 130	100	50 - 130	<0.0050	ug/g	12	40
8946594	WAD Cyanide (Free)	2023/09/28	98	75 - 125	102	80 - 120	<0.01	ug/g	NC	35
8947313	Available (CaCl2) pH	2023/09/28			100	97 - 103			0.71	N/A
8947878	Acid Extractable Antimony (Sb)	2023/09/29	110	75 - 125	110	80 - 120	<0.20	ug/g	NC	30
8947878	Acid Extractable Arsenic (As)	2023/09/29	98	75 - 125	101	80 - 120	<1.0	ug/g	7.2	30
8947878	Acid Extractable Barium (Ba)	2023/09/29	NC	75 - 125	100	80 - 120	<0.50	ug/g	1.5	30
8947878	Acid Extractable Beryllium (Be)	2023/09/29	98	75 - 125	98	80 - 120	<0.20	ug/g	NC	30
8947878	Acid Extractable Boron (B)	2023/09/29	97	75 - 125	97	80 - 120	<5.0	ug/g	11	30
8947878	Acid Extractable Cadmium (Cd)	2023/09/29	100	75 - 125	99	80 - 120	<0.10	ug/g	NC	30
8947878	Acid Extractable Chromium (Cr)	2023/09/29	102	75 - 125	98	80 - 120	<1.0	ug/g	12	30
8947878	Acid Extractable Cobalt (Co)	2023/09/29	95	75 - 125	97	80 - 120	<0.10	ug/g	4.9	30
8947878	Acid Extractable Copper (Cu)	2023/09/29	101	75 - 125	103	80 - 120	<0.50	ug/g	5.4	30
8947878	Acid Extractable Lead (Pb)	2023/09/29	94	75 - 125	96	80 - 120	<1.0	ug/g	4.4	30
8947878	Acid Extractable Mercury (Hg)	2023/09/29	100	75 - 125	102	80 - 120	<0.050	ug/g		
8947878	Acid Extractable Molybdenum (Mo)	2023/09/29	105	75 - 125	100	80 - 120	<0.50	ug/g	4.7	30
8947878	Acid Extractable Nickel (Ni)	2023/09/29	95	75 - 125	99	80 - 120	<0.50	ug/g	4.1	30
8947878	Acid Extractable Selenium (Se)	2023/09/29	97	75 - 125	100	80 - 120	<0.50	ug/g	NC	30
8947878	Acid Extractable Silver (Ag)	2023/09/29	100	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
8947878	Acid Extractable Thallium (TI)	2023/09/29	94	75 - 125	98	80 - 120	<0.050	ug/g	0.55	30
8947878	Acid Extractable Uranium (U)	2023/09/29	94	75 - 125	95	80 - 120	<0.050	ug/g	5.9	30
8947878	Acid Extractable Vanadium (V)	2023/09/29	100	75 - 125	98	80 - 120	<5.0	ug/g	10	30

Page 14 of 17

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY ROAD

Sampler Initials: MW

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8947878	Acid Extractable Zinc (Zn)	2023/09/29	NC	75 - 125	96	80 - 120	<5.0	ug/g	3.5	30
8948326	Chromium (VI)	2023/09/29	86	70 - 130	93	80 - 120	<0.18	ug/g	NC	35
8949562	Conductivity	2023/09/29			101	90 - 110	<0.002	mS/cm	3.2	10
8949653	Hot Water Ext. Boron (B)	2023/09/29	124	75 - 125	104	75 - 125	<0.050	ug/g	3.6	40

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Detection limit was raised due to background interference.
- (2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Site Location: 12156 CHINGUACOUSY ROAD

Sampler Initials: MW

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

applicable regulatory guidelines.

DS Consultants Limited Client Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY ROAD

Sampler Initials: MW

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summa	ry table is for information purp	oses only and should no	t be considered a compreh	ensive listing or	statement of	conformance to

CHAIN OF CUSTODY RECORD

MM DD

reading by:

0

Time HH MM

DD

09

Received by: (Signature/Print)

worked for

MM DD HH 109 25 17

00

23 09

Relinquished by: (Signature/ Print)

MISHAEL WILCOX

Your Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY RD.

Your C.O.C. #: n/a

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/08/23

Report #: R7778072 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3P0410 Received: 2023/08/17, 15:14

Sample Matrix: Soil # Samples Received: 2

	Date	Date		
Analyses	Quantity Extracted	Analyzed	Laboratory Method	Analytical Method
pH CaCl2 EXTRACT	2 2023/08/2	2 2023/08/2	2 CAM SOP-00413	EPA 9045 D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY RD.

Your C.O.C. #: n/a

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/08/23

Report #: R7778072 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3P0410 Received: 2023/08/17, 15:14

Encryption Key

Bureau Veritas

23 Aug 2023 15:40:24

Please direct all questions regarding this Certificate of Analysis to:

Ashton Gibson, Project Manager

Email: Ashton.Gibson@bureauveritas.com

Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Site Location: 12156 CHINGUACOUSY RD.

Sampler Initials: MB

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		WSM809	WSM810			
Sampling Date		2023/08/15	2023/08/15			
COC Number		n/a	n/a			
	UNITS	BH23-301 SS5	BH23-303 SS5	QC Batch		
Inorganics						
Inorganics						
Inorganics Available (CaCl2) pH	рН	7.76	7.72	8868526		

Site Location: 12156 CHINGUACOUSY RD.

Sampler Initials: MB

TEST SUMMARY

Bureau Veritas ID: WSM809

Collected: 2023/08/15

Sample ID: BH23-301 SS5 Matrix: Soil Shipped:

Received: 2023/08/17

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystpH CaCl2 EXTRACTAT88685262023/08/222023/08/22Gurparteek KAUR

Bureau Veritas ID: WSM810

Collected: 2023/08/15

Sample ID: BH23-303 SS5

Shipped:

Matrix: Soil

Received: 2023/08/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
pH CaCl2 EXTRACT	AT	8868526	2023/08/22	2023/08/22	Gurparteek KAUR

Site Location: 12156 CHINGUACOUSY RD.

Sampler Initials: MB

GENERAL COMMENTS

Each te	emperature is the a	everage of up to	three cooler temperatures taken at receipt				
	Package 1	7.0°C					
Result	Results relate only to the items tested.						

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 23-266-100

Site Location: 12156 CHINGUACOUSY RD.

Sampler Initials: MB

			SPIKED BLANK		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	Value (%)	QC Limits
8868526	Available (CaCl2) pH	2023/08/22	100	97 - 103	0.018	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Site Location: 12156 CHINGUACOUSY RD.

Sampler Initials: MB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cristia	Caniere	
Cristina Carrie	re, Senior Scientific Specialist	

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Appendix E

Phase Two Conceptual Site Model

This Phase Two Conceptual Site Model has been prepared for the property comprised of 12156 Chinguacousy Road, Caledon, Ontario, herein referred to as the "Site". This Phase Two CSM was developed through a synthesis of the information obtained through the completion of the Phase One ESA, and the data collected as part of the Phase Two ESA. The Phase Two CSM is comprised of the following Figures and text.

FIGURES

Figure 1 – Site Location Plan

Figure 2 - Phase Two Property Site Plan

Figure 3 – Phase One Study Area

Figure 4 – PCA within Phase One Study Area

Figure 5 – Borehole/Monitoring Well location plan with APECs

Figure 6A – Soil Characterization – Metals and ORPs

Figure 6B – Soil Characterization – PHCs and BTEX

Figure 6C – Soil Characterization – VOCs

Figure 6D - Soil Characterization - PAHs

Figure 6E – Soil Characterization – OCPs

Figure 7 – Contaminant Transport Diagram

The Phase Two Property is an approximately 5.787-hectares (14.299 acres) parcel of land situated within a rural-residential neighbourhood in the Town of Caledon, Ontario. The Phase Two Property is located approximately 490 m northwest of the intersection of Chinguacousy Road and Mayfield Road.

The Phase Two Property currently includes a two-storey brick house with a metal clad barn. The residential building contains one (1) level of basement and was constructed around the 1990s. The house is approximately 275 m² in area. The building is serviced with a domestic well and septic system. The septic system was located southeast of the building and the domestic well was observed south of the house.

The metal clad barn is approximately 220 m² in area with a concrete floor and is used for storage of farming equipment.

Access to the Site is through an asphalt driveway which enters the Site from Chinguacousy Road. The remaining balance of the Site is primarily compromised of agricultural fields. A Site Plan depicting the orientation of the buildings on-site is provided in Figure 2.

A Phase One ESA was completed in September 2023. The results of the Phase One ESA identified three (3) areas of potential environmental concern on the Property associated with the following historical and current uses:

- The former presence of an orchard which was potentially subject to application of environmentally persistent pesticides;
- Fill material was likely used for grading purposes for the driveway; and
- The driveway is likely subject to seasonal de-icing activities.

The environmental soil conditions on the Site were investigated through the completion of three (3) boreholes on August 15, 2023 and five (5) test pits. The boreholes were advanced to a maximum depth of 6.7 metres below ground surface (mbgs) under the supervision of DS personnel and the test pits to a depth of 0.3 mbgs. A groundwater monitoring well was installed in one (1) of the boreholes. The borehole locations were determined based on the findings of the Phase One ESA. All APECs were investigated with boreholes and/or test pits in accordance with the requirements of O.Reg. 153/04 (as amended). Soil samples were collected and submitted for analysis of all PCOCs, including: Metals, As, Sb, Se, CN-, pH, EC, SAR, and OCPs.

The soil and groundwater analytical results were compared to the "Table 2: Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/ Institutional use" provided in the MECP document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011 (Table 2 Standards) for medium and fine-textured soils and residential/parkland/institutional property use.

Based on the results of the Phase Two ESA, it was concluded that the soil quality on the Site met the applicable MECP Table 2 SCS as of the Certification Date of October 6, 2023.

I. Description and Assessment of:

A. Areas where potentially contaminating activity has occurred

A total of five (5) PCAs were identified in the Phase One ESA. A summary of the PCAs considered to be contributing to APECs on the Phase Two Property is provided in the table below.

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
PCA-1	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	The Peel County Atlas shows an orchard on the north portion of the Site.	Yes – APEC-1
PCA-2	#N/S – Application of De-icing Agents	De-icing activities inferred along the driveway and roadway.	Yes – APEC-2A
PCA-3	#30 – Importation of Fill Material of Unknown Quality	Possible fill material for grading under the asphalt driveway.	Yes – APEC-2B
PCA-4	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	Pesticides are used on the agricultural fields on Site.	Yes – APEC-3

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

B. Areas of potential environmental concern

A total of four (4) APECs were identified to be present on the Phase Two Property through the completion of the Phase One ESA. A summary of the APECs identified, and the associated PCOCs is provided in the table below.

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on- site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	North portion of Site	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-1	OCPs, Metals, As, Sb, Se, CN-	Soil
APEC-2A	North portion of Site	#N/S – Application of De- icing Agents	On Site PCA-2	EC, SAR	Soil
APEC-2B		#30 – Importation of Fill Material of Unknown Quality	On Site PCA-3	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B- HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR, PAHs	Soil
APEC-3	Entire Property	#40 – Pesticides Manufacturing, Processing,	On Site PCA-4	OCPs, Metals, As, Sb, Se, CN-	Soil

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on- site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
		Bulk Storage and Large-Scale Applications			

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

C. Any subsurface structures and utilities on, in or under the Phase Two Property that may affect contaminant distribution and transport

The depth to groundwater at the Phase One Property is inferred to be approximately 1.73 to 2.29 metres below ground surface, however, no underground utilities were identified on the Phase One Property, therefore utility trenches would not act as preferential pathways for contaminant distribution and transport in the event that shallow subsurface contaminants exist at the Phase One Property.

- II. Description of, and as appropriate, figures illustrating, the physical setting of the Phase Two Property and any areas under it including:
 - A. Stratigraphy from ground surface to the deepest aquifer or aquitard investigated

A surficial layer of topsoil approximately 200 to 250 mm in thickness was encountered in all of the boreholes advanced. Reworked native material consisting of clayey silt with trace organics was encountered below the topsoil. The reworked native material was generally heterogeneous and ranged in thickness from 0.5 to 2.1 metres. A silty sand seam was encountered in the reworked material in BH23-303 with a thickness of 0.7 m. The native overburden material encountered below the reworked native and fill material consisted of clayey silt to silty clay till. The clayey silt to silty clay till unit extended to borehole termination at a maximum depth of 6.7 mbgs. Bedrock was not encountered an the maximum borehole depth of 6.7 mbgs.

The borehole and test pit locations are depicted on Figure 5.

B. <u>Hydrogeological Characteristics</u>, including aquifers, aquitards and, in each hydrostratigraphic unit where one or more contaminants is present

Tel: 905-264-9393

at concentrations above the applicable site condition standards, lateral and vertical gradients

The groundwater table was encountered in a clayey silt to silty clay till unit encountered at an approximate depth of 0.2 to 6.7 mbgs, which is considered to be an unconfined aquifer.

The groundwater flow direction was not calculated at this time. The groundwater flow direction was inferred to be southeast towards a tributary of Fletcher's Creek based on the Phase One ESA.

The horizontal and vertical hydraulic gradient was not calculated, as groundwater was not identified as a media of concern on the Phase Two Property.

C. Depth to bedrock

Bedrock was not encountered in this investigation, however, based on the "Bedrock Topography and Overburden Thickness Mapping, Southern Ontario, prepared by Ontario Geological Survey, published 2006," the bedrock is anticipated to be encountered at a depth of approximately 20 to 25 mbgs.

D. Approximate depth to water table

The depth to groundwater was found to be 2.29 and 1.73 mbgs on August 18, 2023 and August 29, 2023, respectively.

E. Any respect in which sections 35, 41 or 43.1 of the regulation applies to the property

Section 35

Section 35 does not apply to the Site as the Town of Caledon relies on groundwater for potable water.

Section 41

The pH values measured for both surface and sub-surface soil samples were within the acceptable limits for non-sensitive sites. There are no areas of natural significance on the Phase Two Property, or within 30 m of the Phase Two Property. As such the Phase Two Property is not considered to be environmentally sensitive as defined by Section 41.

Section 43.1

The Phase Two Property is not considered a shallow soil property and is not within 30 m of a body of water. Section 43.1 is not applicable.

F. Areas on, in or under the Phase Two Property where excess soil is finally placed

Fill material may have been used for grading purposes under the asphalt driveway.

G. Approximate locations, if known, of any proposed buildings and other structures

It is our understanding that redevelopment of the Site for residential purposes has been proposed, and that the development will feature a low-rise subdivision. It is further understood that the proposed development will occupy the entirety of the Phase Two Property.

- III. Where a contaminant is present on, in or under the Phase Two Property at a concentration greater than the applicable site condition standard, identification of
 - H. Each area where a contaminant is present on, in or under the Phase Two Property at a concentration greater than the applicable SCS

All of the soil samples analyzed met the MECP Table 2 SCS. Plans depicting the sample locations and chemical analyses are provided in Figures 6A and 6E.

I. The contaminants associated with each of the areas

All of the soil samples met the MECP Table 2 SCS.

J. Medium that contaminants were identified in

All of the soil samples met the MECP Table 2 SCS.

K. Description and assessment of what is know about each of the areas

APEC-1 was identified at the Site relating to the presence of a historical orchard on the north portion of the Site. The soil quality met within APEC-1 met the MECP Table 2 SCS.

www.dsconsultants.ca Email: office@dsconsultants.ca

APEC-2A was identified on the Site relating to the inferred use of de-icing agents on the driveway and adjacent roadway, and APEC-2B is in relation to the possible fill material used for grading under the asphalt driveway. The soil quality within APEC-2A and APEC-2B met the MECP Table 2 SCS.

APEC-3 was identified on the Site relating to the use of pesticides on the agricultural fields across the Site. The soil quality within APEC-3 met the MECP Table 2 SCS.

L. <u>Distribution in which the areas of each contaminant is present in the area at a concentration greater than the applicable SCS, for each medium in which the contaminant is present, together with figures showing the distribution</u>

Not applicable – All of the soil samples analyzed met the MECP Table 2 SCS.

M. Anything know about the reason for the discharge of the contaminants present on, in or under the Phase Two Property at a concentrations greater than the applicable SCS

Not applicable – All of the soil samples analyzed met the MECP Table 2 SCS.

N. Anything known about migration of the contaminants present on, in or under the phase two property at a concentration greater than the applicable SCS away from any area of potential environmental concern, including the identification of any preferential pathways

Not applicable – Contaminant concentrations were below the MECP Table 2 SCS. Contaminant migration is not considered to be an issue of concern with respect to the soil and groundwater quality at the Site.

O. <u>Climatic or meteorological conditions that may have influenced distribution and migration of the contaminants, such as temporal fluctuations in groundwater levels</u>

Soil and groundwater impacts were not identified on the Site, as such, temporal fluctuations in groundwater levels are not considered to be of concern with respect to contaminant distribution and/or migration of contaminants.

P. <u>Information concerning soil vapour intrusion of the contaminants into buildings</u>

No volatile parameters were identified at concentrations greater than the applicable SCS, therefore vapour intrusion is not considered to be an exposure pathway at this time.

- IV. Where contaminants on, in or under the Phase Two Property are present at concentrations greater than the applicable SCS, one or more cross-sections showing
 - Q. The lateral and vertical distribution of a contaminant in each area where the contaminants are present at concentrations greater than the applicable SCS in soil, groundwater and sediment
 - R. Approximate depth to water table
 - S. Stratigraphy from ground surface to the deepest aquifer or aquitard investigated
 - T. Any subsurface structures and utilities that may affect contaminants distribution and transport

Contaminants were not identified at levels in excess of the applicable MECP Table 2 SCS.

- V. For each area where a contaminant is present on, in or under the property at a concentration greater than the applicable SCS for the contaminant, a diagram identifying, with narrative explanatory notes
 - U. The release mechanisms
 - V. Contaminant transport pathway
 - W. The human and ecological receptors located on, in or under the phase two property
 - X. Receptor exposure points
 - Y. Routes of exposure

A visual representation of potential contaminant transport pathways is provided in Figure 7.