

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

Hydrogeological Investigation – 12148 Albion Vaughan Road, Town of Caledon, Ontario

Palmer Project # 1604602

Prepared For

12148 Albion Vaughn Inc.

June 10, 2024

June 10, 2024

12148 Albion Vaughan Inc. Mike Liburdi 27 Fenton Way Brampton, ON L6P 0P4

Dear Mike:

Re: Hydrogeological Investigation – 12148 Albion Vaughan Road, Town of Caledon,

Ontario

Project #: 1604602

Palmer is pleased to submit the following report describing the results of our Hydrogeological Investigation for the property at 12148 Albion Vaughan Road, Town of Caledon, Ontario.

It is understood that the proposed development will consist of two mix-use condominium towers with 2-levels of underground parking. Tower A will be 6-storeys, and Tower B will be 7-storeys. This report summarizes the results of the hydrogeological assessment, including a characterization of site geology, hydrostratigraphy, and groundwater conditions (i.e., groundwater levels, hydraulic gradient, and hydraulic conductivity). We have completed an effects assessment based on the site conditions and provided a series of hydrogeological development recommendations and considerations.

Please let us know if you have question or comments on this submission. Thank you for the opportunity to work with your team on this project.

Yours truly, Palmer

Jason Cole, M.Sc., P. Geo.

VP, Principal Hydrogeologist

Table of Contents

Letter

1.	Intro	oduction	1
	1.1	Scope of Work	1
2.	Reg	jional Conditions	3
	2.1	Surficial Geology and Physiography	
	2.2	Bedrock Geology	
	2.3	Drainage and Natural Features	
	2.4	MECP Water Wells	
	2.5	Source Water Protection	
3.	Site	Conditions	9
	3.1	Drilling and Installation of Monitoring Wells	
	3.2	Hydrostratigraphy	
	3.3	Groundwater Level and Flow	
	3.4	Hydraulic Conductivity	12
4.	Dev	relopment Considerations and Potential Effects	13
	4.1	Environmental Impacts	13
	4.2	Source Water Protection	
	4.3	Existing Water Users	13
	4.4	Dewatering	14
5 .	Con	nclusions and Recommendations	14
6.	Stat	tement of Limitations	16
7 .	Clos	sure	17
8.	Ref	erences	18
Lis	t of T	ables	
Table	e 1. Wate	er Well Records	8
		ehole and Monitoring Well Installation Details	
		undwater Levels	
Table	1 Hydr	raulic Conductivity Summary	13

List of Figures

Figure 1. Site Location	
Figure 2. Surficial Geology	
Figure 3. Physiographic Region	
Figure 4. Bedrock Geology	
Figure 5. MECP Water Wells	
Figure 6. Source Water Protection	

List of Appendices

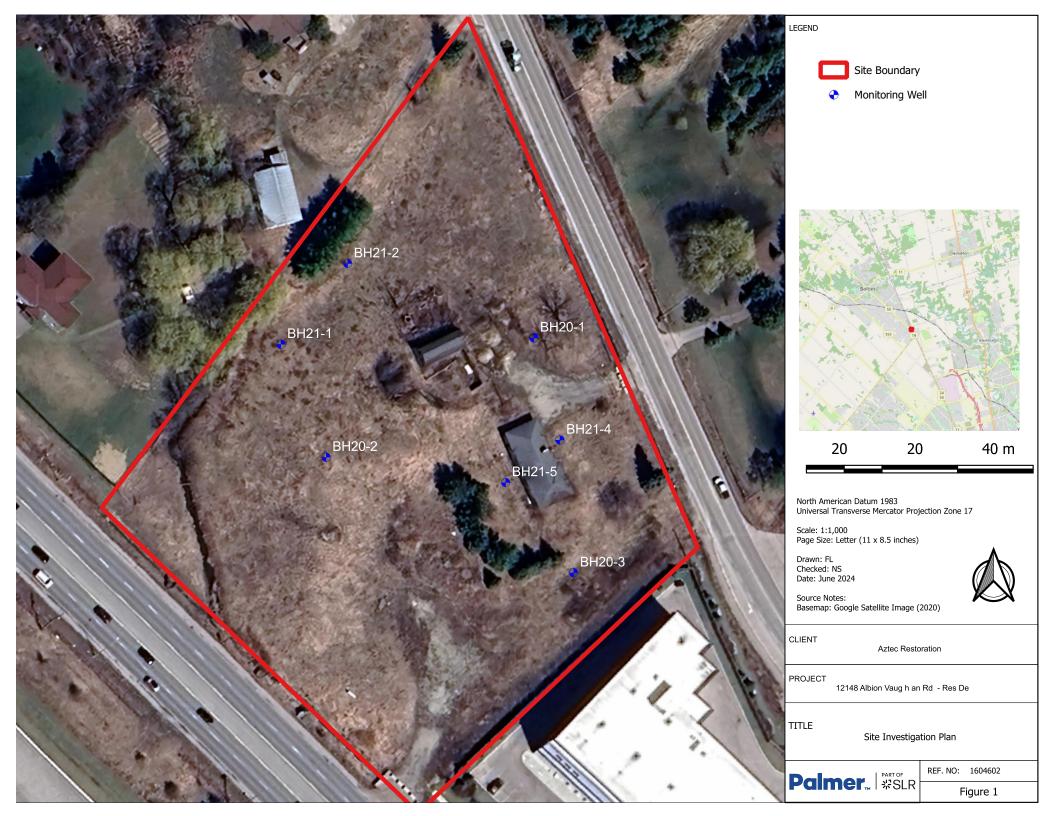
Appendix A. Site Plan (Fausto Cortese Architects, 2023)

Appendix B. Borehole Logs (Palmer, 2020, 2021 & Davroc, 2020)

Appendix C. Grainsize Analysis (ALS, 2020)

1. Introduction

Palmer was retained by 12148 Albion Vaughan Inc. to complete a Hydrogeological Assessment for a proposed mix-use condo development at 12148 Albion-Vaughan Road, Town of Caledon, Ontario. Currently, the site is occupied by an abandoned residential building, a small storage building, driveway, and open space. The proposed development will consist of two condominium towers at 6 and 7-storeys respectively (Towers A and B), with 2-levels of underground parking. The site plan for the development is presented in **Appendix A**, provided by Fausto Cortese Architects (FCA). The site is located approximately 370 m northwest of the intersection between Albion Vaughan Road and Highway 50 (**Figure 1**).


This report provides site information, including a characterization of site geology and hydrostratigraphy, groundwater conditions (i.e. groundwater levels and hydraulic conductivity), nearby water wells and Source Water Protection. Palmer has also completed an effects assessment based on the site conditions and provided a series of hydrogeological development considerations.

For construction dewatering in excess of 50,000 L/day a registration under the MECP Environmental and Sector Registry (EASR) is required. If dewatering exceeds 400,000 L/day a Permit to Take Water (PTTW) is required.

1.1 Scope of Work

Palmer's Hydrogeological Investigation was completed and includes the following main tasks:

- Obtain and review applicable background information including surficial geology maps, Ministry of the Environment, Conservation and Parks (MECP) water well records, and other appliable hydrogeology reports;
- Review site background data and borehole logs from Davroc Testing Laboratories (Davroc)
 Geotechnical Investigation in 2020;
- Characterize the hydrogeology of the site based on secondary source data and the results of Palmer's 2020 drilling program;
- Drill three (3) boreholes and install three (3) groundwater monitoring wells;
- As part of updating the report in 2024, four (4) monitoring wells installed as part of Palmer's Phase 2 ESA were identified at the site and were incorporated in the study;
- Collect three (3) rounds of groundwater level measurements;
- Complete single well response testing (i.e., slug tests) to determine the hydraulic conductivity of the geological material;
- Conduct two (2) grainsize analysis to provide a hydraulic conductivity estimate;
- Complete a Section 59 Source Water Protection Screening with York Region to confirm Source Protection requirements if required;
- Assessment groundwater/ surface water interactions for the on-site drainage feature;
- Assess potential impacts from site development and provide a series of hydrogeological development considerations; and
- Produce a Hydrogeological Assessment Report to support a submission to the Town and Conservation Authority as part of site development applications.

2. Regional Conditions

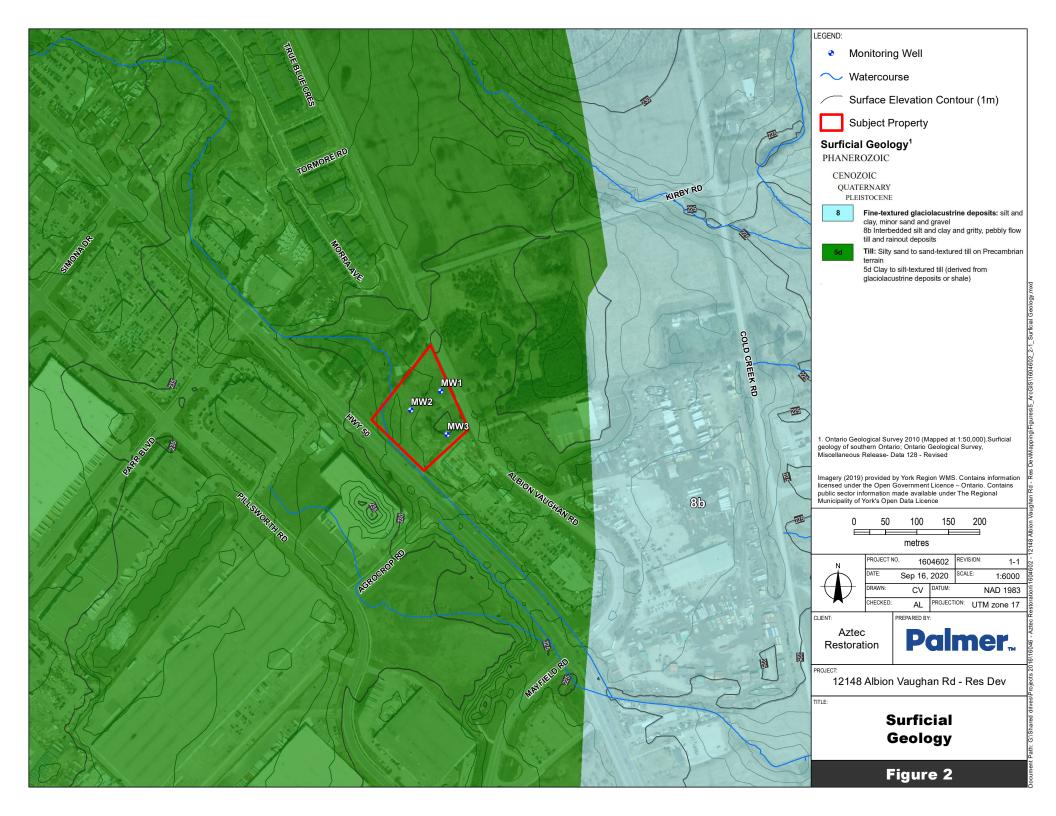
2.1 Surficial Geology and Physiography

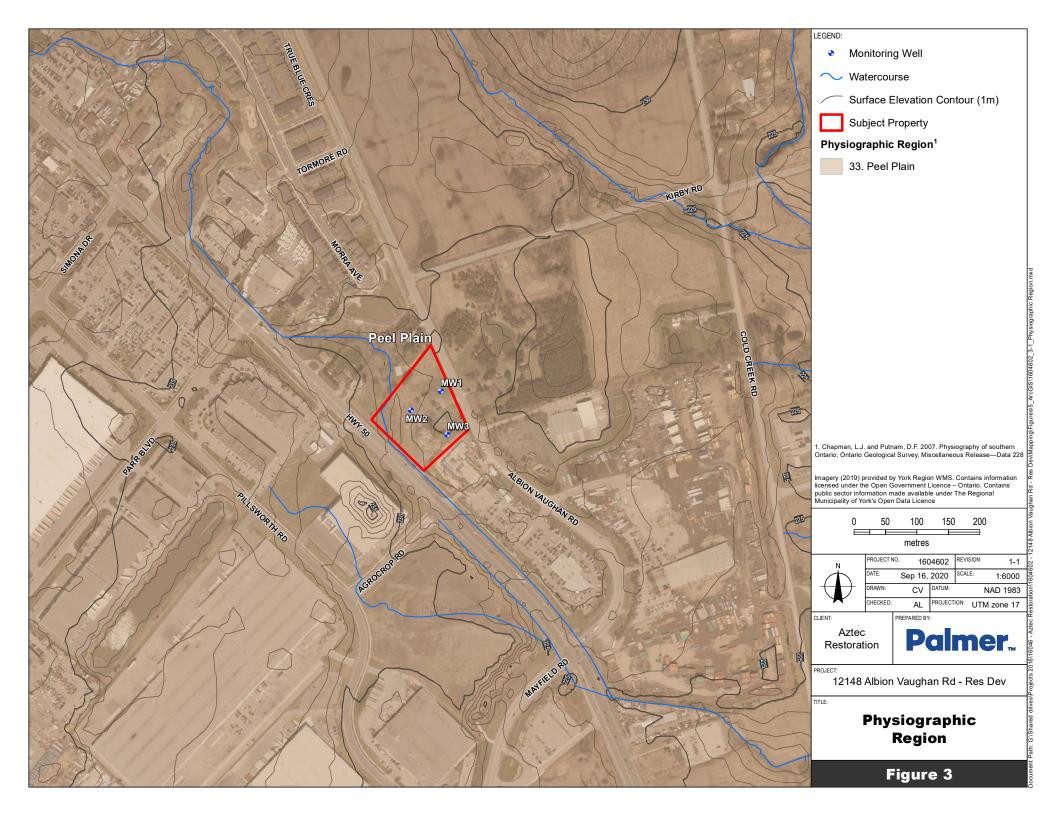
A review of available online surficial geology mapping by the Ontario Geological Survey (OGS) was used to identify the overburden materials of the site (**Figure 2**). Underlying the site is the Halton Till deposit which consists of clay to silt textured till, which is derived from glaciolacustrine deposits or shale. Fine textured glaciolacustrine deposits, consisting of silt and clay, minor sand and gravel, can be found to the east of the site.

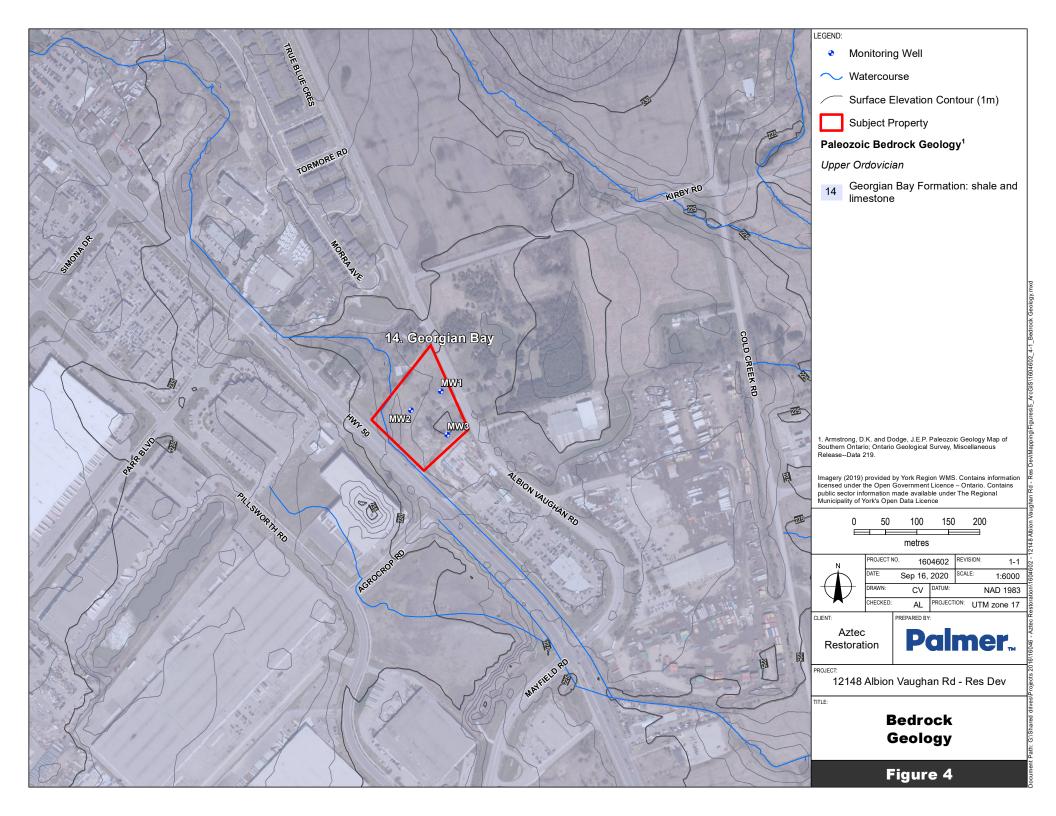
The site is situated within the Peel Plain physiographic region as seen in **Figure 3** (Chapman and Putnam, 1984). The general elevation for this region ranges from 150 to 230 meters above sea level (masl) and there is a gradual and fairly uniform slope toward Lake Ontario. The underlying geological material of the Peel Plain consists of dense, limestone and shale imbued till that is often covered by a shallow layer of clay sediment.

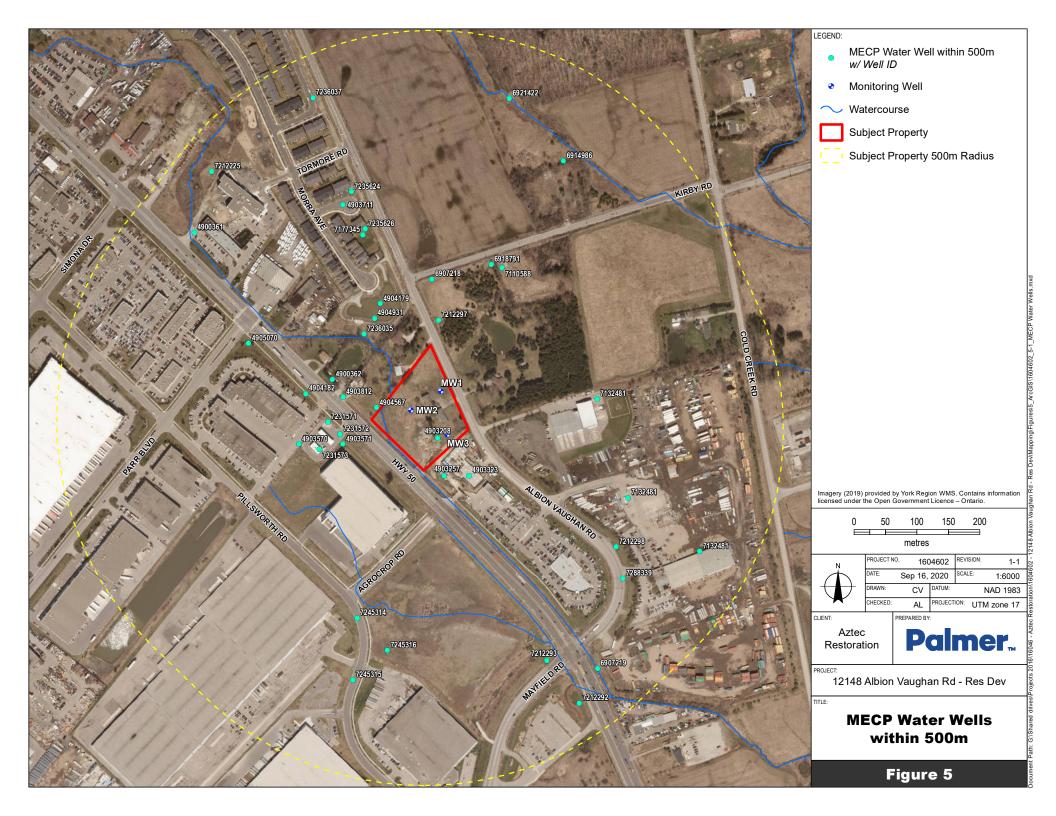
2.2 Bedrock Geology

The bedrock underlying the study area consists of the Georgian Bay Formation (**Figure 4**) (Armstrong and Dodge, 2007). This formation consists of shale and limestone. According to nearby water well records, bedrock is found at approximately 38 metres below ground surface (mbgs).


2.3 Drainage and Natural Features


The site is situated in the Humber River Subwatershed, which encompasses 911 km² and is the largest in the Toronto and Region Conservation Authority's (TRCA) jurisdiction. Water from the Niagara Escarpment and the Oak Ridges Moraine flows down the Humber River into Lake Ontario. The main branch of the river flows 126 km. The site is found near the multiple tributaries where water eventually flows back to the Humber River.


A small tributary intersects the west corner of the property (**Figure 1**). This channel has been historically realigned and appears to be perched on the till deposits.


2.4 MECP Water Wells

Based on a review of the MECP water well record database, 42 water wells are situated within a 500 m radius of the project boundary (**Figure 5**). Of the water wells, 16 are for domestic use, 1 is for livestock and domestic, 1 is for industrial and domestic, 10 are for monitoring, 3 are for monitoring or test holes, 5 are not used, 1 is for other, and 5 are unknown. The depth of wells ranged from 4.6 to 62.8 mbgs, with an average depth of 31.3 mbgs. The static water level depth ranged from 2.4 to 33.0 mbgs, with an average of 23.4 mbgs. The well yield ranged from 3.8 to 37.9 L/min, with an average yield of 19.5 L/min. Additional details on each water well can be seen below in **Table 1**.

Palmer...

Table 1. Water Well Records

Well ID	Date	Depth	Static Water Level	Well Yield	Well Use
	Completed	(mbgs)	(mbgs)	(L/min)	
4900361	1953-11-25	13.7	-	-	-
4900362	1954-08-07	47.9	32.3	15.16	Domestic
4903208	1969-03-28	54.9	-	-	-
4903257	1969-06-13	61.0	24.4	15.16	Domestic
4903323	1969-09-03	51.8	14.3	22.74	Domestic
4903570	1970-09-29	54.3	-	-	Not Used
4903571	1970-10-06	47.5	29.0	7.58	Livestock and Domestic
4903711	1971-08-25	62.8	2.4	3.79	Domestic
4903812	1972-04-25	50.3	28.0	22.74	Domestic
4904179	1973-07-18	51.2	20.7	15.16	Domestic
4904182	1973-02-15	53.6	18.3	7.58	Industrial and Domestic
4904567	1974-10-15	47.9	18.9	37.9	Domestic
4904931	1976-05-13	53.9	29.3	11.37	Domestic
4905070	1977-03-15	55.5	32.0	7.58	Domestic
6907218	1964-07-16	22.9	-	-	-
6907219	1964-08-31	42.1	27.4	37.9	Domestic
6914986	1978-10-10	55.5	32.9	37.9	Domestic
6918791	1987-02-05	55.8	29.0	11.37	Domestic
6921422	1981-03-02	23.2	15.5	37.9	Domestic
7110588	2008-07-31	18.3	-	15.16	Domestic
7110588	2008-07-31	18.3	-	-	Domestic
7110588	2008-07-31	18.3	-	-	Domestic
7132481	2009-09-14	7.5	-	-	Monitoring
7132481	2009-09-14	-	-	-	Monitoring
7132481	2009-09-15	-	-	-	Monitoring
7177345	2011-12-28	-	33	-	Other
7212225	2013-10-18	-	-	-	-
7212292	2013-06-12	7.6	-	-	Monitoring
7212293	2013-06-12	7.6	-	-	Monitoring
7212297	2013-06-12	9.0	-	-	Monitoring
7212298	2013-06-12	6.0	-	-	Monitoring
7231571	2014-10-16	6.1	-	-	Monitoring and Test Hole
7231572	2014-10-16	5.2	-	-	Monitoring and Test Hole
7231573	2014-10-16	6.1	-	-	Monitoring and Test Hole
7235624	2014-11-03	-	30.5	-	Not Used
7235626	2014-11-03	-	-	-	Not Used
7236035	2014-10-14	-	-	-	Not Used
7236037	2014-10-14	-	-	-	Not Used
7245314	2015-07-16	4.6	-	-	Monitoring

Well ID	Date Completed	Depth (mbgs)	Static Water Level (mbgs)	Well Yield (L/min)	Well Use
7245315	2015-07-16	6.1	-	-	Monitoring
7245316	2015-07-16	6.1	-	-	Monitoring
7288339	2014-12-09	-	3.4	-	-

2.5 Source Water Protection

The site located in the Credit Valley, Toronto and Region and Central Lake Ontario (CTC) Source Protection Area. The Source Water Protection Plan identifies three main regulatory factors under the *Clean Water Act (2006)* relating to local hydrogeology to consider for site development: Significant Groundwater Recharge Areas (SGRAs), Highly Vulnerable Aquifers (HVAs), and Wellhead Protection Areas (WHPAs). Also, the Region of Peel requires a Section 59 Permit under the Clean Water Act (2006) when a proposed land development or change in activity is within a designated vulnerable area. The Section 59 permit designates whether the development or change in activity is prohibited by the Source Water Protection Plan or whether additional risk management plans are required.

Based on input from Peel Region staff, on November 19, 2020, and available MECP Source Protection information mapping (**Figure 6**), the site is not situated within Source Water Protection regulatory zones (HVA, SGRA, etc.) and will not require a Section 59 Permit. It was also confirmed that the site is not located within a WHPA-Q1/Q2 (recharge management) and is not subject to the recharge management policies under the Source Protection Plan.

3. Site Conditions

3.1 Drilling and Installation of Monitoring Wells

As part of Palmer's hydrogeological investigation, three (3) boreholes (BH20-1 to BH20-3) were drilled on August 17, 2020. The boreholes were drilled using hollow stem augers, to depths ranging from 6.4 to 6.7 mbgs. All three (3) boreholes were completed as monitoring wells in accordance with Ontario Regulation 903. The monitoring wells are made of 5.1 cm (2 inch) diameter schedule 40 polyvinyl chloride (PVC) pipe, with a 3.0 m (10 ft) screened interval. Borehole and monitoring well locations are shown on **Figure 1**.

Palmer's Phase 2 ESA installed four (4) deep monitoring wells in 2021. The study was based on five boreholes, four of them were installed with monitoring wells. These monitoring wells were incorporated into the current study.

Additionally, according to Davroc's Geotechnical Investigation (2020), six (6) boreholes were drilled between November 24th and December 11th, 2020 with depths ranging from 9.6 to 15.7 m. No monitoring wells were installed, and boreholes were backfilled upon completion. **Table 2** provides a summary of borehole and monitoring well details and borehole logs are provided in **Appendix B**.

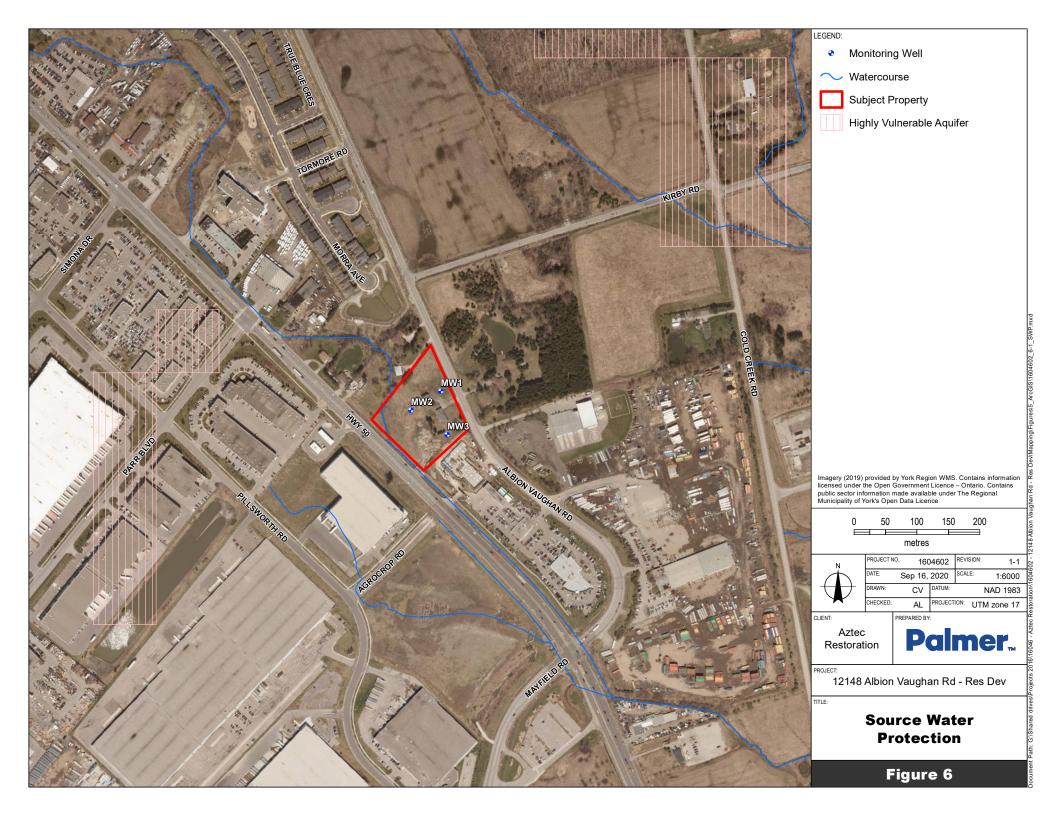


Table 2. Borehole and Monitoring Well Installation Details

Borehole/ Moi	nitoring Well	Depth (mbgs)	Approx. Screened Interval (mbgs)	Geology
Palmer	BH20-1	6.7	3.6 - 6.7	Clayey Silt Till
Faiillei	BH20-2	6.4	3.3 - 6.4	Clayey Silt Till
	BH20-3	6.7	3.6 - 6.7	Clayey Silt Till
	BH21-1	11.9	8.9-11.9	Sand
	BH21-2	11.5	8.5-11.5	Sand
	BH21-4	11.7	8.7-11.7	Sand
	BH21-5	11.8	8.8-11.8	Sand
	BH1	15.7	-	-
	BH2	15.7	<u>-</u>	-
Dayroc	ВН3	12.8	-	-
Davioc	Davroc BH4		-	-
	BH5	11.1	-	-
	ВН6	11.1	-	-

3.2 Hydrostratigraphy

Hydrostratigraphic units can be subdivided into two distinct groups based on their ability to allow groundwater movement. An aquifer is classically defined as a layer of soil that is permeable enough to permit a usable supply of water to be extracted. An aquitard is a layer of soil that inhibits groundwater movement due to its low permeability. Shallow groundwater flow at the site is primarily influenced by the Halton Till hydrostratigraphic unit.

The Halton Till at the site consists of a clayey silt till that acts as an aquitard unit restricting groundwater flow. The clayey silt till aquitard can be found underlying the layer of fill in all boreholes (BH20-1 to B20-3) and was terminated in this deposit. In BH20-2, a thick silty clay layer was found at a depth of 4.7 mbgs and is found to be 1.5 m thick. This unit contains some silty sand and sand layers, allowing minimal groundwater to flow through. The hydraulic conductivity is estimated to range from 10-6 to 10-9 m/s.

3.3 Groundwater Level and Flow

Three (3) 50 mm diameter monitoring wells were installed to monitor stabilized groundwater levels. Stabilized groundwater levels were measured on August 26, 2020 (one week after borehole drilling) and on November 20, 2020. To update the report, another round of groundwater level monitoring was conducted on May 26, 2024 for these three monitoring wells. In addition, four deep wells installed as part of Palmer's Phase 2 ESA were also monitored during the monitoring event of May 26, 2024. All shallow wells were found to be dry. **Table 3** shows the water levels in each monitoring well.

Table 3. Groundwater Levels

M	Stick	Depth	Gro	undwater Level (mbgs)		
Monitoring Well	Up (m)	(mbgs)	August 26, 2020	November 20, 2020	May 26, 2024	
BH20-1	0.77	6.7	Dry @ 6.7 mbgs	Dry @ 6.7 mbgs	Dry @ 6.7 mbgs	
BH20-2	0.81	6.4	Dry @ 6.4 mbgs	Dry @ 6.4 mbgs	Dry @ 6.4 mbgs	
BH20-4	0.83	6.7	Dry @ 6.7 mbgs	Dry @ 6.7 mbgs	Dry @ 6.7 mbgs	
BH21-1	0.87	11.9	-	-	8.5	
BH21-2	0.85	85 11.5 -		-	9.0	
BH21-4	0.94	11.7	-	-	96	
BH21-5	0.93	11.8	-	-	9.5	

The Davroc Geotechnical Investigation notes some wet seams and some standing water was observed in all boreholes prior to backfilling, however, no groundwater levels were collected.

Most water is not expected to infiltrate into the ground from precipitation or snow melt, but instead become surface runoff due to the low permeability Halton Till aquitard at the surface. The runoff is expected to flow towards either the tributary on the west side of the property or into the drainage ditches surrounding the property. Based on the water level results, it is clear that the groundwater table is well below the depth of the on-site drainage feature. This feature is therefore interpreted to not be hydraulically connected to the water table nor groundwater supported.

3.4 Hydraulic Conductivity

As all three (3) monitoring wells were dry during the monitoring events, single well response tests could not be completed. To obtain hydraulic conductivity estimates for the soils, Palmer personnel submitted two (2) soil samples, Sample 7 in BH20-1 and Sample 6B in BH20-2, to Terrapex for grain size analyses (**Appendix C**).

Hydraulic conductivity estimates were calculated using Puckett's Method (Puckett, 1990) on the grain size analyses results. This method is typically used for calculating the hydraulic conductivity of low permeability silt and clay soils from grain size data by utilizing the percentage of clay in the soil.

Based on the Puckett's method, the geometric mean hydraulic conductivity of the Halton Till is approximately 1.1 x10⁻⁸ m/sec and is found to be 1.2 x 10⁻⁷ m/s and 1.0 x 10⁻⁹ m/s for BH1 and BH2, respectively. The variability of the K values within the site are a result of the heterogeneity of the soils, where sand seams and clay layers can be found. The Halton Till layer is found to have a low hydraulic conductivity and will inhibit the flow of groundwater. **Table 4** provides a summary of the hydraulic conductivity values.

Table 4. Hydraulic Conductivity Summary

Borehole	Sample #	Depth (mbgs)	Solution	Hydraulic Conductivity (m/sec)		
BH20-1	7	6.1	Puckett	1.2 x 10 ⁻⁷		
BH20-2	6B	4.7	Puckett	1.0 x 10 ⁻⁹		
Geomean	-	-	-	1.1 x10 ⁻⁸		

4. Development Considerations and Potential Effects

4.1 Environmental Impacts

Based on the hydrogeological study, construction or site development will not cause an adverse effect to nearby natural features. Based on borehole logs and groundwater level monitoring, no groundwater was found on site to a depth of 6.7 mbgs. Only limited precipitation is expected to infiltrate from precipitation or snow melt, and the water balance is instead dominated by surface runoff due to the low permeability Halton Till aquitard found throughout the site. The runoff is expected to flow towards either the tributary on the west side of the property or into the drainage ditches surrounding the property along the road right of ways.

Based on the water level results, it is clear that the groundwater table is well below the depth of the onsite drainage feature. This feature is therefore interpreted to not be hydraulically connected to the water table nor groundwater supported and will not be affected by construction or site development.

4.2 Source Water Protection

Based on input from Peel Region staff and available MECP Source Protection information mapping (**Figure 6**), the site is not situated within any Source Water Protection regulatory zones and therefore, does not require a Section 59 Permit. No significant threat is expected which would require stormwater management and/or water balance restrictions.

It is confirmed that the site is not located within a WHPA-Q1/Q2 (recharge management) only has a limited recharge function. From a hydrogeological perspective, no infiltration-based mitigation is recommended.

4.3 Existing Water Users

Based on a review of MECP water well records within 500 m of the site, only 16 wells were determined to be for domestic use. The average depth of these wells is 31.3 mbgs. Based on the minimal estimated dewatering for the site and average depth of nearby domestic wells, no adverse impact to existing water users is anticipated.

4.4 Dewatering

The proposed site development consists of two mix-use condominium towers with 2-levels of underground parking, founded at approximately 7.2 mbgs (**Appendix A**). Groundwater level monitoring results (**Table 3**) show the following characteristics of groundwater regime:

- No groundwater was identified in shallow wells, indicting aquitard till that the shallow wells were completed in does not transmit significant amount of groundwater both vertically and horizontally;
- Based on the depths of screens of deep wells installed by Palmer and the boreholes logs of Davroc, all recorded groundwater levels from the deep wells are located under the top of the sand aquifer under the site. Consequently, the groundwater within the sand aquifer is not under pressure, and the sand aquifer is not a confined aquifer;
- The recorded groundwater levels from the deep well range from 8.5 to 9.6 mbgs, which is lower than the underground parking floor slab even after adding one (1) meter of fluctuation.

Based on the above groundwater level characterization, construction dewatering is not required. However, considering the limited density of investigation points, localized groundwater seepage is anticipated. In addition, stormwater accumulation should be considered.

A provision for the removal of stormwater from the excavation should be made. Assuming a 25 mm storm event over the excavation area of approximately 72 m by 114 m, could add 205,200 L requiring removal for a dry excavation. As this volume is completely stormwater, a PTTW or EASR would not be required, however a discharge permit from the Regional of Peel would be required to discharge to the storm or sanitary sewer system.

5. Conclusions and Recommendations

The following summarizes the results our Hydrogeological Assessment to support development at the property at 12148 Albion-Vaughan Road, Town of Caledon, Ontario:

- Underlying the site is the Halton Till Aquitard, which consists of clay to silt textured till, which is derived from glaciolacustrine deposits or shale.
- A small tributary to the Humber River intersects the west corner of the property. This channel has been historically realigned and appears to be perched on the till deposits.
- Based on a review of the MECP water well record database, 42 water wells are situated within a
 500 m radius of the project boundary. Of the water wells, 16 are for domestic use, 1 is for
 livestock and domestic, 1 is for industrial and domestic, 10 are for monitoring, 3 are for monitoring
 or test holes, 5 are not used, 1 is for other, and 5 are unknown.
- Over the entire the site, the water levels in the well were determined to be dry at wells for all shallow monitoring wells. Groundwater levels recorded from the deep wells ranges from 8.5 to 9.6 mbgs.

- Based on the grain size analyses, the geometric mean hydraulic conductivity of the site is approximately 1.1 x10⁻⁸ m/s and is found to be 1.2 x 10⁻⁷ m/s and 1.0 x 10⁻⁹ m/s for BH1 and BH2, respectively
- The site is not situated within Source Water Protection regulatory zones (HVA, SGRA, etc.) and will not require a Section 59 Permit. It was also confirmed that the site is not located within a WHPA-Q1/Q2 (recharge management) and is not subject to the recharge management policies under the Source Protection Plan.
- No significant threat is expected which would require stormwater management and/or water balance restrictions. It is not expected that construction will cause adverse effect to nearby natural features.
- No significant construction dewatering is anticipated. However, considering limited density of
 investigation points and coherent complexity of geology, localized perched groundwater is
 anticipated and local sump pumping is expected to be sufficient to handle the perched
 groundwater.
- Provisions should also be made to account for direct precipitation over the excavation area. A
 discharge agreement with Peel Region would be required to discharge stormwater to the
 roadside ditching.
- Based on a review of MECP water well records, no adverse impact to existing water users is anticipated.
- A Permit To Take Water (PTTW) or a registration on the Environmental and Sector Registry (EASR) from the MECP are not expected to be required for this project.

6. Statement of Limitations

The extent of this study was limited to the specific scope of work for which we were retained and that is described in this report. Palmer has assumed that the information provided by the client or any secondary sources of information are factual and accurate. Palmer accepts no responsibility for any deficiency, misstatement or inaccuracy contained in this report as a result of omissions, misinterpretations or negligent acts from relied upon data. Judgment has been used by Palmer in the interpretation of the information provided but subsurface physical and chemical characteristics may differ from regional scale geology mapping and vary between or beyond well/borehole locations given the inherent variability in geological conditions.

Palmer is not a guarantor of the geological or groundwater conditions at the subject site, but warrants only that its work was undertaken and its report prepared in a manner consistent with the level of skill and diligence normally exercised by competent geoscience professionals practicing in the Province of Ontario. Our findings, conclusions and recommendations should be evaluated in light of the limited scope of our work.

The information and opinions expressed in the Report are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT PALMER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS PALMER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belongs to Palmer. Any use which a third party makes of the Report is the sole responsibility of such third party. Palmer accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Palmer's express written permission. Should the project design change following issuance of the Report, Palmer must be provided the opportunity to review and revise the Report in light of such alteration or variation.

7. Closure

This report was prepared and reviewed by the undersigned:

Prepared By:

Byz

Nolan Boyes, M.Sc., P.Geo.

Hydrogeologist

Updated By:

Frank Liu, P.Eng.

Senior Hydrogeologist

Reviewed By:

Jason Cole, M.Sc., P.Geo.

VP, Principal Hydrogeologist

8. References

- Armstrong, D.K., and Dodge, J.E.P. 2007. Paleozoic Geology Map of Southern Ontario. Ontario Geological Survey, Miscellaneous Release Data 219.
- Chapman, L.J. and D.F. Putnam. 1984. Physiography of Southern Ontario. Ontario Geological Survey, Special Volume 2: 270 p.
- Chapman, L.J., and Putnam, D.F. 2007. The Physiography of Southern Ontario. Ontario Geological Survey, Miscellaneous Release Data 228.
- Davroc Testing Laboratories Inc., 2020. Geotechnical Investigation Fausto Cortese Architects (FCA)
 Proposed Condominium Development, 12148 Albion Vaughan Road, Bolton, Ontario
- Puckett, W. E., Dane, J. H., and Hajek, B. F., Soil Science Society of America Journal, Vol. 49, 1985, pp. 831-836 Groundwater and Vadose Zone Monitoring, ASTM, STP, 1053, 1990
- Ministry of the Environment and Energy (MOEE), 1995. Technical Information Requirements of Land Development Applications.
- Mulligan, R.P. 2013. Quaternary Landform and Sediment Analysis of the Alliston Area (Southern Simcoe County) Ontario, Canada. M.Sc. Thesis. McMaster University.

The Ontario Geological Survey. 2003. Surficial Geology of Southern Ontario

Thornthwaite, C.W. and J.R. Mather, 1957:

Instructions and tables for computing potential evapotranspiration and water balance. Drexel Institute of Technology, Laboratory of Climatology. Publications in Climatology, Volume X. No. 3, 311p.

TRC/CVC, 2010:

Low Impact Development Stormwater Management Planning and Design Guide, Version 1.0 – Appendix C.

Appendix A Site Plan (Fausto Cortese Architects, 2023)

OWER A + AMENITY	Faus MIX- Loca 3560	e of Project: to Cortese Ar USED COND tion: Rutheford ro than, Ontario	O DEV	EDON										
ITEM	vaug	man, omano	Onta	rio Bui	lding Code [Data Mat	rix	- Part	3 &	9			OBC Refer	
													rences are to Division for Division A or [C	
1	Proje	ct Description	n: 3 & 6	_	Condo Building] A	New Addition		Part 11 11.1 to 11.4		1.1.2	Part 3 . [A]	Part 9 1.1.2. 9.10.1.3.
	Maia	r Oogunanau/	۵)	_		<u>L</u>	J ′	Alteration	'			2 4 2	1 (1)	9.10.2.
2	- 1	r Occupancy(S)	Group									2.1.(1)	
3		ing Area (m²)		NEW: 2	2400.72 m2		ГОТ	AL: 240	0.72	m2			.2 [A] 1	1.4.1.2 [A]
4	Gros	s Area (m²)		NEW: 1	3010.64 m2	-	ГОТ	AL: 130	10.6	4 m2		1.4.1	.2 [A]	1.4.1.2 [A]
5	Num	ber of Storeys	3	Above	Grade: 6	Е	elov	w Grade	: 2			1.4.1	.2 [A] & 3.2.1.1.	9.10.4.
6		per of Streets		ghter Acc								3.2.2	.10 & 3.2.5.	9.10.20.
7	3.2.2	ing Classifica .43	tion:		GROUP C							3.2.2	.43	9.10.2.
8	Sprinkler System Proposed								in lieu of roof rating not required EXISTING NO CHANGE			3.2.2 3.2.1 3.2.2 INDE	.5	9.10.8.2.
9	Cton	dnina raquira	J		basement		7 \	/	_	l _{Na}				N/A
		dpipe require										3.2.9		9.10.18.
10		Alarm require		\		<u></u>	7	es	늗	No No		3.2.4		9.10.18. N/A
		r Service/Sup	ppiy is <i>F</i>	Adequate			<u> </u>	es .	늗			3.2.5		
12	+ -	Building			Combusti	ble 🔽	-	res Von-com	bust	No ible		3.2.6		N/A
13	Actua	truction Rest	n		Combusti Permitted Combusti		7	Non-com Required Non-com		_	Both Both	3.2.2	67	9.10.6.
14	Mezz	anine Area (r	n²): N	/A								3.2.1	.1.(3)-(8)	9.10.4.1.
15	Occu	pant load bas Oo		cy: 350	m²/person Load:		d	design of building Load:				3.1.1	7	9.9.1.3.
16	Barri	er-free Desigi	า		X Yes	☐ No ((Explain):					3.8		9.5.2.
17	Haza	rdous Substa	nces		Yes	⊠ No						3.3.1	.2. & 3.3.1.19	9.10.1.3.(4
18	R	equired		Horizon	ital Assemblies		Listed Design No.						2.2083 &	9.10.8. 9.10.9.
	Re	Fire sistance		FR	R (Hours)			or Description (SB-3)					3.2.1.4	
	1	Rating	Floor:		1	Hours								
	'	(FRR)	Roof:		0	Hours								
				FRR	of Supporting				Liste	ed Design No.				
					Members					scription (SB-				
		ŀ	Floor:		1	Hours				S1	-,			
		ŀ	Roof:			Hours								
19	Snati	al Separation		etruction (of Exterior Walls		Rui	Idina				3.2.3	<u> </u>	9.10.14.
-10	Wall	Area of	L.D.	L/H or	Permitted	Propos		FR	p	Listed	Com		Comb.	Non-con
	vvaii	EBF (m ²)	(m)	L/H 01 H/L	Max. % of	% of		(Hou		Design or Description	Con		Cladding	Const
Left	North	NO CHANGE	-	-	Openings –	Openin –	ys	- (-7	–	-	·	Cladding -	-
Front	South	NO CHANGE		_	_	_		-		_	_	+	_	-
Rear	East	NO CHANGE		_	_	_		_		_	_	+	_	_
Right	West	NO CHANGE		_	_	_		 -		_	_		_	_

TOWER B	Faust MIX-U	Name of Project: Fausto Cortese Architect MIX-USED CONDO DEVELOPMENT AT 12148 ALBION VAUGHAN RD. BOLTON - CALEDON Location: 3560 Rutheford road, Unit 7 Vaughan, Ontario												
	Vaug	han, Ontario												
ITEM			Onta	rio Bui	Iding Code [Data Matrix	Part 3 &	9		OBC Refer				
11 E W			References are to Division [A] for Division A or [C]											
1	Proje	ct Description	n: 7 Sto	rey Con	do Building	<u> </u>	lew	Part 11		Part 3	Part 9			
							ddition	11.1 to 11.4		1.1.2. [A]	1.1.2. 9.10.1.3.			
				С	hange of Use		lteration				9.10.1.3.			
2	Major	Occupancy	(s)	Group	С					3.1.2.1.(1)	9.10.2.			
3	Buildi	ng Area (m²)		NEW: 2	2092.75 m2	TOT	AL: 2092.75	5 m2		1.4.1.2 [A] 1	1.4.1.2 [A]			
4	Gross	s Area (m²)		NEW:	14680.14 m2	TOT	AL: 14680.1	4 m2		1.4.1.2 [A]	1.4.1.2 [A]			
5	Numb	er of Storey	s	Above	e Grade: 7	Belov	/ Grade: 2			1.4.1.2 [A] & 3.2.1.1.	1.4.1.2 [A] 9.10.4.			
6	Numb	er of Streets	/Fire Fi	ghter Ac	cess: 1					3.2.2.10 & 3.2.5.	9.10.20.			
7	Buildi 3.2.2.	ng Classifica	tion:		GROUP C					3.2.2.43	9.10.2.			
	3.2.2.	42												
8	Sprinl	kler System I	Propos	ed	entire buildin	g	in lie	eu of roof rating		3.2.2.67	9.10.8.2.			
					selected com	partments	not	required		3.2.1.5				
					selected floor	rareas	EXI	STING NO CHA	NGE	3.2.2.17				
					basement					INDEX	INDEX			
9	Stand	Standpipe required Yes No 3.2.9. N/A												
10	Fire A	larm require	d			× Y	es	No		3.2.4.	9.10.18.			
11	Wate	Water Service/Supply is Adequate Yes No 3.2.5.7. N/A												
12	High I	Building				⊠ Y	es 🔲	No		3.2.6	N/A			
13	Const	ruction Rest	rictions		Combusti Permitted	ble 🔲 🧎	lon-combus equired	tible 🔲 B	oth	3.2.2.67	9.10.6.			
	Actua	l Constructio	n		Combusti	ble 🛚 🗀 N	lon-combus	tible 🔲 B	oth					
14	Mezza	anine Area (r	n²): N	/A						3.2.1.1.(3)-(8)	9.10.4.1.			
15	Occup	pant load bas	sed on		m²/persor	n 🛛 d	esign of bui	lding		3.1.17	9.9.1.3.			
		0	ccupan	cy: 420	Load:		Load	l:						
16	Barrie	er-free Desig	n		X Yes	No (Exp	ain):			3.8	9.5.2.			
17	Hazaı	dous Substa	nces		Yes	⊠ No				3.3.1.2. & 3.3.1.19	9.10.1.3.(4)			
18		equired		Horizor	ntal Assemblies		List	ted Design No.		3.2.2.2083 & 3.2.1.4	9.10.8. 9.10.9.			
	Res	Fire sistance		FF	RR (Hours)		or Description (SB-3)			0.2				
		Rating FRR)	Floor:		2	Hours								
	,	,	Roof:		0									
				FRR	of Supporting		List	ted Design No.						
		_		ľ	Members		or De	escription (SB-3)	1					
			Floor: 2 Hours S1											
			Roof:		-	Hours								
19					of Exterior Walls	1	T .	Listed	_	3.2.3 Comb.	9.10.14.			
	Wall	Area of	L.D.	L/H or	Permitted Max. % of	Proposed % of	FRR (Hours)	Design or	Com	Constr. Nonc.	Non-comb			
l 0#	North	EBF (m²)	(m) -	H/L _	Openings –	Openings -	(Hours)	Description –	Cons	St Cladding	Const _			
Left Front		NO CHANGE		_	_	_	_	_	_		_			
Rear		NO CHANGE		_	_	_	_	_	_	_	_			
Right		NO CHANGE		_	_	_	-	_	_	_	_			

Albion Vaughan Road Condos

PROJECT ARCHITECTURAL DESIGN
FCA Architects - FAUSTO CORTESE ARCHITECTS
3590 Rutherford Road, Unit 7
Woodbridge, Ontario
L4H 3T8

T: 416-806-7000

PLANNING

KLM PLANNING PARTNERS INC.
PLANNING - DESIGN - DEVELOPMENT
64 Jardin Drive, Unit 1B

Concord, Ontario
L4K 3P3
T: 905-669-4055

LANDSCAPE

MSLA

MARTON SMITH LANDSCAPE ARCHITECTS

170 The Don Way West, Suite 206

North York, Ontario

M3C 2G3

T: 416-492-9966

ENGINEERING CONSULTANTS
TRISTAR ENGINEERING LTD.
8901 Woodbine Ave., Suite 116
Markham, Ontario
L3R 9Y4
T: 905-604 -3801

ACOUSTIC

HGC ENGINEERING - Howe Gastmeier Chapnik
Limited
NOISE - VIBRATION - ACOUSTICS
2000 Argentia Rd 1, Suite 203
Mississauga, Ontario
L5N 1P7
T: 905-826-4044

TRANSPORTATION CONSULTANTS

PARADIGM TRANSPORTATION SOLUTIONS
LIMITED

150 Pinebush Rd. Suite 5A
Cambridge, Ontario
N1R 8J8
T: 416.479.9684

LANDSCAPE CONSULTANTS

MASONGSONG ASSOCIATES ENGINEERING
LIMITED
7800 Kennedy Road, Suite 20
Markham, Ontario
L3R 2C7
T: 905-944-0162

1. For landscaping, refer to landscape drawings

2. For proposed grading, refer to landscape drawings and approved grading plan.

3. For detailed lighting plan, refer to lighting drawings.

All perimeter existing information indicated taken from survey.
 All work to be done in conformance with the 2012 Ontario Building Code (O.B.C., as amended)

A2.0 P1 LEVEL (TOWNHOMES, TOWERS A & B)

A2.1 P2 LEVEL (TOWNHOMES, TOWERS A & B)

A2.2A MAIN FLOOR PLAN TOWER A

A2.2B MAIN FLOOR PLAN TOWER B

LIST OF ARCHITECTURAL DRAWINGS

A1.2 SITE PLAN - EXCAVATION AND FORMING PHASES PLANS

A1.0 COVER PAGE

A1.1 SITE PLAN

A2.3A 2ND FLOOR PLAN - TOWER A

A2.3B 2ND FLOOR PLAN - TOWER B

A2.4A 3RD TO 6TH FLOOR PLAN - TOWER A

A2.4B 3RD TO 7TH FLOOR PLAN - TOWER B

A2.5A PENTHOUSE - TOWER A

A2.5B PENTHOUSE - TOWER B

A2.6 MAIN AMENITY CORE FLOOR PLANS

LIST OF ARCHITECTURAL DRAWINGS

A3.0 ELEVATIONS

A3.1 ELEVATIONS

A3.2 ELEVATIONS

A3.3 ELEVATIONS

A4.0 BUILDING SECTIONS

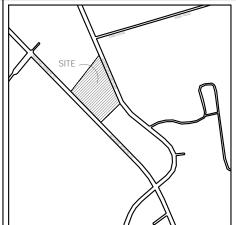
TOTAL LOT AREA		m2	S	
GROSS SITE AREA (BEFORE ROAD WII	DENING)	15375.96	165	
DEVELOPABLE SITE AREA (AFTER ROA	13333.83	143		
NET DEVELOPABLE AREA	-	10255.99	110	
B - GROSS FLOOR AREA				
B.1 - UNDERGROUND LEVEL				
	QTY.	m2	S	
PARKING LEVEL 1 - P1	1	8860.96	95	
PARKING LEVEL 2 - P2	1	8860.96	95	
TOTAL GFA		17721.92	190	
B.2 - TOWER A (RESIDENTIAL CONDO	GFA)		1	
GROUND FLOOR LEVEL	1	1829.26	196	
2ND FLOOR LEVEL	1	1870.33	20	
3RD FLOOR LEVEL	1	1882.15	20:	
4TH TO 6TH FLOOR LEVEL	3	5646.45	60	
TOTAL GFA		11228.19	120	
TOTAL GFA (INCL. BALC./TERRACES)		12993.67	139	
B.3 - TOWER B (RESIDENTIAL CONDO	GFA)	,,,,,,,	I	
GROUND FLOOR LEVEL	1	2019.14	21	
2ND FLOOR LEVEL	1	2019.14	21	
3RD FLOOR LEVEL	1	2113.65	22	
4TH TO 7TH FLOOR LEVEL	4	8454.60	91	
TOTAL GFA	4	14606.53	-	
TOTAL GFA (INCL. BALC./TERRACES)			157	
B.4 - AMENITY SPACE (GFA)		17330.86	186	
· /		420.70	1	
GROUND FLOOR LEVEL	1	432.68	46	
2ND FLOOR LEVEL	1	432.68	46	
3RD FLOOR LEVEL (TERRACE)	1	147.97	15	
TOWER A (ROOF LEVEL)	1	630.34	67	
TOWER B (ROOF LEVEL)	1 20% OF DEVELOPABLE LOT	575.52	61	
TOTAL GFA	20% OF DEVELOPABLE LOT AREA = 2051.35 m2 (min.)	2219.19	23	
B.5 - SERVICE AREAS (GFA)			ı	
TOWER A - STORAGE		138.78	14	
TOWER B - STORAGE		73.61	7	
TOTAL GFA		212.39	22	
B.6 - GRAND TOTAL GFA TOTAL GFA	ı		ı	
(NOT INCLUDING UNDERGROUND PA BALCONIES & TERRACES)	RKING,	28266.30	304	
TOTAL GFA (INCLUDING TERRACES &	BALCONIES)	32756.11	352	
C - FLOOR SPACE INDEX (FSI)			I	
FSI = TOTAL GFA / TOTAL GROSS LOT	T AREA	28266.30	/ 13333.8	
TOTAL SITE FSI	-	2.12	times	
FSI = TOTAL GFA/TOTAL NET DEVELO	PABLE AREA	28266.30	/ 10255.9	
TOTAL USABLE SITE FSI		2.76	times	
D - SITE STATISTICS				
BUILDING HEIGHT	N/A	25.51 m	8:	
LOT COVERAGE	20% (Max.)= 2051.20 m2	5102.80 m2	5492	
LANDSCAPE AREA	45% (Min.)= 4615.20 m2	6954.04 m2	7485	
FRONTAGE	30 m (min.)	106.90 m	35	
FRONT YARD	9.0 m (Min.)	9.20 m	30	
REAR YARD	7.50 m (Min.)	6.90 m	2:	
	7.50 m (Min.)		+	
SOUTH SIDE YARD	7.50 III (IVIIII.)	3.97 m	13.0	
NORTH SIDE YARD	7.50 m (Min.)	5.65 m		

SURVEYOR'S REAL PROPERTY REPORT PART 1 , PLAN OF PART OF LOT 1

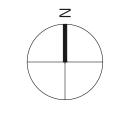
CONCESSION 7 (GEOGRAPHIC TOWNSHIP OF ALBION)

TOWN OF CALEDON REGIONAL MUNICIPALITY OF PEEL

SCALE AS NOTED IN ORIGINAL SURVEY PLAN David B. Searles Surveying Ltd. ONTARIO LAND SURVEYORS


METRIC DISTANCES

DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048


BENCH MARK NOTE
ELEVATIONS ARE REFERRED TO THE CITY OF BRAMPTON BENCHMARK No. 042010221, BEING A BRASS CAP IN CONCRETE APPROX. 21 m SOUTH OF CENTRELINE OF NASHVILLE ROAD AND 11 m EAST OF CENTRELINE OF REGIONAL ROAD 50, IN FRONT OF GAS STATION/COFFEE SHOP. HAVING AN ELEVATION OF 220.967 m.

CAUTION
LOCATIONS OF ALL UTILITIES ARE APPROXIMATE. ALL UTILITIES SHOULD BE CONTACTED PRIOR TO ANY DIGGING OR CONSTRUCTION.

NOTE PROPERTY LIMITS ARE NOT FENCED UNLESS OTHERWISE NOTED ON THE FACE OF THE PLAN.

KFY PI AN

ISSUED FOR DD/MM/YY
DESCRIPTION DATE
REVISIONS

ISSUED FOR CONSTRUCTION
ISSUED FOR BID
ISSUED FOR BUILDING PERMIT
ISSUED FOR SITE PLAN APPROVAL

CONTRACTORS MUST CHECK AND VERIFY ALL DIMENSIONS AND CONDITIONS ON THE PROJECT AND MUST REPORT ANY DISCREPANCIES TO THE DESIGNER BEFORE PROCEEDING WITH CONSTRUCTION.

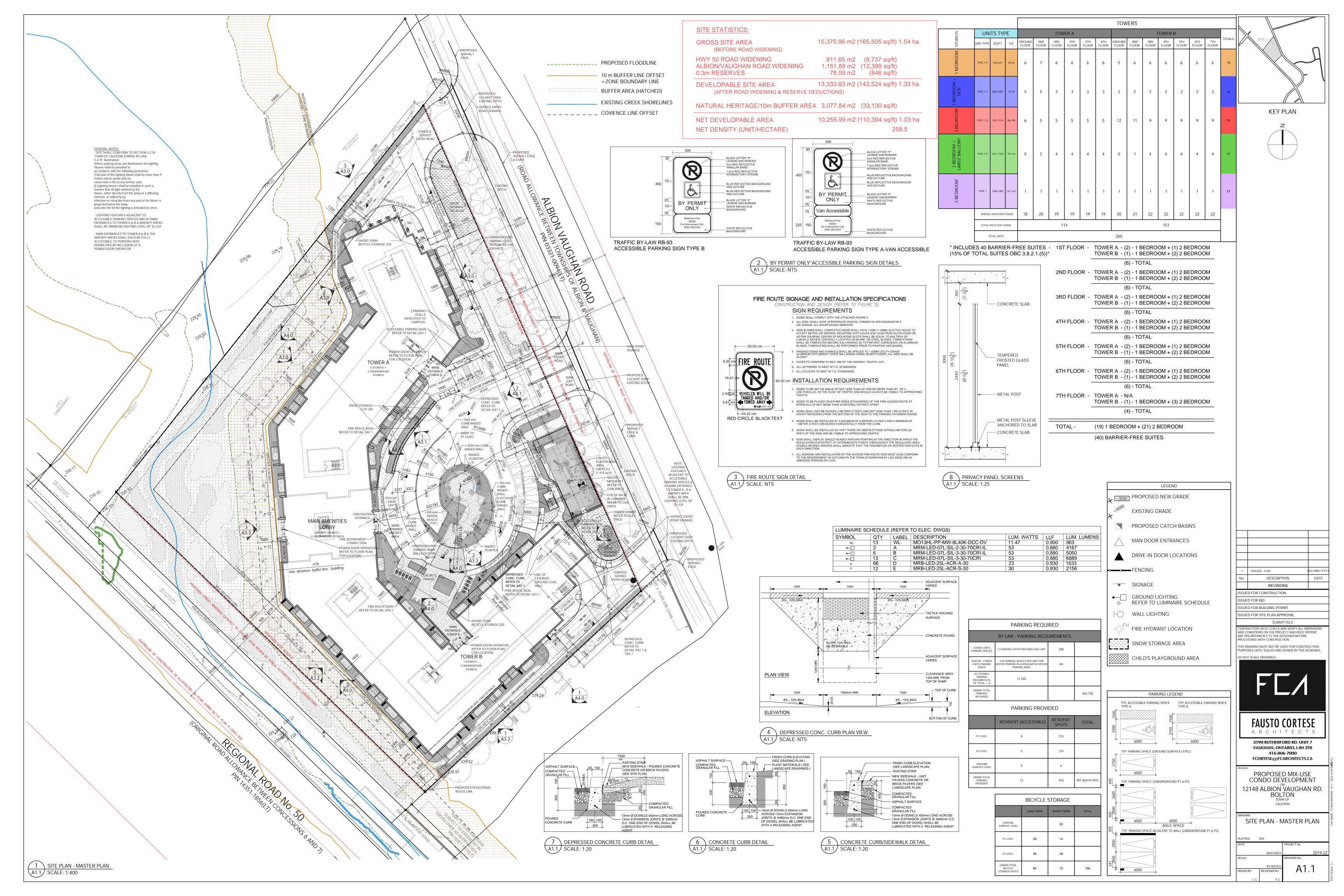
THIS DEAWING MUST NOT BE USED FOR CONSTRUCTION.

PROCEEDING WITH CONSTRUCTION.

THIS DRAWING MUST NOT BE USED FOR CONSTRUCTION PURPOSES UNTIL SEALED AND SIGNED BY THE DESIGNER.

FAUSTO CORTESE A R C H I T E C T S

3590 RUTHERFORD RD. UNIT 7
VAUGHAN, ONTARIO, L4H 3T8
416-806-7000
FCORTESE@FCARCHITECTS.CA


PROPOSED MIX-USE CONDO DEVELOPMENT ON 12148 ALBION VAUGHAN RD. BOLTON TOWN OF

COVER PAGE

CALEDON

PROJECT No: 25/01/2023 25/01/2023 DRAWING No:

DTED DRY: A1.0

Appendix B Borehole Logs (Palmer, 2020 and 2021) Davroc (2020)

				RE	COR	RD C	F BO	REHOLE No BH20-1 METRIC 1 OF
W.P.		LOC	ATIC	ON _		See	Borehole	ocation Plan (UTM 17T) ORIGINATED BY _ AL
DIST	HWY				Hollo	ow Stem A	ger COMPILED BY AL	
DATU	JM Geodetic	DAT	E _			Aug	-17-2020	
	SOIL PROFILE		5	SAMPLES		H	ALE	DYNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC MATURAL LIQUID REMARKS
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	'N" VALUES	GROUND WATER	ELEVATION SCALE	20 40 60 80 100 VARIABLE STRENGTH kPa ○ UNCONFINED + FIELD VANE • QUICK TRIAXIAL × LAB VANE WATER CONTENT (%) WATER CONTENT (%) WATER CONTENT (%)
0.0	Ground Surface TOPSOIL:	24 14.			-		ш	20 40 60 80 100 10 20 30 Y GR SA SI (
- 0.2	FILL: brown silty sand, some gravel, containts rootlets		1	SS	16			
0.7	Clayey Silt Till: some sand, trace gravel, occ. cobbles and boulders, contains sand and silt seams		2	SS	17	-		
-			3	SS	19			
<u>2</u> - -								
- - - - 3			4	SS	26	-		
-			5	SS	28			
- - - <u>4</u> - -	turns from brown to grey							
- - - - 5			6	SS	19			
- - - - - 6								
- - -			7	SS	17			
6.77	END OF BOREHOLE Notes: Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole. The well was completed with a stick up casing. Well Installation Details: Bentonite: 0.0-2.4 m Sand: 3.0 - 6.7 m Screen: 3.6 - 6.7 m							
PALMERENY, JINE 2020 G.I.B.								16046

				RE	COR	D OF	BO	REHOLE No BH20-2 METRIC 1 OF
W.P.		LOC	ATIC	ON _		See B	orehole	ocation Plan (UTM 17T) ORIGINATED BY _ AL
DIST	HWY	BOF	REHO	DLE TY	/PE ₋	Hollow	Stem A	iger COMPILED BY AL
DATU	JM Geodetic	DAT	E _			Aug-1	7-2020	
	SOIL PROFILE		S	SAMPL	ES	ER	ALE	DYNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC NATURAL LIQUID NOISTURE I IMIT REMARKS
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	20 40 60 80 100 SHEAR STRENGTH kPa ○ UNCONFINED + FIELD VANE • QUICK TRIAXIAL × LAB VANE WATER CONTENT (%) WATER CONTENT (%)
0.0	Ground Surface TOPSOIL:	. 74 1 ³ .					ӹ	20 40 60 80 100 10 20 30 Y GR SA SI (
0.2			1	SS	5			
- - - -			2	SS	5			
- - - - 1.5	Clayey Silt Till: some sand, trace gravel,	1 417	_	33	3			
- - - - 2	occ. cobbles and boulders, contains sand and silt seams disturbed till		3	SS	6			
-			4	SS	26			
_3 - - -			5	SS	38			
- - - - - - -	turns from brown to grey							
4.7	Silty Clay: grey, trace silt, moist				40			
 - <u>5</u> - - -	ung sug s goog aase on, mood		6	SS	16			
- - - - 6			7	SS	72/ 0.18			
- 6.2 6.4	Clayey Silt Till: some sand, trace gravel, occ. cobbles and boulders, contains sand and silt seams		Ľ	33	0.18 m			
	END OF BOREHOLE Notes: Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole. The well was completed with a stick up casing. Well Installation Details:							
PREVIOUS CHRIMANON GRI 20.827	Bentonite: 0.0-2.4 m Sand: 2.7 - 6.7 m Screen: 3.3 - 6.4 m							
PALMERENY.								1604

				RE	COR	RD OF	BO	REHOLE No BH20-3 METRIC 1 OF
W.P.		LOC	ATIO	ON _		See Bo	orehole	ocation Plan (UTM 17T) ORIGINATED BY AL
DIST	HWY	BOF	REHO	DLE TY	/PE .	Hollow	Stem A	uger COMPILED BY AL
DATU	JM Geodetic	DAT	E _			Aug-1	7-2020	
	SOIL PROFILE		5	SAMPL	ES.	<u>بر</u>	LE	DYNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC NATURAL LIQUID NOISTURE LIMIT Z REMARKS
<u>ELEV</u> DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	UNCONFINED + FIELD VANE QUICK TRIAXIAL × LAB VANE QUICK TRIAXIAL × LAB VANE QUICK TRIAXIAL × LAB VANE CONTENT W CONTENT W W W W W W W W W W W W W
0.0	Ground Surface TOPSOIL: FILL: brown silty sand, some gravel, containts rootlets	<u>x\ \ \ x\ \ \ .</u>	1	SS	5			20 40 60 80 100 10 20 30 Y GR SA SI (
0.7	Clayey Silt Till: some sand, trace gravel, occ. cobbles and boulders, contains sand and silt seams		2	SS	24			
- - - - - 2			3	SS	22	-		
-		X	4	SS	33			
-			5	SS	44			
- - - - -	turns from brown to grey							
- - - - 5 -			6	SS	15			
- - - - - 6								
-	END OF BODELIOLE		7	SS	27			
CO. See The Control of the Control o	END OF BOREHOLE Notes: Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole. The well was completed with a stick up casing. Well Installation Details: Bentonite: 0.0-2.4 m Sand: 3.0 - 6.7 m Screen: 3.6 - 6.7 m							
PALM						<u> </u>		16046

LOG OF BOREHOLE BH21-1

Palmer...

PROJECT: 1604603 Phase Two ESA REF. NO.: 1604603

CLIENT: 12148 Albion Vaughan Inc Method: Direct Push with Split Spoon ENCL NO.:

PROJECT LOCATION: 12148 Albion Vaughan Road, Caledon, ON Diameter: 150 mm

SS DATUM: Geodetic Date: Mar-04-2021 COMPILED BY

BH L	OCATION: 4856296.391N 604546.994E													
	SOIL PROFILE		SAM	IPLES		H	lead S	Space apor F	Comil	oustil	ble		œ	
(m) ELEV DEPTH		STRATA PLOT	NUMBER	TYPE	SAMPLE REMARKS		D	(pp	om) ─■			LABORATORY ANALYSIS AND REMARKS	GROUND WATER CONDITIONS	WELL CONSTRUCTION DETAILS
229.0	Ground Surface	S	ž	F			3 (6 9	9 1 	2	15		<u>ο</u> ο	
228.7 2.3 2.1	Fill: Clayey silt fill with trace sand, brown, with debris between 0.61 and 0.91													-Bentonite
### 222.9 6.11	BH Augured to 12.80 Sand seam between 8.20 and 9.40 m											Analysis: PHCs, VOCs, Metals		-Sand W. L. 220.5 m Mar 04, 2021

LOG OF BOREHOLE BH21-2

Palmer...

PROJECT: 1604603 Phase Two ESA REF. NO.: 1604603

CLIENT: 12148 Albion Vaughan Inc Method: Direct Push with Split Spoon ENCL NO.:

PROJECT LOCATION: 12148 Albion Vaughan Road, Caledon, ON Diameter: 150 mm

DATUM: Geodetic Date: Mar-04-2021 COMPILED BY SS

BH LOCATION: 4856318.017N 604569.159E

DH L	DCATION: 4856318.017N 604569.159E		1											
	SOIL PROFILE		SAM	IPLES		⊦	lead (Space	Comb Readir	oustibl	е		œ.	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	SAMPLE REMARKS			арог (р	pm)	ıg		LABORATORY ANALYSIS AND REMARKS	GROUND WATER CONDITIONS	WELL CONSTRUCTION DETAILS
230.6	Ground Surface		Ŋ.	IXI		;	3	6	9 1	2 1	5		GR CO	
238:3 0.3	Fill: Brown silty clay fill with organics Fill: Clayey silt fill with trace sand, brown, with debris between 0.61		1	SS	ı									
- - -1 - - -	brown, with debris between 0.61 and 0.91		2	SS	ı	- - - - - -						Analysis: PHCs, BTEX		
228.5 2.1	Till: Clayey silt till, grey, with		3	SS	ı									
- - - - 3	cobbles at 2.59m, 4.70m, and 6.25m, and a sand seam at 3.50m		4	SS	ı	8								-Bentonite
		\bigotimes	5	SS	ı									
- - - - - -		\bigotimes	6	SS	1									
- 5 - - -		\bigotimes	7	SS	1									
<u>.</u>		\bigotimes	8	SS	ı									
<u>\$224.5</u> 6.1	END OF BOREHOLE Notes: 1. Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole.											Analysis: PHCs, VOCs, Metals		-Sand W. L. 220.5 m Mar 04, 2021 -Screen

Palmer...

LOG OF BOREHOLE BH21-3

PROJECT: 1604603 Phase Two ESA REF. NO.: 1604603

CLIENT: 12148 Albion Vaughan Inc Method: Hand Auger ENCL NO.:

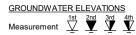
PROJECT LOCATION: 12148 Albion Vaughan Road, Caledon, ON Diameter: 300 mm

SS DATUM: Geodetic Date: Mar-03-2021 COMPILED BY

BH L	OCATION: 4856299.32N 604592.10E													
	SOIL PROFILE		SAM	IPLES		н	lead S	pace	Comb	ustib	le		<u>ر</u>	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	Je	SAMPLE REMARKS			apor F (pp	Comb Readin m)	ıg		LABORATORY ANALYSIS AND REMARKS	GROUND WATER CONDITIONS	WELL CONSTRUCTION DETAILS
229.8	Ground Surface	STF	IN	TYPE		3	3 6	3 9	12	2 ′	15		GR CO	
229:5	Ground Surface Fill: Sandy gravel fill with staining and petroleum odour		1			TX.						Analysis: PHCs,		
0.3	(C) C C C C C C C C C											VOCs		
21-6-8														
SOMD GPU														
VMJGHMN														
148 ALBION														
604503_12														
PM-2020														
VOC 0-18														
ARD & OILM														
ALMER EN														
4	NDWATER ELEVATIONS													

Palmer...

LOG OF BOREHOLE BH21-4


PROJECT: 1604603 Phase Two ESA REF. NO.: 1604603

CLIENT: 12148 Albion Vaughan Inc Method: Direct Push with Split Spoon ENCL NO.:

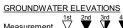
PROJECT LOCATION: 12148 Albion Vaughan Road, Caledon, ON Diameter: 150 mm

DATUM: Geodetic Date: Mar-03-2021 COMPILED BY SS

BHL	OCATION: 4856276.058N 604625.445E													
	SOIL PROFILE		SAM	IPLES			lead S	Space	Combi Reading	ustible	е		œ	
(m) ELEV DEPTH	Ground Surface	STRATA PLOT	NUMBER	TYPE	SAMPLE REMARKS			apor r (pr	om)			LABORATORY ANALYSIS AND REMARKS	GROUND WATER CONDITIONS	WELL CONSTRUCTION DETAILS
-229.5	Fill: Silty clay fill, brown, with organics	71.1	1	ss										
0.6	Fill: Clayey silt fill with trace sand, brown		2	SS										
-			3	SS										
227.8	Till: Clayey silt till, grey, with trace gravel		4	SS								Analysis: PHCs, BTEX		-Bentonite
3			5	SS	1							BILX		Bernorine
4			6	SS	ı	- - -								
			7	SS	1									
- - - - - -			8	SS										
5-224.0 6.1 6.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BH Augured to 12.74 Sand seam between 11.10 and 11.6 m											Analysis: PHCs, BTEX		-Sand W. L. 220.3 m Mar 04, 2021 -Screen

LOG OF BOREHOLE BH21-5

Palmer...


PROJECT: 1604603 Phase Two ESA REF. NO.: 1604603

CLIENT: 12148 Albion Vaughan Inc Method: Direct Push with Split Spoon ENCL NO.:

PROJECT LOCATION: 12148 Albion Vaughan Road, Caledon, ON Diameter: 150 mm

SS DATUM: Geodetic Date: Mar-03-2021 COMPILED BY

SOIL PROPRIE SAMPLES SAMPLE REMARKS APPLE REMARKS SAMPLE R	BHLO	DCATION: 4856263.822N 604614.289E											1		
DESCRIPTION		SOIL PROFILE		SAN	1PLES		F	lead S	Space	Comb	ustib	le		œ	
1 SS	ELEV DEPTH		STRATA PLOT	UMBER	YPE	SAMPLE REMARKS		0	(pr	om)			AND	SROUND WATE	CONSTRUCTION
1 SS	- 0.0	Fill: Silty clay fill with organics	<i>x</i> x	1			`	ĺ	ĺ	Ĭ	- '	10			
### Dentonite BTEX	- 0.3	Fill: Clayey silt fill with trace sand, brown, with debris between 0.61		1	SS	C	1								
Till: Clayey slit till, grey, with trace gravel cobbles at 4.11m 4 SS 5 SS 6 SS 7 SS 8 SS	-1 - - - - -			2	SS	C	-								
5 SS	228.0 2 1.9	Till: Clayey silt till, grey, with trace gravel cobbles at 4.11m		3	SS	C	-								
227.1 END OF BOREHOLE Notes: 1. Lyon completion of drilling, a	- - - - - 3			4	SS		- 1 - -								-Bentonite
223.8 BH Augured to 12.78 Sand seam between 10.2 and 11.3 m Analysis: PHCs, BTEX Analysis: PHCs, BTEX W. L. 220.3 m Mar 04, 2021	-			5	SS										
8 SS 8 Analysis: PHCs, BTEX Analysis: PHCs, BTEX W. L. 220.3 m Mar 04, 2021	- - - -			6	SS										
BH Augured to 12.78 Sand seam between 10.2 and 11.3 m Analysis: PHCs, BTEX BTEX W. L. 220.3 m Mar 04, 2021 12.8 END OF BOREHOLE Notes: 1. Upon completion of drilling, a	- <u>5</u> - -			7	SS		- 1 - -								
Sand seam between 10.2 and 11.3 m Analysis: PHCs, BTEX W. L. 220.3 m Mar 04, 2021 12.8 END OF BOREHOLE Notes: 1. Upon completion of drilling, a		RH Augured to 12.78		8	SS										
	ър±2 (об посминентильский нац. 1894). 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	END OF BOREHOLE Notes: 1. Upon completion of drilling, a													W. L. 220.3 m Mar 04, 2021

			relephone.(905)/92-7/92											
CLIEN	PROJECT NAME Condominium PROJECT NUMBER L20-0711MT PROJECT LOCATION 12148 Albion Vaughan Rd DATE STARTED (dd/mm/yy) 27-11-20 COMPLETED GROUND ELEVATION 99.45 m HOLE SIZE 0.15 DRILLING CONTRACTOR Tri-Phase Group GROUND WATER LEVELS:													
PROJ	ECT NUM	IBER .	L20-0711MT	Р	ROJECT L	OCAT	ION 1214	8 Albior	ı Vau	ghan Rd				
DATE	STARTE	D (dd/ı	mm/yy) _27-11-20	GROU	JND ELEV	ATION	99.45 m		HOL	E SIZE _ 0.15				
DRILL	ING MET	HOD	Hollow stem auger		АТ ПМЕ	OF DR	ILLING	- Dry, N	lov 27	, 2020				
			CHECKED BY GW				LING							
NOTE	S _CME	75 Tra	ck				G							
				Τ-			-			▲ N - Value				
DEPTH (m)	ELEV DEPTH 99.45	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	N VALUE	POCKET PEN. (kPa)	DRY UNIT WT. (Mg/m³)	(Blows/305mm) ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80				
0.4	9 9.26 0.20		TOPSOIL -Blackish Brown	П	X SS SS1	54	6			A •				
0.8 _			-Organics		✓ SS	93	36	-		● 36本				
1.6		\bowtie	-Grass -Rootlets		SS2	100	- 00							
2.0	97.16		-Seams -Trace Sand		X SS SS3	100	35			●35▲				
2.4	2.4 2.8 FILL -Clayey Silt SS 100 42 300 42													
	-Brown to Gray													
3.6	F 7 V/A Postlete													
4.0			-Oxidation											
4.4 -			-Trace Gravel -Layered at Depth		4.00									
5.2			CLAYEY SILT -Brown to Gray		X SS SS6	100	32	450		32★				
5.6			-Oxidation											
6.0			-Some Gravel -Trace Sand		4.00									
6.4 _ 6.8			-High Clay Content at Depth -Dense to Compact		SS SS7	100	36	-						
7.2			-bense to compact											
7.6					1 00					<u> </u> / <u> </u>				
8.0					X SS SS8		17	200		1774				
8.4 _ 8.8 _														
9.2	90.30		Oll T	_	√ SS	100		-						
9.2 _ 9.6 _ 10.0	9.15		SILT -Gray		$\propto \frac{33}{SS9}$	100	86	-		864				
10.4			-Layered -Some Clay at Depth											
10.8			-Wet at Depth -Very Dense to Dense		X SS	100	45	-		18.				
11.2			-very belise to belise		SS10	100	45	-						
11.6 12.0														
12.4	87.25	,,,,	CLAY	_	∑ SS	100		_						
12.8	12.20		-Gray		SS11	100	54	-		54*				
₹ 13.2			-Some Silt -Sand and Gravel layer at depth 13.7 to 14. 2m						1					
13.6 14.0			-Spoon Refusal at depth 15.5m -Hard		X SS	70				60				
14.4			-riaiu		SS12	78	60	-		50/				
14.8														
15.2 15.6					⊠ ss	100	50+	-		50 130mm▲				
S 13.0	83.75 15.70		Bottom of hole at 15.70 m.		SS13		_	1		SS				
CGOTECH BH PLOTS 120-0711-12148 ALBION VAUGECH BH PLOTS 1	13.70		2											
HBH														
TECH														
SEC														

CLIEN	IT Four	to Cor	tone Architecte (FOA)			o			14		
			tese Architects (FCA)	_				Condomi		200	
			L20-0711MT	_				ON <u>1214</u>			
			mm/yy) <u>24-11-20</u> COMPLETED						1	HOL	.E SIZE0.15
170000000000000000000000000000000000000			TOR _Tri-Phase Group	_ 'G							
1			Hollow stem auger	_							v, Nov 24, 2020
1			CHECKED BY GW	-				LING	- Wet, N	ov 24	, 2020
NOTE	S <u>CME</u>	5511	Truck			AFTER D	RILLING	·			
DEPTH (m)	ELEV DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION		WELL DIAGRAM	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	N VALUE	POCKET PEN. (kPa)	DRY UNIT WT. (Mg/m³)	(Blows/305mm) 20 40 60 80 PL MC LL 20 40 60 80 FINES CONTENT (%) 20 40 60 80
0.4	980.70		TOPSOIL	П		SS	78	10			104 0 0 0 0
0.8	4.510.430950		-Brown -Organics			SS1	100				
1.2 _	97.32	\bowtie	-Seams -Sand and Gravel			SS2	100	14	-		144
2.0	1.52		FILL Silby Clay	-П		X SS SS3	100	26	400		26 ▲
2.4 _ 2.8			-Silty Clay -Brown			√ SS	100	47	450		4
3.2			-Trace Gravel -Oxidation			SS4			,,,,		
3.6			CLAYEY SILT -Brown to Gray	_		X SS SS5	100	48	450		48
4.0			-Oxidation								
4.8			-Trace Gravel -Spoon refusal at 7.8m			∑ SS		47	-		
5.2			-Dense to Compact to Very Dense			SS6	0	17			174
5.6 _				,							
6.4						√ SS	65	18	300		134
6.8						△\SS7	105	- 10	300		
7.2 <u>-</u> 7.6											
8.0						≥ SS	0	50+]		500 130mm
8.4						SS8					
	89.64										
9.2 9.6 10.0	9.20	7777	SAND	\neg		SS SS9	100	65			654
10.0			-Gray -Some Clay			_\339					
10.4			-Sand at depth 9.2 to 9.6m and 12.2 to 12.7m -Fine Sand at depth 10.7 to 11.1m								
11.2			-Wet at Depth -Very Dense to Compact			$\times_{\rm SS10}^{\rm SS}$	93	89			891
11.6_			every Bense to Compact								
12.0						1.00		50.00			
12.8	86.14	7777	CLAYEY SILT	_		$\times_{\rm SS11}^{\rm SS}$	89	14	-		144
13.2	12.70		-Gray								
13.6			-Trace Sand -Very Dense			X SS	100	04	400		
14.4						SS12	100	81	400		811
14.8											
10.4 10.8 11.2 11.6 11.2 12.8 12.0 12.4 13.6 14.0 14.4 14.8 15.2 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6	83.14					SS	100	92	400		92
2	15.70	11.1.1	Bottom of hole at 15.70 m.			SS13					processor with writing with the con-
3											
5											
3											

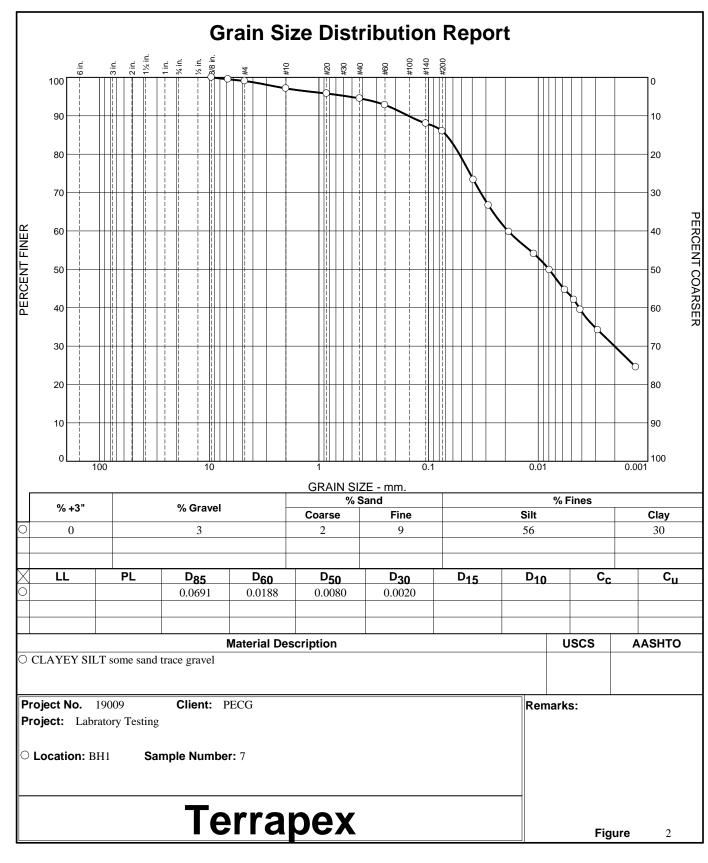
DAVROC

1	D	AVI	Telephone:(905)792-7792								
CLIEN	T Faus	to Cor	tese Architects (FCA)		PR	OJECT N	AME	Condomin	ium		
			L20-0711MT					ON _12148		n Vaud	nhan Rd
DATE	STARTE	D (dd/	mm/yy) _25-11-20								
			TOR Tri-Phase Group								
Control Control Control			Hollow stem auger						Snow	& Drv	, Nov 25, 2020
LOGG	ED BY _	SR	CHECKED BY GW					LING			
			Truck			AFTER DI					
											▲ N - Value
	ELEV DEPTH 99.28			,	WELL DIAGRAM	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	N VALUE	POCKET PEN. (kPa)	DRY UNIT WT. (Mg/m³)	(Blows/305mm) ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
0.4 _	99.00 0.20		TOPSOIL -Brown	Γ		SS SS1	78	13			13♠ : ○
1.2		\bowtie	-Organics -Sand and Gravel			√ ss	65	20	-		204
FI	97.76 1.52	XXX	FILL			SS2 SS	400				
2.0	1.52		-Clayey Silt -Brown			SS3	100	27	-		27
2.8			-Some Gravel -Oxidation			SS SS4	100	30		11	○ 30 ▲
3.2			CLAYEY SILT -Brown to Gray			√ SS	100	38	400		38
3.6 _ 4.0			-Oxidation			SS5			100		
4.4			-Seams -Trace Gravel								
4.8			-High Clay Content at Depth -Compact			SS	83	25	450		
5.2 5.6			•			SS6					
6.0											
6.4	92.68					X SS SS7	100	20	300		2
7.2	6.60		SILT & SAND -Brown to Gray								
7.6			-Silt at depth 7.6 to 8.1m and 12.2 to 12.7m -Sand at depth 9.2 to 11.1m			1 00					
8.0			-Shale Fragments -Some Clay at Depth				93	71	-		711
8.4 8.8			-Wet at Depth								
9.2 9.6			-Auger refusal at depth 12.8m -Very Dense			∑ SS	100	04	-		i i i
9.6 10.0				170		SS9	100	84	-		● 84▲
10.4											
10.8						SS	89	85			85.
11.2 11.6						<u>⇔ss10</u>			1		
12.0											
12.4	06.40					SS	100	50+	7		50+/ 130mm▲
12.8	86.48 12.80		Bottom of hole at 12.80 m.			SS11			1		
10.0 10.0 10.4 10.4 10.4 10.8 10.8 11.2 10.8 11.2 11.5 10.8 11.2 11.5 11											
ĞE.										1.6	

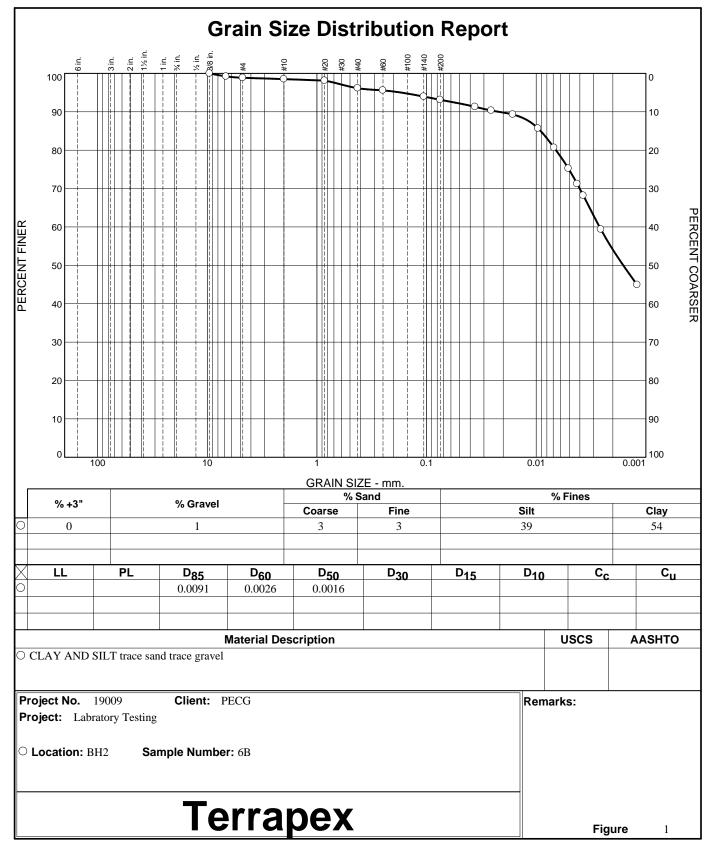
DAVROC

DAVROC Unit 21, 2051 Williams Parkway Brampton, Ontario, L6Y-3R9

		AVE	ROC Brampton, Ontario, L6Y-3R9 Telephone:(905)792-7792								
CLIEN			tese Architects (FCA)		PR	O JECT N	IAME	Condomir	nium		
			L20-0711MT					ON _1214		ı Vau	nhan Rd
			mm/yy) _11-12-20								
			TOR _Tri-Phase Group								0.10
			Solid Stem Auger					LLING	- Dry, D	ec 11	, 2020
LOGG	ED BY _	SR	CHECKED BY GW					LING			
NOTE	S CME	55 Tru	ıck		,	AFTER DI	RILLIN	G			•
					5						▲ N - Value
I		2			WELL DIAGRAM	SAMPLE TYPE NUMBER	% \	ш	POCKET PEN. (kPa)	DRY UNIT WT. (Mg/m³)	(Blows/305mm) ▲ 20 40 60 80
DEPTH (m)	ELEV	APH OG	MATERIAL DESCRIPTION		OIAG	LET	VER OBJ	N VALUE	ET F	JNIT g/m³)	PL MC LL
ā	DEPTH	GR		1.0	<u> </u>	MPI	RECOVERY (RQD)	> z	SS	RY U	20 40 60 80
	ELEV DEPTH 100.15				×	S	8		2		☐ FINES CONTENT (%) ☐ 20 40 60 80
0.4	99.96 0.20		TOPSOIL -Blackish Brown			X SS SS1	61	8			84 0 5 5
0.8		\bowtie	-Organics			X SS	89	9	-		94
	98.63		-Grass			SS2	03	3			
2.0	1.52		-Silty Clay -Brown			SS SS3	100	22	450		222
2.4 _ 2.8			-Some Gravel -Some Sand			√ SS	100	44	450		44*
3.2			CLAYEY SILT			SS4					
3.6			-Brown -Oxidation			X SS5	100	55	450		● 55▲
4.0			-Seams -Trace Gravel								
4.8	95.58 4.57		-Compact to Dense to Very Dense			√ ss	100	27	400		
5.2	4.57		CLAY -Gray			SS6	100	21	400		
5.6 _ 6.0			-Seams -Trace Gravel								
6.4	93.55		-Very Stiff to Hard			√ SS	100	44	-		44
6.8	6.60		SAND			SS7			1		
7.2 - 7.6			-Brown -Some Silt								
8.0			-Wet -Very Dense			× ss	100	50+			●50+/ 130mm▲
8.4			voly Ballee			\SS8					
8.8 _ 9.2 _											
	90.55					SS SS9	100	51			○ 51 ▲
	9.60		Bottom of hole at 9.60 m.			(000)					
5											
											6]
											F."
3											



Telephone:(905)/92-7/92									
CLIENT Fausto Cortese Architects (FCA) PROJECT NAME Condominium									
PROJECT NUMBER L20-0711MT PROJECT LOCATION 12148 Albion Vaughan Rd									
DATE STARTED (dd/mm/yy) 11-12-20 COMPLETED GROUND ELEVATION 100.18 m HOLE SIZE 0.10									
DRILLING CONTRACTOR Tri-Phase Group GROUND WATER LEVELS:									
A SANSON AND AND AND AND AND AND AND AND AND AN									
	AT END OF DRILLING Wet, Dec 11, 2020								
NOTES CME 55 Truck AFTER DRILLING									
Σ III ΔN-	Value								
(m)	05mm) ▲ 60 80								
DEPTH (WATERIAL DESCRIPTION	NC LL								
DEPTH OFF TH OFF	60 80								
MELL DIAGRAM WELL DIAGRAM NVALUE	ONTENT (%) □								
20 40	60 80								
-Blackish Brown SS1 - Slackish Brown									
12 SS 93 20 SS 93 20									
16 98.66 -Rootlets -SS2									
20 1.52 FILL SS 100 34 400 34 400									
- 2.4 - Brown	×								
-High Sand Content at depth	· •								
3.2 -Seams -Seam	<u>, </u>								
-Brown	/ <u>:</u>								
-Oxidation									
4.8 93.01 -Trace Gravel									
5.2 SS6 SS6									
-Gray -Gray									
6.0 -Seams -Trace Gravel									
- 6.4 - 93.58 - Trace Gravel - Very Stiff SS7 100 20 200									
7.2 6.60 SAND									
-Brown -Some Silt	× .								
-Some Clay at Depth SS 100 79	79🛦								
-Wet -Very Dense									
[- 8.8 -									
9.2 9.6 SS 100 78	78								
10.0	···/								
10.4	/								
10.8 SS 100 50+ 130mm	∠ .								
89.08 [39.04]	<u> </u>								
11.10 Bottom of hole at 11.10 m.									


		AVI	Brampton, Ontario, L6Y-3R9 Telephone:(905)792-7792								
CLIEN			rtese Architects (FCA)		PR	OJECTA	JAME C	ondor	minium		
	PRO IECT NUMBER 1 20 0711MT										
					PROJECT LOCATION 12148 Albion Vaughan Rd GROUND ELEVATION 100.38 m HOLE SIZE 0.10						
			TOR Tri-Phase Group						8 m	HOL	.E SIZE
			Calid Otana A								
			CHECKED BY GW								
1.000.000.000.000	S CME								vvet, N	0V 27	, 2020
		70 110	aon			AFTER DI	RILLING				
	ELEV DEPTH 100.38	GRAPHIC LOG	MATERIAL DESCRIPTION		WELL DIAGRAM	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	N VALUE	POCKET PEN. (kPa)	DRY UNIT WT. (Mg/m³)	M - Value (Blows/305mm) 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
-	10 0.0 0 0.20		TOPSOIL -Blackish Brown	Г		SS	100	18			184
0.8	0.20		-Organics			SS1 SS	400				
1.2 _	98.86		-Grass -Rootlets			SS2	100	14	_		144
2.0	1.52		FILL -Clayey Silt			X SS SS3	100	25	400		6 5
2.4 _ 2.8 _			-Brown -Trace Gravel			SS SS4	100	43	450		• 43
3.2 _ 3.6			-Seams -Oxidation			√ SS	100	52	450		522
4.0			CLAYEY SILT	٠.		SS5					<u>-</u>
4.4			-Brown to Gray -Oxidation								
4.8	95.35		-Trace Gravel -Seams			SS	100	25	300		
5.2 _ 5.6	5.03		-High Clay Content at Depth -Compact to Dense to Compact			SS6					
6.0			CLAY	-/							
6.4			-Gray -Trace Sand			SS	100	27			
6.8 _ 7.2			-Shale Fragments at Depth 8m			SS7				*	
7.6			-Very Stiff to Hard								
8.0	92.28					SS	89	90	100		90▲
8.4	8.10		SAND			△\SS8					
8.8 <u>9.2</u>			-Brown -Trace Gravel								
9.6			-Some Clay -Wet			× ss	100	50+			5 0 √/ 130mm /
10.0			-Very Dense to Dense			SS9				-	
10.4											
10.8	89.28					SS SS10	100	49			494
	11.10		Bottom of hole at 11.10 m.			3510					M M M M M M M M M M M M M M M M M M M
8.4 8.8 9.2 9.6 10.0 10.4 10.8				ŦI							

Appendix C Grain Size Analysis (ALS, 2020)

Tested By: AM

Tested By: AM