

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

Proposed Multi-Residential Condo Development 12148 Albion Vaughan Road • Town of Caledon Aztec Restoration Inc.

REPORT TITLE:	Functional Servicing and Stormwater Management Report						
PROJECT TITLE:	Multi-Residential Condo Development						
PROJECT ADDRESS: CLIENT:	12148 Albion Vaughan Road Aztec Restoration Inc.						
MAEL PROJECT NO:	17-849						

NO.	DATE (YY.MM.DD)	DESCRIPTION OF ISSUED AND/OR REVISION
01	20.12.20	Issued for First Submission
02	23.12.22	Issued for Second Submission
03	24.03.30	Issued for Third Submission

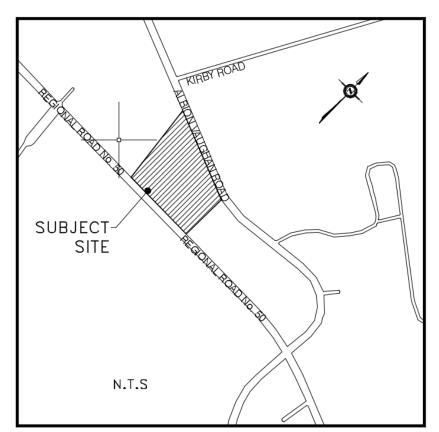
TABLE OF CONTENTS

1	INTRODUCTION
1.1	Study Objectives and Location
1.2	Existing Site Description
1.3 2	Proposed Development Plan
2.1	Existing Topography
2.2 3	Proposed Roadway and Grading
3.1	Existing Water Servicing
3.2	Proposed Water Servicing
3.3	Proposed Water Demands
3.4 4	Water Distribution System Modeling
4.1	Existing Sanitary Servicing
4.2	Proposed Sanitary Servicing
4.3 5	Sanitary Sewage Flow Estimates
5.1	Existing Storm Servicing 10
5.2	Water Balance
5.3	Stormwater Quality Control.135.3.1TSS Removal13
5.4	Quantity Controls145.4.1Allowable Peak Flow145.4.2Post-development Discharge15
6 7	Erosion and Sediment Control
1	CUNCLUSIONS AND SUMINAR I RECUMINENDATIONS

APPENDICES

Appendix A:	Background Figures, Site Plans, Pre/Post Development Figures
Appendix B:	Water Main
Appendix C:	Sanitary Sewer
Appendix D:	Storm Sewer
Appendix E:	Approved TRCA Creek Realignment
Appendix F:	Engineering drawings

1 INTRODUCTION


1.1 Study Objectives and Location

Masongsong Associates Engineering Limited has been retained by Aztec Restoration Inc. to prepare this Functional Servicing Plan (FSR), and Stormwater Management Report in support of a Site Plan Application for the development of a Multiple Residential comprising a total of 265 condo units in the Town of Caledon

The subject site is located 370m North of Mayfield Road between Regional Road 50 and Albion-Vaughan Road in the south sector of Town of Caledon. Figure 1 below illustrates the location of the proposed development.

The existing site has an overall area of approximately 1.538 ha (3.80 ac), however road widening plans on Albion Vaughan Road, Highway 50 and 0.3m reserves further reduce the overall area by 0.1152 ha, 0.0812 ha, and 0.0079 ha respectively for a total area of 1.334 ha. There are 0.3078 ha at the west side are undevelopable floodplain lands, and instead will be slightly regraded to realign a portion of the Robinson creek inside the subject site which was improperly realigned by the previous landowner. for a final developable area of 1.026 ha (2.53 ac)

The objective of this report is to identify the requirements for the site servicing and stormwater management as it relates to current Town of Caledon criteria, and to demonstrate how this proposed site will function within the framework of existing infrastructure.

1.2 Existing Site Description

The subject site is part of Lot 1 Concession 7 Town of Caledon. Regional Municipality of Peel. Refer to Survey plan prepared by David B. Searles Surveying enclosed In Appendix A.

The site is identified with municipality address 12148 Albion Vaughan comprising of two brick dwellings and framed stucco pavilion with approximately 97% of the site covering with small vegetation and a few trees. The subject site is bounded by regional Road 50/Robinson Creek to the west, Commercial lands to the south, Albion-Vaughan Road to the east and a residential property to the North.

There is a portion of the existing channel running on the west site of the study which will be realigned as per the approved TRCA submission, attached in Appendix E.

The subject site is located partially within the Regulatory Flood Plain as identified on Humber River Floodplain mapping Sheet No.169 provided by the Toronto and Region Conservation Authority (TRCA), enclosed in Appendix A for reference.

1.3 Proposed Development Plan

The development proposal is to construct a 6-storey residential high-rise condominium tower A, 6-storey residential high-rise condominium tower B with a total of 265 units, 438 underground parking spaces and 15 parking spaces at grade.

Vehicular access to the site will be provided at the following three locations: one main driveway, and one service road for each tower all on Albion Vaughan Road.

The proposed architectural Site Plan Concept is included in Appendix A1.0 prepared by Fausto Cortese Architects.

The proposal to slightly modify the existing floodplain has been approved by TRCA and the required minimum 10m setback will be provided from the floodplain line to the development limit.

2 GRADING

2.1 Existing Topography

The existing topography indicates that the lands generally slope from the north to the south, with a 1.42m grade differential, ranging from a high of 230.08m to a low of 228.66m over 115.5m (a 1.2% gradient). The peak elevation runs along the furthest northwest corner of the existing site, while the low elevations are at the south of the subject site. A topographic survey plan prepared by David B. Searles Surveying Ltd. dated June 6, 2016 is included in Appendix A.

The pre-development drainage pattern indicates that the majority area currently sheet drains towards the existing channel located at the west site of the subject site, refer to Pre-development Drainage Plan, Figure 2 enclosed in Appendix A.

The west portion of site is bounded by an existing channel that runs south. Part of the existing channel will be regraded in accordance with TRCA policies; however, the predevelopment drainage pattern and existing grade will be maintained at the south, east and majority of north property line. Refer to figure 3 for Post-development Master storm drainage plan and grading plan drawing GR1 enclosed in Appendix A and F respectively. The subject site is currently accessible from one driveway on Albion Vaughan Road and one on Highway 50, leading to the front of the existing two houses.

The existing topography data was provided by prepared by David B. Searles Surveying Ltd. dated June 6, 2016 is included in Appendix A.

2.2 Proposed Roadway and Grading

As illustrated on the grading plan GR1 enclosed in Appendix F, the internal road network will have three accesses off Albion Vaughan Road. The current driveway and culvert on Highway 50 will be removed. Correspondence between TRCA and the Region of Peel is attached in Appendix A shows that the Region is currently pursuing the culvert removal works.

The western portion of the site, of approximately 0.376ha which represents about 27% of the entire site, has been identified as an Open Space area and will be regraded to match the original drainage pattern of the site prior to the improper creek realignment by the previous landowner. The remainder of the site, which consists of 1.042 ha of developable area, will be graded to ensure that the storm drainage is self contained. Driveways, road, and laneway drainage will be directed towards a local low point where a Low Impact Development (LID) measure will be located to capture and treat the storm drainage. There are 0.1067ha of uncontrolled area draining into the south west side of the site. Refer to post-development Master storm drainage plan, enclosed in Appendix A.

3 WATER SERVICING

3.1 Existing Water Servicing

The subject site will be serviced by an existing 300mm diameter PVC watermain located along the Albion Vaughn Road.

Refer to existing municipal infrastructure Figure 5 and drawing 51608-D enclosed in Appendix A for existing infrastructure.

3.2 Proposed Water Servicing

A 300 mm watermain lateral servicing as the fire line will be tapped into the existing 300mm PVC watermain running along Albion Vaughn Road. A 150mm diameter domestic cold-water supply will branch off the main service, both fire and domestic lines will contain shut-off valves at the streetline and water meters in accordance with Region Peel Standards.

Fire Protection for the subject site will be provided by one proposed private hydrant within the site and two existing hydrants located on Albion Vaughn Road.

For proposed watermain layout refer to drawing SS1 enclosed in Appendix F.

3.3 Proposed Water Demands

The residential per capita demand is estimated based on the Region of Peel criteria of 280 L/c/d. with 686 persons for the residential area (as shown in sanitary section 4.3), the average-day domestic demand is **2.22 L/s**. The maximum day demand has a factor of 2.0, therefore yielding a max-day domestic consumption rate of **4.45L/s** or **267L/min**. The max peak hour demand has a factor of 3.0, therefore yielding a peak hour consumption rate of **6.67L/s** or **400.2 L/s**.

3.4 Water Distribution System Modeling

Hydraulic analysis of proposed water distribution system is conducted using EPANET 2 modeling software to ensure the system delivers desired pressures and flows for the proposed development under various demand scenarios. It was assumed a residential fire flow of 7000L/min or 116.67L/s

The summary of analysis result is provided in the following Table 3.3:

No	Scenarios	EPANET	Region
		Results	Criteria
1	Max. pressure during min. hour demand (kpa)	346	< 690 (Ok)
2	Min. pressure during max. hour demand (kpa)	345	> 275 (OK)
3	Min. pressure during max. day demand + fire (kpa)	270	>140 (OK)

Та	b	le	3.	3

The above summary of EPANET modeling result shows that proposed watermain system meets Region standard criteria for required pressures for the noted scenarios.

Refer to table 3.3.1 and Epanet results for watermain calculations enclosed in Appendix B

A hydrant flow test was performed in July 2023 to ascertain the available municipal supply on Albion Vaughan Road. Based on the Fire Underwriters Survey (FUS), the required fire flow is 9,000 L/min. See Appendix B for the results of the hydrant test as well as tables F1-F6 for the FUS calculations of Building A + podium and Building B.

Detailed hydrant flows confirm that the existing Albion Vaughan system is capable of delivering a fire flow of **<u>11,732</u>** L/min at a minimum pressure of **140** kPa</u>, which satisfies both FUS and ISO fire flows.

Based on the hydrant testing results, the existing main has adequate supply and pressures to meet the critical high-demand flow for fire-fighting plus the maximum-day-domestic consumption rate in accordance with the Fire Underwriters Survey model calculations. Therefore, the existing municipal water main is sufficient to support the proposed development.

• The proposed 150 mm diameter will be tapped into the existing 300mm diameter municipal waterman running on Albion Vaughan Road to provide both fire and domestic water services for the subject site. Hydrant flow tests and analysis will be performed to confirm that there is adequate supply and pressure for firefighting purposes.

4 SANITARY SERVICING

4.1 Existing Sanitary Servicing

Sanitary servicing is available from an existing 900m sanitary sewer running on Albion Vaughan Road; refer to existing municipal infrastructure Figure 5 and drawing 51608-D enclosed in Appendix A for existing infrastructure.

4.2 Proposed Sanitary Servicing

It is proposed to connect into the existing sanitary sewer system on Albion Vaughan Road, providing a 200 mm diameter PVC sanitary sewer connection to service the proposed multiple Residential Condo. The sanitary flow generated by the study area will discharge into the proposed sanitary control manhole MH2A to ultimately discharge into the existing sanitary manhole MH6A.

Refer to plans SS1 and DE1 enclosed in Appendix F for proposed sanitary connections details.

4.3 Sanitary Sewage Flow Estimates

The proposed development comprises 265 condo units, which is estimated with the current Region's Peel Design, Specification & Procedures Manual as having an equivalent population of 686 persons as outlined in the following Table 4.3.

Table 4.3 Estimated Population for Residential Development

Unit type	Density	No. of Units	Total Population
Apartments smaller than		78	
smaller than			
750 sqft 1.6p/unit			124.8
Apartments		187	
larger than			
750 sqft	3.0p/unit		561
Total		265	686

In accordance with the Region's requirements, the sanitary sewage flow estimates are calculated based on the STD. DWG. 2-9-2 and ground water infiltration flows. Using the

above population estimates, the future sanitary sewerage rate from the subject site is calculated as follow. Appendix C shows the Regions sanitary design standards as well as the design sheet for the proposed development.

Proposed Site Design Flow:

Peak Flow Design Parameters

Residential Population	= 686 (Refer to Table 4.3 above)
Total Population	= 686
If Population<1000 =	0.013 m³/s (STD. DWG. 2-9-2)
Infiltration	= 0.000821 m ³ /s
Total Flow	= 0.0138821 m ³ /s

The sanitary discharge from the subject site will be accommodated with a proposed 200mm diameter PVC sanitary sewer, discharging to the existing 900mm diameter sanitary sewer on Albion Vaughn Road.

From the Region of Peel Drawing 51608-D Plan and Profile, enclosed in Appendix A, the existing sewer is at a depth of approximately 5.7 m from existing ground.

5 STORM DRAINAGE AND STORMWATER MANAGEMENT

The stormwater management plan for the subject site will be designed in accordance with the Town of Caledon Criteria in conjunction with the Best Management Practice guidelines in the MOE SWMPP Manual and Low Impact Development Guidelines by TRCA. Specific criteria to be applied in the stormwater management design are as follows:

- Water Quality control Level 1 or Enhanced Protection
- Water Balance a minimum 5 mm "first-flush" event retained for infiltration and water reuse
- Water Quantity It is proposed to control the peak flows for each event (2 year, 5 year, 10 year, 25 year, 50 year and 100 years) to pre-developments levels in accordance with TRCA criteria for Humber River Storm Management Quantity Control

The following sections will detail the pre- and post-development conditions, and describe how the Low Impact Development targets can be achieved on site.

5.1 Existing Storm Servicing

There is an existing ditch running on the east of the subject site along Albion Vaughan Road and existing channel running on the west part of the subject site. There is no existing municipal storm sewer available for the subject site.

Refer to existing municipal infrastructure Figure 2 enclosed in Appendix A

5.2 Water Balance

In conjunction with water quantity and quality mitigation to be imposed at the source control level, efforts shall be made to preserve the pre-development hydrology of the lands prior to development, through the implementation of water balance targets for new site plan developments.

On-site water balance to a minimum 5 mm retention, through infiltration, evapotranspiration and/or rainwater reuse; and

The volume of on-site water retention is estimated in the following Table 5.2

Surface Area Component	Area	Initial Abstraction		Water Retention Target	Deficit Storage Required to meet Water Balance Target				
	(m ²)	(mm)	(m³)	(mm)	(mm)	(m ³)			
Roofs	2096.1	1	2.10	5	5	10.48			
Green Roof	2335.6	5	11.68	0	0	0			
Landscape	2277.4	5	11.39	0	0	0			
Hard surface	3547.9	1	3.55	5	5	17.74			
Undevelopable area (landscape)	3078	5	15.39	0	0	0			
Total	13335		44.11			28.22			

Table 5.25 mm Water Balance Volumes

A total of **28.22** m³ of additional on-site storage is required to meet 5 mm site retention targets. This will be captured by a cistern located within the stormwater management tank, which will collect clean rainwater from the rooftops only, to be reused over 72 hours. Excess water will overflow into the stormwater management tank.

Retention of Roof Runoff:

It is recommended to separate roof runoff from street and parking lot runoff and retain it on the rooftops. One of the targets for water balance is that essentially all roof runoffs be infiltrated or undergo evapotranspiration as much as possible, leaving very little roof runoff that will discharge through overland pathways to surface waters. The rooftops will be designed to the most current Ontario Building Code (OBC) structural standards and will be capable of storing quantity of stormwater on its surface.

A primary roof drain design indicates that each roof can accommodate controlled flow and volumes with the use of control-flow drain; roof drain calculations based on a Zurn Control- Flo Model are given in appendix D.

To gain the necessary storage volume, we propose to implement flow control drains that will allow a total release rate of 42 L/s/ha., which is an industry standard. Roof controls are typically specified at the working-drawing stage of building designs as they necessarily need to be coordinated between the architect, mechanical and structural engineers. Roof scuppers will need to be provided for emergency overflow or for events exceeding the 100-year storms. In practice, the roof ponding areas will need to be determined by roof and column geometry at the time of building design.

Release rate = 42 L/s/ha x Area Release rate = 42 x 0.4432 = **18.61 L/s** Based on the above release rate, the roof drain notch configuration required for general compliance is: **10-Zurn105** units with a **465 notch area rating**, having **1 notch per drain** The calculations are shown in table 5.2.2 in Appendix D.

The required storage on roof will be **151.9 m³**. Refer to table 5.2.1 enclosed In Appendix D. Assuming 90% of the rooftop area is usable for storage, and pyramidal storage to a depth of 0.1245m, the following storage volume is available: The provided storage on roof will be **165.5 m³** = ((4432/3) m² * 0.1245m*0.9).

Use of Green Roof Technologies:

Green roofs can significantly reduce the volume and rate of runoff from building lots. A layer of absorbent soil and vegetation on top of building can retain rainfall and allow it to evaporate or transpire. Engineered green roofs may also provide heating or cooling savings by insulating buildings, as well as aesthetic benefits, air quality benefits, and reductions in the "urban heat island" effect, etc.

A total of 2335.6 m³ of green roof is proposed for this site, which is just over half of the total roof area and greatly reduces the water balance deficit.

Irrigation:

Irrigation calculations by the landscape architects MSLA are shown in Appendix D and demonstrate that the site has enough landscape to provide up to **43.87** m³ of irrigation volume. A proposed **28.4** m³ cistern will collect rainwater from the roofs only and be used to provide enough water to meet the water balance requirements though a pumped irrigation system.

5.3 Stormwater Quality Control

Long-term average removal of 80% of Total Suspended Solids (TSS) on an annual loading basis, based on the site discharge at post-development imperviousness

5.3.1 TSS Removal

The subject site will require Best Management Practices (BMP) of stormwater runoff to achieve 80% TSS removal. Storm runoff from the site consists of the landscape, roof, and pavement areas. Runoff from the roof areas is considered clean, while the landscape area runoff will attain an 80% TTS removal by natural filtration.

The overall baseline TSS removal efficiency is presented in the following Table 5.3.1

Surface Area Component	Area (m²)	Percent Area (%)	Baseline TSS Removal Rate (%)	Weighted TSS Removal Rate	
Roofs	4432	33.2	80%	26.6	
Pavement	3548	26.6	0	0%	
Landscape	2277	17.1	80%	13.7	
Landscape area (non-developable area)	3078	23.1	80%	18.5	
Totals	13335	100%		58.8%	

Table 5.3.1 Baseline TSS Removal Rate and Average Runoff Coefficient

The subject site will also require *best-practice* treatment of stormwater runoff to achieve 80% TSS removal.

Storm runoff from the site consists of the landscape, roof and pavement areas. Runoff from the roof areas is considered clean, while the landscape area runoff will attain an 80% TTS removal by natural filtration.

The baseline weight average TSS removal is 58.8%, which does not meet the targeted 80% long-term. Therefore, a Jellyfish system will be provided as a supplementary water quality treatment for the storm flow generated by the permanent drainage area (Pavement area)

A Stormfilter SFPD 0612 has been selected to treat an area of 0.4922ha at R=0.67, refer to detailed Stormfilter sizing report enclosed in Appendix D.

5.4 Quantity Controls

5.4.1 Allowable Peak Flow

The allowable peak flows for each storm event (2-year, 5-year, 10 year, 25 year, 50 year and 100 years) are based on the pre-developments levels in accordance with TRCA criteria for Humber River Storm Management Quantity Control Release Rates. The following section shows the calculations for the allowable flows for the subject site:

The site specifics indicate that the post-development runoff coefficient is R=0.50 in accordance with the development standards manual of Town of Caledon standards, refer to table 5.4 below for composite runoff coefficient, therefore on-site controls are required as follows:

 $Q_{2\ yr\ Post}$ at Runoff coefficient of 0.50 to be controlled to $Q_{2\ yr\ Pre}$ at Runoff coefficient of 0.25 $Q_{5\ yr\ Post}$ at Runoff coefficient of 0.50 to be controlled to $Q_{5\ yr\ Pre}$ at Runoff coefficient of 0.25 $Q_{10\ yr\ Post}$ at Runoff coefficient of 0.50 to be controlled to $Q_{10\ yr\ Pre}$ at Runoff coefficient of 0.25 $Q_{25\ yr\ Post}$ at Runoff coefficient of 0.50 to be controlled to $Q_{25\ yr\ Pre}$ at Runoff coefficient of 0.25 $Q_{50\ yr\ Post}$ at Runoff coefficient of 0.50 to be controlled to $Q_{50\ yr\ Pre}$ at Runoff coefficient of 0.25 $Q_{50\ yr\ Post}$ at Runoff coefficient of 0.50 to be controlled to $Q_{50\ yr\ Pre}$ at Runoff coefficient of 0.25 $Q_{100\ yr\ Post}$ at Runoff coefficient of 0.50 to be controlled to $Q_{50\ yr\ Pre}$ at Runoff coefficient of 0.25 $Q_{100\ yr\ Post}$ at Runoff coefficient of 0.50 to be controlled to $Q_{50\ yr\ Pre}$ at Runoff coefficient of 0.25 $Q_{100\ yr\ Post}$ at Runoff coefficient of 0.50 to be controlled to $Q_{50\ yr\ Pre}$ at Runoff coefficient of 0.25 $Q_{100\ yr\ Post}$ at Runoff coefficient of 0.50 to be controlled to $Q_{50\ yr\ Pre}$ at Runoff coefficient of 0.25 $Q_{100\ yr\ Post}$ at Runoff coefficient of 0.50 to be controlled to $Q_{100\ yr\ Pre}$ at Runoff coefficient of 0.25 $Q_{100\ yr\ Pre}$ at Runoff coefficient of 0.50 to be controlled to $Q_{100\ yr\ Pre}$ at Runoff coefficient of 0.50 to be controlled to $Q_{100\ yr\ Pre}$ at Runoff coefficient of 0.50 to be controlled to $Q_{100\ yr\ Pre}$ at Runoff coefficient of 0.50 to be controlled to $Q_{100\ yr\ Pre}$ at Runoff coefficient of 0.50 to be controlled to $Q_{100\ yr\ Pre}$ at Runoff coefficient of 0.50 to be controlled to $Q_{100\ yr\ Pre}$ at Runoff coefficient of 0.50 to be controlled to $Q_{100\ yr\ Pre}$ at Runoff coefficient of 0.50 to be controlled to $Q_{10\ yr\ Pre}$ at Runoff coefficient of 0.50 to be controlled to $Q_{10\ yr\ Pre}$ at Runoff coefficient of 0.50 to be controlled to $Q_{10\ yr\ Pre}$ at Runoff coefficient of 0.50 to be controlled to

The allowable release rate for each storm event is calculated as follows:

 $Q_{2yr} = 9.506-0.719*ln(A) = 9.299 L/s/ha$ $Q_{5yr} = 14.652-1.136*ln(A) = 14.325 L/s/ha$ $Q_{10yr} = 17.957-1.373*ln(A) = 17.562 L/s/ha$ $Q_{25yr} = 22.639-1.71*ln(A) = 22.147 L/s/ha$ $Q_{50yr} = 26.566-2.082*ln(A) = 25.967 L/s/ha$ $Q_{100yr} = 29.912-2.316*ln(A) = 29.245 L/s/ha$

Q unit flow (L/s/ha- litres per second per hectare) A = Area in hectares (ha) =1.3335Ha

 $Q_{2yr-allow} = 12.400 L/s$ $Q_{5yr-allow} = 19.102 L/s$ $Q_{10yr-allow} = 23.419 L/s$ $Q_{25yr-allow} = 29.533 L/s$ $Q_{50yr-allow} = 34.627 L/s$ $Q_{100yr-allow} = 38.999 L/s$ Q unit flow (L/s/ha- litres per second per hectare) Non developable Area = 0.3078 Ha, Uncontrolled Area = 0.0903 Ha Total uncontrolled area = 0.3981 Ha $Q_{2yr-allow} = 3.702$ L/s $Q_{5yr-allow} = 5.703$ L/s $Q_{10yr-allow} = 6.991$ L/s $Q_{25yr-allow} = 8.817$ L/s $Q_{50yr-allow} = 10.337$ L/s $Q_{100yr-allow} = 11.642$ L/s

Therefore, the net allowable release rated for the controlled areas of the site is calculate as follows:

 $\begin{array}{l} Q_{2yr\text{-allow}} = 12.400 \ \text{L/s-} \ 4.465 \ \text{L/s} = 8.698 \ \text{L/s} \\ Q_{5yr\text{-allow}} = 19.102 \ \text{L/s-} \ 6.877 \ \text{L/s} = 13.399 \ \text{L/s} \\ Q_{10yr\text{-allow}} = 23.419 \ \text{L/s-} \ 8.431 \ \text{L/s} = 16.428 \ \text{L/s} \\ Q_{25yr\text{-allow}} = 29.533 \ \text{L/s-} \ 10.633 \ \text{L/s} = 20.716 \ \text{L/s} \\ Q_{50yr\text{-allow}} = 34.627 \ \text{L/s-} \ 12.465 \ \text{L/s} = 24.290 \ \text{L/s} \\ Q_{100yr\text{-allow}} = 38.999 \ \text{L/s-} \ 14.039 \ \text{L/s} = 27.357 \ \text{L/s} \end{array}$

Refer to figure 4 in Appendix A for Surface Composition Plan

All flows from the ground level of the subject site will be captured using area drains sized for the 100-year storm event, which will be directed into the Jellyfish Filter and stormwater management tank.

5.4.2 Post-development Discharge

To meet the stormwater quantity objectives, the subject site is proposed to provide onsite water quantity control up to the maximum allowable release rate. The required storage volume has been calculated using Modified Rational Method included as Table 5.4.2-F in Appendix D.

From Table 5.4.2-F, the required total onsite storage is **196.99m³**, and will be provided utilizing a storage tank. The proposed stormwater management tank is **230m³**, which includes a 28.4m³ cistern. As the proposed volume is greater than the requirement, the site will be able to control all storm events up to the 100 year storm.

As the depth of the tank and cistern is below the elevation of the discharge location, the proposed system must be pumped. The discharge will be set at a maximum rate for each storm event with a peak flow of **27.357 L/s** for the 100 year storm, and an above grade access manhole that also services as an overflow for emergency spillover. Refer to tables 5.4.2-A to table 5.4.2-F for onsite storage calculation and release rates.

As the underground storage tanks involve coordination with architectural, structural and mechanical disciplines, the detailed design of the underground storage tanks are to be undertaken by the project architect and building-team at building design stage to maintain the area and volume of the tank.

In summary, the total post-development discharges are controlled to allowable release levels for all storms up to the 100-year events; therefore, the existing storm sewers can accommodate the site without imposing any detrimental effects downstream.

5.5 Inspection and Maintenance

Stormfilter

The primary purpose of the Stormfilter system is to filter and prevent pollutants from entering the waterways. Routine inspection and maintenance tasks are key to restore the Stormfilter to its full efficiency and effectiveness. Maintenance activities may be required in the event of a chemical spill or after a major storm events.

Routine inspection and maintenance activities as shown in the attached Appendix D "Stormfilter Owner's Manual" should be implemented for the continued operation of the Stormfilter Unit.

Stormwater Management Tank

As per the Ontario Stormwater Management Planning and Design Manual. During the first two years of operation, inspections after significant storms will ensure that the system is functioning properly. After this, annual checks may be done to identify maintenance needs. Blockages may need to be cleared from inlets and outlets.

6 Erosion and Sediment Control

Erosion and sediment control should be implemented for all construction activities within the subject site, including topsoil stripping, parking lot construction, foundation excavation and stockpiling of materials. The basic principles considered to minimize erosion and sedimentation and resultant negative environmental impacts include:

- Minimize local disturbance activities (e.g. limit area-wide grading);
- Expose the smallest possible land area to erosion for the shortest possible time;
- Implement erosion and sediment control measures before the outset of construction activities; and,
- Carry out regular inspections of erosion and sediment control measures and repair or maintain as necessary.

The proposed grading, servicing and building construction should be carried out in such a manner that a minimum amount of erosion occurs and such that sedimentation facilities control any erosion that does occur. Erosion and sediment control measures should include but not be limited to the following:

- Erection of silt fences around all site perimeters.
- Provide sediment traps (e.g. rock check dams, straw bales, scour basins) along interceptor swales and points of swale discharge.
- Inlet controls at catchbasins, comprising filter cloth overlain with rip-rap;
- Implement a daily street sweeping and cleaning program for any mud tracking onto Albion Vaughan Road.
- Provide gravel "mud mats" at construction vehicle access points to minimize off-site tracking of sediments; and,
- Confine refueling/servicing equipment to areas well away from inlets to the minor system or major system elements.
- All waste and unused building materials (including garbage, cleaning wastes, wastewater, toxic materials, or hazardous materials) shall be properly disposed of and not allowed to be mixed with and carried off by runoff from the site into a receiving watercourse or storm sewer.

Erosion and sediment control measures outlined above should be implemented in consultation with the Construction Manager prior to any stage of construction.

Removal of the erosion and sediment controls should be done once construction is completed and sediment run-off from the construction activities has stabilized.

7 CONCLUSIONS AND SUMMARY RECOMMENDATIONS

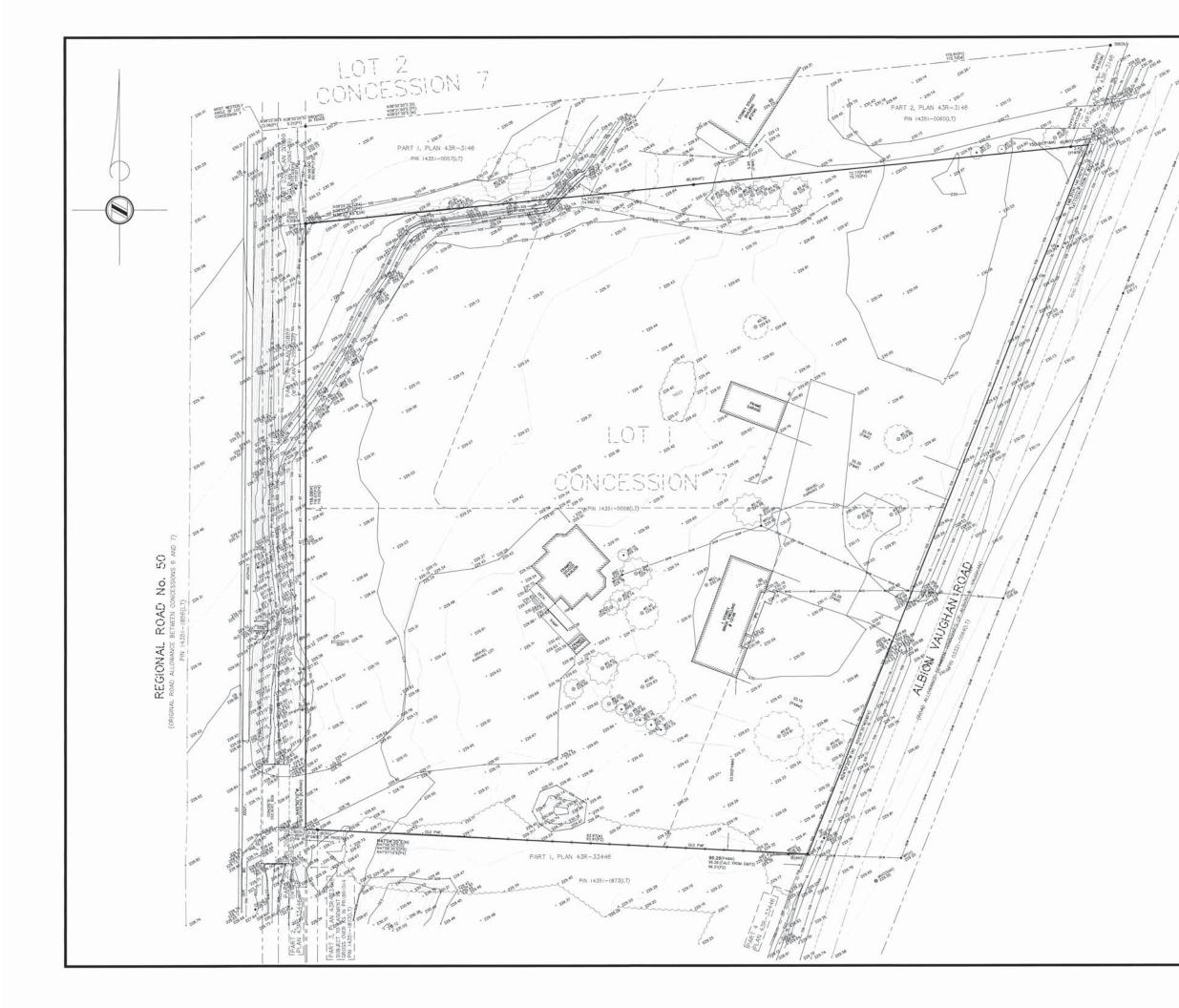
This functional servicing and stormwater management report demonstrates that the proposed residential development has been accommodated by the existing local infrastructure. More specifically:

- Water Service will be provided by an existing 300 mm diameter municipal watermain located on Albion Vaughan Road. A proposed 150mm fire servicing with 100mm domestic branch will be used to service the subject site. A proposed private fire hydrant will be provided as per Fire Code requirements.
- **Sanitary Service** is accommodated by the existing 200 mm diameter sanitary sewer running on Albion Vaughan Road. A 200mm diameter service lateral is proposed to service the subject development.

Stormwater Quantity Controls will be provided for each storm event using an underground storage tank located on P1. The outlet will directly discharge into Robinson Creek.

- **Stormwater Quality Controls** A treatment train of LID devices (roof green, rainwater harvesting,) will provide on-site stormwater quality controls. Supplementary quality control and TSS removals will be provided by a Storm filter.
- **Water Balance** will be provided by a combination of green roofs and irrigation using stormwater from the roof.
- **Erosion and Sediment Controls** will need to be implemented during development until the site has been stabilized with groundcover.

Respectfully Submitted, MASONGSONG ASSOCIATES ENGINEERING LIMITED


Rui Song, P. Eng Project Engineer

Tony Masongsong, P. Eng Principal

17-849

Appendix A

Background Figures Topographical Survey Site Plan Pre-Development Plan Post-Development Figures TRCA and Region Correspondence Regarding Driveway/Culvert Removal

SURVEYOR'S REAL PROPERTY REPORT PART 1, PLAN OF PART OF LOT 1 CONCESSION 7 HP OF ALBION (GEOGRA TOWN OF CALEDON REGIONAL MUNICIPALITY OF PEEL SCALE 1: 300 David B. Searles Surveying Ltd.

METRIC DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048

BEARING NOTE

BEARINGS ARE DERIVED FROM GPS OBSERVATIONS USING THE SMARTNET NETWORK, AND ARE REFERRED TO UTM ZONE 17, CENTRAL MERIDIAN 81'00' WEST LONGITUDE, NAD 83 (CSRS) (2010). BEARNIGS ON INSTRUMENT RO1179599 (D). PLAN 43R-3146 (P1), PLAN 43R-33446 (P2), PLAN AL20899 (P3) AND PLAN OF SURVEY BY JEMAP HALDINGS LIMITED, DATED JANUARY 22, 2007 (PER 100-2006-020)(P4). HAVE BEEN ROTATED 0052'30" COUNTERCLOCKWISE TO MAKE COMPARISONS.

BEARINGS ON PLAN 43R-33446 (P2) HAVE BEEN ROTATED 1'01'25" COUNTERCLOCKWISE TO MAKE COMPARISONS

DISTANCE NOTE

DISTANCES SHOWN HEREON ARE GROUND DISTANCES AND CAN BE CONVERTED TO GRID DISTANCES BY MULTIPLYING BY A COMBINED SCALE FACTOR OF 0.9997046.

LEGEND

	DENOTES	MONUMENT FOUND MONUMENT SET
18	DENOTES	
SIB		STANDARD IRON BAR
0U		ORIGIN UNKNOWN
865	DENOTES	MCLEAN MCMURCHY BIASON, D.L.S.
MTO	DENOTES	
JEMAP	DENOTES	JEMAP HOLDINGS LIMITED
M	DENOTES	
	DENOTES	TOPOGRAPHIC SURVEY BY J.D. BARNES LIMITED,
	0010100	DATED APRIL 3, 2003.
P1	DENOTES	PLAN 43R~3146
P2		PLAN 43R-33446
P3	DENOTES	PLAN AL20899
P4	DENOTES	PLAN OF SURVEY BY JEMAP HOLDINGS LINITED
		DATED JANUARY 22, 2007 (REF # 2006-026)
D	DENOTES	INSTRUMENT R01179599
ANC	DENOTES	
BB		BELL BOX
BC		BACK OF CURB
BF	DENOTES	
CB		CATCH BASIN
CCUT		CURB CUT
CLF		CHAIN LINK FENCE
CP(H)	DENOTES	CONCRETE POLE (HYDRO)
CP(H)LS		CONCRETE POLE (HYDRO) WITH LIGHT STANDARD
CPP		CULVERT (PLASTIC PIPE)
EP	DENOTES	
FH	DENOTES	FIRE HYDRANT
GDR GS		GUARDRAIL GARAGE SILL
HM	DENOTES	HYDRO METER
INV	DENOTES	
IPS	DENOTES	INTERLOCKING PAVING STONES
MBOX	DENOTES	MAILBOX
MHC(SAN)	DENOTES	
PWF	DENOTES	
SP	DENOTES	
WP(H)	DENOTES	
WRTW	DENOTES	WOODEN RETAINING WALL
WV	DENOTES	
	DENOTES	DIAMETER
805	DENOTES	
	DENOTES	UNDERGROUND BELL CABLE
DL		
	DENOTES	TOP OF SLOPE
\odot	DENOTES	CONIFEROUS TREE
\sim	DENOTES	DECIDUOUS TREE
	DENOTES	TREE LINE

BENCH MARK NOTE

ELEVATIONS ARE REFERRED TO THE CITY OF BRAMPTON BENCHMARK A BRASS CAP IN CONCRETE APPROX. 21 m SOUTH OF CONTRELINE (AND 11 m EAST OF CENTRELINE OF REGIONAL ROAD 50, IN FRONT O GAS STATION (COFFEE SHOP: HAVING AN ELEVATION OF 220.187 m.

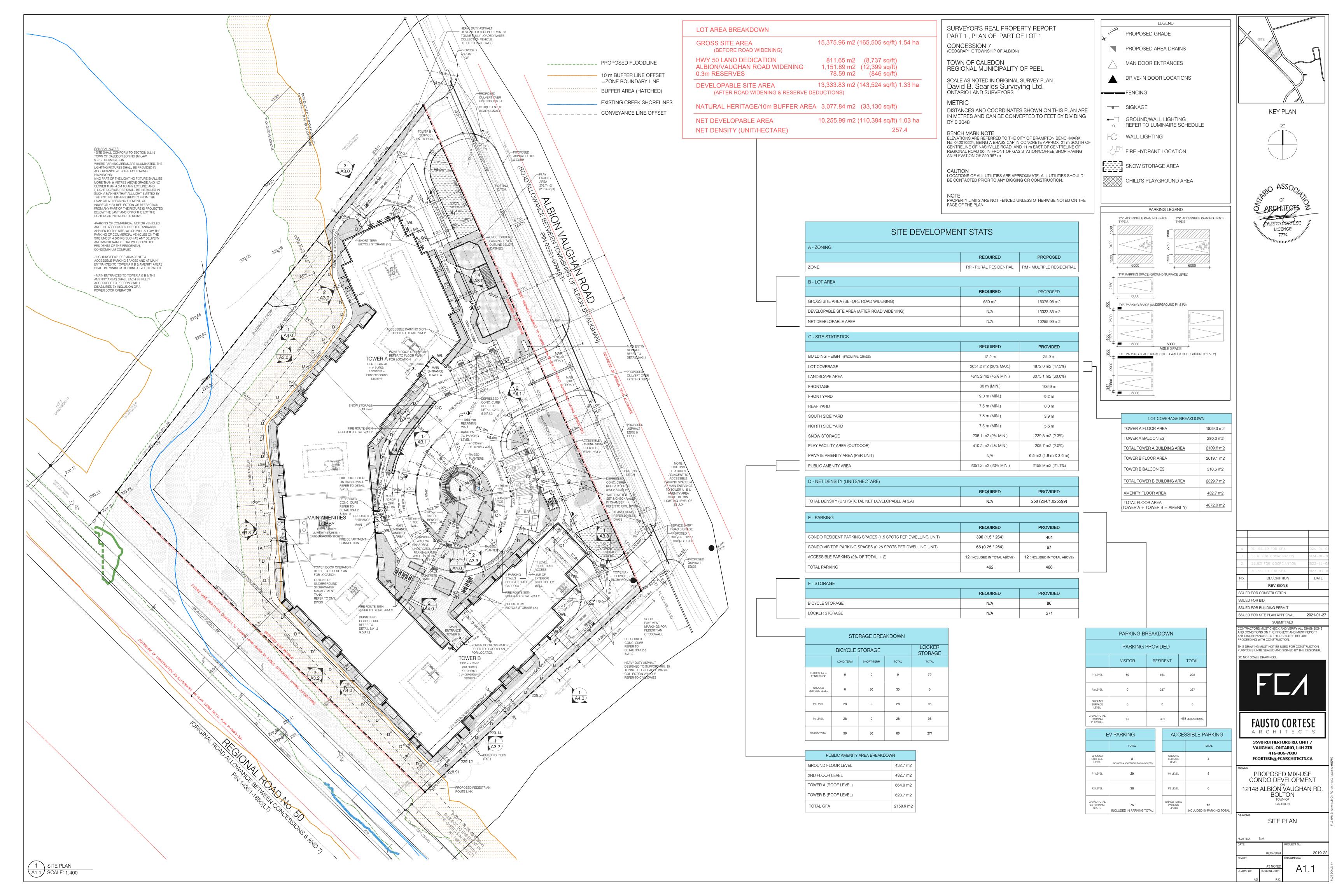
CAUTION

LOCATIONS OF ALL UTILITIES ARE APPROXIMATE. ALL UTILITIES SHOULD BE CONTACTED PRIOR TO ANY DIGGING OR CONSTRUCTION.

NOTE

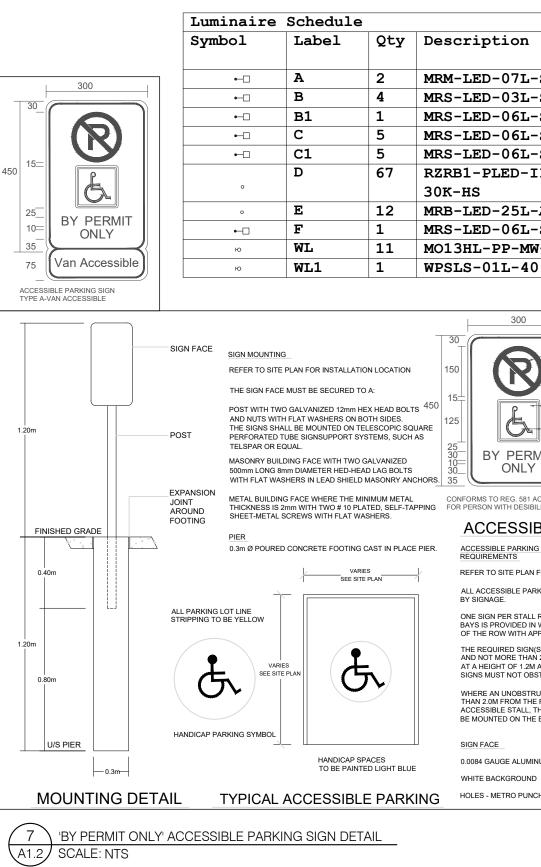
PROPERTY LIMITS ARE NOT FENCED UNLESS OTHERWISE NOTED ON THE FACE OF THE PLAN.

C THE REPRODUCTION ALTERATION OR USE OF THIS PLAN, IN WHOLE OR IN PART, WITHOUT THE EXPRESS PERMISSION OF DAVID B. SEARLES SURVEYING LTD. IS STRUCTLY PROHIBITED.


SURVEYOR'S CERTIFICATE

I CERTIFY THAT

1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT, AND THE REGULATIONS MADE UNDER THEM.


2. THE SURVEY WAS COMPLETED ON THE 19th DAY OF MAX 2018 JUNE 6,2016 ALISTER SA

TARIO LAND SURVI ASSOCIATION OF ONT LAND SURVEYORS PLAN SUBMISSION FOR THIS PLAN WAS PREPARED FOR PART 2 ALBION-VAUGHAN (12148) INC. S PLAN MUST BE READ IN CONJU WITH SURVEY REPORT DATED JUNE 6th, 2016 1968767 ND B. SEARLES SURVEYING LTD. IS A David B. Searles Surveying Ltd. Coloutetor BJ/KR IV/H Bivd, Suite 206, Mississouga, Ont. L42 273-6840 Fax: (905) 896-4410 THIS PLAN IS NOT VAL UNLESS IT IS AN EMBOS ORIGINAL COPY ISSUED BY THE SURVEY In secondance with Regulation 1026, Section 1 Editor Plan Index DAS H 17 erwoodtowne Biv Tel: (905) 273 76-0-16 76-16CALC.DWG 76-0-16.DWG

Image: Spin Service Se																
ITEM Ontario Building Code Data Matrix - Part 3 & 9 OBC Referen Reference Ref	AMENIT	Fausto MIX-U Locatio 3560 F	Cortese A SED CONE on: Rutheford ro	DO DE∖ bad, Un	(ELOPM)	ENT AT 12148 A	ALBION V	AUG	HAN RD	. B(OLTON - C	CALEDO	N			
ITEM Distance During Gode Para matrix F at 3 G 3 Product Description: 3 & 6 Storeys Condo Building Image of Use	`															
Image: construction is 3 & 6 Storeys Condo Building Image: construction is 3 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0	ITEM	Ontario Building Code Data Matrix - Part 3 & 9												Ref		
Image: Second																
Image: Change of Use Alteration Image: Change of Use Alteration 2 Major Occupancy(s) Group C 3.12.1 (1) 0. 3 Building Area (m ²) NEW: 281.94 m2 TOTAL: 2261.94 m2 1.4.12 [A] 1. 4 Gross Area (m ²) NEW: 13132.05 m2 TOTAL: 13132.05 m2 1.4.1.2 [A] & 3.2.1.1 a 1. 5 Number of Streety-Fire Fighter Access: 1 3.2.2.10 & 3.2.5. 9. 7 Building Clessification: GROUP C 3.2.2.43 3.2.2.43 0. 8 Sprinkler System Proposed Image: entre building mage: entre building mot required 3.2.2.17 3.3.2.2.17 3.3.2.2.17 9 Standpipe required Image: entre building mot required 2.2.9. No 3.2.2.17 NDEX 9 Standpipe required Yes No 3.2.4. 9. 10 Fire Alarm required Yes No 3.2.6 N 11 Water Service/Suppty is Adequate Yes No 3.2.6 N 12 High Building Combus	1	Project	t Descriptio	n: 3 & 6	6 Storeys	Condo Building		<pre>N</pre>	lew		Parl	11		\boxtimes	Part 3	Part 9
2 Initial Construction Statute														1.1.	2. [A]	1.1.2. 9.10.1.3.
4 Gross Area (m ²) NEW: 13132.05 m2 TOTAL: 13132.05 m2 1.4.1.2 [A] 1. 5 Number of Storeys Above Grade: 6 Below Grade: 2 1.4.1.2 [A] & 3.2.1.1 1 6 Number of Storeys Above Grade: 6 Below Grade: 2 1.4.1.2 [A] & 3.2.1.1 1 6 Number of Streets/Fire Fighter Access: 1 3.2.2.10 & 3.2.5. 9 7 3.2.2.43 3.2.2.43 3.2.2.43 9 8 Sprinkler System Proposed Imite building Imite of roof rating 3.2.2.67 9 9 Standpipe required Selected floor areas EXISTING NO CHANGE 3.2.9. N 9 Standpipe required Imite building Imite building 10 Selected floor areas EXISTING NO CHANGE 3.2.9. N 10 Fire Alarm required Imite building Imite building 10 Selected floor areas EXISTING NO CHANGE 3.2.6 N 11 Water Service/Supply is Adequate Imite Service/Supply is Adequate Imite Service/Supply Non 3.2.6 N <td>2</td> <td>Major (</td> <td>Occupancy</td> <td>(s)</td> <td>Group</td> <td>C C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.1.</td> <td>2.1.(1)</td> <td>9.10.2.</td>	2	Major (Occupancy	(s)	Group	C C								3.1.	2.1.(1)	9.10.2.
4 Gross Area (m ²) NEW: 13132.05 m2 TOTAL: 13132.05 m2 1.4.1.2 [A] 1. 5 Number of Storeys Above Grade: 6 Below Grade: 2 1.4.1.2 [A] & 3.2.1.1 1. 6 Number of Storeys Above Grade: 6 Below Grade: 2 1.4.1.2 [A] & 3.2.1.1 1. 6 Number of Streets/Fire Fighter Access: 1 3.2.2.0 3.2.2.43 3.2.2.43 9. 7 3.2.2.43 Sprinkler System Proposed Image: Street Access in the building is selected compartments is selected floor areas Image: Street Access in the building is selected floor areas EXISTING NO CHANGE 3.2.2.67 9. 9 Standpipe required Image: Street Access in the building is selected Compartments is selected Street Access in the building is selected Compartments is selected Incor areas Image: Street Access in the building is selected Compartments is selected Incor areas Image: Street Access in the building is selected Compartments is selected Incor areas Image: Street Access in the building is selected Compartments is selected Incor areas Image: Street Access in the building is selected Compartments is s	3	Buildin	g Area (m²)	NEW:	2261.94 m2		тот	AL: 226	61.9	14 m2			1.4.	1.2 [A] 1	1.4.1.2 [A]
5 Number of Storeys Above Grade: 6 Below Grade: 2 14.12 (A) & 3.2.1.1 1 6 Number of Streets/Fire Figher Access: 1 3.22.10 & 3.2.5. 8 7 Building Classification: 3.2.2.43 3.2.2.43 3.2.2.43 9 8 Sprinkler System Proposed entire building selected compartments basement in lieu of roof rating not required 3.2.2.67 9 9 Standpipe required Selected floor areas basement in trequired 3.2.2.17 INDEX 9 Standpipe required Yes No 3.2.2.9 N 10 Fire Alarm required Yes No 3.2.6 N 11 Water Service/Supply is Adequate Yes No 3.2.6 N 13 Construction Combustible Non-combustible Both 3.2.2.67 9 14 Mezzanine Area (m ²): N/A 3.2.1.1(.3)-(8) 9 3.2.1.0(.8) 9 16 Barrier-free Design Yes No (Explain): 3.8 9 3.2.1.4 9 17				·										14	1 2 [A]	1.4.1.2 [A]
6 Number of Streets/Fire Fighter Access: 1 3.2.2.10 & 3.2.2.5. 9. 7 Building Classification: 3.2.2.43 GROUP C 3.2.2.43 9. 8 Sprinkler System Proposed entire building selected compartments basement in lieu of roof rating not required 3.2.2.67 9. 9 Standpipe required Selected floor areas EXISTING NO CHANGE 3.2.2.17 INDEX INDEX INDEX INDEX 9 Standpipe required Yes No 3.2.4. 9. 10 Fire Alarm required Yes No 3.2.6. N. 11 Water Service/Supply is Adequate Yes No 3.2.6. N. 13 Construction Restrictions Combustible Non-combustible Both 3.2.2.67 9. 14 Mezzanine Area (m ²): N/A 0 3.2.6. N. 3.2.2.67 9. 15 Occupant load based on m ² /person Xes in Non-combustible Both 3.2.1.1(3)-(8) 9. 16 Barrier-free Design Yes N			. ,	's				-			0 112					1.4.1.2 [A]
7 Building Classification: GROUP C 3.2.2.43 3.2.2.43 9. 8 Sprinkler System Proposed Image: entire building Image:	-		,				L	Selov	v Glaue.	2						9.10.4. 9.10.20.
3.22.43 3.22.43 8 Sprinkler System Proposed entire building in lieu of roof rating 3.2.2.67 9. 9 Standpipe required selected compartments not required 3.2.1.5 3.2.2.17 INDEX IN 9 Standpipe required Image: Selected floor areas EXISTING NO CHANGE 3.2.2.17 INDEX IN 9 Standpipe required Image: Selected floor areas EXISTING NO CHANGE 3.2.2.9 N 10 Fire Alarm required Image: Selected floor areas Image: Selected floor areas <					giller Ac											9.10.2.
0 ■ minor of unity ■ ■ minor of unity ■ ■ minor of unity ■<	(3.2.2.4	3											3.Z.	2.43	9.10.2.
0 ■ minor of unity ■ ■ minor of unity ■ ■ minor of unity ■<		Sprinkl	or Sustam	Dranaa	ad 🔽	antina huildin.						-		2.0	0.07	9.10.8.2.
9 Standpipe required issement integration is the properties integration is the properimited is the properimited is the properime i	8	эрппкі	er System	Propos			0					aung		-		5.10.0.2.
INDEX INDEX INDEX INDEX INN 9 Standpipe required Yes No 3.2.9. N 10 Fire Alarm required Yes No 3.2.4. 9 11 Water Service/Supply is Adequate Yes No 3.2.6. N 12 High Building Yes No 3.2.6 N 13 Construction Restrictions Combustible Permitted Non-combustible Both 3.2.2.67 9. 14 Mezzanine Area (m ²): N/A 3.2.1.1(3)-(8) 9. 14 Mezzanine Area (m ²): N/A 3.2.1.1(3)-(8) 9. 15 Occupant load based on m ² /person Xesign of building 3.1.17 9. 16 Barrier-free Design Yes No (Explain): 3.8 9. 17 Hazardous Substance Yes No (Explain): 3.3.1.2.& 3.3.1.19 9. 18 Required Fire Resistance Rating (FRR) Horizontal Assemblies Listed Design No. 3.2.1.4						-	•						05	-		
9 Standpipe required Image: construction of the second se						-	rareas			=XI	STING NO	CHAN	GE	-		INDEX
10 Fire Alarm required Image: Construction in the service/Supply is Adequate Image: Construction is an image: Construction is		<u> </u>				basement		7 .		_	٦					
11 Water Service/Supply is Adequate Yes No 3.2.5.7. N 12 High Building Yes No 3.2.6 N 13 Construction Restrictions Combustible Permitted Non-combustible Required Both 3.2.2.67 9. 14 Mezzanine Area (m ²): N/A Combustible Occupant load based on Occupant load based on Occupancy: 350 Condextible Load: Both 3.2.1.1.(3)-(8) 9. 15 Occupant load based on Occupancy: 350 Load: Load: 3.8 9. 16 Barrier-free Design Yes No S.3.1.17 9. 17 Hazardous Substances Yes No S.3.1.2. & 3.3.1.19 9. 18 Required Fire Resistance Rating (FRR) Horizontal Assemblies FRR (Hours) Listed Design No. or Description (SB-3) 3.2.2.2083 & 3.2.1.4 9. 19 Spatial Separation - Construction of Exterior Walls - Existing Building North Thours Listed Design No. or Description Comb. Constr. Nonc. Constr. Nonc. Cladding N 19 Spatial Separation - Construction of Exterior Walls - Existing Building North <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td>4</td><td></td><td></td><td></td><td></td><td>N/A</td></t<>										<u> </u>	4					N/A
12 High Building X Yes No 3.2.6 N 13 Construction Restrictions Combustible Permitted Non-combustible Required Both 3.2.6 N 14 Mezzanine Area (m ²): N/A 3.2.1.1.(3)-(8) 9. 14 Mezzanine Area (m ²): N/A 3.2.1.1.(3)-(8) 9. 15 Occupant load based on Occupancy: m ² /person X design of building 3.1.17 9. 16 Barrier-free Design Yes No No 3.8 9. 17 Hazardous Substances Yes No 3.3.1.2. & 3.3.1.19 9. 18 Required Fire Resistance Rating (FRR) Horizontal Assemblies FRR (Hours) Listed Design No. or Description (SB-3) 3.2.2.2083 & 9. 3.2.1.4 9. 19 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. 19 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. Wall Area of EBF (m ⁷) (m) L/H or H/L Permitted Max. % of Openings Proposed % of Openings FRR (Hours) Comb Constr. Nonc. Const.	-							-		Ļ	4 1			-		9.10.18.
13 Construction Restrictions Actual Construction Combustible Permitted Combustible Non-combustible Non-combustible Both Both 3.2.2.67 9. 14 Mezzanine Area (m ²): N/A 3.2.1.1(3)-(8) 9. 15 Occupant load based on Occupancy: 350 m ² /person Load: Mezzanine Area (m ²): N/A 3.2.1.1.(3)-(8) 9. 16 Barrier-free Design Yes No (Explain): 3.8 9. 17 Hazardous Substances Yes No (Explain): 3.8. 9. 18 Required Fire Resistance Rating (FRR) Horizontal Assemblies FRR (Hours) Listed Design No. or Description (SB-3) 3.2.2.2083 & 9. 9. 19 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. 19 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. Wall Area of EBF (m ²) LD H/H or (m) Permitted Max.% of Openings Proposed % of Openings FRR (Hours) Comb. Const. Const. Const. Const. Const. Const. Cladding No				pply is a	Adequate)	E	_		-	4 7			-	-	N/A
13 Construction Restrictions Permitted Required Bouin 3.2.2.07 9. 14 Mezzanine Area (m ²): N/A Combustible Non-combustible Both 9. 14 Mezzanine Area (m ²): N/A 3.2.1.1.(3)-(8) 9. 15 Occupant load based on m ² /person Message design of building 3.1.17 9. 16 Barrier-free Design Morean Yes No Load: 3.3.1.2 8.3.1.2 9. 17 Hazardous Substances Yes No Kexplain): 3.8 9. 18 Required Fire Resistance Rating (FRR) Horizontal Assemblies FRR (Hours) Listed Design No. or Description (SB-3) 3.2.2.2083 & 9. 19 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. 19 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. Wall Area of EBF (m ²) L.D. L/H or Max.% of Openings Proposed % of Openings FRR Comb. Const. Comb. Const. Non. Cladding							<u>×</u>					-		-	-	N/A
14 Mezzanine Area (m ²): N/A 3.2.1.1.(3)-(8) 9. 15 Occupant load based on									Required			-		3.2.	2.67	9.10.6.
15 Occupant load based on			-	0		Combusti	ble		lon-com	ous	tible	Bot	h			
Occupancy: 350 Load: Load: Image: construction of exterior Walls - Existing Building Load: Image: construction of exterior Walls - Existing Building S.8 9 16 Barrier-free Design Image: Construction of exterior Walls - Existing Building 3.8 9 3.3.1.2. & 3.3.1.19 9 17 Hazardous Substances Image: Yes No S.2.2.2083 & 9 3.2.2.2083 & 9 9 18 Required Fire Resistance Rating (FRR) Horizontal Assemblies Listed Design No. or Description (SB-3) 3.2.1.4 9 Floor: 1 Hours FRR of Supporting Listed Design No. or Description (SB-3) 3.2.1.4 9 Floor: 1 Hours FIGO: SI and the second an				,	/A	2.	F	7.							.,.,	9.10.4.1.
17 Hazardous Substances Yes No 3.3.1.2. & 3.3.1.19 9. 18 Required Fire Resistance Rating (FRR) Horizontal Assemblies FRR (Hours) Listed Design No. or Description (SB-3) 3.2.2.2083 & 3.2.1.4 9. 10 Horizontal Assemblies Fire Resistance Rating (FRR) Horizontal Assemblies FRR (Hours) Listed Design No. or Description (SB-3) 3.2.2.2083 & 3.2.1.4 9. 10 FRR of Supporting Hoor: 1 Hours 1 Hours 1 10 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. 19 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. Wall Area of EBF (m ²) L/H or Max. % of Openings Proposed % of Openings FRR (Hours) Comb Const Comb Const Comb Const Comb Const Comb Const Comb Const Comb Const North - </td <td>15 0</td> <td>Occup</td> <td></td> <td></td> <td>cy: 350</td> <td></td> <td></td> <td>d</td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td>3.1.</td> <td>17</td> <td>9.9.1.3.</td>	15 0	Occup			cy: 350			d	0		0			3.1.	17	9.9.1.3.
18 Required Fire Resistance Rating (FRR) Horizontal Assemblies FRR (Hours) Listed Design No. or Description (SB-3) 3.2.2.2083 & 3.2.1.4 9. 3.2.1.4 1 Hours or Description (SB-3) Image: Second control of the second control con	16 E	Barrier	-free Desig	n		🔀 Yes	No No	(Expl	lain):					3.8		9.5.2.
Is Required Fire Resistance Rating (FRR) FRR (Hours) or Description (SB-3) S.2.1.4 9. Floor: 1 Hours or Description (SB-3) 3.2.1.4 9. Fire Resistance Rating (FRR) FRR of Supporting Listed Design No. 3.2.1.4 9. Floor: 1 Hours - - - - - FRR of Supporting Listed Design No. or Description (SB-3) - - - Floor: 1 Hours - - - - - - Image: State of the state o	17 H	Hazaro	lous Substa	ances		Yes	🛛 No							3.3.	1.2. & 3.3.1.19	9.10.1.3.(4)
Fire Resistance Rating (FRR) FRR (Hours) or Description (SB-3) Output for the second se	18				Horizoi	ntal Assemblies				List	ed Design	No.		3.2		9.10.8. 9.10.9.
$\begin{tabular}{ c c c c c c c c c c } \hline Rating (FRR) & Floor: 1 Hours & & & & & & & & & & & & & & & & & & &$					FF	RR (Hours)			or	^r De	escription (SB-3)			3.2.1.4	0.10.0.
Roof: 0 Hours FRR of Supporting Listed Design No. Members or Description (SB-3) Floor: 1 Hours Roof: - Hours 19 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. Wall Area of EBF (m ²) L/H or M) Permitted Max. % of Openings Proposed % of Openings FRR (Hours) Comb Design or Description Comb. Constr. Nonc. Cladding N		Ra	ating	Floor:		1	Hours									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		(F		Roof:		0	Hours									
Floor: 1 Hours 19 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. 19 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. Wall Area of EBF (m ²) L.D. (m) L/H or H/L Permitted Max.% of Openings Proposed % of Openings FRR (Hours) Listed Design or Description Comb. Const Const Nonc. Cladding Nonc. North - <					FRR	of Supporting				List	ed Design	No.				
Roof: - Hours 19 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. Wall Area of EBF (m ²) L.D. L/H or H/L Permitted Max. % of Openings Proposed % of Openings FRR (Hours) Comb Constr. Nonc. Cladding Constr. Nonc. Cladding North Cladding North - - - - - - - - - - - - North North North -		Members or Description (SB-3)														
19 Spatial Separation - Construction of Exterior Walls - Existing Building 3.2.3 9. Wall Area of EBF (m ²) L.D. (m) L/H or H/L Permitted Max. % of Openings Proposed % of Openings FRR (Hours) Listed Design or Description Comb. Constr. Nonc. Cladding North				Floor:		1	Hours									
Wall Area of EBF (m ²) L.D. (m) L/H or H/L Permitted Max. % of Openings Proposed % of Openings FRR (Hours) Listed Design or Description Comb. Constr. Nonc. Cladding Nonc.				Roof:		-	Hours									
Wall Area of L.D. L/H of Finited Hippsteel FRR Design or Comb Const. Nonc. EBF (m ²) (m) H/L Openings Openings (Hours) Description Const. Cladding North - - - - - - - -	19 ;	Spatial Separation - Construction of Exterior Walls - Existing Building										3.2.	3	9.10.14.		
EBF (m ²) (m) H/L Openings Openings (Hours) Description Const Cladding North - - - - - - - -	W	Vall	Area of	L.D.	L/H or				FRF	2			Com	ıb		Non-comb
			EBF (m ²)	(m)	H/L				(Hour	s)			Con	st		Const
	N	lorth	-	-	_	-	-		-		-		-		-	_
South – – – – – – – – – –	S	South	-	-	-	-	-		-		-		-		-	-
East – – – – – – – – – –	E	ast	_	-	_	-	-		-		-		-		-	_
West	W	Vest	-	-	-	-	-		-		-		-		-	-

		Rutheford ro nan, Ontario										
ЕМ	Ontario Building Code Data Matrix - Part 3 & 9										BC Reference	
							[A] for Division A or [C					
1	Projec	t Descriptic	n: 7 Sto	orey Cond	o Building		lew	Part 11	\square	Part 3	Part 9	
							Addition	11.1 to 11.4	1.	1.2. [A]	1.1.2. 9.10.1.3.	
				Ch	ange of Use	A	Alteration					
2	Major	Occupancy	(s)	Group	С				3.	1.2.1.(1)	9.10.2.	
3	Buildir	ng Area (m²)	NEW:	2019.14 m2	ТОТ	AL: 2019.1	4 m2	1.	4.1.2 [A] 1	1.4.1.2 [A]	
4	Gross	Area (m ²)		NEW: 1	5601.62 m2	тот	AL: 15601.6	62 m2	1.4	4.1.2 [A]	1.4.1.2 [A]	
5	Numb	er of Storey	s	Above	Grade: 7	Belov	v Grade: 2		1.4	.1.2 [A] & 3.2.1.1.	1.4.1.2 [A] 9.10.4.	
6		er of Streets		ighter Acc					3.	2.2.10 & 3.2.5.	9.10.20.	
7	Buildir 3.2.2.4	ng Classifica 42	ation:		GROUP C				3.:	2.2.42	9.10.2.	
					1		_					
В	Sprink	ler System	Propos	ed 🖂	entire buildin	•	=	eu of roof rating		2.2.67	9.10.8.2.	
					selected com	•		required	-	2.1.5		
					selected floor	r areas	EXI	STING NO CHA		2.2.17 Dev	INDEX	
	basement INDEX											
9		pipe require					′es	No		2.9.	N/A	
0	Fire Alarm required Yes No 3.2.4. 9.10.18.											
1		Service/Su	ppiy is <i>i</i>	Adequate			/es	No No	-	2.5.7.	N/A	
2	High Building Yes No 3.2.6 N/A Construction Restrictions Combustible Permitted Non-combustible Required Both 3.2.67 9.10.6.											
3		ruction Res			Permitted Combusti	F	Required Ion-combus		oth 3.: oth	2.2.67	9.10.6.	
4		Construction	2	I/A	Combust		ion-combus			2.1.1.(3)-(8)	9.10.4.1.	
5		ant load ba	,	I/A	m²/persor		lesign of bui	Idina		1.17	9.9.1.3.	
0	Cooup			cy: 420	Load:		Load		0.			
6	Barrie	r-free Desig	-	,	Yes	No (Exp			3.	3	9.5.2.	
7		dous Substa				\ ⊠_No	,			3.1.2. & 3.3.1.19	9.10.1.3.(4)	
8		quired		Horizon	tal Assemblies		List	ed Design No.		2.2.2083 &	9.10.8.	
		Fire		FR	R (Hours)		or Description (SB-3)			3.2.1.4	9.10.9.	
	R	istance ating	Floor:		2	Hours		,				
	(F	FRR)	Roof:		0	Hours						
				FRR d	of Supporting		List	ed Design No.				
					lembers			escription (SB-3)				
			Floor:		2	Hours		,				
			Roof:		-	Hours						
9	Spatia	I Separatio	ו - Con	struction c	of Exterior Walls	s - Existing Bui	lding		3.	2.3	9.10.14.	
	Wall	Area of	L.D.	L/H or	Permitted	Proposed	FRR	Listed Design or	Comb	Comb.	Non-comb	
		EBF (m ²)	(m)	H/L	Max. % of Openings	% of Openings	(Hours)	Description	Const	Constr. Nonc. Cladding	Const	
	North	-	-	-	-	-	-	-	-	-	-	
	South	-	-	-	-	-	-	-	-	-	-	
	East	_	-	-	-	-	-	_	-	-	-	
	West	_	_		-	-	-	-	_	-	_	

0		0.000 001/					
5	MRS-LED-06L-SIL-3-30-70CRI-IL	0.880 4030	39	-			
67	RZRB1-PLED-III-M-20LED-175mA-	0.930 1261	11	-			
	ЗОК-НЅ						
12	MRB-LED-25L-ACR-S-30	0.930 2156	30.5				
1	MRS-LED-06L-SIL-4-30-70CRI-IL	0.880 3581	39				<u> </u>
11	MO13HL-PP-MW-8L40K-DCC-DV	0.900 963	11.47	-		3000	$[9^{-10}\frac{1}{8}]$
1	WPSLS-01L-40	0.900 1286	12.34			õ	-6]
LOCATION HEAD BOLT H SIDES. SCOPIC SQI EMS, SUCH VANIZED AG BOLTS SONRY ANC UM METAL D, SELF-TAI ERS. ST IN PLACE	Jar 125 Jar 25 Jar Jar Jar Ja	30.00 cm 5.00 cm FIRE ROUTE 18.81 cm 2.541cm 3.81 cm VEHICLES WILL BE TAGGED AND/OR TOWED ANAY 04.22 cm RED CIRCLE BLACK	CONSTRUCTION AM SIGN R 1. SIGNS SHA 2. ALL SIGN S CM. RADIUS 3. SIGN BLAN ACCEPT MA 5.08CM (2 III SHALL BE F BLANKS, FA 4. FINISHED S ALUMINUM GLOSSY 5. FACES TO 6. ALL LETTER 7. ALL COLOU 45.00 cm INSTAL 1. SIGNS TO E LINE PARAL 1. SIGNS TO E INTERVALS 3. SIGNS SHA HEIGHT ME 4. SIGNS SHA 1. METER (3 5. SIGNS SHA 1. METER (3 5. SIGNS SHA 1. SIGNS SHAL 1. SIGNS SHAL	AND INSTALLATION SPECIFICATIONS D DESIGN (REFER TO FIGURE 5) EQUIREMENTS I COMPLY WITH THE ATTACHED FIGURE 5 HALL HAVE APPROPRIATE RADIUS. CORNER AS PER DIAGRAM OR 4 ALL SHARP DEGESS REMOVENTING SYSHALL COMPLETED SIGNS SHALL HAVE 11MM. X 18MM. SLOTTED HOLES TO TRIC OR IMPERIAL MOUNTING SLOTT SHALL BE EQUAL TO MULTER EDGE OR GRAM. CENTRALLY LOCATED ON BLANK. ON STEEL BLANKS, FABRICATIONS ABRICATED BEFORE GAL VANISING AS TO PREVENT CORROSION. ON ALUMINUM BRICATING SHALL BE PERFORMED PRIOR TO PREVENT CORROSION. ON ALUMINUM BRICATING SHALL BE PERFORMED PRIOR TO PREVENT CORROSION. ON ALUMINUM BRICATING SHALL BE PERFORMED PRIOR TO PREVENT CORROSION. ON ALUMINUM BRICATING SHALL BE PERFORMED PRIOR TO PREVENT CORROSION. ON ALUMINUM BRICATING SHALL BE PERFORMED PRIOR TO PREVENT CORROSION. ON ALUMINUM BRICATING SHALL BE PERFORMED PRIOR TO PREVENT CORROSION. ON ALUMINUM BRICATING SHALL BE PERFORMED PRIOR TO PREVENT CORROSION. ON ALUMINUM BRICATING SHALL BE PERFORMED PRIOR TO HESTING AND BAKING: INFIN BRIGHT WHITE MILL BAKED FINISH ON BOTH SIDES. ALL INKS SHALL BE CONFORM TO REG. 486 OF THE HIGHWAY TRAFFIC ACT. RING TO MEET M.T.O. STANDARDS EDED MEET M.T.O. STANDARDS EDED ON THE BOITS (STAGGERED) OF THE FIRE ACCESS ROUTE AT EDE LOCAD ON EITHERS (10 FEET) AND NOT LESS THAN 15M (6 FEET) IN ASURED FROM THE BOITS ON OF THE SIGN TO THE FIRE ACCESS ROUTE AT I.NOT BE EXCEED 2 METERS (17 FEET) AND NOT LESS THAN 15M (6 FEET) IN ASURED FROM THE BOTTOM OF THE SIGN TO THE FINISHED PAVEMENT/GRADE. I.L BE INSTALLED AT A MAXIMUM OF 3 METERS (100 FEET) AND A MINIMUM OF FEET) MEASURED HONZ/ONTALLY FROM THE CURS. I.L BE INSTALLED SO THAT THERE NO OBSTRUCTIONS WITHIN 6 METERS (20 E SIGN AND BE VISIBLE TO APPROCHING TRAFFIC. I.DISPLAY SINGLE HEADED ARROWS POINTING IN THE DIRECTION IN WHICH THE NIS IN EFFECT. ATI INTERMEDIATE POINTS THROUGHOUT THE RESULATED AREA AND BE VISIBLE TO APPROCHING TRAFFIC. I.DISPLAY SINGLE HEADED ARROWS POINTING IN THE DIRECTION IN WHICH THE NIS IN EFFECT. ATI INTERMEDIATE POINTS THR	POURED CONCRETE CURB 3 DEPRESSED CONCRETE CURB DETA	COMPA GRANU 450mm I JOINTS DOWEL 1 A REL	CTED LAR F LONG S @ 54 SHAL
		A1.2 SCALE: NT			A1.2 SCALE: 1:20		

LLF LuminaireLuminaire

0.880 6017

MRM-LED-07L-SIL-2-30-70CRI-IL 0.880 4594

MRS-LED-03L-SIL-3-30-70CRI-IL 0.580 4030

MRS-LED-06L-SIL-3-30-70CRI-IL 0.880 4030

MRS-LED-06L-SIL-3-30-70CRI

Lumens Watts

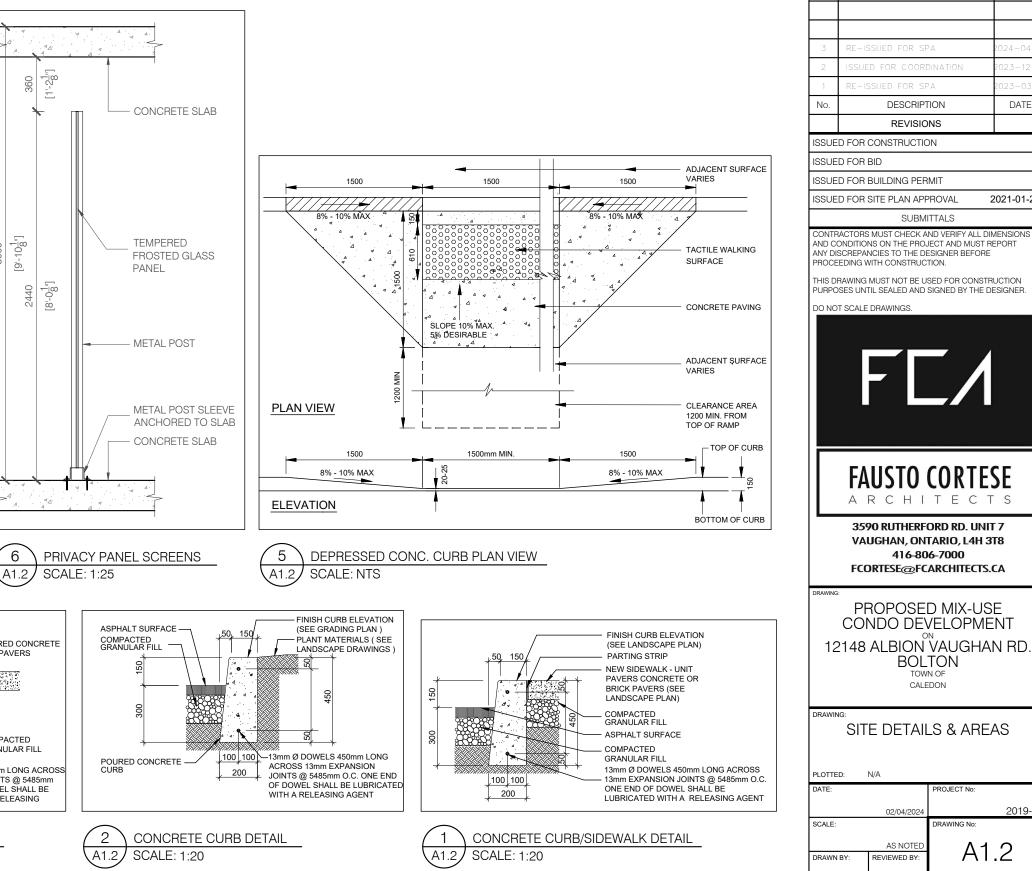
48

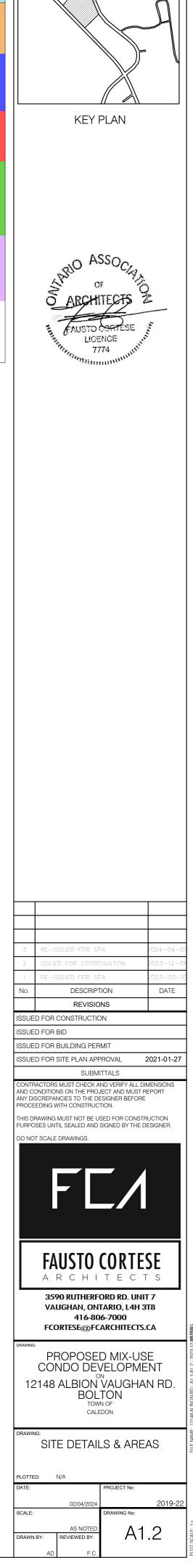
39

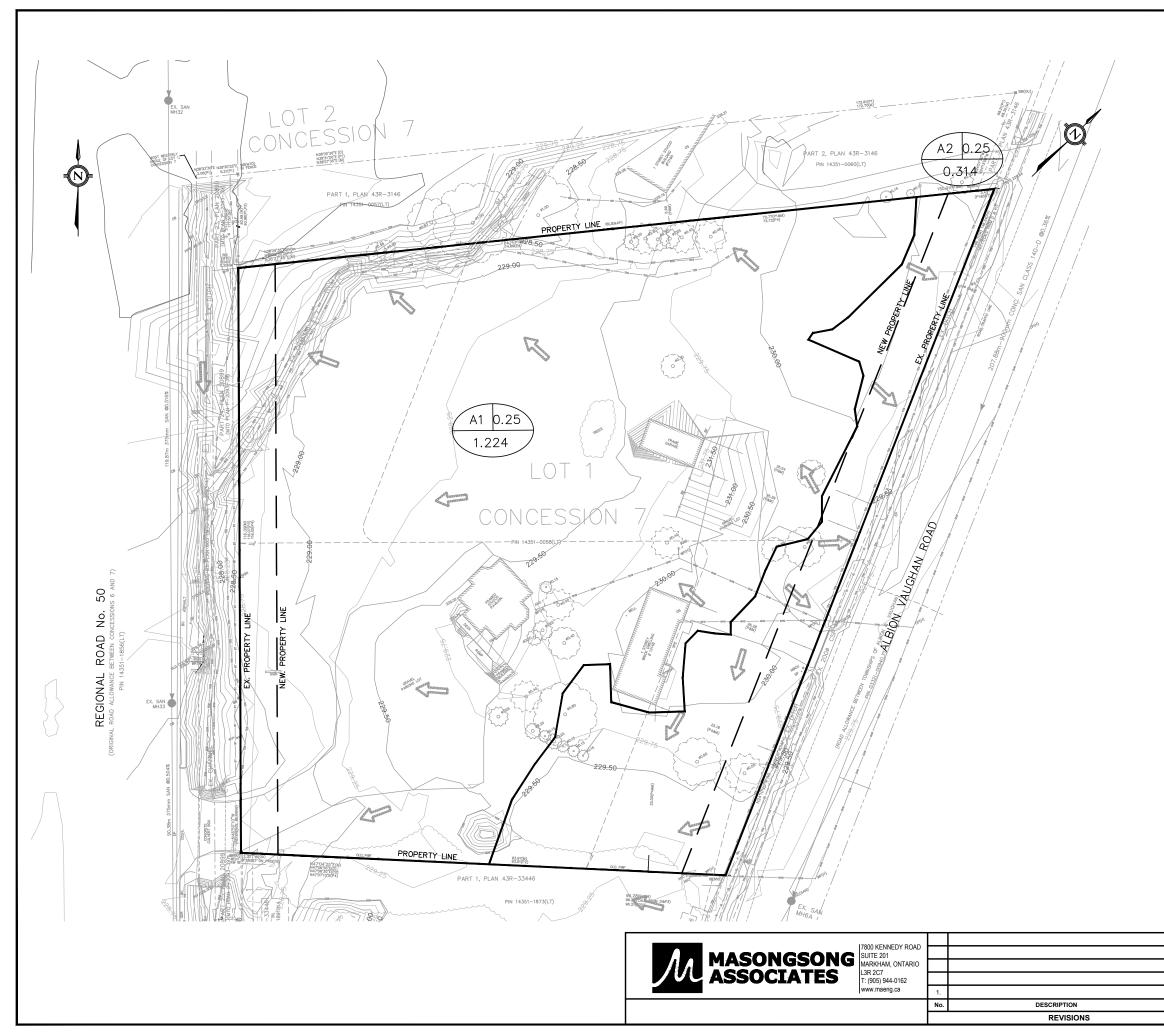
39

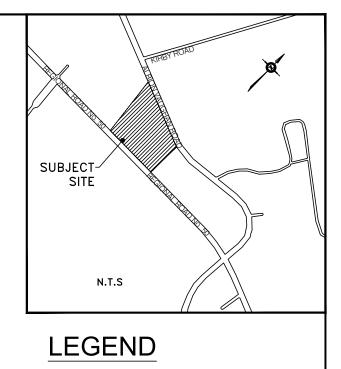
39

UNDERGROUND LEVEL						
	QTY.	m2	SQ/FT			
PARKING LEVEL 1 - P1	1	9040.92	97315.65			
PARKING LEVEL 2 - P2	1	9040.92	97315.65			
TOTAL GFA		18081.84	194631.31			
TOWER A (RESIDENTIAL CONDO)						
GROUND FLOOR LEVEL	1	1713.24	18441.16			
2ND FLOOR LEVEL	1	1870.33	20132.06			
3RD FLOOR LEVEL	1	1882.15	20259.29			
4TH TO 6TH FLOOR LEVEL	3	5646.45	60777.88			
ROOF LEVEL	1	169.29	1822.22			
TOTAL BUILDING AREA		1713.24	18441.16			
TOTAL GFA		11281.46	121432.62			
TOWER B (RESIDENTIAL CONDO)						
GROUND FLOOR LEVEL	1	1907.84	20535.82			
2ND FLOOR LEVEL	1	2019.14	21733.84			
3RD FLOOR LEVEL	1	2113.65	22751.14			
4TH TO 7TH FLOOR LEVEL	4	8454.60	91004.56			
ROOF LEVEL	1	327.19	3521.84			
TOTAL BUILDING AREA		1907.84	20535.82			
TOTAL GFA		14822.42	159547.20			
AMENITY SPACE						
GROUND FLOOR LEVEL	1	432.68	4657.33			
2ND FLOOR LEVEL	1	432.68	4657.33			
TOWER A (ROOF LEVEL)	1	664.84	7156.28			
TOWER B (ROOF LEVEL)	1	628.70	6767.27			
TOTAL BUILDING AREA		432.68	4657.33			
TOTAL GFA	20% OF DEVELOPABLE LOT AREA = 2051.2 m2 (min.)	2158.90	23238.21			
SERVICE AREAS						
TOWER A - GARBAGE (GROUND FLOOR)		116.02	1248.83			
TOWER A - MECHANICAL ROOM (ROOF LEVEL)		204.37	2199.82			
TOWER B - GARBAGE (GROUND FLOOR)		111.30	1198.02			
TOWER B - MECHANICAL ROOM (ROOF LEVEL)		39.20	421.95			
TOTAL BUILDING AREA		227.32	4646.67			
TOTAL GFA		470.89	5068.62			
GRAND TOTAL						
TOTAL BUILDING AREA		4281.08	48280.98			
TOTAL GFA (NOT INCLUDING UNDERGROUND PARKING)		28733.67	309286.65			

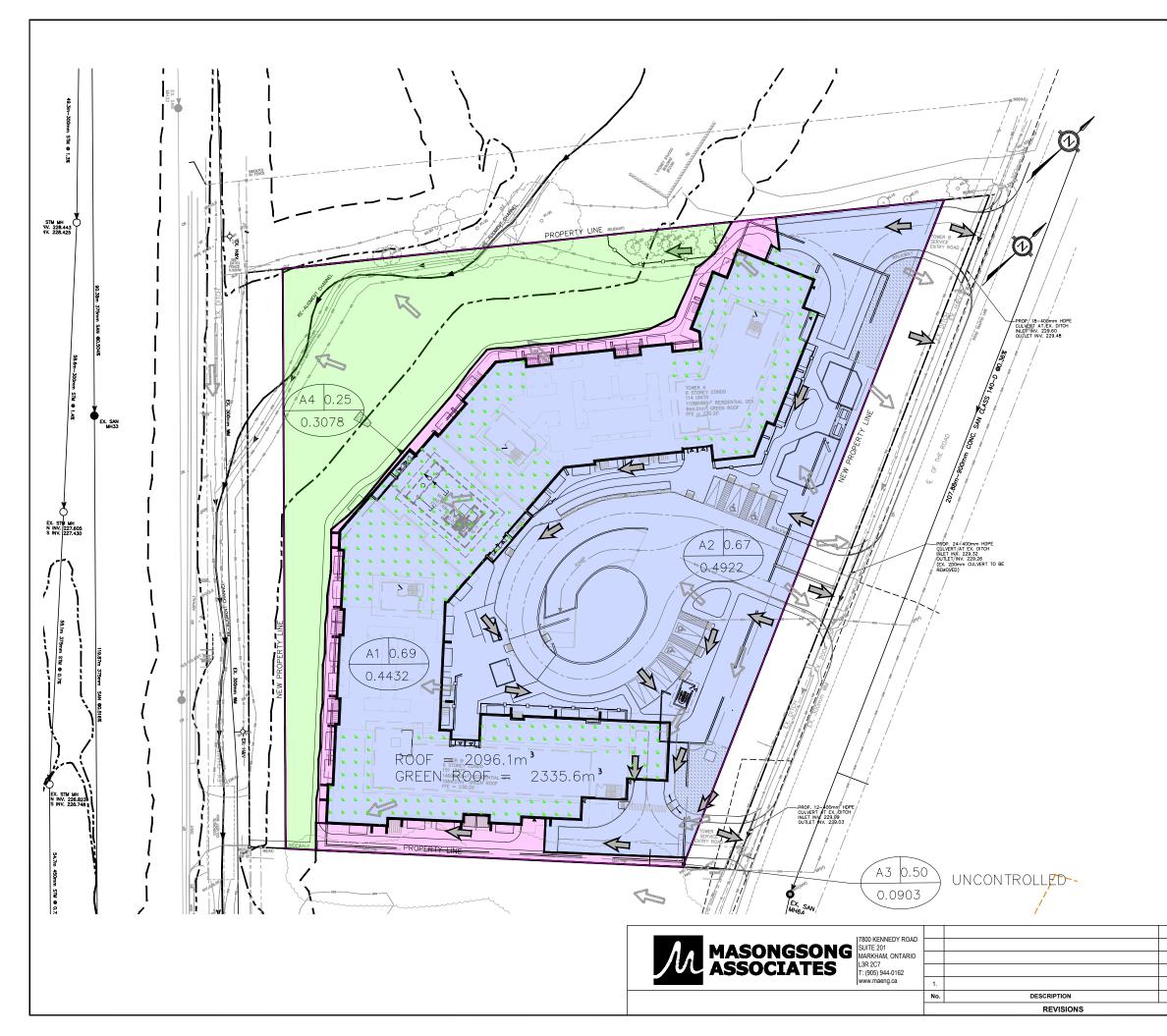

BUILDING STATISTICS

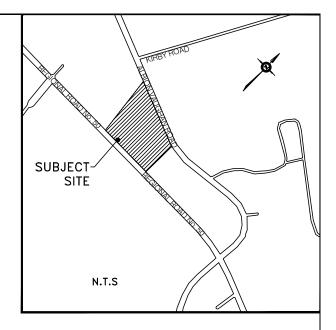

UNIT BREAKDOWN																	
ſΕΥS	UNI	TS TYF	ΡE			TOW	ER A			TOWER B							
STOREYS	UNIT TYPE	SQ/FT	m2	GROUND FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	5TH FLOOR	6TH FLOOR	GROUND FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	5TH FLOOR	6TH FLOOR	7TH FLOOR	TOTALS
1 BEDROOM	TYPE 1-4	592-633	55-64	6	7	6	6	6	6	4	6	6	6	6	6	6	77
1 BEDROOM + DEN	TYPE 1-7	800-1004	74-93	5	5	3	3	3	3	2	2	2	2	2	2	2	36
2 BEDROOM	TYPE 1-13	932-1114	86-104	6	5	5	5	5	5	12	11	9	9	9	9	9	99
2 BEDROOM + LARGE BALCONY	TYPE 1-9	1011-1244	94-116	0	2	4	4	4	4	0	1	4	4	4	4	4	39
3 BEDROOM	TYPE 1	1584-1801	147-167	1	1	1	1	1	1	1	1	1	1	1	1	1	13
	PARTIAL	UNITS PER 1	rower	18	20	19	19	19	19	19	21	22	22	22	22	22	
TOTAL UNITS PER TOWER					11	4						150					
							264										
						407				י א ר							1


* INCLUDES 40 BARRIER-FREE SUITES - 1ST (15% OF TOTAL SUITES OBC 3.8.2.1.(5))*

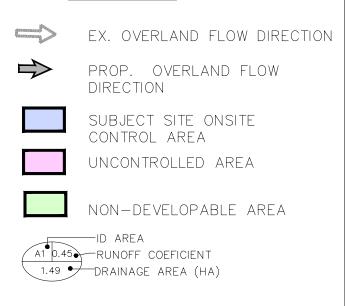

S -	1ST FLOOR -	TOWER A - (2) - 1 BEDROOM + (1) 2 BEDROOM TOWER B - (1) - 1 BEDROOM + (2) 2 BEDROOM
		(6) - TOTAL
		TOWER A - (2) - 1 BEDROOM + (1) 2 BEDROOM TOWER B - (1) - 1 BEDROOM + (2) 2 BEDROOM
		(6) - TOTAL
	3RD FLOOR -	TOWER A - (2) - 1 BEDROOM + (1) 2 BEDROOM TOWER B - (1) - 1 BEDROOM + (2) 2 BEDROOM
		(6) - TOTAL
	4TH FLOOR -	TOWER A - (2) - 1 BEDROOM + (1) 2 BEDROOM TOWER B - (1) - 1 BEDROOM + (2) 2 BEDROOM
		(6) - TOTAL
	5TH FLOOR -	TOWER A - (2) - 1 BEDROOM + (1) 2 BEDROOM TOWER B - (1) - 1 BEDROOM + (2) 2 BEDROOM
		(6) - TOTAL
	6TH FLOOR -	TOWER A - (2) - 1 BEDROOM + (1) 2 BEDROOM TOWER B - (1) - 1 BEDROOM + (2) 2 BEDROOM
		(6) - TOTAL
	7TH FLOOR -	TOWER A - N/A TOWER B - (1) - 1 BEDROOM + (3) 2 BEDROOM
_		(4) - TOTAL
Ξ	TOTAL -	(19) 1 BEDROOM + (21) 2 BEDROOM
-		

(40) BARRIER-FREE SUITES

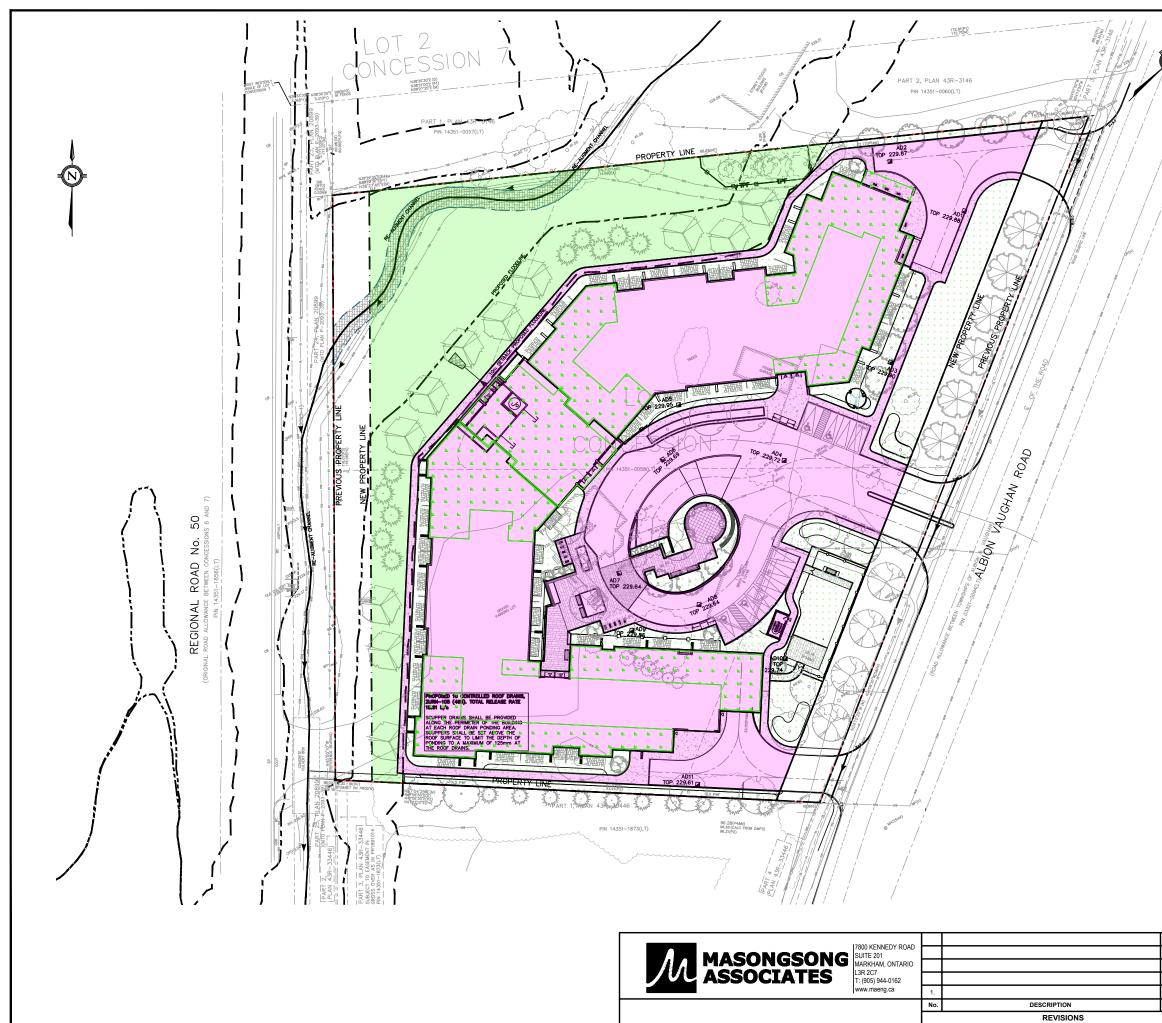


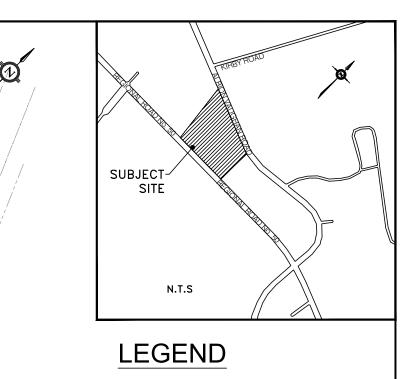


EX. OVERLAND FLOW DIRECTION ID AREA RUNOFF COEFICIENT 1.49 DRAINAGE AREA (HA)


-EX. DRAINAGE AREA BOUNDARY

_												
			12	12148 ALBION VAUGHAN ROAD TOWN OF CALEDON								
			14									
				EXISTING DRAINAGE								
				AREA								
	BY	DATE	DATE:	SCALE	DESIGN BY:	DRAWN BY:	PROJECT No.	FIG. No.				
			DEC. 2020	N.T.S		I.S	17-849	2				



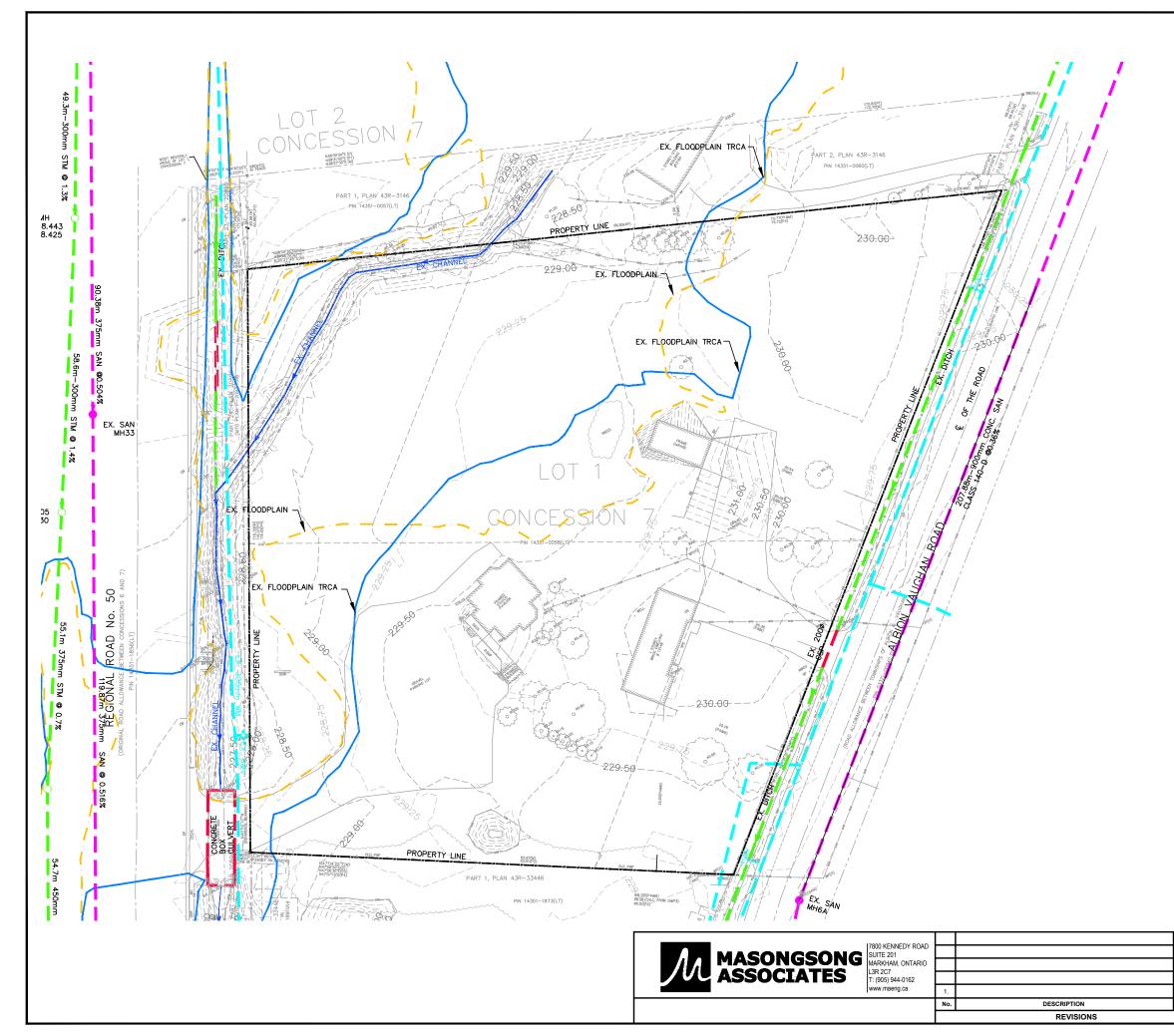


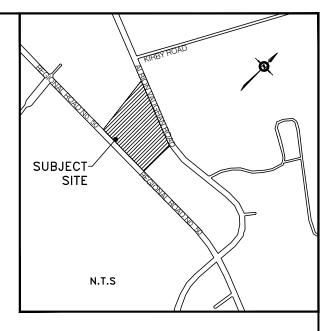
LEGEND

		12	2148 A		N VAUGI	HAN ROA	AD				
		- PC	POST-DEVELOPMENT MASTER								
		1 1									
			STORM DRAINAGE PLAN								
BY	DATE	DATE:	SCALE	DESIGN BY:	DRAWN BY:	PROJECT No.	FIG. No.				
	1	DEC. 2020	N.T.S		I.S	17-849	3				

<u>LEGEND</u> :

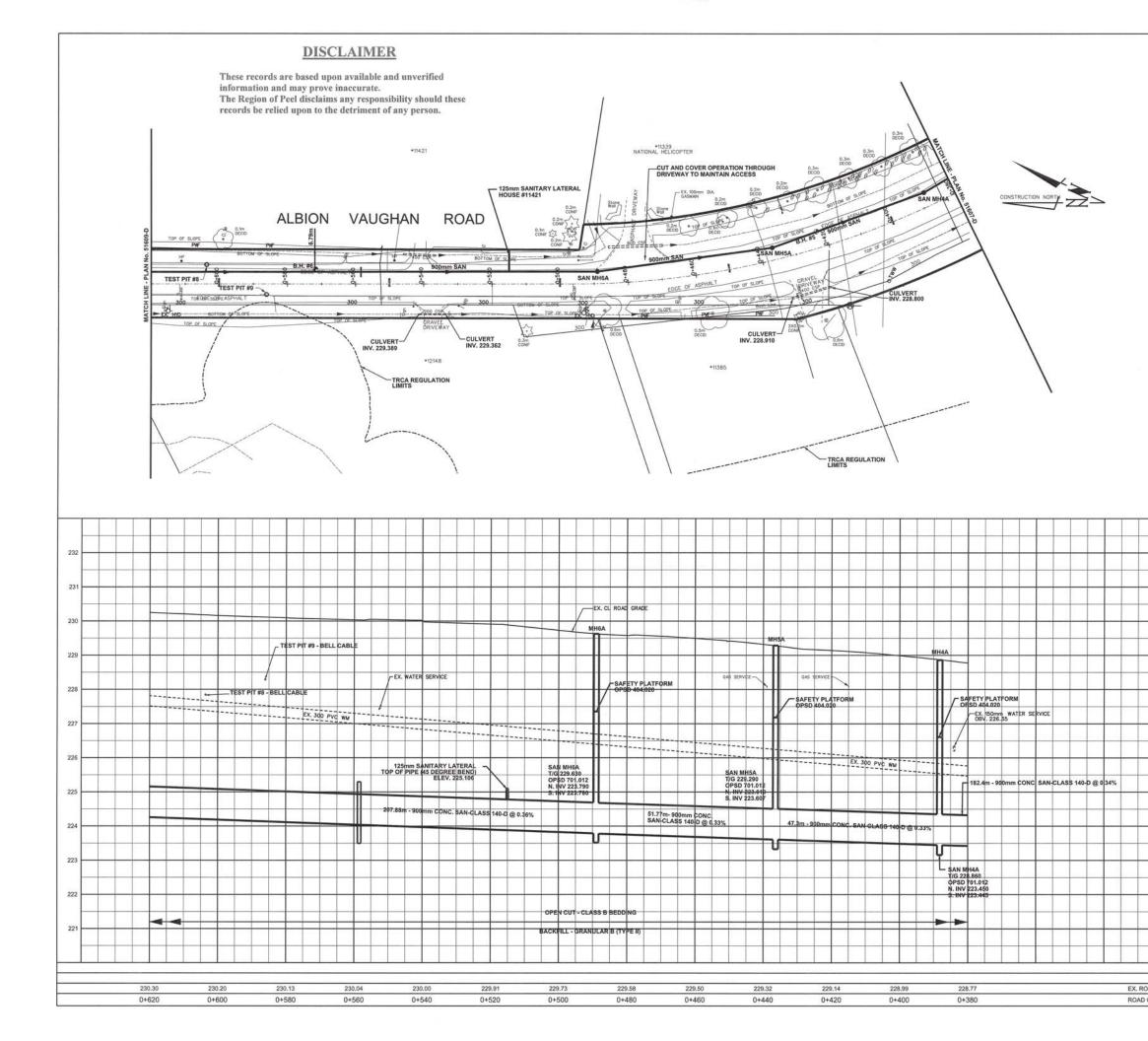
GREEN AREA

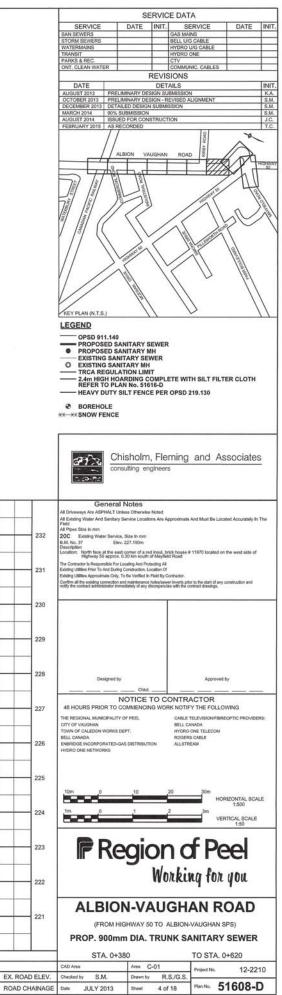

HARD SURFACE


NON-DEVE

NON-DEVELOPABLE AREA (GREEN)

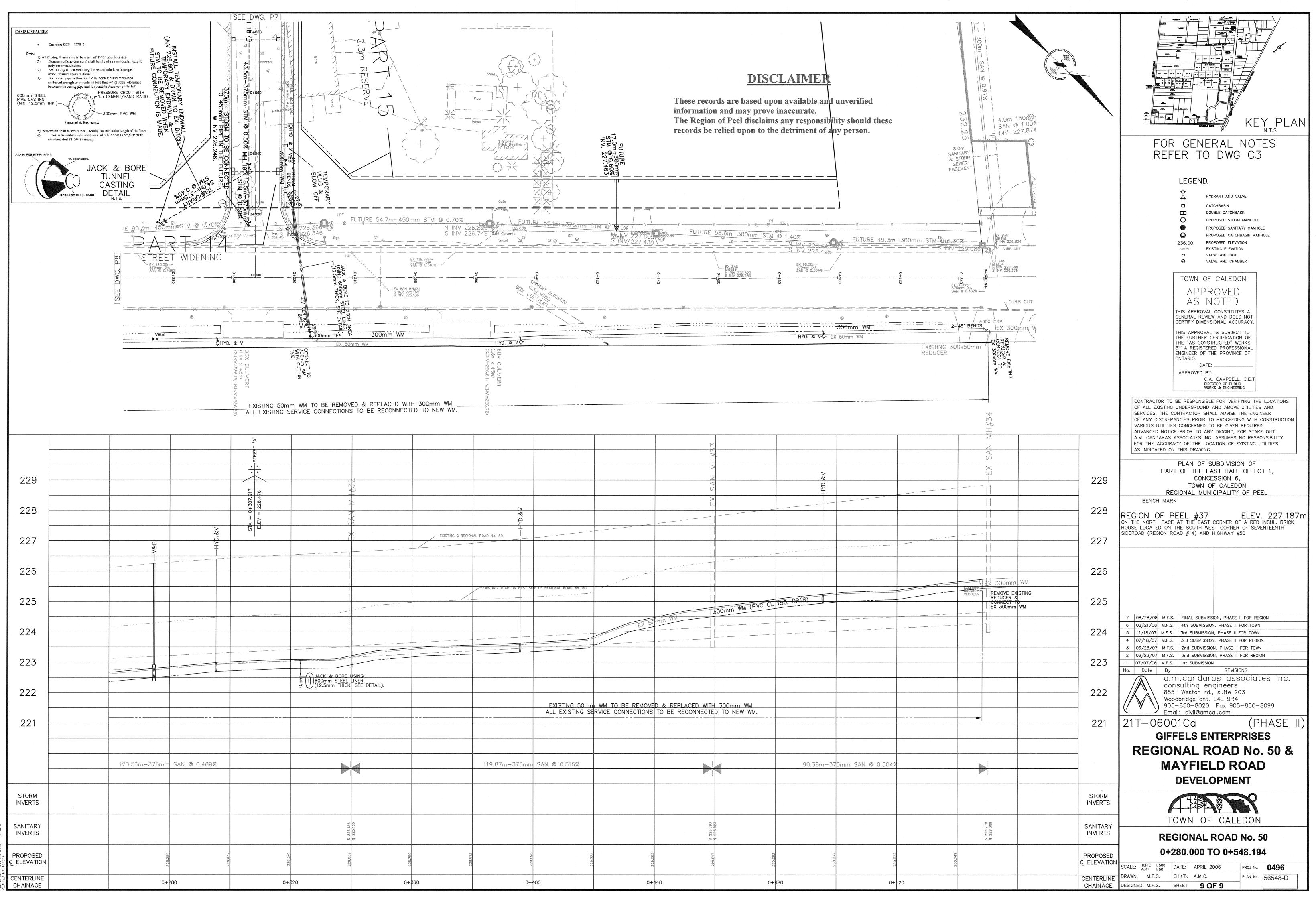
			12	2148 A	ALBION	VAUG	HAN ROA	AD .
ł					TOW	N OF CALEDON	I	
ł			S	URFA	CE CO	MPOSIT	TION PLA	AN N
t								
İ	BY	DATE	DATE:	SCALE	DESIGN BY:	DRAWN BY:	PROJECT No.	FIG. No.
			DEC. 2020	N.T.S		I.S	17-849	4





LEGEND

EX. WATERMAIN
EX. STORM SEWER
EX. SANITARY SEWER
— · — · — EX. FLOODPLAIN
EX. FLOODPLAIN TRCA


		12	2148 A		VAUG	HAN ROA	AD			
		1	EXISTING MUNICIPAL							
			INFRASTRUCTURE							
BY	DATE	DATE:	SCALE		DRAWN BY:	PROJECT No.	FIG. No.			
		DEC. 2020	N.T.S		I.S	17-849	5			

ļ

I

From:	Nick Cascone
To:	Rui Song; Prowse, Dylan
Cc:	Garbos, Olek; Shen, Yifan; Mike Liburdi; patsypaquet@icloud.com; Alyssa Woods; Grant Uyeyama; Dilnesaw
	<u>Chekol; Emma Benko</u>
Subject:	RE: Culvert and Access Removal: OZ-21-001C - 12148 Albion Vaughan Road
Date:	February 22, 2024 1:52:02 PM
Attachments:	image001.png
	image002.png
	image003.png
	image004.png

Further my previous email, I have received word from our Infrastructure Planning and Permits (IPP) team that the Region will be perusing the culvert removal work though a separate permit/approval.

As such, the requirements listed below will not be needed as part of the development process relating to 12148 Albion Vaughan Road and instead will be addressed through the Region's permit.

Thanks,

Nick Cascone, M.Sc.Pl Senior Planner Development Planning and Permits | Development and Engineering Services

T: (437) 880-1943 E: <u>nick.cascone@trca.ca</u> A: <u>101 Exchange Avenue, Vaughan, ON, L4K 5R6 | trca.ca</u>

From: Nick Cascone

Sent: Thursday, February 22, 2024 12:04 PM
To: Rui Song <RuiS@maeng.ca>; Prowse, Dylan <dylan.prowse@peelregion.ca>
Cc: Garbos, Olek <olek.garbos@peelregion.ca>; Shen, Yifan <yifan.shen@peelregion.ca>; Mike
Liburdi <mike@aztecrestoration.com>; patsypaquet@icloud.com; Alyssa Woods
<awoods@klmplanning.com>; Grant Uyeyama <GUyeyama@klmplanning.com>; Shirin Varzgani
<Shirin.Varzgani@trca.ca>; Kristen Sullivan <kristen.sullivan@trca.ca>; Dilnesaw Chekol
<Dilnesaw.Chekol@trca.ca>

Subject: RE: Culvert and Access Removal: OZ-21-001C - 12148 Albion Vaughan Road

Hello Rui,

Thanks for the additional information. I had a chance to look at this matter with the project Water Resources Engineer. It seems that this may have been missed on our end as part of the original permit (which is now expired). Also, there may have been some confusion on our end as well given more recent discussions regarding a sidewalk that would potentially use that culvert as a crossing.

Notwithstanding, if the plan is to remove the culvert as part of this development, we require

additional minor details/revisions to the drawings that were not initially provided. These include the following:

- Clearly identify the removal of the culvert on all relevant engineering drawings. Currently, the only location where this is identified is the profile on Drawing P1.
- Please revise the channel plan to show the new channel in the area of the culvert removal. Further, please include a cross-section showing the new channel (once the culvert is removed) along with erosion protection measures.
- Revise the ESC plan to account for the culvert removal.
- I believe the floodplain modelling accounts for removal of the culvert. As such, I don't believe anything will need to be updated on this end, however, I will allow you to confirm this is the case.

In addition to the above, I would also like confirmation on the following matters (perhaps for Dylan at the Region):

 Is the intention to approve the culvert removal (and associated plan) through the development applications for this site, with the works being carried out by the Region? Or would they form part of other ongoing road improvement works associated with Highway 50?
 I am just trying to understand what this will mean from a permitting perspective on our end.

Thanks,

Nick Cascone, M.Sc.Pl Senior Planner Development Planning and Permits | Development and Engineering Services

T: (437) 880-1943 E: <u>nick.cascone@trca.ca</u> A: <u>101 Exchange Avenue, Vaughan, ON, L4K 5R6 | trca.ca</u>

From: Rui Song <<u>RuiS@maeng.ca</u>>

Sent: Friday, February 16, 2024 5:20 PM

To: Nick Cascone <<u>Nick.Cascone@trca.ca</u>>; Prowse, Dylan <<u>dylan.prowse@peelregion.ca</u>>
Cc: Garbos, Olek <<u>olek.garbos@peelregion.ca</u>>; Shen, Yifan <<u>yifan.shen@peelregion.ca</u>>; Mike
Liburdi <<u>mike@aztecrestoration.com</u>>; <u>patsypaquet@icloud.com</u>; Alyssa Woods
<<u>awoods@klmplanning.com</u>>; Grant Uyeyama <<u>GUyeyama@klmplanning.com</u>>; Shirin Varzgani
<<u>Shirin.Varzgani@trca.ca</u>>; Kristen Sullivan <<u>kristen.sullivan@trca.ca</u>>
Subject: RE: Culvert and Access Removal: OZ-21-001C - 12148 Albion Vaughan Road

EXTERNAL SENDER

Hi Nick,

In our original application, we had proposed for the culvert and driveway to be removed when

making the floodline analysis. Please see attached drawing P1 which shows the removal in the profile along with the rest of our channel realignment. I have also attached the rest of the permit files for everyone's information.

Thank you,

Rui Song, P.Eng | Project Engineer Cell (416) 302-3413

Masongsong Associates Engineering Limited 7800 Kennedy Road, Suite 201 . Markham, Ontario . L3R 2C7 T: (905) 944-0162 F:(905) 944-0165 <u>www.maeng.ca</u>

CONFIDENTIALITY NOTICE: This e-mail contains information that is privileged and confidential and subject to legal restrictions and penalties regarding its unauthorized disclosure or other use. You are prohibited from copying, distributing or otherwise using this information if you are not the intended recipient. If you have received this e-mail in error, please notify us immediately by return e-mail and delete this e-mail and all attachments from your system. Thank You.

From: Nick Cascone <<u>Nick.Cascone@trca.ca</u>>

Sent: Friday, February 16, 2024 5:05 PM

To: Prowse, Dylan <<u>dylan.prowse@peelregion.ca</u>>

Cc: Garbos, Olek <<u>olek.garbos@peelregion.ca</u>>; Shen, Yifan <<u>yifan.shen@peelregion.ca</u>>; Mike Liburdi <<u>mike@aztecrestoration.com</u>>; <u>patsypaquet@icloud.com</u>; Rui Song <<u>RuiS@maeng.ca</u>>; Alyssa Woods <<u>awoods@klmplanning.com</u>>; Grant Uyeyama <<u>GUyeyama@klmplanning.com</u>>; Shirin Varzgani <<u>Shirin.Varzgani@trca.ca</u>>; Kristen Sullivan <<u>kristen.sullivan@trca.ca</u>> **Subject:** RE: Culvert and Access Removal: OZ-21-001C - 12148 Albion Vaughan Road

Hello Dylan,

It is TRCA's understanding that the culvert will not be removed as part of this development application. Any removal of the culvert would require TRCA approval as it conveys a regulated watercourse and floodplain. The impacts of removal of the culvert on the flood hazard would likely need to be assessed to ensure that adjacent properties are not being impacted.

Please note that if culvert removal is to proceed as part of a future Peel capital project, our Infrastructure Planning and Permits (IPP) team will need to be consulted. I have copied my colleagues Kristen Sullivan and Shirin Varzgani on this email chain – they will be able to assist you with any future inquires on the matter.

Thanks,

Nick Cascone, M.Sc.Pl Senior Planner Development Planning and Permits | Development and Engineering Services

T: (437) 880-1943

E: <u>nick.cascone@trca.ca</u>

A: 101 Exchange Avenue, Vaughan, ON, L4K 5R6 | trca.ca

From: Grant Uyeyama <<u>GUyeyama@klmplanning.com</u>>
Sent: Friday, February 16, 2024 2:50 PM
To: Prowse, Dylan <<u>dylan.prowse@peelregion.ca</u>>; Nick Cascone <<u>Nick.Cascone@trca.ca</u>>
Cc: Garbos, Olek <<u>olek.garbos@peelregion.ca</u>>; Shen, Yifan <<u>yifan.shen@peelregion.ca</u>>; Mike
Liburdi <<u>mike@aztecrestoration.com</u>>; <u>patsypaquet@icloud.com</u>; Rui Song <<u>RuiS@maeng.ca</u>>;
Alyssa Woods <<u>awoods@klmplanning.com</u>>; Grant Uyeyama <<u>GUyeyama@klmplanning.com</u>>
Subject: RE: Culvert and Access Removal: OZ-21-001C - 12148 Albion Vaughan Road

EXTERNAL SENDER KLM File: P-2623

Hi Dylan,

I spoke with the Owner, and he gives permission for the Region of Peel to remove the culvert and driveway access adjacent to Highway 50 as part of Peel's capital project. Let us know if you require anything else from the Owner, and please keep us informed as the capital project moves ahead.

Grant Uyeyama, BAA, MCIP, RPP Principal Planner

Mobile 416-871-6887 Office 905-669-4055 Email guyeyama@klmplanning.com Web www.klmplanning.com 64 Jardin Drive, Unit 1B, Concord, Ontario L4K 3P3 CELEBRATING 35 YEARS

Please note that I may be working remotely at times and can be reached by email and on my mobile phone at 416-871-6887

From: Grant Uyeyama <<u>GUyeyama@klmplanning.com</u>>
Sent: Friday, February 16, 2024 10:04 AM
To: Prowse, Dylan <<u>dylan.prowse@peelregion.ca</u>>; <u>Nick.Cascone@trca.ca</u>
Cc: Garbos, Olek <<u>olek.garbos@peelregion.ca</u>>; Shen, Yifan <<u>yifan.shen@peelregion.ca</u>>; Grant
Uyeyama <<u>GUyeyama@klmplanning.com</u>>
Subject: RE: Culvert and Access Removal: OZ-21-001C - 12148 Albion Vaughan Road

Hi Dylan,

Thanks for your email.

Will there be any costs charged back to the client for Peel to remove the driveway access and culvert or will Peel absorb all costs as part of the capital works project? Please let me know.

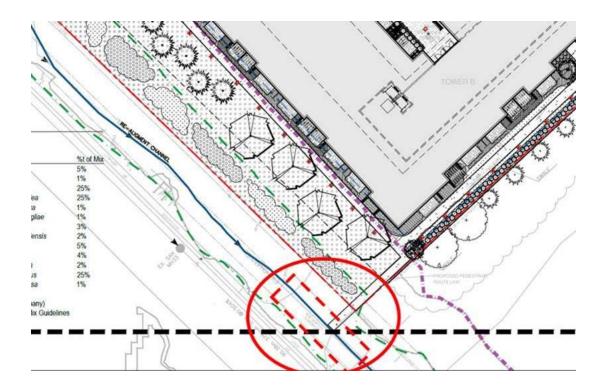
I will also discuss with the client and respond back to you soon. However, if you can get back to me first that would be great. Thanks!

Grant Uyeyama, BAA, MCIP, RPP Principal Planner

Mobile 416-871-6887 Office 905-669-4055 Email guyeyama@klmplanning.com Web www.klmplanning.com 64 Jardin Drive, Unit 1B, Concord, Ontario L4K 3P3 CELEBRATING 35 YEARS

Please note that I may be working remotely at times and can be reached by email and on my mobile phone at 416-871-6887

From: Prowse, Dylan <<u>dylan.prowse@peelregion.ca</u>>


Sent: Thursday, February 15, 2024 8:19 PM

To: Grant Uyeyama <<u>GUyeyama@klmplanning.com</u>>; <u>Nick.Cascone@trca.ca</u>
Cc: Garbos, Olek <<u>olek.garbos@peelregion.ca</u>>; Shen, Yifan <<u>yifan.shen@peelregion.ca</u>>
Subject: Culvert and Access Removal: OZ-21-001C - 12148 Albion Vaughan Road

Hi Grant and Nick,

Our Traffic Development and Capital works teams reached out to me regarding the culvert under the location of the existing access at 12148 Albion Vaughan Road (see image below). They are looking for your input on whether or not the culvert will be retained as part of the development. My understanding is that the access and culvert will be removed as they are no longer required for vehicle or pedestrian movement but I wanted to confirm with you. If these features can be removed, please advise if the Region can advance those removals through the capital project works in this area?

I have included Olek Garbos on this email as he is leading the capital project, please reach out to either of us if you have any additional questions or wish to set up a call to discuss.

Best,

Dylan Prowse (He/Him) Intermediate Planner Development Services Region of Peel 10 Peel Centre Drive Suite A, 6th Floor <u>dylan.prowse@peelregion.ca</u>

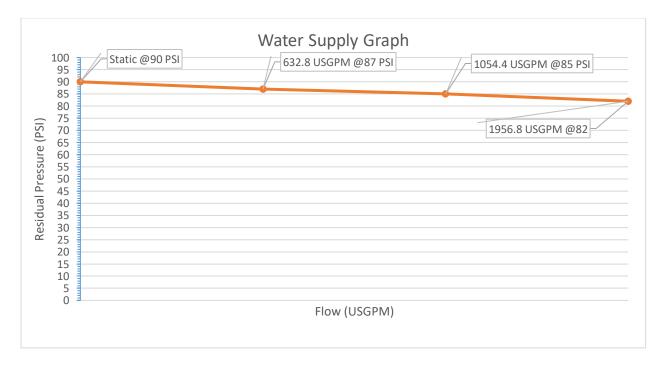
In response to the emergence of the novel coronavirus, the Region of Peel is implementing various measures to protect our customers, employees and workplaces. Development Services will endeavour to maintain the continuity of our business operations, however delays in service may still be experienced. We appreciate your patience during this time.

We have recently updated our website to better serve your needs. For information on Planning and Engineering matters of Regional interest, please visit this link : <u>https://www.peelregion.ca/planning/about/devservices.htm</u>. Let us know how we can serve you better

Appendix B

Water Demand Calculations Hydrant Flow Test Existing Water Connection Locates

HYDRANT FLOW TEST REPORT

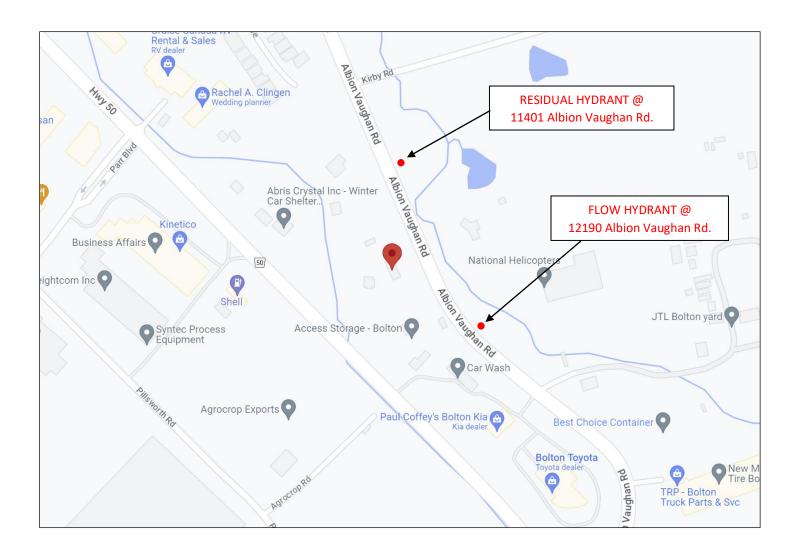

SITE INFORMATION

Test Location:	12148 Albion Vaughan Road, Bolton	Underground W/M Size:	12" (300 mm)
Date of Test:	July 5, 2023	Pipe Material:	PVC
Time of Test	9:00am		
Flow Hydrant ID:	12190 Albion Vaughan Road, Bolton	Flow Hyd. Co-Efficient:	0.8
Res. Hydrant ID:	11401 Albion Vaughan Road, Bolton	Static Reading:	90 PSI

FIELD DATA

Test No.	Outlet Size (inches)	Pitot Reading (PSI)	Flow Adjustment (USGPM)	Total Flow (USGPM)	Residual (PSI)	Field Notes (if applicable)
1	$1 - 1\frac{3}{4}$	75	791	632.80	87	0.997
2	1 - 2½"	50	1,318	1,054.40	85	-
3	2 - 21/2"	43, 43	2,446	1,956.80	82	-
4	-	-	-	-	-	-

WATER SUPPLY GRAPH


ADDITIONAL COMMENTS

All readings are true at the time of actual hydrant test.

<u>AREA MAP (NTS) –</u>

For test hydrant locations only.

Table F1 Available Fire Flow Calculations

Project: Client:	12148 Albion Aztec Restor	-	Road
Outlet diameter: Static pressure: Resid. pressure:	 2.5 in, one port 90 psi 82 psi, one port 		Location:12148 Albion Vaughan Road, BoltonDate of Test:05-Jul-23Operator:Falcon Fire Sprinkler
• Observed Flow	Q _F = 29.	83 x C x (d ²	²) x (p ^{0.5})
where	C =	0.80 Coet	fficient
			Outlet diameter
	p =	43.00 psi,	Pitot Pressure
₽	Q _F =	961 USG	
		3,637 L/m	nin
• Available Flow	$Q_{R} = Q_{F}$	x (h _R ^{0.54}) /	/ (h _F ^{0.54})
where	h _F =	8.00 psi,	Pressure difference, static to measured residual
	h _R =	70.00 psi,	Pressure difference, static to required residual
R	equired =	20.00 psi	
⇔	Q _F =	3,099 USG	6PM
	1	1,732 L/m	nin

Table F2 Required Fire Flow Calculations

	48 Albion Vaughan Road	
Client: Azte	ec Restoration	
 Base Flow 	$F_{B} = 220 \times C_{C} \times A^{0.5}$	
where	$C_{\rm C} = 0.70$	from Table F3
	$A = 4567.5 m^2$	from Table F3
⇔	$F_{B} = 10,408$ L/min	
	11,000 L/min	rounded to nearest 1,000 L/min
 Occupancy Factor 	C ₀ = -15%	from Table F3
	$F_{O} = F_{B} + (F_{B} \times C_{O})$	
	= 9,350 L/min	
• Sprinkler Factor	$C_{s} = -50\%$ $f_{s} = F_{o} \times C_{s}$	from Table F3
	= -4,675 L/min	
• Exposure Factor	C _E = 50%	from Table F3
	$f_{\rm E} = F_{\rm O} \times C_{\rm E}$	
	= 4,675 L/min	
• Total Required Flow	$F = F_0 + f_s + f_E$	7
	= 9,350 L/min	
	= 9,000 L/min	rounded to nearest 1,000 L/min
		—

Table F3 Building Area and Coefficients

Project:	12148 Albion Va	aughan Road					
Client:	Aztec Restoratio	-					
	_						
• Area of Building A		4,568 m ²	=2	2401 -	+ 2303/2 + 2	030/2	
		e total floor area 1st 50 percent belo	-			g all storeys, but excluding ba being considered.	
	ea	For fire-resistive buildings, consider the two largest adjoining floors plus 50 p each of any floors immediately above them up to eight, when the vertical op inadequately protected.					
	(01		onside	r only	the area of th	communications are property ne largest floor plus 25 perce	
Construction Coe	ficient	floors. 0.	70	€	1.50	Wood Frame	
					1.00	Ordinary Construction	
					0.80	Non-Combustible	
					0.70	Fire Resistive (<2 hrs)	
					0.60	Fire Resistive (>2 hrs)	
Occupacy Coeffici	ent	C ₀ = -1	.5%	Ф	-25%	Non-Combustible	
					-15%	Limited Combustible	
					0%	Combustible	
					15%	Free Burning	
					25%	Rapid Burning	
• Sprinkler Coefficio	ent	C _S = -5	0%	⇔	-30%	NFPA 13 standard	
					-40%	+ fully supervised	
					-50%	+ std water supply	
• Exposure Coeffici	ent	C _E = 5	0%	⇔	25%	0 - 3m separation	
-	L				20%	3.1-10m separation	
	N 1	0-20m 1	.5%		15%	10.1-20m separation	
			5%		10%	20.1-30m separation	
			5%		5%	> 30m separation	
			5%			percentages counted	
		-				per side, max 75%	

Table F4 Available Fire Flow Calculations - Building B

Project:	12148 Albion Vau	ghan Road
Client:	Aztec Restoration	
Outlet diameter:	2.5 in, one p	ort Location: 12148 Albion Vaughan Road, Bolton
Static pressure:	90 psi	Date of Test: 05-Jul-23
Resid. pressure:	82 psi, one	port Operator: Falcon Fire Sprinkler
	poi, end	
	0 - 20.82 v	C x (d ²) x (p ^{0.5})
 Observed Flow 	$Q_{\rm F} = 29.83$ X	
where	e C = 0.80	Coefficient
	d = 2.50	in, Outlet diameter
	p = 43.00	psi, Pitot Pressure
⇔	Q _F = 961	USGPM
	3.637	L/min
	-,	
	$Q_{R} = Q_{F} x (h_{R})$	0.54) (() 0.54
 Available Flow 	$Q_R = Q_F x (n_R)$)/(n _F)
where	$h_{\rm F} = 8.00$) psi, Pressure difference, static to measured residual
	h _R = 70.00) psi, Pressure difference, static to required residual
R	equired = 20.00	
	· · · · · · · · · · · · · · · · · · ·	
₽		USGPM
	11,732	2 L/min

Table F5 Required Fire Flow Calculations

Project:		Vaughan Roa	d	
Client:	Aztec Restora			
• Base Flow	F	$F_{\rm B} = 220 {\rm x} {\rm C_{\rm C}} {\rm x} {\rm A_{\rm C}}$	۵ ^{0.5}	
		B 220 × C(×)	·	
v	vhere C	c = 0.60		from Table F3
	A	A = 4159	m ²	from Table F3
	⇔ F	_B = 8,513	L/min	
		9,000	L/min	rounded to nearest 1,000 L/min
• Occupancy Facto	or Co	₀ = -15%		from Table F3
	F	$_{\rm O}$ = $F_{\rm B}$ + ($F_{\rm B}$ x C	o)	
		= 7,650	L/min	
• Sprinkler Factor	С	C _s = -50%		from Table F3
•		$s = F_0 \times C_s$		
			L/min	
• Exposure Factor	C	C _E = 40%		from Table F3
P		$_{\rm E} = F_{\rm O} \times C_{\rm E}$		
		= 3,060	L/min	
• Total Required F	iow	$F = F_0 + f_s + f_E$		
		= 6,885 = 7,000	L/min L/min	rounded to nearest 1,000 L/min
		.,	-,	

Table F6 Building Area and Coefficients

Project:	12148 All	bion Vaughan Roa	he					
•	Aztec Res	-	au					
• Area of Building B		4,159 m ²	2 =	2093	+ 2019/2 + 2	113/2		
		=	-			g all storeys, but excluding ba being considered.		
		each of any flo	For fire-resistive buildings, consider the two largest adjoining floors plus 50 p each of any floors immediately above them up to eight, when the vertical op inadequately protected.					
			ng), consid	er only	the area of th	communications are property ne largest floor plus 25 perce		
Construction Coef	ficient	floors.	0.60	⇔	1.50	Wood Frame		
					1.00	Ordinary Construction		
					0.80	, Non-Combustible		
					0.70	Fire Resistive (<2 hrs)		
					0.60	Fire Resistive (>2 hrs)		
• Occupacy Coefficie	ent	C _O =	-15%	⇔	-25%	Non-Combustible		
					-15%	Limited Combustible		
					0%	Combustible		
					15%	Free Burning		
					25%	Rapid Burning		
			B					
Sprinkler Coefficie	ent	C _S =	-50%	⇔	-30%	NFPA 13 standard		
					-40%	+ fully supervised		
					-50%	+ std water supply		
				41	0.501			
• Exposure Coefficie	ent	C _E =	40%	⇔	25%	0 - 3m separation		
					20%	3.1-10m separation		
		N 10-20m	25%		15%	10.1-20m separation		
		S 0-3m	5%		10%	20.1-30m separation		
		E >30m	5%		5%	> 30m separation		
		W > 30m	5%			percentages counted		
						per side, max 75%		

Table 3.3.1. Nodal Demand Summary

12149 Albion Vaugh Rd Town of Caledon

Node	Elev	No. of Units	Demand Pop 1.6 ppu (< 750 sqft)	Average Daily Demand Flow (280L/capita/day)	Min Hourly Demand (Res.) 0.7X280L/c/d	Peak Daily Demand-Res. 2.0X280 L/c/d	Peak hourly Demand Res. 3.0X280 L/c/d
			3.0 ppu (> 750 sqft)	L/s	L/s	L/s	L/s
1.00	180.28	78	125	0.405	0.284	0.81	1.215
		187	561	1.818	1.273	3.64	5.454
				-	-	-	-
Total			686.00	2.22	1.56	4.45	6.67

 Reservoir
 VSB

 Elevation (m)
 229.82

 Pressure (Kpa)
 344.74

 Pressure (m)
 35.16

 Total Head (m)
 264.98

 Total required fire flow Us
 At Node 1 Fire demand and max day L/s

116.67 121.11

		Analysis Results		Region of Peel Criteria	Type of Scenarios
Pressure (Node 1)	27.50 m	269.61 39.10	kPA psi	140 kPA min 20 psi	Peak Daily Flow Plus Fire Scenario
Pressure (Node 1)	35.27 m	345.79 50.15	kPA psi	690 kPA max 100 psi	Minimum Hourly Demand Scenario
Pressure (Node 1)	35.21 m	345.20 50.07	kPA psi	275 kPA min 40 psi	Peak Hourly Demand Scenario

Page 1 ************************************	20 ************************************	23-01-03 3:30:54 PM
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.2	*
******	************	******

Link - Node Table:						
Link ID		End Node		m	Diameter mm	
1	VSB-R	1			150	
Node Results:						
Node ID		Head m	Pressure m	Quality		
1 VSB-R			35.27 0.00		Reservoir	
Link Results:						
Link ID		VelocityU m/s	nit Headloss m/km	s Stat	tus	
1	2.29	0.13	0.28	Open		

Input File: 17-849wmminhourly.net

Page 1 ************************************	ا2 ************************************	023-01-03 3:33:29 PM
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.2	*
******	************	******

Input File: 17-849wmpeakdaily+fire.net

Link - Node Ta					
Link ID	Start	End Node		m	Diameter mm
1	VSB-R	1			150
Node Results:					
Node ID		m	Pressure m	Quality	
1 VSB-R	121.25	257.25	27.50 0.00		Reservoir
Link Results:					
Link ID	LPS	m/s			
1			436.79		

Page 1 ***************	202 ***********************************	23-01-03 3:32:16 PM
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.2	*
******	*************	******

Input File: 17-849wmpeakhourly.net		Input	File:	17-849wmpeakhourly.net	
------------------------------------	--	-------	-------	------------------------	--

Link - Node Ta					
Link ID	Start Node	End		Length	Diameter mm
1	VSB-R	1		17.7	150
Node Results:					
Node ID	Demand LPS	Head m	Pressure m	Quality	
1 VSB-R	4.58	264.96	35.21 0.00	0.00	
Link Results:					
Link ID		m/s	nit Headloss m/km		
1	4.58		1.01		

Sanitary Design Criteria

Population	Peak Flow (m ³ /sec)	Population	Peak Flow (m ³ /sec)	Population	Peak Flow (m ³ /sec)
1000	0.0130	4750	0.0542	13000	0.1292
1050	0.0139	5000	0.0569	14000	0.1376
1100	0.0145	5250	0.0594	15000	0.1459
1150	0.0151	5500	0.0618	16000	0.1540
1200	0.0157	5750	0.0640	17000	0.1620
1300	0.0169	6000	0.0666	18000	0.1700
1400	0.0181	6250	0.0691	19000	0.1779
1500	0.0193	6500	0.0710	20000	0.1857
1600	0.0204	6750	0.0737	25000	0.2236
1700	0.0217	7000	0.0762	30000	0.2601
1800	0.0228	7250	0.0784	35000	0.2955
1900	0.0239	7500	0.0809	40000	0.3298
2000	0.0251	7750	0.0830	45000	0.3634
2200	0.0273	8000	0.0854	50000	0.3963
2400	0.0296	8250	0.0878	55000	0.4286
2600	0.0318	8500	0.0898	60000	0.4603
2800	0.0340	8750	0.0922	65000	0.4915
3000	0.0361	9000	0.0945	70000	0.5224
3250	0.0387	9250	0.0968	75000	0.5528
3500	0.0415	9500	0.0981	80000	0.5828
3750	0.0441	9750	0.1010	85000	0.6126
4000	0.0467	10000	0.1033	90000	0.6420
4250	0.0492	11000	0.1120	95000	0.6711
4500	0.0518	12000	0.1210	100000	0.7000

Notes:

1. Domestic sewage flows are based upon a unit sewage flow of 302.8 Lpcd.

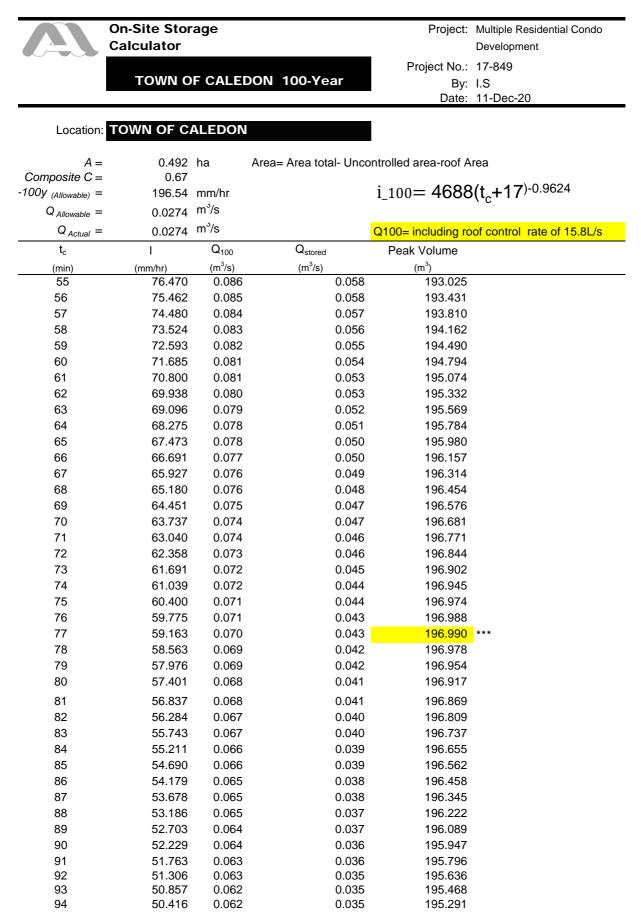
2. The flows in the above table include the Harmon Peaking Factor.

3. Domestic sewage flow for less than 1000 persons shall be $0.013m^3$ /sec.

4. Domestic sewage flow for greater than 100,000 persons shall be 7.0 x 10^{-6} m³/sec per capita.

5. Lpcd = Litres per capita per day

1 Litre = 0.001 metre^3



							FARY S 2148 Al	EWER bion Va	DF PEE DESIGN aughan R Ontario	N SHEET								
LOCATION	MH FROM	ТОМН	AREA (ha)	# OF UNIT	DENSITY (ppu)	POPULATION	CUMULATIVE AREA (ha)	CUMULATIVE	1 SEWAGE FLOW (m ³ /sec)	2 INFILTRATION FLOW (m³/sec)	3 FOUNDATION DRAIN (m³/sec)	TOTAL FLOW 1+2+3 (m³/sec)	LENGTH (m)	PIPE DIAMETER (mm)	GRADIENT (%)	CAPACITY (m³/sec)	VELOCITY (m/sec)	DROP IN LOWER M.H. (m)
SUBJECT SITE	SAN MH	EX MH	1.03			686	1.026	686	0.0130	0.000821	-	0.0138	22.0	200	2.00	0.0464	1.476	
							Rec	oir	no	f Pe	el		Date	01-Ap	r-24		Designed By: Checked By:	R.S. T.M.
Consultant	Masongso	ng Associate Limited		eering			5	'n	lorkiv	f Pe ug for i	you				Date			
Client	A	ztec Restora	ations		Design Cr	iteria:							1	Approved				
Sheet Project No.	1	of 17-849	1	1	Aparments Domestic F Infiltration Additional	Flow MH inflow	ewer flow r	numbers										

Appendix D

Storage Calculations Storm Design Sheet Jellyfish Design Report Jellyfish Filter Maintenance Manual Commitment Letter by Owner Irrigation Calculations

	P		Sizing	n of Roof Dra	ain	
			R	ise		
		51	1	02		52
Notch Area	Discharge	Water Depth	Discharge	Water Depth	Discharge	Water Depth
m ²	LPM	mm	LPM	mm	LPM	mm
232	66	73.5	82	91.5	97.5	109
465	77.5	86.5	93	104	111.5	124.5
697	84	94	100	112	120.5	134.5
929	86.5	96.5	104.5	117	127.5	142
	LPS		LPS		LPS	
232	1.10		1.37		1.63	_
465	1.29		1.55	-	1.86	-
697 929	1.40		1.67 1.74	-	2.01 2.13	-
	Allowski	Roof Area *Release Rate		0.4332 42	ha L/s/ha	٦
	Allowab	le Release Rate		18.19	L/s	1
	Ro	of Drain Sizing				
		Drain Type		465		
	D	epth of Ponding		0.1245	m (Standard	Max. ponding de
		umber of Drains		10	for roof storag	
	Number of No	otches per Drain		1	0	-
	Flow R	ating per Notch		1.86	L/m	
		ach Drain Type		1.86	L/s	
		rom Drain Type	465	18.19	L/s	
	<u>Total Nu</u>	mber of Drains		10		

Determining Number of Cartridges for Flow Based Systems

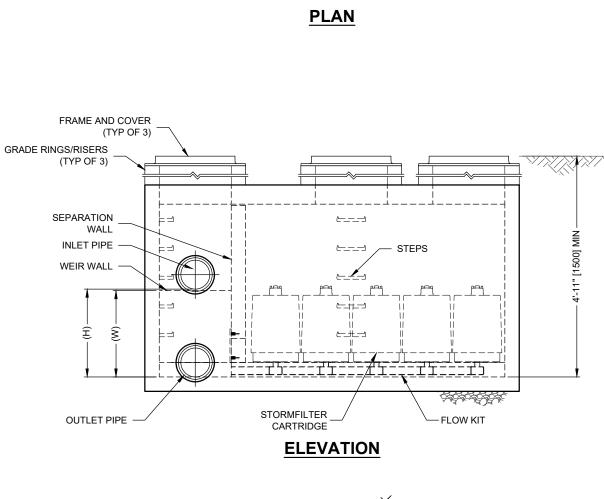
2/20/2024 Black Cells = Calculation

Date	2/20/2024	Black Cells =
Site Information		
Project Name	12148 Albion Vaugh	an Road
Project Location	Caledon, ON	
OGS ID	Stormfilter	
Drainage Area, Ad	1.44 ac	(0.5825 ha)
Impervious Area, Ai	0.87 ac	
Pervious Area, Ap	0.57	
% Impervious	61%	
Runoff Coefficient, Rc	0.64	
Treatment storm flow rate, Q _{treat}	0.46 cfs	s (13.01 L/s)
Peak storm flow rate, Q _{peak}	TBC cfs	6
Filter System		

Filtration brand

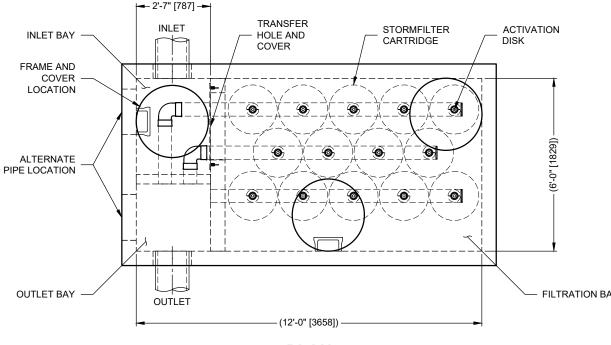
Cartridge height Specific Flow Rate Flow rate per cartridge

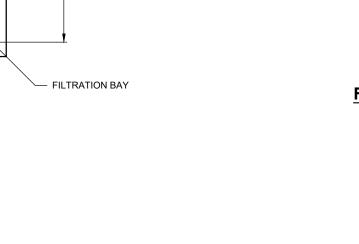
StormFilter

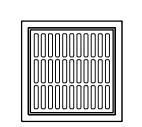

18 in 2.00 gpm/ft² 15.00 gpm

SUMMARY

Number of Cartridges	14
Media Type	Perlite
Event Mean Concentration (EMC)	120 mg/L
Annual TSS Removal	80%
Percent Runoff Capture	90%


Recommend SFPD 0612 vault or CIP


200 Enterprise Drive Scarborough, ME 04074 Phone 877-907-8676 Fax 207-885-9825



The Stormwater Manage StormFilter*

THIS PRODUCT MAY BE PROTECTED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS: 5,322,629,5,524,576,5,707,527,5,985,157,6,027,639,6649,048; RELATED FOREIGN PATENTS, OR OTHER PATENTS PENDING.

FRAME AND GRATE

(24" SQUARE) (NOT TO SCALE)

(30" ROUND)

(NOT TO SCALE)

PERFORMANCE SPECIFICATION FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL BE 7" [178]. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 37 SECONDS. SPECIFIC FLOW RATE SHALL BE 2 GPM/SF [1.36 L/s/m²] (MAXIMUM). SPECIFIC FLOW RATE IS THE MEASURE OF THE FLOW (GPM) DIVIDED BY THE MEDIA SURFACE CONTACT AREA (SF). MEDIA VOLUMETRIC FLOW RATE SHALL BE 6 GPM/CF [13.39 L/s/m³] OF MEDIA (MAXIMUM).

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. ALTERNATE DIMENSIONS ARE IN MILLIMETERS [mm] UNLESS NOTED OTHERWISE.
- 4. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH REPRESENTATIVE. www.ContechES.com
- 5. STORMFILTER WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET AASHTO M306 AND BE CAST WITH THE CONTECH LOGO.

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL SECTIONS AND ASSEMBLE STRUCTURE.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH OUTLET PIPE INVERT WITH OUTLET BAY FLOOR

- STORMFILTER TREATMENT CAPACITY VARIES BY CARTRIDGE COUNT AND LOCALLY APPROVED SURFACE AREA SPECIFIC FLOW RATE. PEAK CONVEYANCE CAPACITY TO BE DETERMINED BY ENGINEER OF RECORD A 6' x 12' [1829 x 3658] PEAK DIVERSION STYLE STORMFILTER IS SHOWN WITH THE MAXIMUM NUMBER OF CARTRIDGES (14) AND IS AVAILABLE IN A LEFT INLET (AS SHOWN) OR A RIGHT INLET CONFIGURATION
- ALL PARTS AND INTERNAL ASSEMBLY PROVIDED BY CONTECH UNLESS NOTED OTHERWISE

				NOL					
CARTRIDGE SIZE (in. [mm])		27 [686]			18 [457]			LOW DROP	
RECOMMENDED HYDRAULIC DROP (H) (ft. [mm])		3.05 [930]			2.3 [701]			1.8 [549]	
HEIGHT OF WEIR (W) (ft. [mm])		3.00 [914]			2.25 [686]			1.75 [533]	
SPECIFIC FLOW RATE (gpm/sf [L/s/m ²])	2 [1.36]	1.67* [1.13]*	1 [0.68]	2 [1.36]	1.67* [1.13]*	1 [0.68]	2 [1.36]	1.67* [1.13]*	1 [0.68]
CARTRIDGE FLOW RATE (gpm [L/s])	22.5 [1.42]	18.79 [1.19]	11.25 [0.71]	15 [0.95]	12.53 [0.79]	7.5 [0.47]	10 [0.63]	8.35 [0.53]	5 [0.32]

* 1.67 gpm/sf [1.13 L/s/m²] SPECIFIC FLOW RATE IS APPROVED WITH PHOSPHOSORB[®] (PSORB) MEDIA ONLY

STORMFILTER DESIGN NOTES

SITE SPECIFIC										
DATA REQUIREMENTS										
STRUCTURE ID										
WATER QUALITY F	LOW RATE (cfs [L/s])								
PEAK FLOW RATE	(cfs [L/s])									
RETURN PERIOD O	F PEAK FLC	W (yrs)								
CARTRIDGE FLOW	RATE									
CARTRIDGE SIZE (2	27, 18, LOW	DROP (LD))								
MEDIA TYPE (PERLITE, ZPG, PSORB)										
NUMBER OF CARTI	RIDGES REC	QUIRED								
INLET BAY RIM ELE	VATION									
FILTER BAY RIM EL	EVATION									
PIPE DATA:	INVERT	MATERIAL	DIAMETER							
INLET PIPE 1										
INLET PIPE 2										
OUTLET PIPE										
NOTES/SPECIAL RE	EQUIREMEN	TS:								

6. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' - 10' [3048] AND GROUNDWATER ELEVATION AT, OR

B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STORMFILTER STRUCTURE. E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF.

SFPD0612 (6' x 12') PEAK DIVERSION STORMFILTER STANDARD DETAIL

StormFilter Inspection and Maintenance Procedures

Maintenance Guidelines

The primary purpose of the Stormwater Management StormFilter[®] is to filter and prevent pollutants from entering our waterways. Like any effective filtration system, periodically these pollutants must be removed to restore the StormFilter to its full efficiency and effectiveness.

Maintenance requirements and frequency are dependent on the pollutant load characteristics of each site. Maintenance activities may be required in the event of a chemical spill or due to excessive sediment loading from site erosion or extreme storms. It is a good practice to inspect the system after major storm events.

Maintenance Procedures

Although there are many effective maintenance options, we believe the following procedure to be efficient, using common equipment and existing maintenance protocols. The following two-step procedure is recommended::

1. Inspection

• Inspection of the vault interior to determine the need for maintenance.

2. Maintenance

- Cartridge replacement
- Sediment removal

Inspection and Maintenance Timing

At least one scheduled inspection should take place per year with maintenance following as warranted.

First, an inspection should be done before the winter season. During the inspection the need for maintenance should be determined and, if disposal during maintenance will be required, samples of the accumulated sediments and media should be obtained.

Second, if warranted, a maintenance (replacement of the filter cartridges and removal of accumulated sediments) should be performed during periods of dry weather.

In addition to these two activities, it is important to check the condition of the StormFilter unit after major storms for potential damage caused by high flows and for high sediment accumulation that may be caused by localized erosion in the drainage area. It may be necessary to adjust the inspection/ maintenance schedule depending on the actual operating conditions encountered by the system. In general, inspection activities can be conducted at any time, and maintenance should occur, if warranted, during dryer months in late summer to early fall.

Maintenance Frequency

The primary factor for determining frequency of maintenance for the StormFilter is sediment loading.

A properly functioning system will remove solids from water by trapping particulates in the porous structure of the filter media inside the cartridges. The flow through the system will naturally decrease as more and more particulates are trapped. Eventually the flow through the cartridges will be low enough to require replacement. It may be possible to extend the usable span of the cartridges by removing sediment from upstream trapping devices on a routine as-needed basis, in order to prevent material from being re-suspended and discharged to the StormFilter treatment system.

The average maintenance lifecycle is approximately 1-5 years. Site conditions greatly influence maintenance requirements. StormFilter units located in areas with erosion or active construction may need to be inspected and maintained more often than those with fully stabilized surface conditions.

Regulatory requirements or a chemical spill can shift maintenance timing as well. The maintenance frequency may be adjusted as additional monitoring information becomes available during the inspection program. Areas that develop known problems should be inspected more frequently than areas that demonstrate no problems, particularly after major storms. Ultimately, inspection and maintenance activities should be scheduled based on the historic records and characteristics of an individual StormFilter system or site. It is recommended that the site owner develop a database to properly manage StormFilter inspection and maintenance programs..

Inspection Procedures

The primary goal of an inspection is to assess the condition of the cartridges relative to the level of visual sediment loading as it relates to decreased treatment capacity. It may be desirable to conduct this inspection during a storm to observe the relative flow through the filter cartridges. If the submerged cartridges are severely plugged, then typically large amounts of sediments will be present and very little flow will be discharged from the drainage pipes. If this is the case, then maintenance is warranted and the cartridges need to be replaced.

Warning: In the case of a spill, the worker should abort inspection activities until the proper guidance is obtained. Notify the local hazard control agency and Contech Engineered Solutions immediately.

To conduct an inspection:

Important: Inspection should be performed by a person who is familiar with the operation and configuration of the StormFilter treatment unit and the unit's role, relative to detention or retention facilities onsite.

- 1. If applicable, set up safety equipment to protect and notify surrounding vehicle and pedestrian traffic.
- 2. Visually inspect the external condition of the unit and take notes concerning defects/problems.
- 3. Open the access portals to the vault and allow the system vent.
- 4. Without entering the vault, visually inspect the inside of the unit, and note accumulations of liquids and solids.
- Be sure to record the level of sediment build-up on the floor of the vault, in the forebay, and on top of the cartridges. If flow is occurring, note the flow of water per drainage pipe. Record all observations. Digital pictures are valuable for historical documentation.
- 6. Close and fasten the access portals.
- 7. Remove safety equipment.
- 8. If appropriate, make notes about the local drainage area relative to ongoing construction, erosion problems, or high loading of other materials to the system.
- 9. Discuss conditions that suggest maintenance and make decision as to whether or not maintenance is needed.

Maintenance Decision Tree

The need for maintenance is typically based on results of the inspection. The following Maintenance Decision Tree should be used as a general guide. (Other factors, such as Regulatory Requirements, may need to be considered).

Please note Stormwater Management StormFilter devices installed downstream of, or integrated within, a stormwater storage facility typically have different operational parameters (i.e. draindown time). In these cases, the inspector must understand the relationship between the retention/detention facility and the treatment system by evaluating site specific civil engineering plans, or contacting the engineer of record, and make adjustments to the below guidance as necessary. Sediment deposition depths and patterns within the StormFilter are likely to be quite different compared to systems without upstream storage and therefore shouldn't be used exclusively to evaluate a need for maintenance.

- 1. Sediment loading on the vault floor.
 - a. If >4" of accumulated sediment, maintenance is required.
- 2. Sediment loading on top of the cartridge.
 - a. If > 1/4" of accumulation, maintenance is required.
- 3. Submerged cartridges.
 - a. If >4" of static water above cartridge bottom for more than 24 hours after end of rain event, maintenance is required. (Catch basins have standing water in the cartridge bay.)
- 4. Plugged media.
 - a. While not required in all cases, inspection of the media within the cartridge may provide valuable additional information.
 - b. If pore space between media granules is absent, maintenance is required.
- 5. Bypass condition.
 - a. If inspection is conducted during an average rain fall event and StormFilter remains in bypass condition (water over the internal outlet baffle wall or submerged cartridges), maintenance is required.
- 6. Hazardous material release.
 - a. If hazardous material release (automotive fluids or other) is reported, maintenance is required.
- 7. Pronounced scum line.
 - a. If pronounced scum line (say $\geq 1/4''$ thick) is present above top cap, maintenance is required.

Maintenance

Depending on the configuration of the particular system, maintenance personnel will be required to enter the vault to perform the maintenance.

Important: If vault entry is required, OSHA rules for confined space entry must be followed.

Filter cartridge replacement should occur during dry weather. It may be necessary to plug the filter inlet pipe if base flows is occurring.

Replacement cartridges can be delivered to the site or customers facility. Information concerning how to obtain the replacement cartridges is available from Contech Engineered Solutions.

Warning: In the case of a spill, the maintenance personnel should abort maintenance activities until the proper guidance is obtained. Notify the local hazard control agency and Contech Engineered Solutions immediately.

To conduct cartridge replacement and sediment removal maintenance:

- 1. If applicable, set up safety equipment to protect maintenance personnel and pedestrians from site hazards.
- 2. Visually inspect the external condition of the unit and take notes concerning defects/problems.
- 3. Open the doors (access portals) to the vault and allow the system to vent.
- 4. Without entering the vault, give the inside of the unit, including components, a general condition inspection.
- 5. Make notes about the external and internal condition of the vault. Give particular attention to recording the level of sediment build-up on the floor of the vault, in the forebay, and on top of the internal components.
- 6. Using appropriate equipment offload the replacement cartridges (up to 150 lbs. each) and set aside.
- 7. Remove used cartridges from the vault using one of the following methods:

Method 1:

A. This activity will require that maintenance personnel enter the vault to remove the cartridges from the under drain manifold and place them under the vault opening for lifting (removal). Disconnect each filter cartridge from the underdrain connector by rotating counterclockwise 1/4 of a turn. Roll the loose cartridge, on edge, to a convenient spot beneath the vault access.

Using appropriate hoisting equipment, attach a cable from the boom, crane, or tripod to the loose cartridge. Contact Contech Engineered Solutions for suggested attachment devices.

B. Remove the used cartridges (up to 250 lbs. each) from the vault.

Important: Care must be used to avoid damaging the cartridges during removal and installation. The cost of repairing components damaged during maintenance will be the responsibility of the owner.

- C. Set the used cartridge aside or load onto the hauling truck.
- D. Continue steps a through c until all cartridges have been removed.

Method 2:

- A. This activity will require that maintenance personnel enter the vault to remove the cartridges from the under drain manifold and place them under the vault opening for lifting (removal). Disconnect each filter cartridge from the underdrain connector by rotating counterclockwise 1/4 of a turn. Roll the loose cartridge, on edge, to a convenient spot beneath the vault access.
- B. Unscrew the cartridge cap.
- C. Remove the cartridge hood and float.
- D. At location under structure access, tip the cartridge on its side.
- E. Empty the cartridge onto the vault floor. Reassemble the empty cartridge.
- F. Set the empty, used cartridge aside or load onto the hauling truck.
- G. Continue steps a through e until all cartridges have been removed.

- 8. Remove accumulated sediment from the floor of the vault and from the forebay. This can most effectively be accomplished by use of a vacuum truck.
- 9. Once the sediments are removed, assess the condition of the vault and the condition of the connectors.
- 10. Using the vacuum truck boom, crane, or tripod, lower and install the new cartridges. Once again, take care not to damage connections.
- 11. Close and fasten the door.
- 12. Remove safety equipment.
- Finally, dispose of the accumulated materials in accordance with applicable regulations. Make arrangements to return the used <u>empty</u> cartridges to Contech Engineered Solutions.

Related Maintenance Activities -

Performed on an as-needed basis

StormFilter units are often just one of many structures in a more comprehensive stormwater drainage and treatment system.

In order for maintenance of the StormFilter to be successful, it is imperative that all other components be properly maintained. The maintenance/repair of upstream facilities should be carried out prior to StormFilter maintenance activities.

In addition to considering upstream facilities, it is also important to correct any problems identified in the drainage area. Drainage area concerns may include: erosion problems, heavy oil loading, and discharges of inappropriate materials.

Material Disposal

The accumulated sediment found in stormwater treatment and conveyance systems must be handled and disposed of in accordance with regulatory protocols. It is possible for sediments to contain measurable concentrations of heavy metals and organic chemicals (such as pesticides and petroleum products). Areas with the greatest potential for high pollutant loading include industrial areas and heavily traveled roads.

Sediments and water must be disposed of in accordance with all applicable waste disposal regulations. When scheduling maintenance, consideration must be made for the disposal of solid and liquid wastes. This typically requires coordination with a local landfill for solid waste disposal. For liquid waste disposal a number of options are available including a municipal vacuum truck decant facility, local waste water treatment plant or on-site treatment and discharge.

Inspection Report

Date:Personnel:
Location:System Size:Months in Service:
System Type: Vault Cast-In-Place Linear Catch Basin Manhole Other:
Sediment Thickness in Forebay: Date:
Sediment Depth on Vault Floor:
Sediment Depth on Cartridge Top(s):
Structural Damage:
Estimated Flow from Drainage Pipes (if available):
Cartridges Submerged: Yes No Depth of Standing Water:
StormFilter Maintenance Activities (check off if done and give description)
Trash and Debris Removal:
Minor Structural Repairs:
Drainage Area Report
Excessive Oil Loading: Yes No Source:
Sediment Accumulation on Pavement: Yes 🔄 No 🔄 Source:
Erosion of Landscaped Areas: Yes No Source:
Items Needing Further Work:
Owners should contact the local public works department and inquire about how the department disposes of their street waste residuals.
Other Comments:

Review the condition reports from the previous inspection visits.

StormFilter Maintenance Report

Date:		Personnel:			
Location:		System Size:			
System Type:	Vault	Cast-In-Place	Linear Catch Basin	Manhole	Other:
List Safety Proce	edures and Equip	ment Used:			

System Observations

Months in Service:						
Oil in Forebay (if present):	Yes	No				
Sediment Depth in Forebay (if present):						
Sediment Depth on Vault Floor:						
Sediment Depth on Cartridge Top(s): —						
Structural Damage:						
Drainage Area Report						
Excessive Oil Loading:	Yes	No		Source:		
Sediment Accumulation on Pavement:	Yes	No		Source:		
Erosion of Landscaped Areas:	Yes	No		Source:		
StormFilter Cartridge Rep	lacemer	nt M	aint	enance	Activities	
Remove Trash and Debris:	Yes	No		Details:		
Replace Cartridges:	Yes	No		Details:		
Sediment Removed:	Yes	No		Details:		
Quantity of Sediment Removed (estimat	e?):					
Minor Structural Repairs:	Yes	No		Details:		
Residuals (debris, sediment) Disposal M	ethods:					
Notes:						

© 2020 CONTECH ENGINEERED SOLUTIONS LLC, A QUIKRETE COMPANY 800-338-1122 www.ContechES.com All Rights Reserved. Printed in the USA.

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater and earth stabilization products. For information on other Contech division offerings, visit www.ContechES.com or call 800.338.1122.

Support

- Drawings and specifications are available at www.conteches.com.
- Site-specific design support is available from our engineers.

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION. Aztec Restoration 11 Holland Drive Bolton, ON, Canada L7E 1G7

Attention: Christopher Winterfield, Peel Region Public Works

February 2nd, 2024

Dear Christopher,

I/We, **Mike Liburdi**, the property owner for subject lands 12148 Albion Vaughan Road, shall adhere to the inspection and maintenance guidelines set out in the functional stormwater management report by Masongsong Associates Engineering Limited for all stormwater management facilities related to the proposed development at 12148 Albion Vaughan Road.

Mike Liburdi (Owner) Like Liburdi, Kincipal Name (Print) and Title

mike@aztecrestoration.com_ Email

Signature

Attn.	Masongsong Associates c/o Rui Song 7800 Kennedy Road, Suite 201 Markham, ON. L3R 2C7
Date:	Mar. 19, 2024
Re.:	Landscape Irrigation Calculation Estimate 12148 Albion-Vaughan Road, Caledon, Ontario.

The purpose of this letter is to confirm whether the water stored in the stormwater cistern can be reused within 72 hours, by using an on-site irrigation system.

ESTIMATED POTENTIAL IRRIGATION USE IN CUBIC METRES

Мау	384.42
June	445.27
July	490.70
August	445.27
September	384.42
Total WR m ³	2150.08
Total Monthly Avg WR m ³	430.02
Total 72 hr Avg	43.87

Notes:

- Please refer to the following sheets for formulas and monthly water use breakdowns
- This irrigation calculation has been estimated for landscape consumption only and reflects an approximate potential irrigation use based on standard landscape coefficients and local values.
- The months May through September are included in the calculation to represent the typical irrigation potential for the Toronto region growing season (153 days).
- Landscape planting specific irrigation design, mechanical systems, and related specifications shall be provided by a qualified irrigation consultant or contractor during the construction phase. This includes confirming the daily use frequency of the irrigation system.
- Any additional irrigation, beyond the rainwater harvesting system, is considered optional.

Therefore, based on the above potential irrigation use, **43.87 m³** of water can be re-used for the purposes of irrigation, during the average 72 hr period. Any additional irrigation, beyond the rainwater harvesting system, is considered optional, and to conform with local by-laws and green standard requirements.

Sincerely,

Dave Reid, O.A.L.A., C.S.L.A. Per. MSLA Landscape Architects

WATER REQUIREMENT STANDARD FORMULA

$WR = \underline{[(ETo x KL) - RE] x A}$ DU x EWM x CU

		Item Type	Description
WR	=	Irrigation Water Requirement	Quantity of water required to irrigate the landscape areas
ETo	=	Reference Evapotranspiration in mm	Based on industry standards for the City of Toronto
			July (ETo = 138.2) is used as the reference value, and a percentage is determined based on the remaining months of irrigation use:
			May = 103.65 (75% of July) June = 124.38 (90% of July) July = 138.2 (Reference Value) August = 124.38 (90% of July) September = 103.65 (75% of July)
KL	=	Landscape Coefficient	Based on the type of plant material, and in conjunction with LEED standards and calculating system (Standard LEED Calculator)
			Shrubs/Perennials = 1.0 Green Roof = 1.0 Sodded Area = 1.2
RE	=	Effective Rainfall	See chart and description on following page
А	=	Area in m ²	Area of landscape to be irrigated
DU	=	Distribution Uniformity	Based on industry standards
			Sodded Area = 0.75 Shrubs/Perennials = 0.75 Green Roof = 0.9
EWM	=	Water Management Efficiency	Water management efficiency of the irrigation system
			Good = 0.85 (constant)
CU	=	1000 (Constant)	Constant for unit conversion

EFFECTIVE RAINFALL

The effective rainfall is the total rainfall, minus runoff, minus evaporation, and minus deep percolation; only the water retained in the root zone can be used by the plants and represents what is called the effective part of the rainwater. The remaining water requirement for the plants is fulfilled by the irrigation system, as needed. (see: <u>https://www.fao.org/3/s2022e/s2022e08.htm</u>)

For the purposes of this calculation, Rainfall (ETo) = 138.2 mm for July. This is then entered into the chart below, which results in an Effective Rainfall (RE) value of **85**. The same is done for the remaining months included in this report.

This value is then subtracted from the irrigation estimate, in order to account for initial 5mm of rain abstraction (which is already included in the stormwater report). Please refer to the formula on the previous page

ETo (mm/month)	RE (mm/month)	ETo (mm/month)	RE (mm/month)
0	0	130	79
10	0	140	87
20	2	150	95
30	8	160	103
40	14	170	111
50	20	180	119
60	26	190	127
70	32	200	135
80	39	210	143
90	47	220	151
100	55	230	159
110	63	240	167
120	71	250	175

RAINFALL (ETo) AND EFFECTIVE RAINFALL (RE) in mm/month

Source: Based on "Irrigation Water Management: Irrigation Water Needs." <u>http://www.fao.org/3/s2022e/s2022e03.htm</u> . FAO (Food and Agriculture Organization of the United Nations) 1986.

MONTHLY BREAKDOWN - ESTIMATED POTENTIAL IRRIGATION USE

MAY

Туре	% of July Reference ET	ETo (Reference ET in mm)	KL	RE (50% Effective Rainfall in mm)	A (m²)	DU (Distribution Uniformity)	EWM (Water Management Efficiency)	WR (m³)
Sodded Area	75%	103.65	1.2	28.5	599.7	0.75	0.85	90.19
Green Roof	75%	103.65	1	28.5	1420.3	0.9	0.85	139.52
Shrubs/ Perennials	75%	103.65	1	28.5	1312.3	0.75	0.85	154.70

May Total **384.42**

Scheduled Irrigation Flow per 72 hr in m³ **39.71**

JUNE

Туре	% of July Reference ET	ETo (Reference ET in mm)	KL	RE (50% Effective Rainfall in mm)	A (m²)	DU (Distribution Uniformity)	EWM (Water Management Efficiency)	WR (m³)
Sodded Area	90%	124.38	1.2	37.5	599.7	0.75	0.85	105.13
Green Roof	90%	124.38	1	37.5	1420.3	0.9	0.85	161.30
Shrubs/ Perennials	90%	124.38	1	37.5	1312.3	0.75	0.85	178.84

June Total 445.27

Scheduled Irrigation Flow per 72 hr in m³ 44.53

JULY

Туре	% of July Reference ET	ETo (Reference ET in mm)	KL	RE (50% Effective Rainfall in mm)	A (m²)	DU (Distribution Uniformity)	EWM (Water Management Efficiency)	WR (m³)
Sodded Area	100%	138.2	1.2	42.5	599.7	0.75	0.85	116.03
Green Roof	100%	138.2	1	42.5	1420.3	0.9	0.85	177.68
Shrubs/ Perennials	100%	138.2	1	42.5	1312.3	0.75	0.85	197.00

July Total 490.70

Scheduled Irrigation Flow per 72 hr in m³ 50.69

AUGUST

Туре	% of July Reference ET	ETo (Reference ET in mm)	KL	RE (50% Effective Rainfall in mm)	A (m²)	DU (Distribution Uniformity)	EWM (Water Management Efficiency)	WR (m³)
Sodded Area	90%	124.38	1.2	37.5	599.7	0.75	0.85	105.13
Green Roof	90%	124.38	1	37.5	1420.3	0.9	0.85	161.30
Shrubs/ Perennials	90%	124.38	1	37.5	1312.3	0.75	0.85	178.84

August Total 445.27

Scheduled Irrigation Flow per 72 hr in m³ 46.00

SEPTEMBER

Туре	% of July Reference ET	ETo (Reference ET in mm)	KL	RE (50% Effective Rainfall in mm)	A (m²)	DU (Distribution Uniformity)	EWM (Water Management Efficiency)	WR (m³)
Sodded Area	75%	103.65	1.2	28.5	599.7	0.75	0.85	90.19
Green Roof	75%	103.65	1	28.5	1420.3	0.9	0.85	139.52
Shrubs/ Perennials	75%	103.65	1	28.5	1312.3	0.75	0.85	154.70

September Total 384.42

Scheduled Irrigation Flow per 72 hr in m³ 38.44

Total Combined WR in m³

Мау	384.42
June	445.27
July	490.70
August	445.27
September	384.42
Total WR m ³	2150.08
Total Monthly Avg WR m ³	430.02
Total 72 hr Avg	43.87

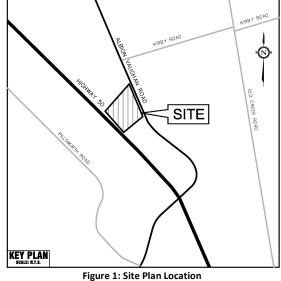
Appendix E

Approved TRCA Creek Realignment Submission and Drawings (2021)

MA-Project No: 2017-849

MEMORANDUM

Date:	January 25, 2021
То:	Sameer Dhalla Director, Development and Engineering Services Toronto and Region Conservation Authority
From:	David Hoover Masongsong Associates Engineering Limited
Subject:	Robinson Creek Channel Re-Alignment 12148 Albion Vaughan Road, Bolton Town of Caledon, Ontario


Masongsong Associates Engineering Limited (MAEL) has been retained by Aztec Restoration to prepare this technical memorandum in support of the channel re-alignment at Reach 1 of Robinson Creek, a tributary to the Humber River. The purpose of this memo is to identify the existing hydraulic conditions and to demonstrate how the proposed alignment will preserve and enhance the function of the watercourse to the satisfaction of the Toronto and Region Conservation Authority (TRCA).

The proposed re-alignment is located entirely within the property of 12148 Albion Vaughan Road and characterized by proposed site grading in support a new building. The requirement for this re-alignment was identified during the zoning by-law and site plan application process when it was discovered that the previous land use had significantly altered the site topography resulting in negative impacts to regulatory floodplain. Therefore, channel re-alignment is necessary to restore and enhance the function of the watercourse while supporting the proposed development.

The areas of concerns for Robinson Creek is identified as Reach 1 starting from River Station 2223.1 to River Station 2223.16. The lands tributary to this length of Robinson Creek is limited to the subject property.

1. BACKGROUND

The subject property is approximately 1.3 ha (3.2 acres), bound by Highway 50 (a Peel Regional arterial roadway) to the west, and bound by Albion Vaughan Road (the designated "frontage") to the east. Directly to the north is existing rural residential and to the south is a commercial site with outdoor storage provisions. The legal description of the property is Part 1 of Lot 1, Concession 7 in the Town of Caledon. Refer to FIGURE 1 for the Site Plan Location.

7800 KENNEDY ROAD, SUITE 201 MARKHAM, ONTARIO L3R 2C7 T (905) 944-0162 F (905) 944-0165

2. HYDRAULIC MODELLING (GEOHEC-RAS) RESULTS

The hydraulic modelling results presented herein describes the channel hydraulics based on the details of the TRCA 2015 HEC RAS model, existing topography and site design where applicable. The following tasks were undertaken:

- Update the relevant cross sections for each modelling scenario based on available topographic data.
- Determine regulatory flood elevations for the pre-existing (PEX), existing (EX) and proposed (PR) scenarios
- Evaluate the results of the proposed (PR) channel re-alignment with the pre-existing (PEX) and existing (EX) scenarios

METHODOLOGY

To achieve the modelling objectives described in the preceding section, the U.S. Army Corps of Engineers' River Analysis System (HEC-RAS) was utilized. HEC-RAS is designed to perform one-dimensional steady and unsteady flow river hydraulics calculations, sediment transport-mobile bed modelling, and water temperature analysis. The HEC-RAS software supersedes the HEC-2 river hydraulics package.

The modelling system calculates water surface profiles for steady gradually varied flow. The system can handle a full network of channels, a dendritic system, or a single river reach. The steady flow component is capable of modelling subcritical, supercritical, and mixed flow regime water surface profiles.

The basic computational procedure is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction (Manning's equation) and contraction/expansion (coefficient multiplied by the change in velocity head). The momentum equation is utilized in situations where the water surface profile is rapidly varied. These situations include mixed flow regime calculations (i.e., hydraulic jumps), hydraulics of bridges, and evaluating profiles at river confluences (stream junctions).

This model has the ability to consider the effects of various obstructions, such as bridges, culverts, dams, weirs, and other structures in the floodplain on water levels. The steady flow system is designed for application in floodplain management, estimation of floodplain storage, and for assessing the change in water surface profiles due to channel modifications.

The model requires the following input:

- Channel geometry (low flow centerline profile and cross-sections; culvert crossing details);
- Manning's roughness for main channel and overbank areas;
- Cumulative flow; and,
- Downstream boundary conditions.

PRE-EXISTING CONDITIONS (PEX)

The Robinson Creek HEC-RAS was obtained from the TRCA and has been used to establish the original floodline conditions for our site, 12148 Albion Vaughan Road. The following outlines the measures taken when analyzing the pre-existing hydraulic model:

• Uses flow data from the provided TRCA HEC-RAS model (Table 1)

Table 1: TRCA Flows						
Storm Event	XS 2223.18 Flow (m³/s)	XS2223.12 Flow (m ³ /s)				
2-Year	5.47	5.69				
5-Year	7.78	8.09				
10-Year	9.36	9.73				
25-Year	11.54	11.99				
50-Year	13.25	13.77				
100-Year	15.21	15.81				
Regional	17.88	18.59				

o Uses original geometry from the provided TRCA 2015 HEC-RAS model

The resultant water surface elevations (W.S.E.) for regulatory storm event in the pre-existing model are summarized in Table 2. The floodplain mapping complete with river station locations and flood line for this scenario can be found on Drawing PEX.

EXISTING CONDITIONS (EX)

The existing condition model was established by updating the relevant cross sections of the Robinson Creek HEC-RAS obtained from the TRCA. The update is based on the data from a topographic survey of the existing grades which were found to be significantly altered from the original geometry in the pre-existing (PEX) scenario above. The following outlines the measures taken when analyzing the existing hydraulic model:

- Uses flow data from the provided TRCA 2015 HEC-RAS model (Table 1)
- Uses existing geometry and sections from the provided TRCA 2015 HEC-RAS model and then updated with the topographical survey (see below):
 - Section 2223.15
 - Section 2223.14
 - Section 2223.134
 - Section 2223.133
 - Section 2223.132
 - Section 2223.131
 - Section 2223.112
 - Section 2223.11
- Additional cross sections have been provided to increase the accuracy across the site (see below):
 - Section 2223.156
 - Section 2223.152

- Section 2223.148
- Section 2223.146
- Section 2223.145
- Section 2223.143
- Section 2223.141
- Section 2223.125

The resultant water surface elevations (W.S.E.) for regulatory storm event in the existing model are summarized in **Table 2**. The floodplain mapping complete with river station locations and flood line for this scenario can be found on **Drawing EX**.

PROPOSED CONDITIONS (PR)

The proposed conditions model includes the projected grading for our site. The following outlines the measures taken when analyzing the proposed hydraulic model:

- o Uses flow data from the provided TRCA 2013 HEC-RAS model (Table 1)
- Uses existing geometry from the Baseline Model HEC-RAS model with modifications which are as follows:
 - Section 2223.105 which represents a culvert structure has been removed from the model which as the existing culvert that serviced the driveway access is no longer required in the proposed condition.
- Uses existing geometry and sections from the provided TRCA 2015 HEC-RAS model and then updated with the proposed site grading design (see below):
 - Section 2223.15
 - Section 2223.14
 - Section 2223.134
 - Section 2223.133
 - Section 2223.132
 - Section 2223.131
 - Section 2223.112
 - Section 2223.11
- Additional cross sections have been provided to increase the accuracy across the site (see below):
 - Section 2223.156
 - Section 2223.152
 - Section 2223.148
 - Section 2223.146
 - Section 2223.145
 - Section 2223.143
 - Section 2223.141
 - Section 2223.125

The resultant water surface elevations (W.S.E.) for regulatory storm event in the proposed model are

summarized in Table 2. The floodplain mapping complete with river station locations and flood line for this scenario can be found on Drawing PR.

1	Table 2: Regulatory W.	S.E. For Various Scenarios			
River Station	Regulatory W.S.E. (m)				
	PEX	EX	PR		
2223.16	230.20	230.20	230.20		
2223.156		229.92	229.93		
2223.152		229.76	229.68		
2223.15	229.60	229.80	229.36		
2223.148		229.78	229.33		
2223.146		229.79	229.32		
2223.145		229.79	229.32		
2223.143		229.78	229.31		
2223.141		229.77	229.19		
2223.14	229.23	229.70	229.19		
2223.134	229.20	229.56	229.01		
2223.133	229.19	229.45	229.07		
2223.132	229.18	229.44	229.07		
2223.131	229.17	229.36	229.05		
2223.13	229.09	228.87	229.02		
2223.125		228.84	228.98		
2223.12	229.05	228.94	228.97		
2223.11	228.69	228.68	228.97		
2223.105	CULVERT	CULVERT	REMOVED		
2223.1	228.44	228.41	228.94		
2223.09	228.60	228.56	228.50		
2223.08	227.91	227.88	228.05		
2223.075	CULVERT	CULVERT	CULVERT		
2223.07	227.73	227.71	227.71		
2223.06	227.63	227.61	227.61		
2223.05	226.71	226.69	226.69		
2223.04	226.27	226.24	226.24		
2223.03	226.00	225.99	225.99		
2223.025	CULVERT	CULVERT	CULVERT		
2223.02	225.61	225.61	225.61		

DISCUSSION

The regulatory water surface elevation for the pre-existing and the proposed condition is shown in **Table 3** below. The proposed channel re-alignment that only consists of site grading changes within the subject property restores and enhances the original (PEX) condition by significantly reducing the regulatory water surface elevation within this length of Robinson Creek

	Table 3: Regulatory W.	S.E. For Various Scenarios	
River Station		Regulatory W.S.E. (m)	
	PEX	PR	Difference
2223.16	230.20	230.20	0.00
2223.15	229.60	229.36	-0.24
2223.14	229.23	229.19	-0.04
2223.134	229.20	229.01	-0.19
2223.133	229.19	229.07	-0.12
2223.132	229.18	229.07	-0.11
2223.131	229.17	228.05	-0.12
2223.13	229.09	228.02	-0.07
2223.12	229.05	228.97	-0.08
2223.11	228.69	228.97	0.28
2223.105	CULVERT	CULVERT REMOVED	-
2223.1	228.44	228.94	0.50
2223.09	228.60	228.50	-0.10
2223.08	227.91	228.05	0.14
2223.075	CULVERT	CULVERT	-
2223.07	227.73	227.71	-0.02
2223.06	227.63	227.61	-0.02
2223.05	226.71	226.69	-0.02
2223.04	226.27	226.24	-0.03
2223.03	226.00	225.99	-0.01
2223.025	CULVERT	CULVERT	-
2223.02	225.61	225.61	0.00

Based on Table 3 above, the water surface elevations increase under proposed conditions at Station 2223.14 and Station 2223.1, both outliers are clarified as follows:

Station 2223.11 – The 0.28m increase in WSE is caused by different topographic data between the two conditions. Under the pre-existing condition, the channel is significantly wider at this cross section while the updated topographic survey under the proposed condition shows that this section and immediately upstream is steep and narrow. Therefore, the WSE in the pre-existing condition did not reflect actual ground conditions and does not provide an applicable comparison with the proposed model. Despite the 0.28m increase in WSE, the regulatory flood line is contained within the roadside ditch under the proposed condition as show in Drawing CP.

Station 2223.1 & 2223.08 – The increase in WSE is the result of the removal of the culvert that was facilitating the existing driveway access. Under the pre-existing condition, the low WSE at this station is caused by the

culvert changing the flow regime from subcritical to super critical as the water passes the driveway access. The WSE at the following station is higher which demonstrates that the flows transition from supercritical back to subcritical flows. Under the proposed conditions, with the culvert removed, the WSE remains constant or is lowers than the subsequent stations which illustrate that there the flow is not constricted along the creek. Therefore, an increase is negligible given an the WSE reduction between 0.01m to 0.24m across the subject area of study including the stations immediately upstream and downstream.

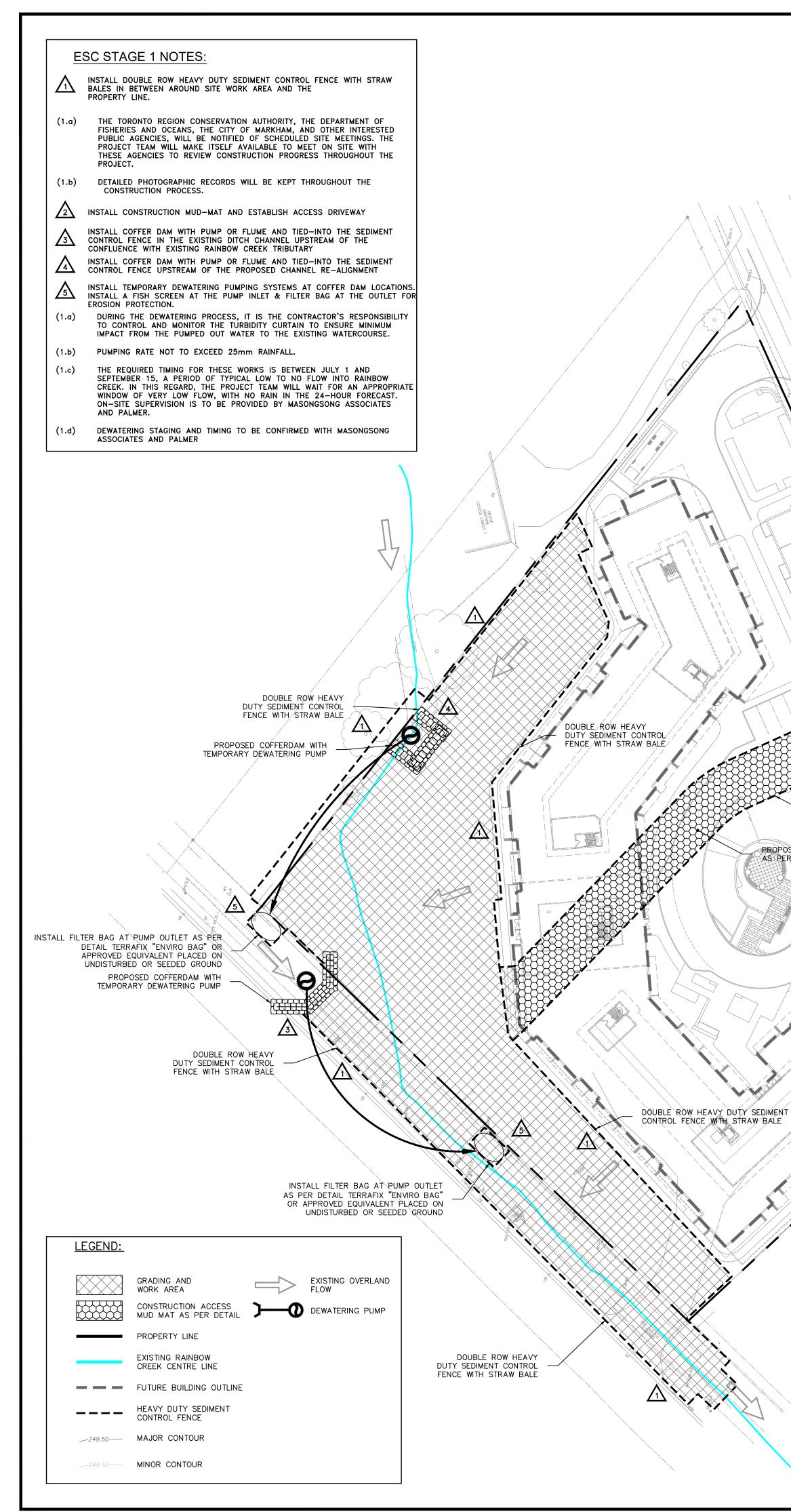
In addition, the increase in WSE is also caused by different topographic data between the two conditions. Under the pre-existing conditions, the WSE is shown to spill onto Highway 50 at the approximate centerline elevation of 228.51m. In the proposed conditions, an updated topographic survey shows an approximate centerline elevation of 228.79m. The 0.28m centerline elevation difference prevents any overland spill to occur on Highway 50 which would result in an increase of WSE. Despite the increase in WSE, the regulatory flood line is contained within the roadside ditch under the proposed condition as show in Drawing CP.

With the outliers clarified, there is no actual impacts caused by the proposed channel re-alignment. The detailed HEC-RAS summary output can be found as attached. The existing and proposed HEC-RAS cross-sections can be found in the appendix.

3. CONCLUSIONS

In summary, the proposed channel re-alignment will reduce the floodplain on the subject property without having any negative impact to the upstream or downstream water surface elevation. The newly re-alignment channel will be designed using BMP and erosion mitigation measures to maintain the meander belt and prevent negative effects to infrastructure and property limits. Erosion and sediment control strategies are in place to perform the channel re-alignment and satisfy both TRCA and the local municipal criteria. Details for the mitigation measures and the erosion and sediment control strategies are provided in the design package prepared by Palmer.

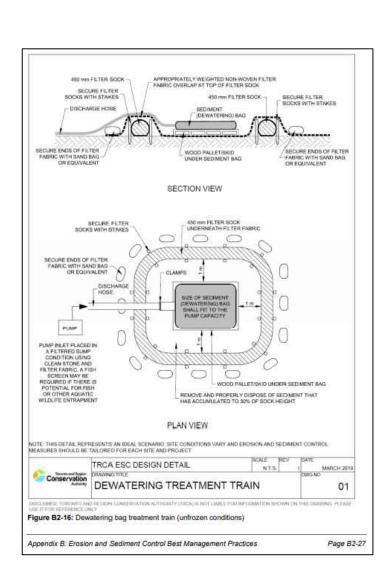
I trust that this memorandum is complete and to the satisfaction of the TRCA. If you have any questions or concerns, please do not hesitate to contact the undersigned at 905-944-0162 ext. 230.


Respectfully Submitted, Masongsong Associates Engineering Limited

David Hoover, P.Eng Senior Project Engineer H:\PROJECTS\17\849\Design\17-849_Memo TRCA - Rainbow Creek Channel Re-Alignment - 20201123.doc

Attachments:

Pre-Existing Condition Plan (PEX) Existing Condition Plan (EX) Proposed Condition Plan (PR) Composite Plan (CP) Digital Model Output Digital Modelling Files

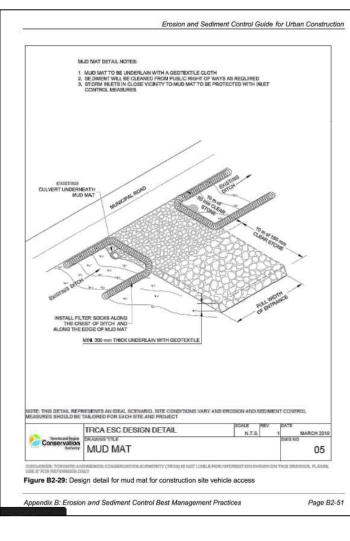

EROSION AND SEDIMENTATION CONTROL GENERAL NOTES

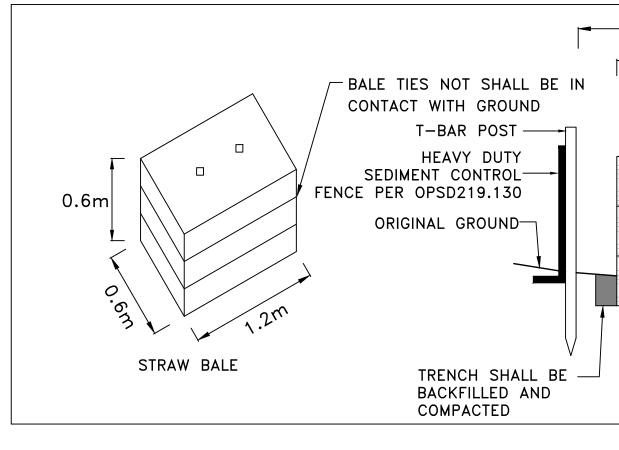
PRIOR TO CONSTRUCTION OR STRIPPING TOPSOIL, THE CONTRACTOR SHALL MAKE PROVISIONS TO PROVIDE "GOOD HOUSINGKEEPING" MEASURES TO MITIGATE THE TRANSPORTATION OF SILT FROM THE SITE. THESE MEASURES SHALL INCLUDE, BUT ARE NOT LIMITED TO THE FOLLOWING:

- 1. PROVIDE SILT FENCES AROUND THE PERIMETER OF THE SITE TO REDUCE SILT FROM LEAVING THE SITE. 2. PROVIDE SILT TRAPS AT CATCHBASINS UPON THEIR INSTALLATION TO REDUCE THE AMOUNT OF SILT ENTERING THE SEWER SYSTEM DURING CONSTRUCTION.
- 3. USE OF A "MUD MAD" OR TEMPORARY TRACKING CONTROL AT THE ENTRANCE OF THE SITE TO MINIMIZE MUD TRACKING FROM THE SITE. (OWNER SHALL CLEAN ADJACENT ROADS ON A REGULAR BASIS).
- 4. CONSTRUCT BULKHEADS IN THE DOWNSTREAM MANHOLE TO REDUCE SILT ENTERING THE STORM SEWER.
- 5. STABILIZE SITE AS SOON AS POSSIBLE BY RE-ESTABLISHING VEGETATIVE GROUND COVER AND AVOIDING BARE SOIL AREAS. ALL AREAS (INCLUDING STOCKPILES) WHILE SITE IMPROVEMENTS ARE NOT EXPECTED TO OCCUR IMMEDIATELY SHALL BE REVEGETATED WITH 100mm OF TOPSOIL AND HYDROSEEDED IN ACCORDANCE WITH 0.P.S.D. 570 & 572
- 6. ALL DRAINAGE WORKS REQUIRE EROSION/SEDIMENT CONTROL SATISFACTORY TO THE APPROVAL AGENCIES DURING CONSTRUCTION PERIOD AND MUST BE MONITORED AND MAINTAINED ON A REGULAR BASIS TO ENSURE MAXIMUM BENEFIT AND MINIMUM SILT MIGRATION OFF-SITE.
- 7. ALL CONSTRUCTION VEHICLES TO ENTER AND LEAVE THE SITE AT APPROVED LOCATION ONLY AS INDICATED ON THIS PLAN. 8. ADDITIONAL EROSION AND SEDIMENT CONTROL MEASURES MAY BE REQUIRED AND SHALL BE INSTALLED AS DETERMINED BY THE CONSULTANT.
- 9. THE CONSTRUCTION PROCESS WILL BE REVIEWED AND APPROVED BY DEVELOPMENT ENGINEERING & OPERATIONS CENTRE AS PART OF THE ROAD OCCUPANCY PERMIT.

STANDARD ENVIRONMENTAL NOTES

- 1. SEDIMENT AND EROSION CONTROL MEASURES WILL BE IMPLEMENTED PRIOR TO, AND MAINTAINED DURING THE CONSTRUCTION PHASES, TO PREVENT ENTRY OF SEDIMENT INTO THE WATER.
- 2. THE EROSION AND SEDIMENT CONTROL STRATEGIES OUTLINED ON THE PLANS ARE NOT STATIC AND MAY NEED TO BE UPGRADED/AMENDED AS SITE CONDITIONS CHANGE TO PREVENT SEDIMENT RELEASES TO THE NATURAL ENVIRONMENT. THE TRCA ENFORCEMENT OFFICER SHOULD BE IMMEDIATELY CONTACTED SHOULD THE EROSION AND SEDIMENT CONTROL PLANS CHANGE FRO THE APPROVED PLANS.
- 3. ALL EROSION AND SEDIMENT CONTROL MEASURES SHOULD BE INSPECTED WEEKLY, AFTER EVERY RAINFALL AND SIGNIFICANT SNOW MELT EVENT, AND DAILY DURING PERIODS OF EXTENDED RAIN OR SNOWMELT. 4. ALL DAMAGED EROSION AND SEDIMENT CONTROL MEASURES SHOULD BE REPAIRED AND/OR REPLACED WITHIN 48 HOURS OF
- THE INSPECTION. 5. ALL ACTIVITIES, INCLUDING MAINTENANCE PROCEDURES, WILL BE CONTROLLED TO PREVENT THE ENTRY OF PETROLEUM PRODUCTS, DEBRIS, RUBBLE, CONCRETE OR OTHER DELETERIOUS SUBSTANCES INTO THE WATER. VEHICULAR REFUELING AND MAINTENANCE WILL BE CONDUCTED 30 METRES FROM THE WATER.
- 6. ALL DISTURBED AREAS WILL BE STABILIZED AND RESTORED WITH NATIVE/NON-INVASIVE SPECIFIES UPON COMPLETION OF THE
- 7. A REHABILITATION PLAN IS TO BE IMPLEMENTED TO RESTORE THE CONSTRUCTION SITE BACK TO ITS PRE-CONSTRUCTION
- STATE, OR BETTER. 8. ALL EXISTING GRADES WITHIN THE REGIONAL STORM FLOODPLAIN WILL BE MAINTAINED. ALL EXCESS FILL WILL BE REMOVED FROM THE REGIONAL STORM FLOODPLAIN.
- 9. THE CONTRACTOR SHALL MONITOR THE WEATHER SEVERAL DAYS IN ADVANCE OF THE ONSET OF THE PROJECT TO ENSURE THAT THE WORKS WILL BE CONDUCTED DURING FAVOURABLE WEATHER CONDITIONS. SHOULD AN UNEXPECTED STORM ARISE, THE CONTRACTOR WILL REMOVE ALL UNFIXED ITEMS FROM THE REGIONAL STORM FLOODPLAIN AND SLOPE THAT WOULD HAVE THE POTENTIAL TO CAUSE A SPILL/POLLUTION (I.E., FUEL TANKS, PORTA-POTTIES, MACHINERY) OR AN OBSTRUCTION TO FLOW (I.E. MACHINERY, EQUIPMENT). PRIOR TO FORECASTED PRECIPITATION EVENT, ALL esc MEASURES TO BE INSPECTED AND CONFIRMED TO BE IN GOOD CONDITION.
- 10. AN ENVIRONMENTAL MONITOR WILL ATTEND THE SITE TO INSPECT ALL NEW CONTROLS, AS WELL AS ON A REGULAR BASIS OR FOLLOWING RAIN/SNOWMELT EVENT, TO MONITOR ALL WORKS, AND IN PARTICULAR WORKS RELATED TO EROSION AND SEDIMENT CONTROLS, DEWATERING OR UNWATERING, RESTORATION AND IN- OR NEAR- WATER WORK. SHOULD CONCERNS ARISE ON SITE THE ENVIRONMENTAL MONITOR WILL CONTRACT THE TRCA ENFORCEMENT OFFICER AS WELL AS THE PROPONENT.
- 11. ALL DEWATERING/UNWATERING SHALL BE TREATED AND RELEASED TO THE ENVIRONMENT AT LEAST 30 METRES FROM A WATER COURSE OR WETLAND AND ALLOWED TO DRAIN ONTO DISTURBED SOILS WITHIN THE WORK AREA. THESE CONTROL MEASURES SHALL BE MONITORED FOR EFFECTIVENESS AND MAINTAINED OR REVISED TO MEET THE OBJECTIVE OF PREVENTING THE RELEASE OF SEDIMENT LADEN WATER.




 $\angle 2$

DOUBLE ROW HEAVY DUTY SEDIMENT CONTROL FENCE WITH STRAW BALE

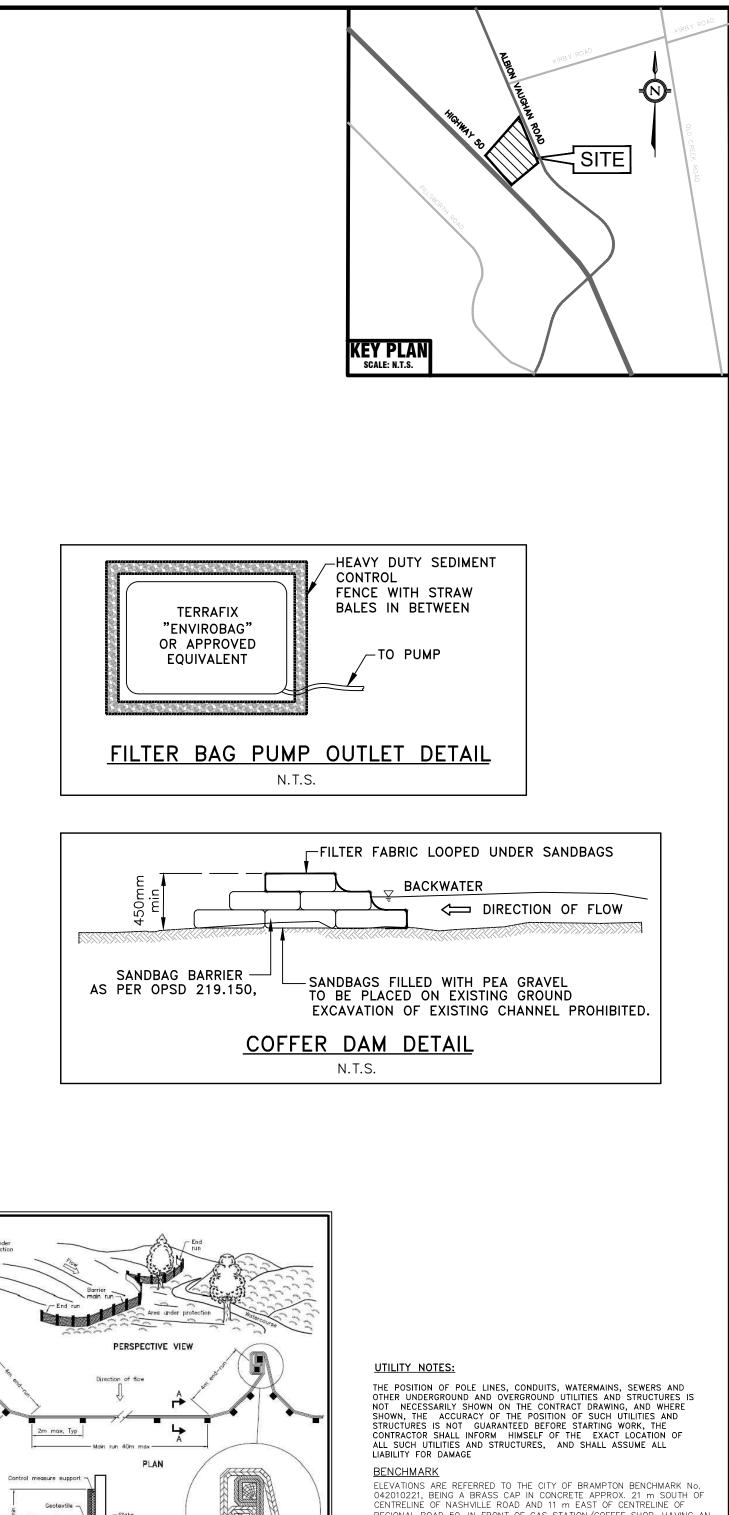
PROPOSED MUD MAT

AS PER DETAIL

Page B2-51

1.0m

0.6m


300mm min -of geotextile in trench

SECTION A-A

All dimensions are in millimetres unless otherwise shown. J PROVINCIAL STANDARD DRA

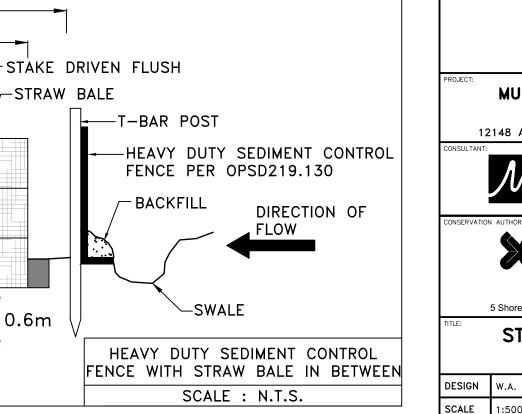
> HEAVY-DUTY SILT FENCE BARRIER

rench shall ackfilled an

CENTRELINE OF NASHVILLE ROAD AND 11 M EAST OF CENTRELINE OF REGIONAL ROAD 50, IN FRONT OF GAS STATION/COFFEE SHOP. HAVING AN ELEVATION OF 220.967 m.

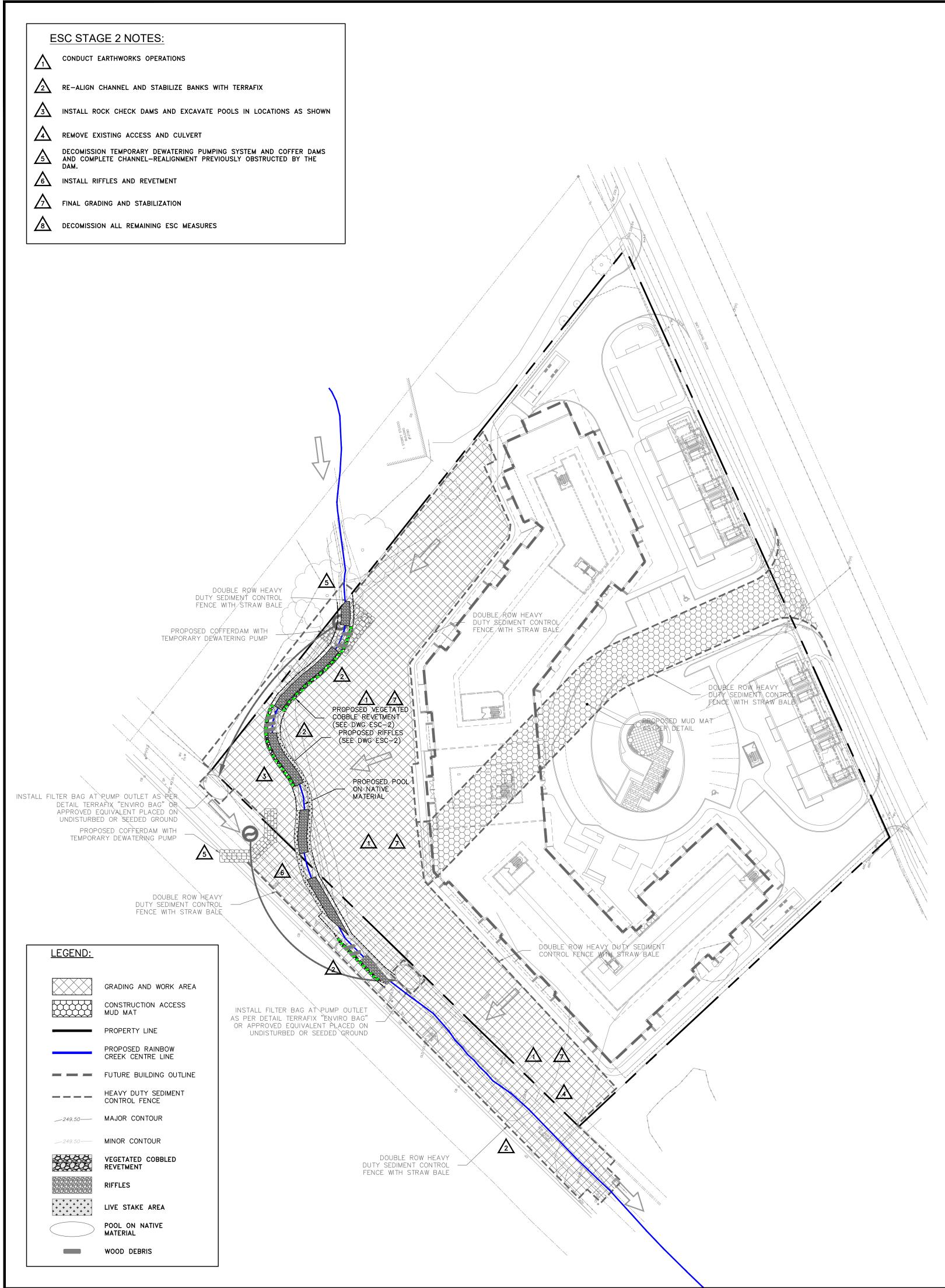
	UN OF 220.	07 m.					
	01/14/21	ISSUED TO TRCA	D.H.				
1 No.	DATE	REVISIONS	D.n.				
STAMP:	DATE	STAME	p.				
PROJECT:	PROJECT: MULTIPLE RESIDENTIAL CONDO DEVELOPMENT						
	12148 AL	BION VAUGHAN ROAD, TOWN	OF CALEDON				
CONSULTA		MASONGSONG ASSOCIATES	7800 KENNEDY ROAD SUITE 201 MARKHAM, ONTARIO L3R 2C7 T: (905) 944-0162 www.maeng.ca				
CONSERVA	5 Shoreha	TORONTO AND REGION ODSERVATIO for The Living (m Drive Downsview Ontario M3N 154	City				
TITLE:		GE 1: EROSION EDIMENT CONTR					

CHECKED D.H.

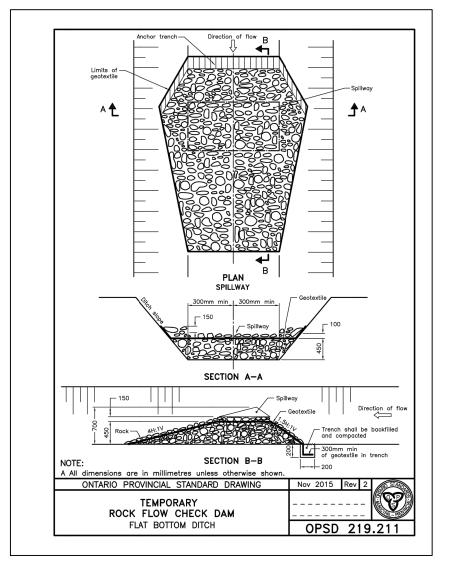

JANUARY 2021

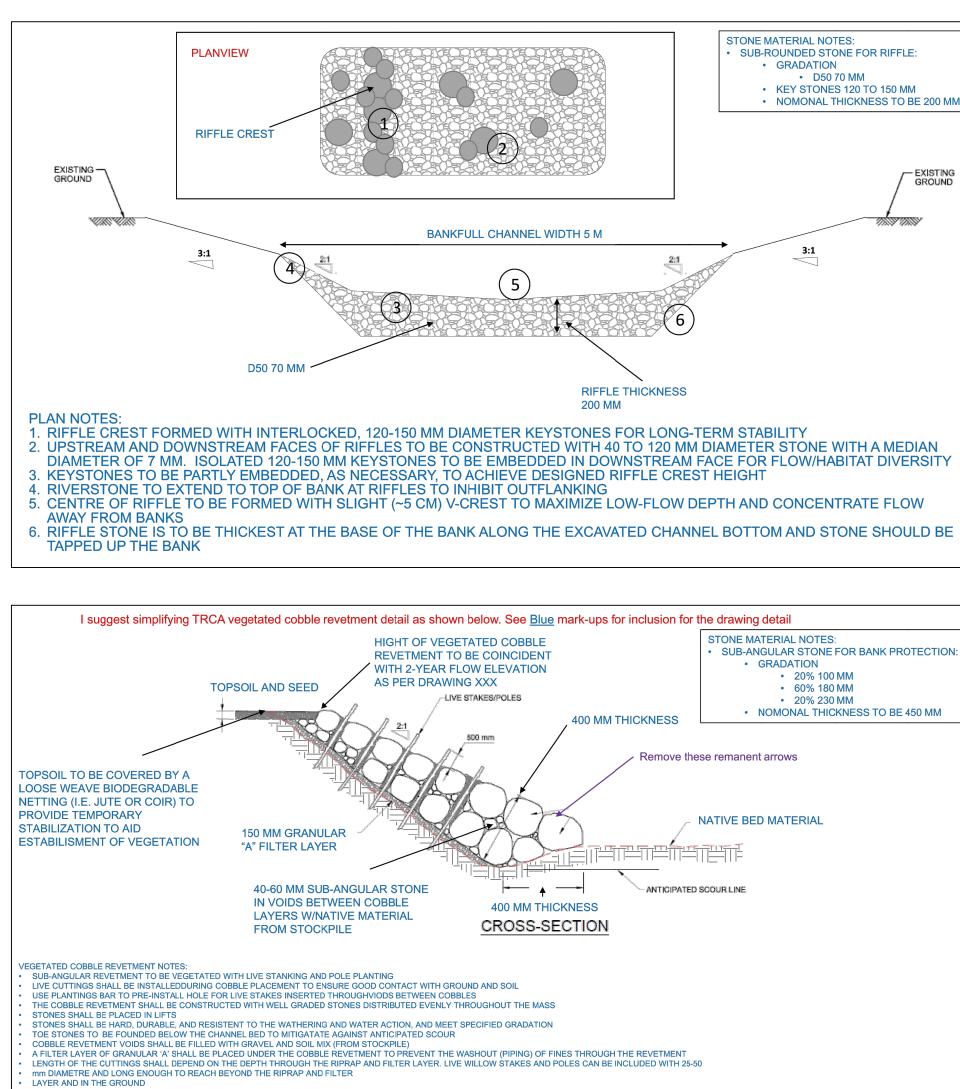
DATE

CONTRACT No. 17-849

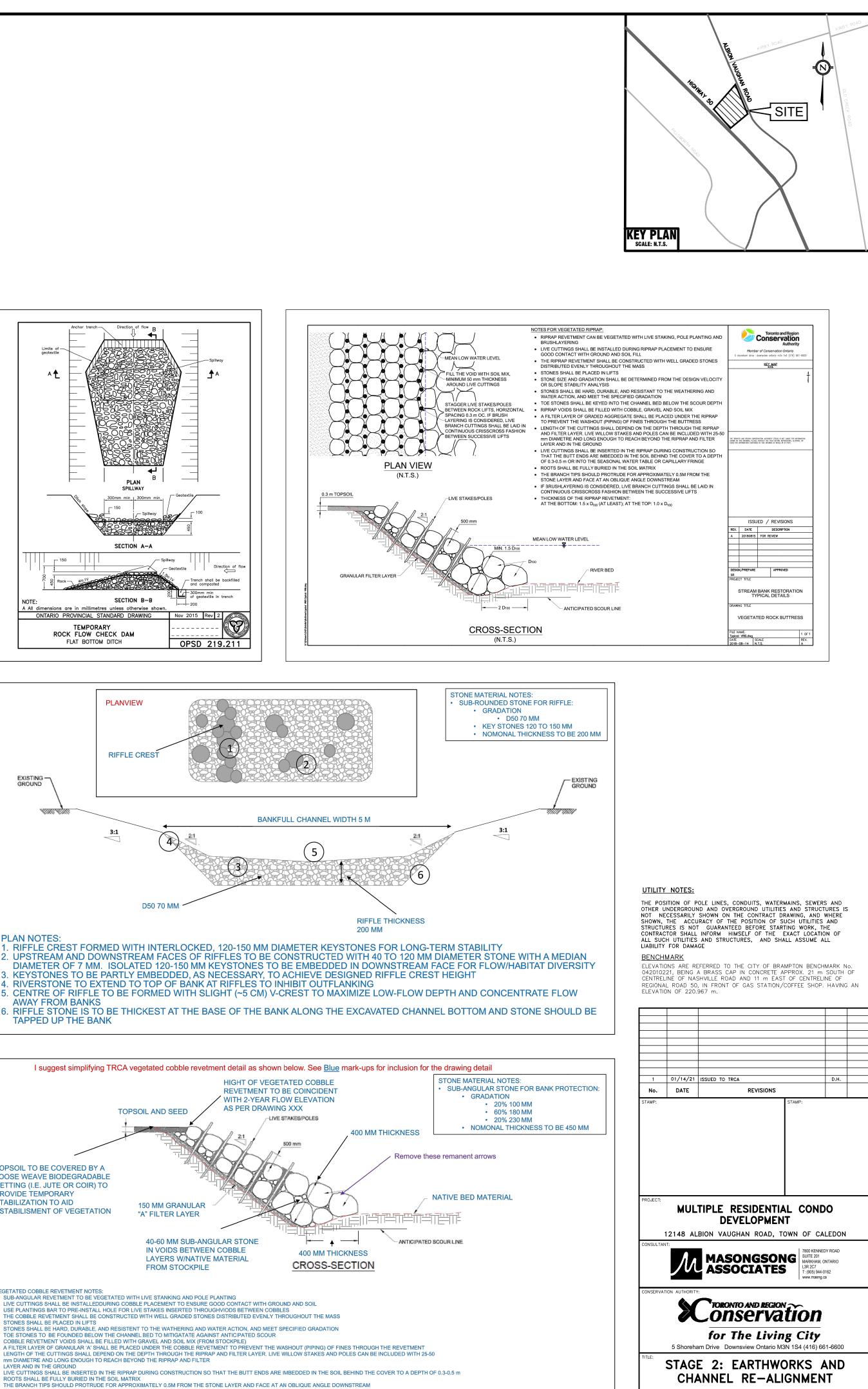

ESC-

PLAN No.



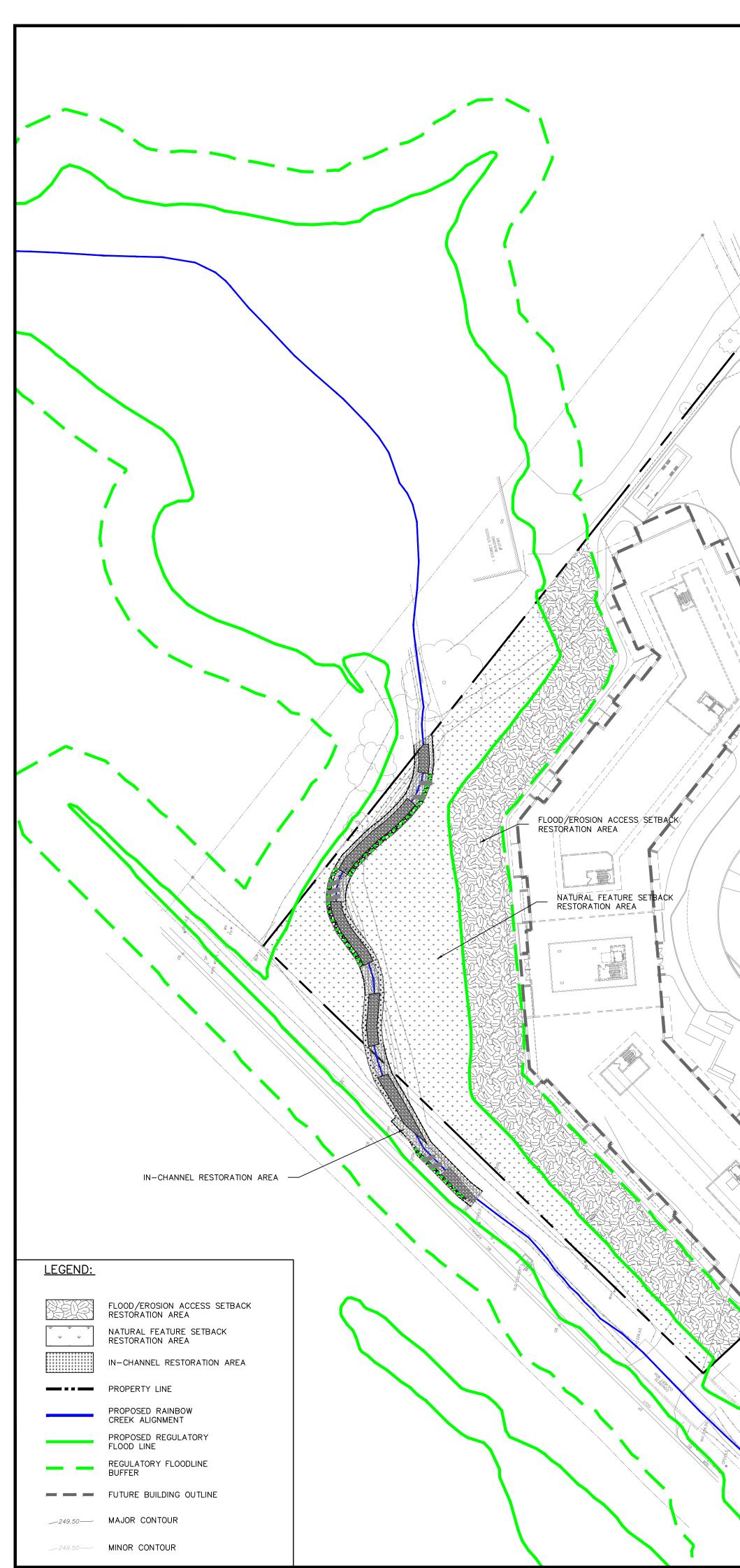

JOINT DETAIL

OPSD 219.130



C:\Users\William\Desktop\MAEL\17-849\17-849 - FLOODPLAIN - ESC.dwg

PLACE MATIVE MATERIAL OVERTOP AND WITHIN VOIDSS AND AROUND LIBVE STAKES SPREAD SEED MIX OVER FINISHED SLOPE AND PLACE EROSION CONTROL BLANKET (ECB) OVERTOP FNISHED SLOPE AND PINED IN PLACE (NO METAL OR PLACTIC). ECB TO BE 100% COCONUT FIBRE COIR MAT, FULLY BIODEGRADABLE)



CHANNEL RE-ALIGNMENT

DESIGN W.A. CHECKED D.H. CONTRACT No. 17-849 SCALE 1:500 PLAN No. ESC-2

DATE

JANUARY 2021

C:\Users\William\Desktop\MAEL\17-849\17-849 - FLOODPLAIN - ESC.dwg

GENERAL ESC NOTES:

- 1. EROSION AND SEDIMENT CONTROL (ESC) MEASURES WILL BE IMPLEMENTED PRIOR TO, AND MAINTAINED DURING CONSTRUCTION PHASES, TO PREVENT ENTRY OF SEDIMENT INTO THE WATER. ALL DAMAGED EROSION AND SEDIMENT CONTROL MEASURES SHOULD BE
- REPAIRED OR REPLACED WITHIN 48 HOURS OF INSPECTION OR BOTH. 2. ALL DISTURBED AREAS WILL BE MINIMIZED TO THE EXTENT POSSIBLE, AND TEMPORARILY OR PERMANENTLY STABILIZED OR RESTORED AS THE WORK PROGRESSES. 3. THE EROSION AND SEDIMENT CONTROL STRATEGIES OUTLINED ON THE PLANS ARE NOT STATIC AND MAY NEED TO BE
- UPGRADED/AMENDED AS SITE CONDITIONS CHANGE TO MINIMIZE SEDIMENT LADEN RUNOFF FROM LEAVING THE WORK AREA. IF THE PRESCRIBED MEASURES ON THE PLANS ARE NOT EFFECTIVE IN PREVENTING THE RELEASE OF A DELETERIOUS SUBSTANCE, THEN ALTERNATIVE MEASURES MUST BE IMPLEMENTED IMMEDIATELY TO MINIMIZE POTENTIAL ECOLOGICAL IMPACTS AND A TORONTO REGION CONSERVATION AUTHORITY ENFORCEMENT OFFICE SHOULD BE IMMEDIATELY CONTACTED. ADDITIONAL ESC MEASURES TO BE KEPT ON SITE AND USED AS NECESSARY.
- 4. ALL ACTIVITIES, INCLUDING MAINTENANCE PROCEDURES, WILL BE CONTROLLED TO PREVENT THE ENTRY OF PETROLEUM PRODUCTS, DEBRIS, RUBBLE, CONCRETE OR OTHER DELETERIOUS SUBSTANCES INTO THE WATER. VEHICULAR REFUELING AND MAINTENANCE AND REFUELING

TRCA STANDARD NOTES:

- 1. ALL IN-WATER AND NEAR WATER WORKS WILL BE CONDUCTED IN THE DRY WITH APPROPRIATE EROSION AND SEDIMENT CONTROLS. 2. AN ENVIRONMENTAL MONITOR WILL ATTEND THE SITE TO INSPECT ALL NEW CONTROLS, AS WELL AS ON A REGULAR BASIS, OR FOLLOWING RAIN/SNOWMELT EVENT, TO MONITOR ALL WORKS, AND IN PARTICULAR WORKS RELATED TO EROSION AND SEDIMENT CONTROLS, DEWATERING OR UNWATERING, RESTORATION AND IN- OR NEAR- WATER WORKS. SHOULD CONCERNS ARISE ON SITE THE
- ENVIRONMENTAL MONITOR WILL CONTACT THE TRCA ENFORCEMENT OFFICER AS WELL AS THE PROPONENT. 3. ALL ACTIVITIES, INCLUDING MAINTENANCE PROCEDURES, WILL BE CONTROLLED TO PREVENT THE ENTRY OF PETROLEUM PRODUCTS, DEBRIS. RUBBLE, CONCRETE OR OTHER DELETERIOUS SUBSTANCES INTO THE WATER. VEHICULAR REFUELING AND MAINTENANCE WILL BE CONDUCTED A MINIMUM OF 30 METRES FROM THE WATER.
- 4. THE PROPONENT/CONTRACTOR SHALL MONITOR THE WEATHER SEVERAL DAYS IN ADVANCE OF THE ONSET OF THE PROJECT TO ENSURE THAT THE WORKS WILL BE CONDUCTED DURING FAVOURABLE WEATHER CONDITIONS. SHOULD AN UNEXPECTED STORM ARISE, THE CONTRACTOR WILL REMOVE ALL UNFIXED ITEMS FROM THE REGIONAL STORM FLOOD PLAIN THAT WOULD HAVE THE POTENTIAL TO CAUSE A SPILL OR AN OBSTRUCTION TO FLOW, E.G., FUEL TANKS, PORTA- POTTIES, MACHINERY, EQUIPMENT, CONSTRUCTION MATERIALS, ETC.
- 5. ALL DEWATERING/UNWATERING SHALL BE TREATED AND RELEASED TO THE ENVIRONMENT AT LEAST 30 METRES FROM A WATERCOURSE OR WETLAND AND ALLOWED TO DRAIN THROUGH A WELL-VEGETATED AREA. NO DEWATERING EFFLUENT SHALL BE SENT DIRECTLY TO ANY WATERCOURSE, WETLAND OR FOREST, OR ALLOWED TO DRAIN ONTO DISTURBED SOILS WITHIN THE WORK AREA. THESE CONTROL MEASURES SHALL BE MONITORED FOR EFFECTIVENESS AND MAINTAINED OR REVISED TO MEET THE OBJECTIVE OF PREVENTING THE RELEASE OF SEDIMENT LADEN WATER.
- 6. ALL ACCESS TO THE WORK SITE SHALL BE FROM EITHER SIDE OF THE WATERCOURSE. NO EQUIPMENT OR VEHICLES ARE PERMITTED TO CROSS THROUGH THE WATERCOURSE UNLESS APPROVED BY TRCA. 7. IN ORDER TO COMPLY WITH THE MIGRATORY BIRDS CONVENTION ACT AND ENDANGERED SPECIES ACT, ALL VEGETATION REMOVAL
- (INCLUDING TREES) MUST BE COMPLETED BETWEEN JULY 1 TO SEPTEMBER 15. 8. TO PROTECT LOCAL FISH POPULATIONS DURING THEIR SPAWNING, NURSERY AND MIGRATORY PERIODS, IN- WATER/NEAR-WATER
- ACTIVITIES. MAY ONLY OCCUR DURING THE COLD WATER CONSTRUCTION TIMING WINDOW. 9. AN ENVIRONMENTAL MONITOR WILL BE ON SITE, AND PROVIDE ADVICE, TO ENSURE THAT ACTIVITIES THAT COULD HAVE A NEGATIVE IMPACT TO THE NATURAL ENVIRONMENT ARE EFFECTIVELY MITIGATED AS CONSTRUCTION PROCEEDS. THE ENVIRONMENTAL MONITOR SHALL NOTIFY THE TRCA ENFORCEMENT OFFICER AND PROJECT MANAGER IF AN ISSUE ARISES.

OTHER EROSION AND SEDIMENT CONTROL NOTES:

- 1. PLEASE REFER TO ESC GUIDELINE FOR URBAN CONSTRUCTION (DECEMBER 2006) FOR THE DESIGN AND DESIGN ALTERATION OF ESC MEASURES. 2. ANY SEDIMENT SPILL FROM THE SITE SHOULD BE REPORTED TO MINISTRY OF ENVIRONMENT (SPILL ACTION CENTER) AT 1-800-268-6060. 3. THE CONTRACTOR SHALL MONITOR WEATHER FORECASTS TO ENSURE THAT THE WORKS WILL BE CONDUCTED IN FAVOURABLE WEATHER.
- THE CONTRACTOR IS RESPONSIBLE FOR REMOVING ALL CONSTRUCTION EQUIPMENT AND MATERIALS THAT WOULD HAVE POTENTIAL TO CAUSE A SPILL OR OBSTRUCTION (I.E. FUEL TANKS, PORTABLE TOILETS, MACHINERY, ETC.), FROM THE 100 YEAR FLOODPLAIN IN THE CASE OF A LARGE STORM EVENT.
- 4. AN AFTER-HOURS CONTACT NUMBER IS TO BE VISIBLY POSTED ON-SITE FOR EMERGENCIES. ALL THE PLANS SHOULD HAVE NAME AND CONTACT INFO OF THE PERSON RESPONSIBLE FOR ESC MEASURES. 5. ALL NEAR OR IN-WATER WORKS SHALL BE COMPLETED WITHIN THE TIMING WINDOW SPECIFIED BY THE DFO. BETWEEN JULY 1 TO
- SEPTEMBER 15, UNLESS THE APPROPRIATE APPROVAL AGENCIES HAVE PROVIDED PRIOR WRITTEN APPROVAL TO EXTENSION OF THE TIMING WINDOW. THE CONTRACTOR SHALL PLAN AND IMPLEMENT THEIR ACTIVITIES TO ENSURE ADHERENCE TO THE TIMING WINDOW RESTRICTIONS. 6. TEMPORARY SEDIMENT CONTROL FENCE TO BE INSTALLED ON THE DOWN SLOPE SIDE OF PITS AND IN TRENCHING LOCATIONS WHERE
- GRADES SLOPE TOWARD THE NATURAL SYSTEMS OR CATCH BASINS TO ENSURE

GENERAL NOTES

- THE FOLLOWING RESTORATION RECOMMENDATIONS FOLLOW THE PRACTICAL OBJECTIVES FOR THE REVETMENT AND THE RESTORATION METHODS IN THE TRCA GUIDELINE FOR DETERMINING ECOSYSTEM COMPENSATION (TORONTO AND REGION CONSERVATION AUTHORITY, 2018).
- RESTORATION EFFORTS WILL AIM TO RESTORE THE REALIGNED ROBINSON CREEK AND THE REDESIGNED FLOODPLAIN.
- RESTORATION PLANTINGS WILL BE IMPLEMENTED FOLLOWING THE COMPLETION OF THE WATERCOURSE REALIGNMENT. • THE SPECIES TO BE PLANTED AS PART OF THE RESTORATION EFFORTS ARE NATIVE TO THE REGION AND SUITABLE TO THE SITE
- CONDITIONS.
- ALL TREES AND WOODY DEBRIS FROM REMOVED DUE TO SITE DISTURBANCE SHOULD BE KEPT ON-SITE AND DISTRIBUTED THROUGHOUT THE SITE TO PROVIDE WILDLIFE HABITAT OPPORTUNITIES, AWAY FROM THE ACTIVE FLOW CHANNEL, AFTER TO COMPLETION OF RESTORATION PLANTINGS
- IF OF SMALL ENOUGH DIAMETER, TREE MATERIAL REMOVED DURING SITE CLEARING COULD BE USED AS EMBEDDED WOODY DEBRIS TO BE INCORPORATED INTO THE CHANNEL REALIGNMENT DESIGN.

SOIL AMENDMENTS

WITHIN THE REDESIGNED FLOODPLAIN, INCLUDING THE NATURAL FEATURE SETBACK AND FLOOD/EROSION HAZARD ACCESS SETBACK, SOILS ARE TO BE IMPROVED AFTER CONSTRUCTION WORKS BY: DECOMPACTION OF SUBSOIL TO A DEPTH OF 25 CM, BY TILLING OR SCARIFYING THE SOIL IN A PERPENDICULAR DIRECTION TO THE REALIGNED WATERCOURSE.

- INCORPORATION OF 7 CM OF COMPOST INTO THE SOILS DURING TILLING.
- APPLICATION OF 20 30 CM OF UNCOMPACTED IMPORTED TOPSOIL WITH 15% ORGANIC MATTER BY DRY WEIGHT.

IN-CHANNEL RESTORATION

- LIVE STAKES (BRANCH CUTTINGS FROM LIVE SHRUBS) HAVE BEEN RECOMMENDED TO BE PLACED IN THE BENDS AND VEGETATED ROCK REVETMENT PORTIONS OF THE ROBINSON CREEK RE-ALIGNMENT.
- LIVE STAKES ARE TO BE PLANTED IN GROUPS OF 10/SPECIES AT 0.3 M ON-CENTRE SPACING.
- LIVE STAKES ARE RECOMMENDED TO BE 25 75 MM DIAMETER STAKES, TO BE HAND PLACED BETWEEN THE STONE REVETMENT/RIP-RAP. • STAKES SHOULD BE BURIED >0.5 M BELOW THE RIP-RAP, ENSURING PLACEMENT WITHIN THE SOIL MATRIX AND SEASONAL WATER TABLE
- CERTIFIED SOILS SHOULD BE USED TO FILL THE REMAINING SPACE IN EACH PLANTING HOLE. THE TIMING WINDOW FOR CONDUCTING ANY IN-WATER OR NEAR-WATER WORKS IS JULY 1 TO SEPTEMBER 15.

LIVE STAKE RESTORATION SPECIES

Common Name	Scientific Name	Density	Quantity
Alternate-leaved Dogwood	Cornus alternifolia	1 x 1 m	50
Red-osier Dogwood	Cornus sericea	1 x 1 m	40
Common Elderberry	Sambucus canadensis	1 x 1 m	15
Sandbar Willow	Salix exigua	1 x 1 m	60
Bebb's Willow	Salix bebbiana	1 x 1 m	60

NATURAL FEATURE SETBACK RESTORATION

• THE NATURAL FEATURE SETBACK IS TO BE SEEDED AND PLANTED TO BUFFER THE WATERCOURSE/NATURAL FEATURES FROM THE DEVELOPMENT.

- THE NATURAL FEATURE SETBACK IS TO BE SEEDED AT A RATE OF 25 KGS/HA WITH AN EARLY SUCCESSION WET MEADOWSEED MIX THAT ALIGNS WITH THE TRCA SEED MIX GUIDELINES (TORONTO AND REGION CONSERVATION AUTHORITY, 2004; CREDIT VALLEY CONSERVATION AUTHORITY, 2014).
- THE EARLY SUCCESSION WET MEADOW MIX (CVC 6) INCLUDES:
- BEBB'S SEDGE (CAREX BEBBII) 5%
- PURPLE STEMMED ASTER (ASTER PUNICEUS) 1%
- FOWL BLUEGRASS (POA PALUSTRIS) 25%
- FOX SEDGE (CAREX VULPINOIDEA) 25%
- GREAT BLUE LOBELIA (LOBELIA SIPHILITICA) 1% • NEW ENGLAND ASTER (ASTER NOVAE-ANGLIAE) 1%
- PATH RUSH (JUNCUS TENUIS) 3%
- CANADA GOLDENROD (SOLIDAGO CANADENSIS) 2%
- SOFT RUSH (JUNCUS EFFUSUS) 5%
- STALK-GRAIN SEDGE (CAREX STIPATA) 4%
- TALL MANNA GRASS (GLYCERIA GRANDIS) 2% • VIRGINIA WILD RYE (ELYMUS VIRGINICUS) 25%
- WILD BERGAMOT (MONARDA FISTULOSA) 1%
- TO ASSIST IN ESTABLISHMENT AND PROMOTE BIOMASS, THE PLANTING AREA SHOULD ALSO BE SEEDED WITH A NURSE CROP OF COMMON OATS (AVENA SATIVA) OR BUCKWHEAT (FAGOPYRUM ESCULENTU) AT A RATE OF 25 KGS/HA.
- SUBSEQUENTLY, THE NATURAL FEATURE SETBACK IS TO BE PLANTED WITH TREES AND SHRUBS ARE IN GROUPS OF APPROXIMATELY 10/SPECIES, AT A DENSITY OF 2.45 M X 2.45 M (6 M^2), AND SHRUBS AT A 1 M X 1 M (1 M^2) SPACING.
- REPLACEMENT TREE AND SPECIES ARE RECOMMENDED BE NATIVE TO TRCA'S WATERSHED, AND TARGETED TO PROVIDE NATURAL, SELF-SUSTAINING VEGETATION (TORONTO AND REGION CONSERVATION AUTHORITY, 2014).
- THE NATURAL FEATURE SETBACK AND FLOODPLAIN AREA TO BE RESTORED IS APPROXIMATELY 2,000 M² AND THE RECOMMENDED PLANTING SPACING WOULD ALLOW PLANTING OF ABOUT 330 TREES OR 2,000 SHRUBS, OR COMBINATION THEREOF.
- BASED ON THESE EXISTING SITE CONDITIONS, THE RECOMMENDED PLANTING PRESCRIPTION INCLUDES:

SITE KEY PLAN SCALE: N.T.S

FLOOD/EROSION ACCESS SETBACK

• THE 10 M FLOOD/EROSION ACCESS SETBACK IS TO BE SEEDED AT A RATE OF 25 KGS/HA WITH A NATIVE GRASS SEED MIX THAT ALIGNS WITH THE TRCA SEED MIX GUIDELINES (TORONTO AND REGION CONSERVATION AUTHORITY, 2004). THE RECOMMENDED GRASS SEED MIX INCLUDES:

- CANADA WILD RYE (ELYMUS CANADENSIS) 20%
- SWITCHGRASS (PANICUM VIRGATUM) 20% • FOWL BLUEGRASS (POA PALUSTRIS) - 20%
- BIG BLUESTEM (ANDROPOGON GERARDII) 10%
- LITTLE BLUESTEM (ANDROPOGON SCOPARIUS) 10% • FOX SEDGE (CAREX VULPINOIDEA) - 10%

• SIMILAR TO THE NATURAL FEATURE SETBACK PLANTING AREA, THE 10 M FLOOD/EROSION ACCESS SETBACK SHOULD ALSO BE SEEDED WITH A NURSE CROP OF COMMON OATS OR BUCKWHEAT AT A RATE OF 25 KGS/HA.

TIMING

• PLANTING AND SEEDING SHOULD BE COMPLETED IN THE SPRING OR FALL. THE SPRING SEASON PLANTING WINDOW IS APRIL TO MID-MAY AND THE FALL SEASON WINDOW IS MID-SEPTEMBER TO LATE OCTOBER. • THE ASSESSMENT OF PLANT STOCK SHOULD BE CONDUCTED UPON DELIVERY TO ENSURE THAT THE MATERIAL CONSISTS OF APPROPRIATE

NATIVE SPECIES IN PROPER QUANTITIES. • SEEDING SHOULD BE COMPLETED IMMEDIATELY AFTER THE PLANTING OF WOODY VEGETATION BUT NOT DURING DROUGHT-PRONE SUMMER MONTHS (TORONTO AND REGION CONSERVATION AUTHORITY, 2004).

TENDING FOR RESTORATION PLANTINGS

• RESTORATION PLANTINGS WILL REQUIRE REGULAR WATERING TO FACILITATE THE ESTABLISHMENT OF YOUNG TREES, WHICH ARE TYPICALLY HIGHLY SUSCEPTIBLE TO WATER STRESS. • AT A MINIMUM, WATERING SHOULD OCCUR WHEN TREES SHOW SIGNS OF STRESS AND DURING PERIODS OF NATURAL DROUGHT CONDITIONS (E.G. IF THERE IS LESS THAN 25 MM OF RAIN OVER A 30-DAY PERIOD DURING LATE SPRING TO THE END OF SUMMER).

Common Name	Scientific Name	Quantity	Size			
Trees						
Silver Maple	Acer saccharinum	50	2 - 4 gallon pot			
Paper Birch	Betula papyrifera	50	2 - 4 gallon pot			
Hackberry	Celtis occidentalis	45	2 - 4 gallon pot			
Tamarack	Larix laricina	40	100 – 150 cm (height)			
Eastern Cottonwood	Populus deltoides	50	2 - 4 gallon pot			
American Elm*	Ulmus americana	45	2 - 4 gallon pot			
	Shi	rubs				
Speckled Alder	Alnus rugosa	100	2 gallon pot			
Red-osier Dogwood	Cornus sericea	100	2 gallon pot			
Chokecherry	Prunus virginiana	50	2 gallon pot			
Staghorn Sumac	Rhus typhina	50	2 gallon pot			

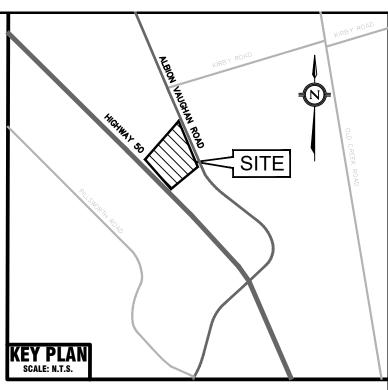
* Note: Dutch Elm Disease resistant cultivars recommended.

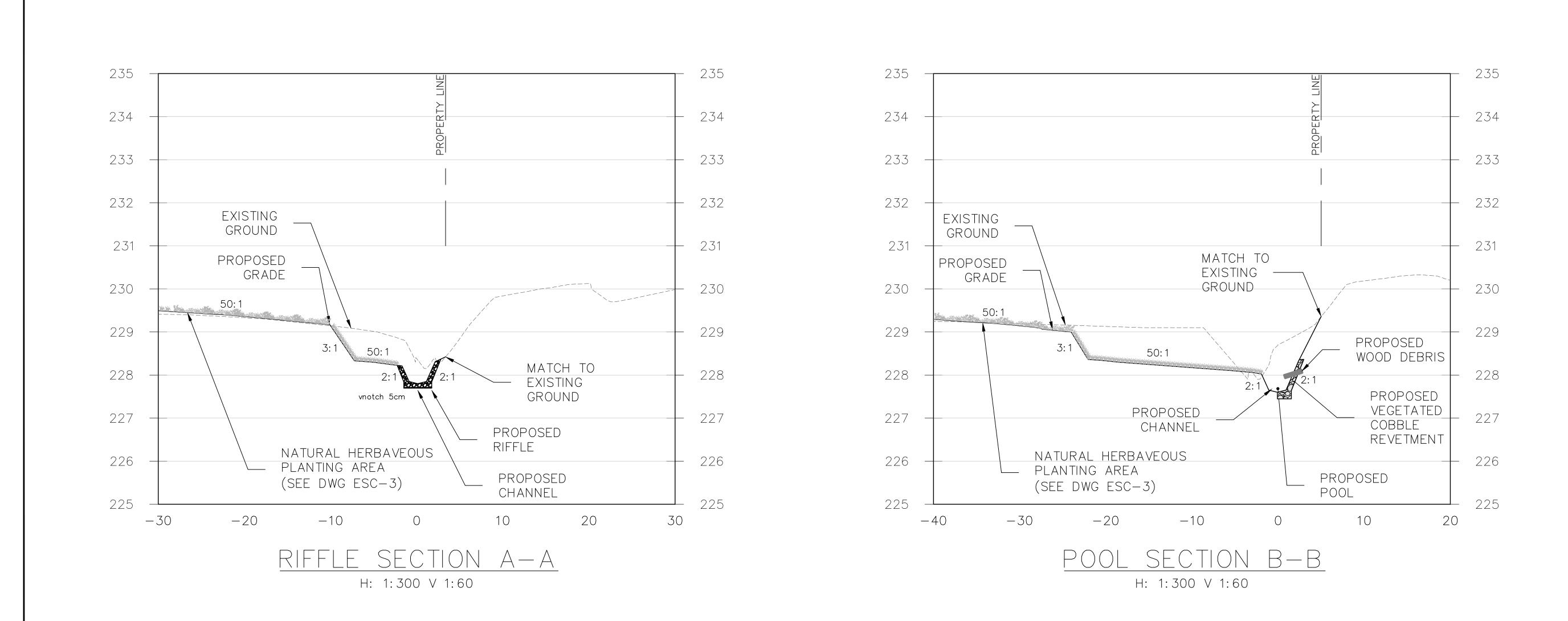
UTILITY NOTES:

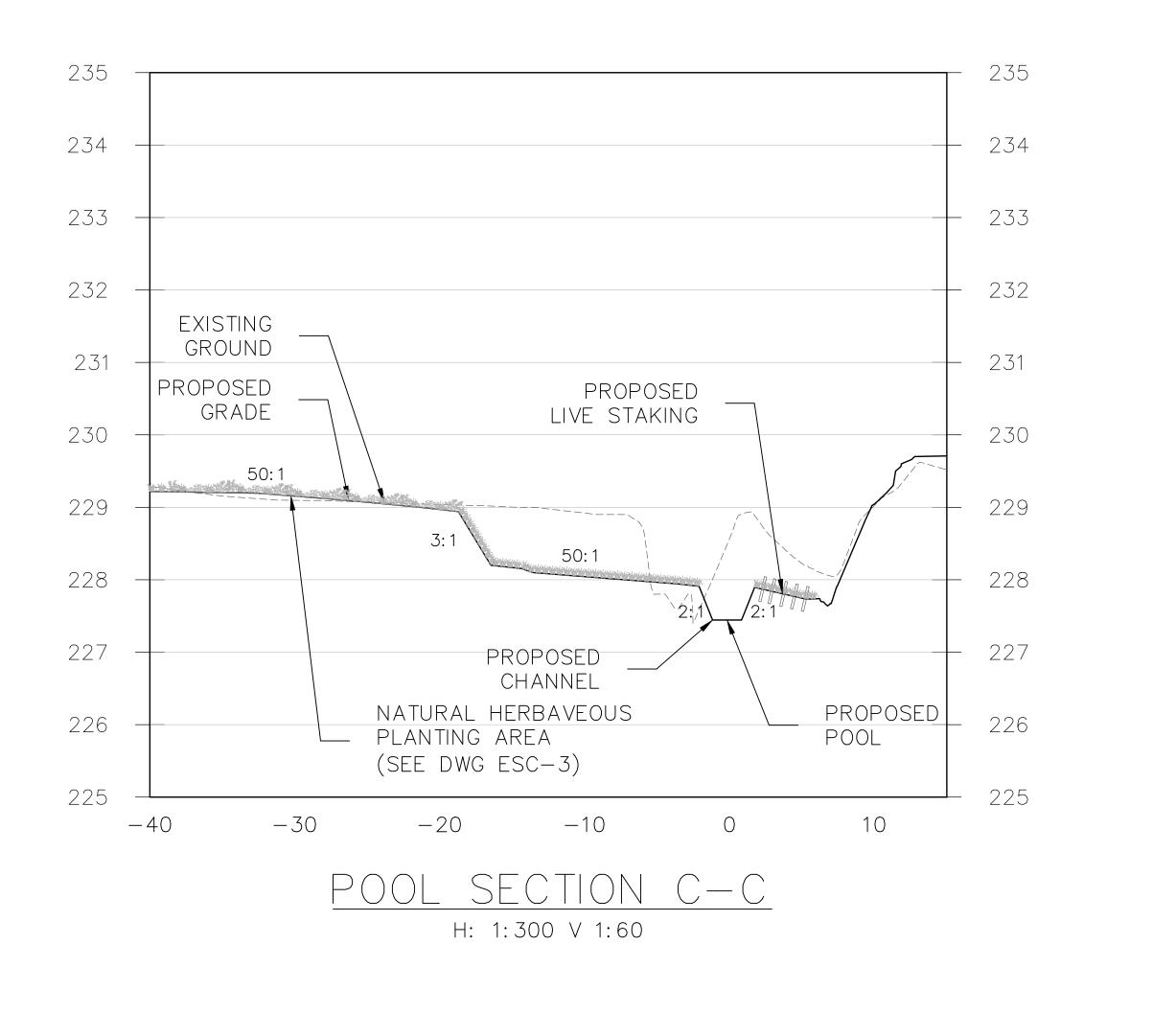
ELEVATION OF 220.967 m.

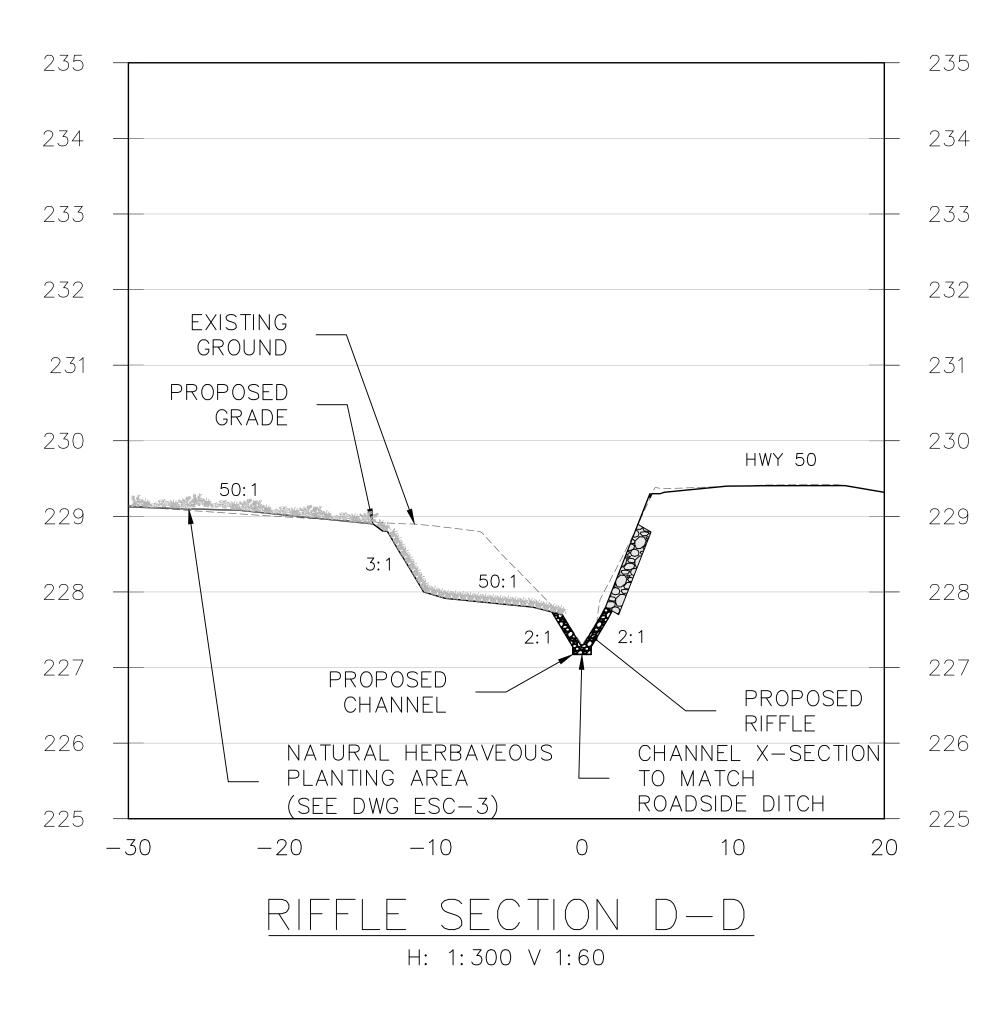
DATE

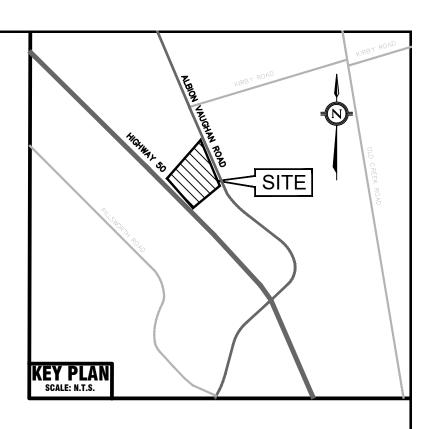
JANUARY 2021


THE POSITION OF POLE LINES, CONDUITS, WATERMAINS, SEWERS AND THE UNDERGROUND AND OVERGROUND UTILITIES AND STRUCTURES IS NOT NECESSARILY SHOWN ON THE CONTRACT DRAWING, AND WHERE SHOWN, THE ACCURACY OF THE CUNITACT DRAWING, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED BEFORE STARTING WORK, THE CONTRACTOR SHALL INFORM HIMSELF OF THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES, AND SHALL ASSUME ALL LIABILITY FOR DAMAGE


<u>BENCHMARK</u> ELEVATIONS ARE REFERRED TO THE CITY OF BRAMPTON BENCHMARK No. 042010221, BEING A BRASS CAP IN CONCRETE APPROX. 21 m SOUTH OF CENTRELINE OF NASHVILLE ROAD AND 11 m EAST OF CENTRELINE OF REGIONAL ROAD 50, IN FRONT OF GAS STATION/COFFEE SHOP. HAVING AN

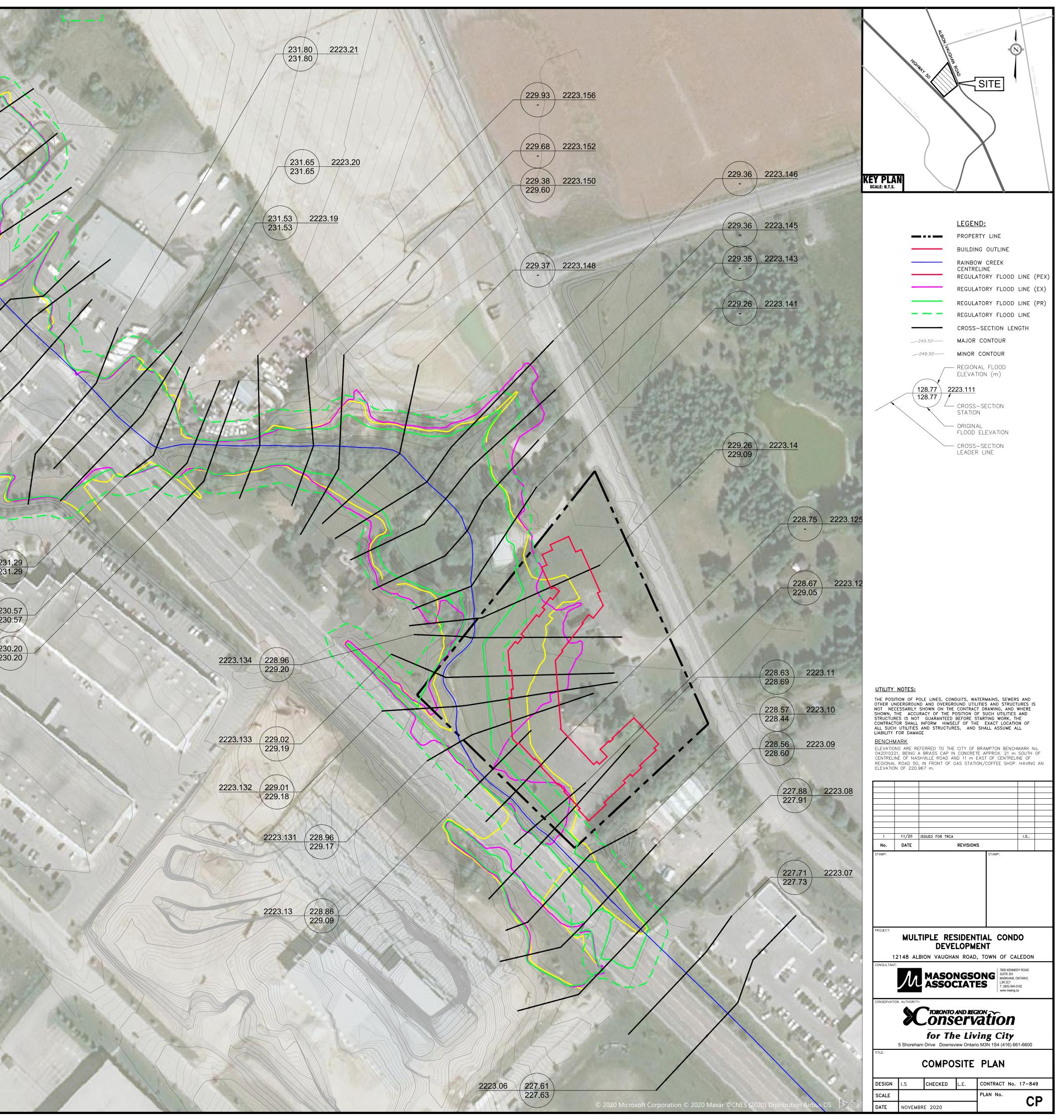

1	01/14/21	ISSUED TO TRCA			D.H.		
No.	DATE		REVISION				
PROJECT:	STAMP: PROJECT: MULTIPLE RESIDENTIAL CONDO DEVELOPMENT						
1	2148 AL	BION VAUGH	AN ROAD	, TOWN OF CAI	EDON		
CONSULTAN		MASO ASSO	NGS(CIAT	DNG SUITE 201 MARKHAM, OI L3R 2C7 T: (905) 944-0' www.maeng.ca	NTARIO		
CONSERVATI	5 Shoreha	TORONICO ONS for Th	ie Liv	ation ation ving City 10 M3N 154 (416) 66	1-6600		
STAGE 3: RESTORATION							
DESIGN	W.A.	CHECKED	D.H.	CONTRACT No.	17-849		
	· · ·						

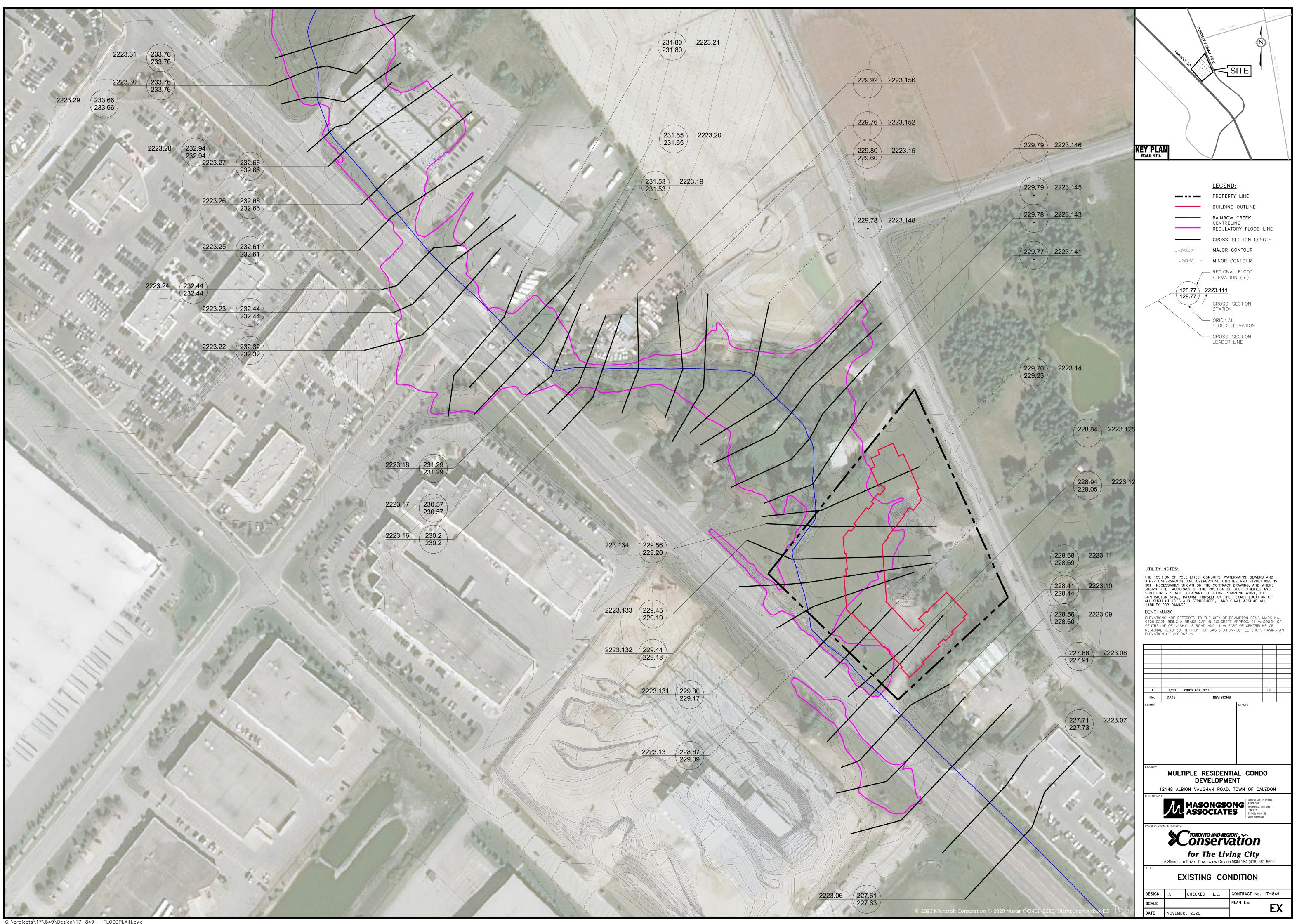

ESC-

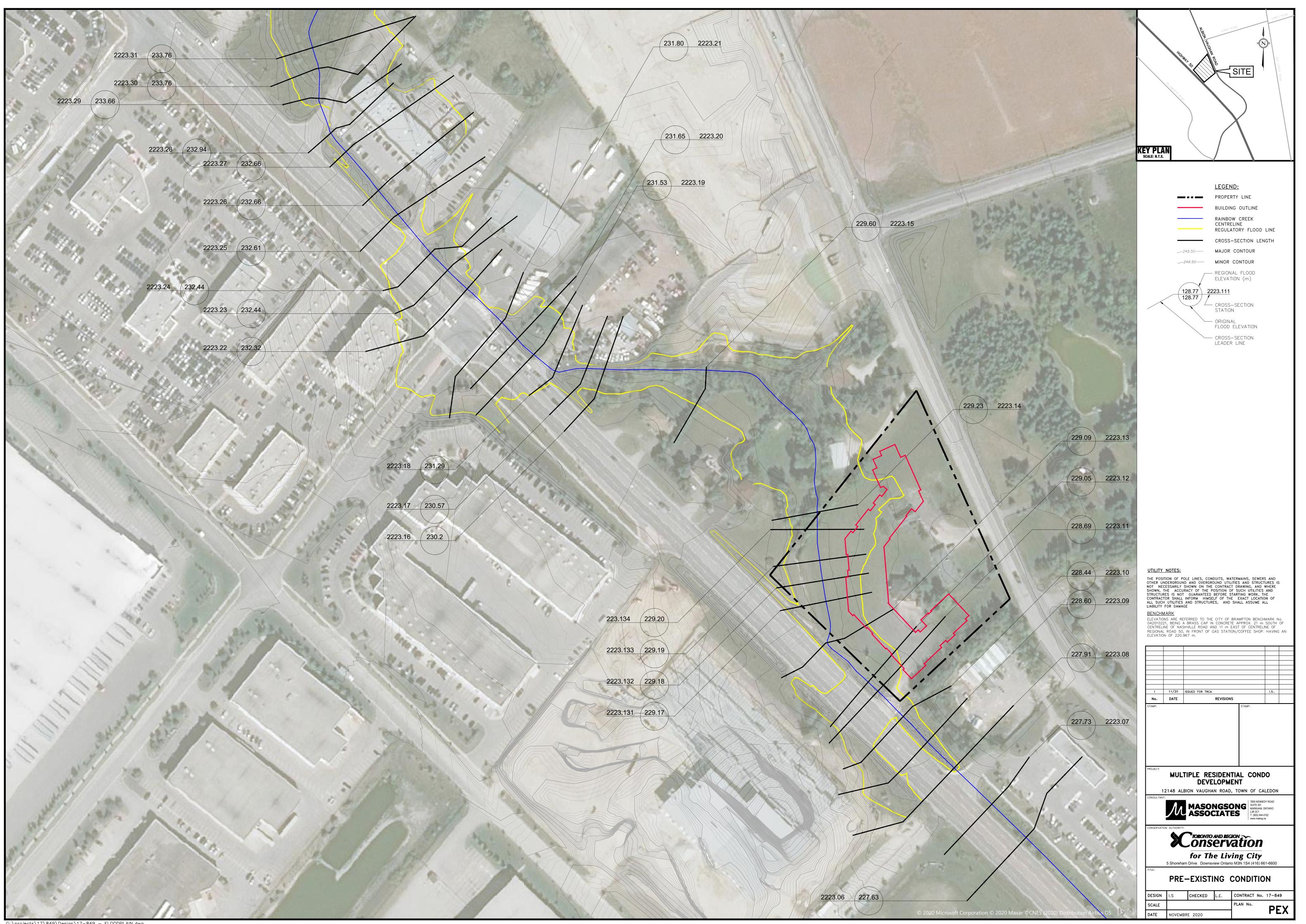


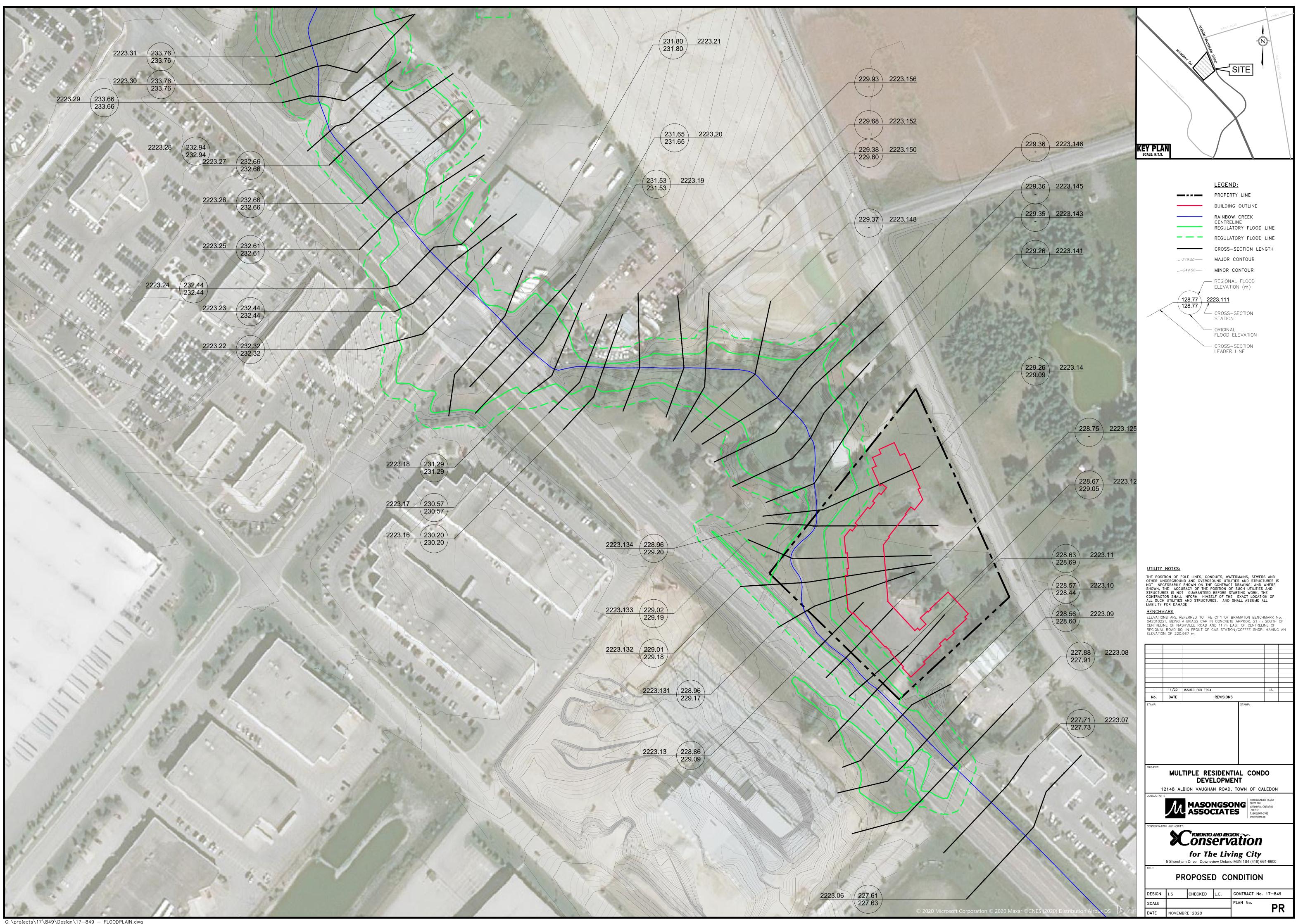
UTILITY NOTES: THE POSITION OF POLE LINES, CONDUITS, WATERMAINS, SEWERS AND OTHER UNDERGROUND AND OVERGROUND UTILITIES AND STRUCTURES IS NOT NECESSARILY SHOWN ON THE CONTRACT DRAWING, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND

			LO, AND	SHALL ASSUME		
BENCH ELEVATIO 0420102 CENTREI REGIONA	ONS ARE R 221, BEING JINE OF NA	EFERRED TO THE A BRASS CAP IN SHVILLE ROAD AI 9, IN FRONT OF (I CONCRE [®] ND 11 m	TE APPROX. 21 EAST OF CENTRI	m SOUTH ELINE OF	OF
		1				1
					_	
1		ISSUED TO TRCA			D.H.	-
No.	DATE		REVISION	STAMP:		
PROJECT:			LOPM	ENT		
	12148 AL		N ROAD	ENT , TOWN OF (DNG ES (300 KEN SUITE 20 MARKHA L3R 207 T: (905)9	CALEDON INEDY ROAD 1 M, ONTARIO 44-0162	
CONSULTAR	12148 AL			ENT , TOWN OF C DONG ES (17:005) www.mae	CALEDON INEDY ROAD 1 M. ONTARIO 44-0162 ng.ca	
CONSULTAN	12148 AL NT: INN AUTHORIT	DEVE BION VAUGHA MASOI ASSOC	ILOPM	ENT , TOWN OF C DNG SUITE 20 MARKHA L3R 2C7 T: (905) WWW.mae CAN CAN CAN CAN CON CAN CON CON CON CON CON CON CON CO	CALEDON INEDY ROAD M, ONTARIO 44-0162 ng.ca	
CONSULTAR	12148 AL	DEVE BION VAUGHA MASOI ASSOC	LOPM N ROAD NGSC LAT AND REC CIAT	ENT , TOWN OF C DENG SUITE 20 MARKHA LBR 207 T: (905) WWW.mae Con Con Con Con Con Con Con Con	CALEDON INEDY ROAD 1 M, ONTARIO 44-0162 ng.ca	
CONSULTAT	12148 AL	DEVE BION VAUGHA MASOL ASSOC	LOPM N ROAD NGSC LAT AND REC CIAT	ENT , TOWN OF C DENG SUITE 20 MARKHA LBR 207 T: (905) WWW.mae Con Con Con Con Con Con Con Con	CALEDON INEDY ROAD 1 M, ONTARIO 44-0162 ng.ca	


SCALE H 1:500 V 1:100


DATE JANUARY 2021


PLAN No.


XSEC

2223.29	2223.31 233.76 233.76 233.76 233.76 233.76 233.76 233.76		
	2223.28	232.94 2223.27 232.66 232.66 232.66 232.66 232.66 232.66 232.61 2223.25 232.61 232.61 232.61 232.61	
		2223.23 232.44 2223.22 232.32 232.32	
			2223.18 23 23 23 22 223.17 23 23 23 23 23 23 23 23 23 23 23 23 23
River Regional W. Station PEX EX 2223.16 230.20 230.21 2223.156 229.9 229.9 2223.152 229.7 229.7 2223.153 229.60 229.8 2223.148 229.7 229.7 2223.145 229.7 229.7 2223.145 229.7 229.7 2223.143 229.7 229.7 2223.143 229.7 229.7 2223.143 229.7 229.7 2223.143 229.7 229.7 2223.143 229.7 229.7 2223.143 229.7 229.7 2223.143 229.7 229.7 2223.143 229.7 229.7 2223.141 229.7 229.7 2223.134 229.20 229.7 2223.134 229.20 229.5 2223.133 229.19 229.4	PR 0 230.20 2 229.93 6 229.68 0 229.38 8 229.37 9 229.36 9 229.36 8 229.35 7 229.26 0 228.96		
2223.132 229.13 229.14 2223.131 229.17 229.3 2223.131 229.09 228.8 2223.125 228.8 2223.12 229.05 228.9 2223.12 229.05 228.9 2223.12 229.05 228.9 2223.11 228.69 228.6 2223.12 229.05 228.9 2223.11 228.69 228.6 2223.12 229.05 228.9 2223.11 228.69 228.6 2223.105 CULVERT CULVE 2223.09 228.60 228.5 2223.09 228.60 228.5 2223.075 CULVERT CULVE 2223.075 CULVERT CULVE 2223.06 227.63 227.6 2223.04 226.71 226.6 2223.025 CULVERT CULVE 2223.025 CULVERT CULVE 2223.02 225.61 225.6	4 229.01 6 228.96 7 228.86 4 228.75 4 228.67 8 228.63 RT 1 1 228.56 8 227.88 RT CULVERT 1 227.71 1 227.61 9 226.69 4 226.24 9 225.99 RT CULVERT		

Engineering drawings