TOWN OF CALEDON PLANNING RECEIVED May 1, 2023

Palmer...

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

Phase Two Environmental Site Assessment (ESA)

12148 Albion Vaughan Road, Caledon, ON

Project # 1604603

Prepared For 12148 Albion Vaughan Inc.

April 3, 2023

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

12148 Albion Vaughan Inc. April 3, 2023

Michael Liburdi 12148 Albion Vaughan Inc. 27 Fenton Way Brampton, ON L6P 0P4

Dear Michael:

Re: Phase Two Environmental Site Assessment (ESA) Project #: 1604603

We are pleased to present our Phase Two Environmental Site Assessment (ESA) report for the abovenoted property. The scope of this Phase Two ESA conforms to the requirements outlined in Ontario Regulation 153/04 and 407/19. The purpose of this Phase Two ESA to support a development approval application with the Town of Caledon and may be required to support filing of a Record of Site Condition (RSC) with the Ministry of the Environment, Conservation and Parks (MECP).

The report provides information from Palmer's site reconnaissance, drilling activities, soil and ground water sampling, review of laboratory certificate of analysis, and our conclusions for your consideration.

We trust that this report will be satisfactory for your current needs. If you have any questions or require further information, please contact our office at your convenience.

DRAFT

Sarah Sipak, B.Sc., P.Geo (limited), QP_{ESA} Environmental Geoscience Team Lead

Executive Summary

Palmer is pleased to provide this Phase Two Environmental Site Assessment (ESA) report to 12148 Albion Vaughan Inc. The Phase Two ESA was prepared for the parcel of land located at 12148 Albion-Vaughan Road, Caledon, Ontario (hereafter collectively referred to as the "Phase Two Property").

It is Palmer's understanding that the purpose of this Phase Two ESA is to support a development approval application with the Town of Caledon and may be required to support filing of a Record of Site Condition (RSC) with the Ministry of the Environment, Conservation and Parks (MECP). The Phase Two Property (also referred to as the "Subject Property" or "Site") is contemplated for residential redevelopment with two adjoining towers (6 and 7 storeys) comprising 265 apartment units following demolition of the existing building. This Phase Two ESA Report has been prepared in accordance with Schedule E of Ontario Regulation 407/19 (amending Ontario Regulation 153/04) under the Environmental Protection Act (EPA).

The Phase Two Property is a 1.49 hectare, irregular shaped, parcel of land located on the east side of Highway 50 and west side of Albion-Vaughan Road, in Caledon, Ontario. Building structures on the Site include a 190 m², single storey residential building (with a full 1 level basement) which is currently vacant, and a 42 m² two-storey garage/ barn. Two (2) aboveground storage tanks (ASTs) are present in the basement of the residential dwelling, one (1) AST is present in the eastern portion of the Phase Two Property along the east exterior wall of the dwelling, and a stockpile of fill material of unknown quality is present in the southern portion. The remaining parts of the Site comprise grass and gravel surfaced areas.

Based on the findings of our recently completed Phase One ESA, the Phase One Study Area ("surrounding area") covers land uses within a 250 metre (m) radius of the Phase Two Property. The Phase One Study Area is developed with residential, commercial, and industrial land uses, including a gasoline service station located approximately 50 m west of the Phase Two Property at 12182 Highway 50, an RV sale and rental shop at 12275 Highway 50, a truck and trailer repair center at 12249 Highway 50, a helicopter training and repair center at 11339 Albion-Vaughan Road, a Kia dealership at 12080 Albion-Vaughan road, a Toyota dealership at 12050 Albion-Vaughan Road, and Bulk Transfer Systems, Gold Freight, and Best Choice Express located at 11339 Albion-Vaughan Road.

A reach of the headwater tributary Robinson Creek transects the northwest portion of the Phase Two Property. This tributary has been historically altered and realigned by previous site owners. The tributary ultimately flows into the Humber River, which flows southward to Lake Ontario. Lake Ontario is located approximately 32 km south of the Phase Two Property. There are no areas of natural significance on the Phase Two Property or within the Phase One Study Area.

Historically, the Phase Two Property was first developed between 1954 and 1960 with a residential dwelling and a barn/ garage addition structure constructed between 1960 and 1970. A structure is present south of the residential dwelling between the years of 2005 and 2017, at which point a fill mound is visible in its place. In 2018, the fill mound is redistributed to smaller fill mounds. Between 1999 and 2017, a structure is present to the east of the existing barn/ garage. Tenants of the building have been residential through its entirety.

Based on the findings of the historical records review, Site reconnaissance, and personal interviews, it was concluded that seven (7) potentially contaminating activities (PCAs) were identified either on the Phase Two Property or within the Phase One Study Area. These PCAs were deemed to be contributing to seven (7) areas of potential environmental concern (APECs) on the Phase Two Property. The identified PCAs and APECs are as follows:

Table A.Summary of APECs and PCAs

APEC	Location of APEC on PEC the Phase PCA One Property		Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC #1- Existing Interior Heating Oil Aboveground Storage Tanks (ASTs)	Eastern portion of the Phase One Property	#28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site – Two (2) 909 L heating oil ASTs located in the basement of the residential dwelling	Petroleum Hydrocarbons (PHCs) Benzene, Toluene, Ethylbenzene, Xylene (BTEX)	Soil and Ground water
APEC #2- Existing Exterior Heating Oil AST	Eastern portion of the Phase One Property along the east exterior wall of the dwelling	#28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site – One (1) 909-L heating oil AST located along the exterior west wall of the residential dwelling	PHCs BTEX	Soil and Ground water
APEC #3- Existing Hazardous Material Storage Likely Used for Equipment Maintenance	Eastern portion of the Phase One Property in the vicinity of the garage/barn structure	#52. Storage, Maintenance, Fueling, and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems	On-Site – Storage of unknown liquids (likely oil, lubricant, or degreaser) potentially used for equipment maintenance in garage/barn structure where evidence of surficial staining was observed on the ground surface	PHCs Volatile Organic Compounds (VOCs)	Soil and Ground water
APEC #4- Fill Stockpile	Southern portion of the Phase One Property	#30. Importation of Fill Material of Unknown Quality	On-Site – A stockpile of fill material of unknown quality	Metals, As, Sb, Se, and inorganic parameters (Na, B-HWS, CI-, CN- , Cr(VI), Hg, Iow or high pH, EC and SAR).	Soil and Ground water
APEC #5- Existing diesel AST	Northern portion of the Phase One Property	#28. Gasoline and Associated Products Storage in Fixed Tanks	Off-Site – Existing exterior diesel AST located at 12190 Albion Vaughan Road	PHCs BTEX	Soil and Ground water

Palmer.

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC #6- Existing Truck and Trailer Repair Center, historic metal fabrication	Northern portion of Phase One Property	#52. Storage, Maintenance, Fueling, and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems #34. Metal Fabrication	Off-Site – Existing A.Z Repair Garage truck and trailer repair garage in operating after 2000 and Historic Leaside Sheet Metal and Room-Tal Mechanical metal fabricating after 2000 located at 12249 Highway 50	PHCs VOCs Metals	Ground water
APEC #7- RV Repair Center with Fuel Underground Storage Tank (UST)	Northern portion of Phase One Property	 #52. Storage, Maintenance, Fueling, and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems #28. Gasoline and Associated Products Storage in Fixed Tanks 	Off-Site – Existing <i>Cruise</i> <i>Canada RV Rental and Sales</i> centre at 12275 Highway 50	PHCs VOCs Metals	Ground water

A Phase Two ESA was recommended to assess potential subsurface impacts as a result of the aforementioned PCAs and APECs.

The Phase Two ESA entailed the drilling of a total of four (4) boreholes to a maximum depth of 12.78 metres below ground surface (mbgs), and hand augured one (1) additional boreholes to refusal (a depth of 0.10 mbgs), at strategically selected and accessible locations on the Phase Two Property. In addition, three (3) soil samples were collected from the stockpiled fill material on the Phase Two Property. Ground water monitoring wells were also installed in all four (4) boreholes.

The observed soil stratigraphy generally comprised topsoil overlying silty clay and clayey silt fill, which was underlain by a stratum of clayey silt till. The soil across the property is considered to be fine-medium textured for the purpose of this assessment.

Fieldwork for this investigation began on March 2, 2021, by soil sampling from a total of four (4) exterior boreholes drilled to depths of 12.78 m below existing grade with the installation of four (4) monitoring wells, and hand augured one (1) additional borehole to refusal (a depth of 0.10 mbgs). In addition, three (3) soil samples were collected from the stockpiled fill material on the Phase Two Property. The stabilized ground water levels were measured at depths between 8.53 to 10.04 m below existing grade. No free-product was measured in any of the monitoring wells.

Based on the site topography and ground water level measurements, the ground water flow is interpreted to flow across the Site in a northerly direction. The results of the ground water monitoring also indicate that the primary near surface water table resides within the native clayey silt (till) layer.

Eleven (11) soil samples (representative of fill and native soils) and five (5) ground water samples were collected and submitted for laboratory analyses.

In comparison with the new (2011) Ontario *Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the* EPA criteria, the results of laboratory analyses revealed Petroleum Hydrocarbon (PHC) exceedances in soil within the garage structure on the Phase Two Property, and Metal (Cadmium and Lead) exceedances in the stockpiled soil on the southwestern portion of the Phase Two Property in comparison to Table 3 criteria for residential/parkland/institutional (RPI) property uses with fine-medium textured soils in a non-potable ground water condition.

The aforementioned soil exceedances are likely a result from automotive repair activities within the garage stricture, and the importation of fill materials in the southern portion of the Site.

Two (2) areas of impacted soil (PHC and Metals) have been identified on the Phase Two Property. These soil contaminants are located in the upper fill materials in the garage structure and within a stockpile of soil located on the southwestern portion of the property.

As the soil analytical results exceeded the Table 3 RPI standards in two (2) areas on the Phase Two Property, remedial activities were conducted to remove all of the PHC impacted upper fill materials within the garage. Stockpiled fill impacted with Cadmium and Lead should be disposed of off-site prior to land clearing and grading activities for the proposed redevelopment of the Site. Palmer has assumed that stockpiled material will be removed off-Site during the regrading of the Phase Two Property. Soil verification samples collected during the soil excavation in the garage structure were below the Table 3 RPI standards, thus the formerly identified area of PHC contamination was successfully remediated on the Phase Two Property.

The statements made in this Executive Summary are subject to the same limitations as contained in the report and should be read in conjunction with the entire report.

Table of Contents

Letter Execut	ive Sum	mary	i
1.	. Introduction		
	1.1	Phase Two Property Description	1
	1.2	Property Ownership	2
	1.3	Current and Proposed Future Uses	2
	1.4	Applicable Site Condition Standards	2
2.	Back	ground Information	4
	2.1	Physical Setting	4
	2.2	Past Investigations	5
3.	Scop	e of the Investigation	6
	3.1	Overview of Site Investigation	6
	3.2	Media Investigated	7
	3.3	Phase One Conceptual Site Model	8
	3.4	Deviations from Sampling and Analysis Plan	. 14
	3.5	Impediments	. 14
4.	Inves	stigation Method	.15
	4.1	General	. 15
	4.2	Drilling and Excavating	. 16
	4.3	Soil: Sampling	. 16
	4.4	Soil: Field Screening Methods	. 17
	4.5	Ground Water: Monitoring Well Installations	. 17
	4.6	Ground Water: Field Measurement of Ground water Quality Parameters	. 18
	4.7	Ground Water: Sampling	. 18
	4.8	Sediment: Sampling	. 19
	4.9	Analytical Testing	. 19
	4.10	Residue Management Procedures	. 19
	4.11	Elevation Surveying	. 19
	4.12	Quality Assurance and Quality Control Measures	. 20
5.	Revie	ew and Evaluation	.21
	5.1	Geology	. 21
	5.2	Ground Water: Elevations and Flow Direction	. 21
	5.3	Ground water Hydraulic Gradients	. 22
	5.4	Fine-Medium Soil Texture	. 23
	5.5	Soil: Field Screening	. 23
	5.6	Soil Quality	. 23

	5.7	Grour	nd Water C	Quality	
	5.8	Sedin	nent Quali	ty	
	5.9	Qualit	ty Assurar	ice and Quality Control Results	
	5.10	Phase	e Two Cor	nceptual Site Model	25
6.	Con	clusio	ns		34
	6.1	Limita	ations	Error! Bookmark not	defined.
	6.2	Certifi	ication		35
7.	Refe	rence	s		37
8.	Tabl	es and	d Figure	S	38
	8.1	Table	s		
		8.1.1	Monitorin	a Well Installation	
		8.1.2	Water Le	vels	
		8.1.3	LNAPLs	and DNAPLs	
		8.1.4	Soil Data		39
			8.1.4.1	PHCs with BTEX	39
			8.1.4.2	Metals	40
			8.1.4.3	VOCs	41
		8.1.5	Ground V	Vater Data	
			8.1.5.1	PHCs with BTEX	
			8.1.5.2	Metals	
		040	8.1.5.3	VOCs	
		8.1.6	Sedimen	t Data	
		8.1.7		Ground water Maximum Concentration Data	
			0.1.7.1	Groupd Water Maximum Concentration Data	
	8.2	Figur	0.1.7.2		
	0.2	8 2 1	Areas of	Natural Significance and Water Bodies	
		0.2.1	Droporty	Refere Actions Taken to Deduce the Concentration of Contemi	JZ
		0.2.2	Property	Before Actions Taken to Reduce the Concentration of Containing	nants 55
		8.2.3	Interprete	d Ground water Elevation Contours	
		8.2.4	Recently	Identified Contaminants in Soil Before Actions Taken to Reduct	e the
			Concentr	ation of Contaminants	
		8.2.5	Cross-Se	ction A-A'	55
		8.2.6	Cross-Se	ction B-B'	55

List of Drawings

Drawing 1: Site Location Map	
------------------------------	--

- Drawing 2: Borehole Location Plan
- Drawing 3: On-Site & Off-Site Areas of Potential Environmental Concern
- Drawing 4: Impacted Locations (Soil)
- Drawing 5: Conceptual Model for Human & Ecological Receptors
- Drawing 6: Excavation Area
- Drawing 7: Confirmation Sampling Area 1

List of Additional Tables

Table 1. APEC Locations and Associated Boreholes and Monitoring Wells	6
Table 2. Soil Stratigraphy Summary	16
Table 3. Monitoring Well Development Details	18
Table 4. Ground Water Quality Parameters	18
Table 5. Summary of Geology	21
Table 6. Summary of Ground Water Conditions	21
Table 7. Soil Exceedances of MECP Table 3 Criteria	23
Table 8. Soil Analytical Results: PHC with BTEX	62

Photographs

Α.

List of Appendices

GENERAL	
Appendix A1:	Sampling and Analysis Plan
Appendix A2:	Finalized Field Logs
Appendix A3:	Certificates of Analysis or Analytical Reports from Laboratories
Appendix A4:	Residue Management
Appendix A5:	Survey of Phase Two Property

B. REMEDIATION

Appendix B1:	Remedial Actions
Appendix B2:	Free Flowing Product
Appendix B3:	Confirmation Sampling and Analysis
Appendix B4:	Conclusions
Appendix B5:	Approved Permits
Appendix B6:	Certificates of Analysis or Analytical Reports from Laboratories

C. SOIL EXCAVATED AT THE PHASE TWO PROPERTY OR EXCESS SOIL BROUGHT TO THE PHASE TWO PROPERTY

Appendix C1:	Excess Soil Brought to RSC Property
Appendix C2:	Segregation of Soil
Appendix C3:	Stockpiles

1. Introduction

Palmer is pleased to provide this Phase Two Environmental Site Assessment (ESA) report to 12148 Albion Vaughan Inc. The Phase Two ESA was prepared for the parcel of land located at 12148 Albion-Vaughan Road, Caledon, Ontario (hereafter collectively referred to as the "Phase Two Property"), as shown in **Drawing 1**.

It is Palmer's understanding that the purpose of this Phase Two ESA is to support a development approval application with the Town of Caledon and may be required to support filing of a Record of Site Condition (RSC) with the Ministry of the Environment, Conservation and Parks (MECP). The Phase Two Property (also referred to as the "Subject Property" or "Site") is contemplated for residential redevelopment with two a six-storey and seven-storey condo tower, and two levels of underground parking following demolition of the existing building. This Phase Two ESA Report has been prepared in accordance with Schedule E of Ontario Regulation 407/19 (amending Ontario Regulation 153/04) under the Environmental Protection Act (EPA).

The assessment consisted of drilling, sampling, laboratory analysis and evaluation of results which characterized the subsurface conditions beneath the Site to establish any environmental contamination affecting the Site.

Conditions noted in this report are general in nature. This report presents the results of the investigation and the conclusions we have drawn regarding the possible impact of the conditions observed.

Phase Two Property Description

The Phase Two Property is a 1.49 hectare, irregular shaped, parcel of land located on the east side of Highway 50 and west side of Albion-Vaughan Road, in Caledon, Ontario. Building structures on the Site include a 190 m², single storey residential building (with a full basement) which is currently vacant, and a 42 m² two-storey garage/ barn. Two (2) Aboveground Storage Tanks (ASTs) are present in the basement of the residential dwelling, one (1) AST is present in the eastern portion of the Phase Two Property along the east exterior wall of the dwelling, and a stockpile of fill material of unknown quality is present in the southern portion. The remaining parts of the Site comprise grass and gravel surfaced areas.

The subject property is located west of Albion Vaughan Road and east of Highway 50, as shown in **Drawing 1** and the photograph appendix. The municipal address is 12148 Albion Vaughan Road with Property Identification Number (PIN) 14351-0058 (LT).

The legal description of the Phase Two Property is Part of Lot 1, Concession 7 Albion, in the Town of Caledon, Province of Ontario.

The center of the Phase Two Property is located in UTM Zone 17, with approximate coordinates of Easting 604588 m and Northing 4856267 m.

Property Ownership

At the time of the investigation, the Phase Two Property was owned and occupied by 12148 Albion Vaughan Inc. The authorization for Palmer to proceed with the Phase Two ESA was given by Mr. Michael Liburdi, Director of 12148 Albion Vaughan Inc. The contact information for the proponent is provided below:

Company Name:	12148 Albion Vaughan Inc.
Company Address:	27 Fenton Way, Brampton, ON L6P 0P4
Contact Name:	Michael Liburdi
Contact email:	mike@aztecrestoration.com

Current and Proposed Future Uses

Historically, the Phase Two Property was first developed between 1954 and 1960 with a residential dwelling and a barn/ garage addition structure constructed between 1960 and 1970. A structure is present south of the residential dwelling between the years of 2005 and 2017, at which point a fill mound is visible in its place. In 2018, the fill found is redistributed to smaller fill mounds. Between 1999 and 2017, a structure is present to the east of the existing barn/ garage. Tenants of the building have been residential through its entirety.

The current and proposed land uses are as follows:

Current or Proposed	Description of Property Use	
Current	Residential– Existing residential dwelling and garage structure are vacant, and will be demolished.	
Proposed	Residential – A six-storey and a seven-storey condo tower, and two levels of underground parking	

Applicable Site Condition Standards

Ontario Regulation 153/04 – Records of Site Condition, Part XV.1 of the Environmental Protection Act as amended – "O.Reg. 153/04, as amended" – establishes the legislative and regulatory requirements for contaminated sites in Ontario. The Ministry of Environment, Conservation and Parks (MECP) document "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act," dated April 15, 2011 sets out the prescribed contaminants and applicable Site Condition Standards (SCS) for those contaminants for the purposes of O. Reg. 153/04, as amended. The MECP SCS are set out in Tables 1 to 9 criteria applicable for various site conditions.

The selection of the appropriate MECP SCS for a Phase Two ESA is dependent upon several site-specific conditions, such as the existing/proposed property use, the existing/potential ground water use, the depth of clean-up, soil texture, depth to bedrock and proximity to the nearest body of water.

The MECP SCS applicable to the Site have been evaluated on the basis of the following rationale:

Site Sensitivity:

- The site does not include, nor is there evidence to suggest it could have an adverse effect on a sensitive environment.
- The borehole drilling program revealed that the bedrock is deeper than 12.78 metres (m) below existing grade across the Site;
- The glacially-derived native clayey silt materials are of limited permeability to depths up to at least 12.78 m below ground surface; and
- The subsurface soil pH values are between 7.55 and 7.79. Three (3) soil samples (including one (1) duplicate sample) were collected on March 2 and 3, 2021, from BH21-4 and BH21-2, at depths of between the surface and 4.57 m below existing grade, to determine the soil pH for the Phase Two Property.

Land Use:

• The subject site is currently developed with a building to support residential land uses. Proposed residential redevelopment is anticipated.

Ground Water Use:

• The site is and will continue to be serviced by a municipal drinking water supply derived from Lake Ontario.

Depth and Soil Texture:

- For the purpose of the report, the assessment criteria corresponding to the full depth option will be used for comparison to the laboratory analytical results.
- One soil sample was collected on March 2, 2021 at the location of BH21-5 between 3.81 and 4.57 m below existing grade, to determine the soil grain size for the Phase Two Property.
- Based upon field observations, and soil grain size analyses conducted by ALS Environmental, the site stratigraphy generally comprises 29.6% silt and 47.8% clay. Therefore, for the purpose of this report, the assessment criteria corresponding to fine textured soils were selected for comparison in laboratory analytical results.
- The selected soil texture is applicable to at least one-third of the Site being assessed. Therefore, the fine-medium textured soil SCS can be used, as per Ontario Regulation 153/04, s.42 (1).

Based on the above information, the applicable <u>EPA</u> site assessment criteria selected for use at this Site is the Full Depth Generic SCS in a Non-Potable Ground Water Condition (<u>Table 3</u>) criteria for residential/parkland/institutional land uses with fine-medium textured soils.

2. Background Information

The environmental investigation conducted at the Site and the details of our findings are outlined in **Section 3**. The Phase Two ESA was conducted at the Site to address the APECs identified by the Palmer November 30, 2020, Phase One ESA for the Site.

Physical Setting

The Phase Two Property is located at a topographic elevation of approximately 230 m above mean sea level. Topography at and in the general vicinity of the Site is relatively flat with a minor local drop in elevation to towards Robinson Creek within the northwest portion of the Property, as shown in **Figure 8.2.1**.

The Phase Two Property is located within the northern limit of the broad physiographic region known as the Peel Plain (Chapman and Putnam, 1984). This region is a level-to-undulating tract of clay soils. This region stretches across the central portions of the Regional Municipalities of York, Peel, and Halton.

Local surficial geologic mapping (The Ontario Geological Survey, 2003) of the Caledon area indicates that clay to silt-textured till derived from glaciolacustrine deposits or shale of the Halton Till formation, underlie the Phase Two Property.

Bedrock geologic mapping of Ontario (The Ontario Geological Survey, 1990) indicates that the glacially derived overburden soil at the Phase Two Property is underlain by shale, limestone, dolostone, and siltstone of the Georgian Bay/Collingwood/Billings Formations.

A reach of the headwater tributary Robinson Creek transects the western portion of the Property. This feature has been historically realigned and altered, and is surmised to flow southeastwards ultimately discharging into the Humber River. Regional ground water flow is expected to be southeastwards towards Lake Ontario. The static ground water level in the vicinity of the Phase Two Property is noted to be between 21.9 and 54.8 m below existing grade based on well records in the vicinity of the Phase Two Property.

There are no areas of natural significance on the Phase Two Property or in the Phase One Study Area.

There are no well-head protection areas or other designation identified by the Municipality in its official plan for the protection of ground water on the Phase Two Property or within the Phase One Study Area.

The Phase Two Property is serviced by a municipal drinking water system with potable water derived from Lake Ontario. However, there are twenty-three (23) well records within a 250 m search radius. These records relate to domestic wells in the Phase One Study Area. The observed domestic water wells in the Phase One Study Area are noted to be abandoned and no longer in use, as the properties have been demolished or redeveloped, and are connected to the municipal drinking water system.

Past Investigations

One (1) report relating to the environmental conditions at the Phase Two Property were provided by the Client and reviewed by Palmer. A summary of the description of relevant report data, analysis and findings relevant to the Phase Two ESA, including the presence of a contaminant on, in or under the Phase Two Property or the existence of an area of potential environmental concern, is as follows:

<u>Report Title:</u> Phase One Environmental Site Assessment 12148 Albion Vaughan Road, Caledon, Ontario <u>Date:</u> November 30, 2020 <u>Prepared by:</u> Palmer <u>Prepared for:</u> 12148 Albion Vaughan Inc

Based on the findings of the historical records review, site reconnaissance, and interviews; PCAs and APECs were identified in association with the Phase One Property and/or Phase One Study Area. Refer to Table A in the Executive Summary.

A Phase Two ESA was recommended to assess potential subsurface impacts as a result of the PCAs and APECs identified in the Phase One ESA.

3. Scope of the Investigation

This Phase Two ESA Report has been prepared in accordance with Schedule E of Ontario Regulation 407/19 (amending Ontario Regulation 153/04) under the <u>Environmental Protection Act</u> (EPA). It is Palmer's understanding that the purpose of this Phase Two ESA is to support a development approval application with the Town of Caledon and may be required to support filing of an RSC with the MECP. The Phase Two Property (also referred to as the "Subject Property" or "Site") is contemplated for residential redevelopment with two (2) adjoining towers (6 and 7 storeys) comprising 265 apartment units following demolition of the existing building.

3.1 Overview of Site Investigation

To address the APECs identified in the Palmer 2021 Phase One ESA, Palmer conducted a Phase Two ESA consisting of drilling boreholes, installing monitoring wells, and sampling and chemical testing of soil and Ground water samples during the Phase Two ESA investigation.

Four (4) boreholes (BH21-1, BH21-2, BH21-4, and BH21-5), one (1) shallow hand augured borehole (BH21-3), and three (3) stockpile soil samples were advanced across the Site. Four (4) of the boreholes, BH21-1, BH21-2, BH21-4, and BH21-5, were completed as monitoring wells.

The rationale for the selection of borehole/monitoring well locations is shown on **Table 1** below:

Areas of Potential Environmental Concern	Location on Site	Sample Location / Sample ID
APEC #1 - Existing Interior Heating Oil Aboveground Storage Tanks (ASTs)	Southeastern portion of the Phase One Property, east side of residential dwelling	BH21-4
APEC #2- Existing Exterior Heating Oil AST	Southeastern portion of the Phase One Property, west side of residential dwelling	BH21-5
APEC #3 - Existing Hazardous Material Storage Likely Used for Equipment Maintenance	Central portion of the Phase One Property, in the vicinity of the garage/ barn	BH21-3
APEC #4- Fill Stockpile	Southwestern portion of the Phase One Property	BH21-6, BH21-7, BH21-8
APEC #5- Existing diesel AST	Northern portion of the Phase One Property, adjacent to 12190 Albion Vaughan Road	BH21-2
APEC #6 - Existing Truck and Trailer Repair Center, historic metal fabrication	Northern portion of the Phase One Property	BH21-1
APEC #7- RV Repair Center with Fuel Underground Storage Tank (UST)	Northern portion of the Phase One Property	BH21-1

Table 1. APEC Locations and Associated Boreholes and Monitoring Wells

The scope of work for this Phase Two ESA included the following tasks:

- Planned a site investigation through the preparation of a Sampling and Analysis Plan (refer to **Appendix A1**).
- Acquired utility locates: Prior to the advancement of the boreholes, arranging for the location of underground and overhead utilities including electrical (hydro), natural gas, water supply, sanitary and storm sewer, telephone, cable and communication. Underground utilities were marked by local utility locates company representatives, and a private locator, All Clear Locates, was retained to clear the borehole locations prior to drilling of the boreholes.
- Mobilized, drilled, and logged four (4) boreholes to a depth of 12.78 m, and one (1) hand augured boreholes to a depth of 0.10 metres below ground surface (mbgs).
- Collected three (3) stockpile soil samples.
- Installed 50-mm diameter perforated polyvinyl chloride (PVC) ground water monitoring wells in four
 (4) of the boreholes. All ground water monitoring wells were installed with 3.05 m of slotted PVC intake screen.
- Screened soil sample head-space for soil vapours using a portable photo ionization detector (PID) *Thermo 580B*.
- Measured the static ground water levels in the four (4) monitoring wells.
- Completed an elevation survey of the four (4) monitoring wells to obtain a ground water elevation measurement to confirm ground water flow direction at the Site at the time of the field investigation.
- Purged three (3) well casing volumes from each monitoring well or until each well was dry and collected ground water samples from the four (4) monitoring wells.
- Submitted soil and ground water samples under Chain of Custody protocol to an accredited laboratory to carry out chemical analysis for contaminants of potential concern in accordance with O.Reg. 153/04 – "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the *Environmental Protection Act*" published by the MECP and dated March 9, 2004, as amended by O. Reg. 511/09, s. 22 ("Analytical Protocol").
- Reviewed and interpreted laboratory results of chemical analysis data and observations made during the site investigation.
- Completed an evaluation of the information from the above and preparing a Phase Two Conceptual Site Model (CSM) to identify locations and concentrations of contaminants (if any) above the applicable SCS at the Site.
- Prepared a Phase Two ESA report of the investigation findings, conclusions, and recommendations.

Media Investigated

The Phase Two ESA included the investigation of soil and ground water at the Site.

Soil and ground water samples were selected for chemical analysis to determine whether any contaminants of potential concern (COPCs) were present in the soil and ground water in the locations of the APECs, outlined in the Palmer November 30, 2020 Phase One ESA.

A total of eleven (11) soil samples, including three (3) duplicate soil samples, and six (6) ground water samples, including one (1) duplicate ground water sample and one (1) trip blank sample, were submitted to ALS Environmental, for analysis of various COPCs to investigate the soil and ground water quality related to the aforementioned APECs. These COPC included PHCs, VOCs, BTEX, metals, As, Sb, Se, and inorganic parameters (Na, B-HWS, CI-, CN-, Cr(VI), Hg, low or high pH, EC and SAR). Borehole and monitoring well locations are presented in **Drawing 2**.

Sediment sampling of the portion of Robinson Creek present on the Phase Two Property was not conducted during this investigation.

Phase One Conceptual Site Model

Site Description

The Phase Two Property is a 1.49 hectare (3.7 acre), irregular shaped, parcel of land comprising a 190 m², single storey, residential building (with a full basement), and a 42 m², two storey garage/ barn, both of which are currently vacant. Two (2) ASTs are present in the basement of the residential dwelling, one AST is present in the eastern portion of the Phase Two Property along the east exterior wall of the dwelling.

Historically, the Phase Two Property was first developed between 1954 and 1960 with a residential dwelling, and a barn/ garage addition structure constructed between 1960 and 1970. A structure is present south of the residential dwelling between the years of 2005 and 2017, at which point a fill mound is visible in its place. In 2018, the fill found is redistributed to smaller fill mounds. Between 1999 and 2017, a structure is present to the east of the existing barn/ garage. Tenants of the building have been residential through its entirety.

The remaining parts of the Site comprise grassland and gravel surfaced areas. A stockpile of fill material of unknown quality is present in the southern portion of the Phase Two Property.

Water Bodies / Areas of Natural Significance

Robinson Creek is present on the western portion of the Phase Two Property, adjacent to Highway 50. Robinson Creek is a tributary of Humber River, which flows southeastwards to Lake Ontario. This creek has been historically realigned and altered on-Site.

There are no Areas of Natural Significance on the Phase Two Property or within the Phase One Study Area.

Drinking Water Wells

There is one (1) drinking water well record for the Phase Two Property and twenty-three (23) well records within a 250 m search radius. These records relate to abandoned, domestic, or monitoring wells in the vicinity of the Phase Two Property. A record exists for an abandoned domestic water supply well, however, it was not observed during Palmer's Site Visit

Neighboring Land Use

The Phase One Study Area is developed with residential, commercial, and industrial land uses, including one gasoline service station located at 12182 Highway 50, an RV sale and rental shop at 12275 Highway 50, a truck and trailer repair center at 12249 Highway 50, a helicopter training and repair center at 11339 Albion-Vaughan Road, a Kia dealership at 12080 Albion-Vaughan road, and a Toyota dealership at 12050 Albion-Vaughan Road, and Bulk Transfer Systems, Gold Freight, and Best Choice Express located at 11339 Albion-Vaughan Road as presented in **Drawing 2**.

Areas of Potential Environmental Concerns (APECs)

Based on the findings of the historical record review, Site reconnaissance, and interviews, any APECs located on the Phase One Property and within the Phase One Study Area are labeled and located, as shown in **Drawing 4**. The following Potentially Contaminating Activities (PCAs) were found to be associated with the current or historical land uses of the Phase One Property and/or Phase One Study Area:

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC #1- Existing Interior Heating Oil Aboveground Storage Tanks (ASTs)	Eastern portion of the Phase One Property	#28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	On-Site Petroleum Hydrocarbons (PHCs) Benzene, Toluene, Ethylbenzene, Xylene (BTEX)	
APEC #2 - Existing Exterior Heating Oil AST	Eastern portion of the Phase One Property along the east exterior wall of the dwelling	#28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site – One (1) 909-L heating oil AST located along the exterior west wall of the residential dwelling	PHCs BTEX	Soil and Ground water
APEC #3 - Existing Hazardous Material Storage Likely Used for Equipment Maintenance	Eastern portion of the Phase One Property in the vicinity of the garage/barn structure	#52. Storage, Maintenance, Fueling, and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems	On-Site – Storage of unknown liquids (likely oil, lubricant, or degreaser) potentially used for equipment maintenance in garage/barn structure where evidence of surficial staining was observed on the ground surface	PHCs Volatile Organic Compounds (VOCs)	Soil and Ground water
APEC #4- Fill Stockpile	Southern portion of the Phase One Property	#30. Importation of Fill Material of Unknown Quality	On-Site – A stockpile of fill material of unknown quality	Metals, As, Sb, Se, and inorganic parameters (Na, B-HWS, Cl-, CN-, Cr(VI), Hg, low or high pH, EC and SAR).	Soil and Ground water

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC #5- Existing diesel AST	Northern portion of the Phase One Property	#28. Gasoline and Associated Products Storage in Fixed Tanks	Off-Site – Existing exterior diesel AST located at 12190 Albion Vaughan Road	PHCs BTEX	Soil and Ground water
APEC #6 - Existing Truck and Trailer Repair Center, historic metal fabrication	Northern portion of Phase One Property	#52. Storage, Maintenance, Fueling, and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems #34. Metal Fabrication	Off-Site – Existing A.Z Repair Garage truck and trailer repair garage in operating after 2000 and Historic Leaside Sheet Metal and Room- Tal Mechanical metal fabricating after 2000 located at 12249 Highway 50.	PHCs VOCs Metals	Ground water
APEC #7 - RV Repair Center with Fuel Underground Storage Tank (UST)	Northern portion of Phase One Property	 #52. Storage, Maintenance, Fueling, and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems #28. Gasoline and Associated Products Storage in Fixed Tanks 	Off-Site – Existing Cruise Canada RV Rental and Sales centre at 12275 Highway 50	PHCs VOCs Metals	Ground water

Additional PCAs that were identified in association with the Phase One Study Area that are <u>not</u> of concern include:

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC #8- Kia dealership located at 12080 Albion-Vaughan Road	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property	#10. Commercial Autobody Shops	Off-Site	PHCs BTEX VOCs	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property
APEC #9- Toyota dealership located at	N/A	#10. Commercial Autobody Shops	Off-Site	PHCs	N/A

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
12050 Albion-Vaughan Road	Property is inferred to be located hydraulically down-gradient from the Phase One Property			BTEX VOCs	Property is inferred to be located hydraulically down-gradient from the Phase One Property
APEC #10 - Bulk Transfer Systems, Gold Freight, National Helicopters, and Tank Truck Transport operate shipping container storage and truck repair at 11339 Albion-Vaughan Road	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property	 #52. Storage, Maintenance, Fueling, and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems #11. Commercial Trucking and Container Terminals 	Off-Site	PHCs BTEX VOCs	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property
APEC #11- 100 Agrocorp Exports Ltd operating a trucking terminal at 100 Agricorp Road	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property	#11. Commercial Trucking and Container Terminals	Off-Site	PHCs BTEX	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property
APEC #12 - Roopa Knitting Mills Ltd operates a textile manufacturing at 77 Pillsworth Road	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property	#54. Textile Manufacturing and Processing	Off-Site	PHCs VOCs	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property
APEC #13- 12275 Highway 50 (United Lumber Home Hardware) – this record pertains to a Vendor License. These records are not considered to pose an environmental concern to the Phase One Property due to	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property	# 40. Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and	Off-Site	Organochlorine Pesticides	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property

APEC	Location of APEC on the Phase One Property	PCA	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern (COPC)	Media Potentially Impacted (Ground Water, Soil and/or Sediment)
being a small commercial operation, without large storage quantities.		Large-Scale Applications			
APEC #14- Existing Gasoline Service Station	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property	#28. Gasoline and Associated Products Storage in Fixed Tanks	Off-Site – Existing Shell gasoline service station in operation since 2017 located at 12182 Highway 50	PHCs BTEX Metals	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property
APEC #15- Spray paint booth, Inert inorganic waste generation registry	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property	#39. Paints Manufacturing, Processing and Bulk Storage #8. Chemical Manufacturing, Processing and Bulk Storage	Off-Site – Existing Nor Galaxy Group spray paint booth and Premier Stone Ltd. at 21 Parr Boulevard	VOCs	N/A Property is inferred to be located hydraulically down-gradient from the Phase One Property

Description of Assessment

PCAs with known or potential to affect the Phase One Property are as follows:

PCA Location	Location of APEC on the Phase One Property	Contaminants of Concern	Impact to Phase One Property (Known or Potential)
Furnace room of basement of dwelling on Phase One Property	Central portion of the Phase One Property, under existing residential dwelling	Petroleum Hydrocarbons (PHCs) Benzene, Toluene, Ethylbenzene, Xylene (BTEX)	Potential
Exterior, adjacent to the wall facing Highway 50	Central portion of the Phase One Property	PHCs BTEX	Potential
On main floor garage/ barn structure on the Phase One Property	Central portion of the Phase One Property	PHCs Volatile Organic Compounds (VOCs)	Potential
In the southern portion of the Phase One Property	Southern portion of the Phase One Property	Metals, As, Sb, Se, and inorganic parameters (Na, B-HWS, Cl-, CN-, Cr(VI), Hg, low or high pH, EC and SAR).	Potential
12190 Albion-Vaughan Road	Northwest boundary of the Phase One Property	PHCs BTEX	Potential
12182 Highway 50	Western corner of the Phase One Property	PHCs BTEX Metals	Potential
12275 Highway 50	Northern boundary of the Phase One Property	PHCs VOCs	Potential

PCA Location	Location of APEC on the Phase One Property	Contaminants of Concern	Impact to Phase One Property (Known or Potential)
		Metals	

Additional PCAs that <u>do not</u> affect the Phase One Property are as follows:

PCA Location	Location of APEC on the Phase One Property	Contaminants of Concern	Impact to Phase One Property (Known or Potential)
12080 Albion-Vaughan Road		PHCs BTEX VOCs	
12050 Albion-Vaughan Road	N/Δ	PHCs BTEX VOCs	
11339 Albion-Vaughan Road	Properties are inferred to be located hydraulically down- gradient from the Phase One Property N/A	PHCs BTEX VOCs PCBs Organochlorine (OC) Pesticides Metals	N/A Properties are inferred to be located hydraulically cross- gradient and/or down- gradient from the Phase One
100 Agrocorp Road	Small commercial operation, insufficient quantity	PHCs BTEX	Property
77 Pillsworth Road		PHCs VOCs	
12275 Highway 50		OC Pesticides	
12182 Highway 50		PHCs, BTEX	-
21 Parr Boulevard		VOCs	

Underground utilities are expected to be present on the subject property (sanitary sewer, city water, telephone, electricity) and could potentially act as preferential pathways.

Local surficial geologic mapping (The Ontario Geological Survey, 2003) of the Caledon area indicates that clay to silt-textured till derived from glaciolacustrine deposits or shale of the Halton Till formation, underlie the Phase One Property.

A reach of the headwater tributary Robinson Creek transects the northwest portion of the Phase One Property. This tributary flows into Humber River, which flows southeastward to Lake Ontario. The local hydrogeology is controlled by this waterbody, the underlying geology, and the topography, and local ground water flow is expected to be northward. The regional ground water flow is expected to be southeastward towards Lake Ontario.

The exemption set out in Section 49.1 of Ontario Regulation 407/19 is not being relied upon.

It is not expected that any uncertainty or absence of information would affect the validity of the Conceptual Site Model (CSM).

Deviations from Sampling and Analysis Plan

The field investigation and sampling program was carried out following the requirements of the Sampling and Analysis Plan (SAP) (shown in **Appendix A1**).

Impediments

There were no impediments at the Site during the Phase Two ESA on-site investigation.

4. Investigation Method

Fieldwork for this investigation began on March 2, 2021, by soil sampling from a total of four (4) boreholes to a maximum depth of 12.78 metres below ground surface (mbgs), hand augured one (1) additional borehole to refusal (a depth of 0.10 mbgs), and collected three (3) soil samples from the stockpiled fill material at strategically selected and accessible locations on the Phase Two Property, at the locations shown in **Figure 8.2.2**. The boreholes on the Phase Two Property were strategically placed to address the PCAs and APECs identified in Table A.

General

This section of the report describes the various investigation methods used in the Phase Two ESA, including drilling, soil sampling, monitoring well installation, ground water sampling and analytical testing.

The Phase Two ESA was carried out in accordance with Palmer's SAP (Appendix A1).

The borehole locations were established in the field by Palmer staff prior to drilling. *Ontario One-Call* was contracted to locate and clear buried utility lines including telephone cables, natural gas mains, and hydro power lines. All the detected underground lines were identified on the ground by marking paints of various colours, as shown in **Drawing 2**.

<u>Soil</u>

Representative soil samples were recovered at each of the borehole locations. The soil stratigraphy was logged during drilling as soil samples were collected with dedicated dual tubes. Visual observations of any foreign materials or odours were also logged. The Finalized Field Logs are presented in **Appendix A2**.

Soil samples were split into portions that were collected into a plastic bag and a sample jar. Head space vapour concentrations were determined by allowing the bags to warm up to ambient temperature, probing into partially opened bags using a monitoring probe, and measuring the sample head space with a PID. Selected samples were placed in laboratory-supplied glass jars or vials and stored in a cooler during transport to the laboratory.

Ground Water

Upon completion of drilling, a 50-mm diameter PVC monitoring well was installed in four (4) boreholes for ground water monitoring. Initial ground water levels were measured and a dedicated length of low-density polyethylene (LDPE) tubing was inserted into the wells.

The wells were purged to waste in sealed drums and fresh ground water samples were drawn for chemical analyses using a low-flow peristaltic pump. Samples were also placed in laboratory-supplied glass bottles or vials and stored in a cooler on ice during transport to the laboratory.

Drilling and Excavating

Boreholes were advanced by using a CME 75 mounted on a track equipped with augers and split spoons, supplied and operated by Profile Drilling under the direction of Palmer staff. Disposable nitrile gloves were used and replaced between the handling of samples and all soil sampling equipment (stainless steel trowels, spatulas, etc.) was thoroughly decontaminated between soil sample locations to prevent potential cross-contamination. Decontamination activities included physical removal of any adhered debris, wash/scrub in "Alconox" soap solution, distilled water rinse, methanol rinse, and air dry.

Samples were collected continuously from the split spoons. Samples submitted to the laboratory were based on visual observations, results of headspace screening, and identified APECs and associated parameters of concern.

Soil: Sampling

All soil samples were collected in accordance with strict environmental sampling protocols to ensure reliable results. The equipment used to collect the soil samples was previously discussed in Section 4.0, 4.1, and 4.2.

The observed soil stratigraphy generally comprised topsoil overlaying silty clay and clayey silt fill with rootlets, which was underlain by a stratum of clayey silt till, as described in **Table 2** below. The Finalized Field Logs are provided in **Appendix A2**.

Borehole/ Monitoring Well ID	Soil Stratigraphy	Depth (m)	Observations
	Silty clay fill, brown with organics	0.00-0.30	No staining or odour observed in this stratum
BH21-1	Clayey silt fill, brown, with trace sand	0.30-2.10	No staining or odour observed in this stratum
	Clayey silt till, grey	2.10-6.10	No staining or odour observed in this stratum
	Silty clay fill, brown with organics	0.00-0.30	No staining or odour observed in this stratum
BH21-2	Clayey silt fill, brown, with trace sand	0.30-2.10	No staining or odour observed in this stratum
	Clayey silt till, grey	2.10-6.10	No staining or odour observed in this stratum
BH21-3	Sandy gravel fill	0.00-0.10	Staining and petroleum odour
BH21-4	Silty clay fill, brown, with organics	0.00-0.60	No staining or odour observed in this stratum
	Clayey silt fill, brown, with trace sand	0.60-2.30	No staining or odour observed in this stratum

Table 2. Soil Stratigraphy Summary

	Clavey sitt till, grey, with trace gravel	2 30-6 10	No staining or odour observed in this
	Clayey sit till, grey, with trace graver	2.30-0.10	stratum
BH21-5	Silty clay fill, brown with organics	0.00-0.30	No staining or odour observed in this stratum
	Clayey silt fill, brown, with trace sand	0.30-1.90	No staining or odour observed in this stratum
	Clayey silt till, grey, with trace gravel	1.90-6.10	No staining or odour observed in this stratum

Soil: Field Screening Methods

All soil samples were screened in the field for evidence of staining and odours. Soil sample headspace screening was also performed to facilitate sample selections for laboratory analysis and to provide an assessment of the vertical contaminant distributions at each borehole location.

The soil sample headspace screening was conducted with a PID Thermo 580B calibrated to a known isobutylene gas. The PID readings were recorded in parts per million (ppm), as shown in the Finalized Field Logs in **Appendix A2**.

Ground Water: Monitoring Well Installations

Upon completion of drilling, a 50-mm diameter, flush-joint threaded PVC monitoring well was installed in four (4) of the boreholes for ground water monitoring by Profile Drilling under the direction of Palmer staff.

The monitoring wells included a 3.05 m length of slotted PVC intake screen. The wells were then extended from the top of the intake screen to the ground surface using solid PVC riser pipe. A silica sand filter pack was placed between the intake screen and the wall of the borehole. The filter pack was extended approximately 0.6 m above the top of the well screen to allow for settlement of the sand packs and to accommodate expansion of the overlying well seals. A bentonite seal was placed above the sand pack and extended to approximately 0.3 mbgs. Monument well casings were installed above the ground surface. No glue was used in the construction of the monitoring well.

Elevations and associated monitoring well construction details are shown in **Table 8.1.1**. The location of the monitoring wells are shown in **Figure 8.2.3**, and the well completion diagrams are also shown on the Finalized Field Logs in **Appendix A2**.

All ground water monitoring wells installed at the Phase Two Property were instrumented with sufficient lengths of LDPE tubing to facilitate well development and purging requirements. Following the initial installation, depths to the static water level were measured and each monitoring well was developed by purging either three (3) well casing volumes or until the well went dry at least once. The well development occurred in order to remove any fluids that may have been introduced into the well during drilling, to remove particulates that may have become entrained in the well and filter pack, to stabilize and grade the filter pack, improve connectivity between the well and the formation, and restore ground water that may have been disturbed or altered during the drilling process to ensure the samples to be representative of true formation waters. The purging activities were carried out using the dedicated LDPE tubing and a low-flow peristaltic pump.

Purging of the four installed monitoring wells was completed on March 3 and 4, 2021 and was as follows:

Monitoring Well ID	Date of Development/Purging	Time of Development/Purging	Volume of Fluid Removed from Well (L)
BH21-1	March 4, 2021	10am	20.3
BH21-2	March 4, 2021	12pm	15.8
BH21-4	March 3, 2021	10am	13.1
BH21-5	March 3, 2021	2pm	14.1

Table 3. Monitoring Well Development Details

The development was completed on the aforementioned date as all four (4) monitoring wells were purged of a minimum of three (3) well volumes.

Ground Water: Field Measurement of Ground water Quality Parameters

On March 3, and 4, 2021, after the monitoring wells were purged of a minimum of three well casings of water, the following water quality field parameters were measured using a Quanta multi-probe prior to sampling:

Monitoring Well ID	рН (pH units)	oH Specific Conductivity Dissolved Oxygen units) (mS/cm) (mg/L)		Temperature (°C)	
BH21-1	6.80	0.679	12.46	8.33	
BH21-2	6.11	0.410	15.36	8.78	
BH21-4	5.93	0.872	12.60	9.04	
BH21-5	5.94	0.548	12.26	8.29	

Ground Water: Sampling

All ground water samples were collected in accordance with strict environmental sampling protocols to ensure reliable results. Any equipment used to collect the ground water samples are previously discussed in *Section 4.0, 4.1,* and *4.2*.

The wells were purged to waste in sealed drums and fresh ground water samples were drawn for chemical analyses. During the sampling round, ground water samples were collected using a low-flow peristaltic pump, with dedicated tubing installed in each of the monitoring wells. This method minimizes the velocity of the formation water entering the well screen, as the drawdown is kept to a minimum (i.e., less than 10 cm) by adjusting the pumping rate. The samples were placed in laboratory-supplied glass bottles or vials and stored in a cooler on ice during transport to the laboratory.

Ground water monitoring, including measuring the depth to the stabilized water level, was conducted on March 3 and 4, 2021. Measurements of ground water depth were made using an electronic oil water interface probe. Ground water level measurements are shown in **Table 8.1.2**.

In addition, the ground water was screened in the field (during all monitoring events) for evidence of free product including presence of liquid petroleum hydrocarbons (LPH), sheen (iridescence), odour and colour, as summarized in **Table 8.1.3**.

Sediment: Sampling

Sediment sampling of the portion of Robinson Creek present on the Phase Two Property was not conducted during this investigation.

Analytical Testing

ALS Environmental (ALS) performed chemical analysis on soil and ground water samples collected from boreholes/monitoring wells at the Site. ALS is an accredited laboratory under the Standards Council of Canada (SCC) and the Canadian Association for Laboratory Accreditation (CALA), in accordance with the international standard ISO/IE 17025:2005 – General Requirements for the Competence of Testing and Calibration. ALS is accredited for all parameters required under Ontario Regulation 153/04 – Record of Site Condition, as outlined in MECP Technical Update entitled "Laboratory Accreditation Requirements under the New Records of Site Condition Regulation (O. Reg. 153/04).

Based on visual observations, results of headspace screening, and identified APECs and associated parameters of concern, eleven (11) selected soil samples (representative of fill materials and native soils), and six (6) ground water samples were submitted to ALS Environmental, for the following analyses:

- PHCs on five (5) soil and five (5) ground water samples (including one (1) QA/QC samples for soil and one (1) QA/QC samples for ground water);
- BTEX on four (4) soil and three (3) ground water samples (including one (1) QA/QC sample for soil and one (1) QA/QC sample for ground water);
- VOCs on one (1) soil and four (4) ground water samples (including one (1) QA/QC sample for soil and two (2) Q/QC samples for ground water, including one (1) trip blank);
- Metals, As, Sb, Se, and Inorganics on four (4) soil samples (including one (1) QA/QC sample); and
- Metals, As, Sb, and Se on three (3) ground water samples (including one (1) QA/QC sample)

The Laboratory Certificate of Analyses and Analytical Reports are reproduced in Appendix A3.

Residue Management Procedures

All soil cuttings from the borehole drilling activities, water from the well development and purging, and all fluids from equipment cleaning were stored in secure containers on the Phase Two Property, and disposed of during the completion of remediation activities.

Elevation Surveying

The ground surface elevation of borehole and monitoring wells was surveyed by Palmer personnel. The elevations were surveyed based on a marked local benchmark. The benchmark is at Station 20220110017, located on the roof of 1050 Stacey Court, Mississauga, ON. The elevation at this point is understood to be at Ellipsoidal Elev. 120.138 metres.

Palmer.

A legal survey of the Phase Two Property can be seen in **Appendix A5**.

Quality Assurance and Quality Control Measures

A Quality Assurance and Quality Control (QA/QC) program, developed as part of the SAP, was followed by Palmer to ensure the integrity of all soil and ground water samples was maintained and that they were representative of the Site conditions. The QA/QC program was developed in accordance with the Analytical Protocol.

The jars and preservatives (where applicable) used in the collection of soil and ground water samples were supplied by ALS Environmental. The soil samples intended to be submitted for analysis of VOCs and PHC F1 were immediately preserved in laboratory provided methanol vials to sequester the volatile compounds.

The soil samples from the boreholes which were advanced using solid stem augers were collected with split spoon samplers which were decontaminated after the extraction of each sample.

The soil and ground water samples were labelled as they were collected. Samples were stored in icepacked coolers, until the samples were transported to the laboratory for chemical analysis.

The soil and ground water samples were handed over to the laboratory by Palmer staff. Chains of Custody of the samples were logged with Chain of Custody Forms.

As discussed in Section 4.4 above, the monitoring wells were installed by direct drilling with solid stem augers. All drilling equipment arrived at the Site in a pre-cleaned condition. The augers were cleaned with a brush and washed between monitoring well locations.

The stainless-steel sampling tool (trowel) was decontaminated between sampling locations in the following sequence: cleaned with a brush to remove adhered soil and/or debris, rinsed with distilled water and allowed to air dry.

Field duplicate samples for both soil and ground water were submitted to ALS for chemical analysis for QA/QC purposes.

For soil samples, three (3) duplicate samples (21-4-4D, duplicate of soil sample 21-4-4, 21-2-6D, duplicate soil sample of 21-2-6, and 21-8D, duplicate of soil sample 21-8) were submitted to ALS for analysis.

For ground water samples, one (1) duplicate ground water sample (21-2D, duplicate of ground water sample 21-2) and one (1) trip blank were submitted to ALS for analysis.

The laboratory quality assurance program included the analysis of laboratory duplicate samples, methods blanks, matrix spikes and samples of reference materials, in accordance with the Analytical Protocol.

5. Review and Evaluation

Geology

The subsurface profiles and associated below grade elevations encountered at the Phase Two Property are described in the Finalized Field Logs in **Appendix A2**.

The estimated thickness range of each geologic unit is as follows:

Table 5. Summary of Geology

	Geologic Unit	Range Depth (m)	
Surface	Silty clay	0.00 to 0.60	
Fill Strata	Clayey silt fill	0.30 to 2.30	
Till Strata	Clayey silt till, grey, with occasional cobbles	1.90 to 6.10	
Bedrock	Not encountered		

The soil across the property is considered to be fine-textured for the purpose of this ESA.

Ground Water: Elevations and Flow Direction

Ground water levels were measured in the monitoring wells on March 3 and 4, 2021, using a Solinst Interface Probe. Ground water levels and measured elevations are presented on the borehole logs and are summarized below:

Table 6. Summary of Ground Water Conditions

Monitoring Well ID Date		Ground Surface Elevation (mAMSL)	Depth to GW (mbgs)	GW Elevation (mAMSL)	Observations
BH21-1	March 4, 2021	229.00	8.53	220.47	None
	March 3, 2021		8.99	220.57	None
BH21-2	March 4, 2021	229.56	10.04	219.52	None
	March 3, 2021		9.67	220.38	None
BH21-4	March 4, 2021	230.05	9.78	220.87	None
	March 3, 2021		9.53	220.03	None
BH21-5	March 4, 2021	229.90	9.61	220.29	None

The results of the ground water monitoring indicated that the primary near surface water table resides within the clayey silt native (till) layer.

As summarized in **Table 8.1.3**, no free-product was observed in any of the monitoring wells monitored on the Phase Two Property.

Based on the overburden ground water elevations, the ground water is interpreted to flow across the Site in a northerly direction. The ground water elevations and interpreted flow direction is presented in **Figure 8.2.3**.

Temporal variability in the ground water flow direction could not be assessed during this Phase Two investigation since ground water elevations were obtained during one (1) filed visit in March 2021 and no historical ground water data is available.

Ground water Hydraulic Gradients

The horizontal hydraulic gradient was estimated for the water table based on the March 4, 2021 ground water elevations.

The horizontal hydraulic gradient is calculated using the following equation:

 $i = \Delta h / \Delta s$

Where,

i = horizontal hydraulic gradient Δh (m) = Ground water elevation difference; and, Δs (m) = separation distance.

The following horizontal hydraulic gradient calculations (as shown in **Figure 8.2.3**) using ground water monitoring data across the site revealed the following hydraulic gradients on the Phase Two Property:

		Horizontal Hydraulic Gradient in Native (Till) Unit (m/m)
	Average	0.02005
Horizontal	Minimum	0.03733
	Maximum	0.03845

It should be noted that vertical hydraulic gradients were not evaluated for the Site and ground water impacts were not vertically distributed at the depths investigated at the Phase Two Property.

The hydraulic conductivity of the clayey silt Till unit was derived by using Puckett's formula, which uses the percentage of clay or percentage of the sample finer than 0.002 mm by weight (refer to laboratory grain size analyses provided in **Appendix A3**). Based on grain size analysis testing, the hydraulic conductivity of the native till is on the order of 7.11×10^{-8} m/s. Therefore, the soil's ability to transmit water across the site (in the native till materials) is slow and verifies that the potential for vertical migration of contamination is limited on the Phase Two Property. Furthermore, a hydraulic conductivity of 7.11×10^{-8} m/s is consistent with an unconsolidated deposit of glacial till with silt and loess (Freeze and Cherry, 1979) and represents a moderately impermeable aquitard unit.

Fine-Medium Soil Texture

Fine-medium soil texture was used for this investigation, as soil grain size analyses conducted by ALS Environmental on one (1) soil sample collected from the native till unit (BH109-4), revealed clayey silt till, which resembles fine-medium textured soils, as previously discussed in *Section 1.4*.

Soil: Field Screening

Sample headspace screening with the PID yielded readings from non-detect to 0.3ppm, as shown in the Finalized Field Logs in **Appendix A2**.

These readings and any field observations (staining, odours, etc.) were considered when selecting soil samples for laboratory analyses.

Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative "worst case" soil samples was based on visual and/or olfactory evidence of impacts, known historical contamination and the presence of potential water bearing zones. The results of the soil sample analyses, and their respective Table 3 SCS, are summarized in **Table Series 8.1.4**. Measured contaminant concentration exceedances in soil can be seen in **Figures 8.2.4**.

A total of nine (9) soil samples including two (2) duplicate soil samples were submitted to ALS for analysis of various COPC to investigate the soil quality related to the APECs. These COPC included PHCs, BTEX, Metals, As, Sb, Se, and inorganic parameters (Na, B-HWS, Cl-, CN-, Cr(VI), Hg, low or high pH, EC and SAR).

Table 7 lists the exceedances in the analysed soil samples collected during Palmer's investigation.

Sample ID	Borehole ID	Depth (mbgs)	Exceeding Parameters	Concentration	Unit	MECP Table 3 RPI SCS
BH21-3-1	BH21-3	0.00-0.10	PHC F3	13,100	ug/g	1,300
21-8	21-8	0.00-0.30	Cadmium	3.06	ug/g	1.2
21-8	21-8	0.00-0.30	Lead	146	ug/g	120
21-8D	21-8	0.00-0.30	Cadmium	3.06	ug/g	1.2

Table 7. Soil Exceedances of MECP Table 3 Criteria

Based on current soil sampling results, PHC exceedances in soil have been identified in one (1) location on the Phase Two Property, as shown in **Figures 8.2.4**. The location of the PHC exceedance is inside a garage located on the Phase Two property, where staining was observed on unpaved surfaces adjacent to a drum of unknown liquid. The Lead and Cadmium exceedances were identified within the stockpiled soil observed in the southwest portion of the Phase Two Property, and are associated with importation of fill of unknown quality.

Furthermore, soil maximum concentration data can be seen in **Table Series 8.1.7**.

Ground Water Quality

On March 3 and 4, 2021, four (4) ground water samples, one (1) duplicate and one (1) trip blank were collected from monitoring wells BH21-1, BH21-2, BH21-3, and BH21-4, to assess ground water quality at the Site. The results of the ground water sample analyses, and their respective Table 3 SCS, are summarized in **Table Series 8.1.5**.

No evidence of free product (i.e., visible film or sheen), or odour was observed during well purging and ground water sampling from the newly installed wells and existing wells. Ground water samples that were analyzed for metal parameters were field filtered at the time of collection.

The samples collected were analysed for one or more of the COPCs, including PHCs, VOCs, Metals, As, Sb, Se, and inorganic parameters (Na, B-HWS, Cl-, CN-, Cr(VI), Hg, low or high pH, EC and SAR).

The concentrations of the COPCs in the tested ground water samples were in compliance with the MECP Table 3 SCS.

Ground water maximum concentration data can also be seen in **Table Series 8.1.7**.

Sediment Quality

Sediment sampling was not part of this investigation, as previously discussed in *Section 4.8* and **Table 8.1.6**.

Quality Assurance and Quality Control Results

The QA/QC samples for this Phase Two ESA investigation included field duplicates for soil and ground water, and a trip blank for QA/QC purposes. The trip blank was submitted with ground water samples for analysis of VOCs.

The purpose of the duplicate samples is to measure the precision or reproducibility of the field and laboratory methodology used in the collection and analysis of the samples. The precision is evaluated in terms of the relative percent difference (RPD). The RPDs of the primary and duplicate samples were not calculated in situations where the concentrations of both primary and duplicate samples were at least 5 times less than the laboratory Reporting Detection Limits (RDLs) for the parameters analyzed.

Laboratory quality control limits for duplicate, method blank, method blank spike, matrix spike and surrogate recoveries were within the acceptable limits.

No tested parameters were detected in the trip blank.

All of the samples were handled in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (Analytical Protocol) with respect to preservation methods, storage requirements, or container type without any exception. Holding times were met for all samples.

The RPDs for all remaining reported concentrations were not calculated considering that the results were below the laboratory minimum detection limits or less than 5 times of the method detection limit in both samples. No other QA/QC concerns were noted.

Based on the review of QA/QC sample results of soil and ground water, it is certified that:

- All Certificates of Analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47 (3);
- A Certificate of Analysis report has been received for each sample submitted for analysis; and
- All Certificates of Analysis or analytical reports received have been included in full in **Appendix A3** of this Phase Two ESA report.

ALS has certified that the analytical methods and data meet the requirements of the Analytical Protocol and that holding times were met for all samples.

Laboratory quality control limits for duplicate, method blank, method blank spike, matrix spike and surrogate recoveries were within the acceptable limits.

The sampling program was carried out in accordance with the SAP. All requirements of the Analytical Protocol were met.

In summary, decision making was not affected by the quality of the data obtained and the overall objectives of the assessment were met.

Phase Two Conceptual Site Model

Section i. A description and assessment of the Phase Two Property:

The Phase Two Property is a residential parcel of land that currently comprises a vacant residential dwelling, a garage/ shed, and overgrown vegetation. The Phase Two Property is currently vacant Two (2) interior heating oil aboveground storage tanks, one (1) exterior aboveground storage tank, surficial staining in the garage, and imported fill materials were observed at the Phase One Property.

А.	Potentially Contaminating Activities (PCAs)	There are four (4) PCAs (1-4) on the Phase Two Property and three (3) PCAs (5-7) within the Phase One Study Area.			
		PCA 1 Existing Interior Heating			
		(Item #28)		Aboveground Storage	
			On-Site	Tanks (ASTs) installed at	
				maximum depth of 1.5	
				mbgs.	
		PCA 2 (Item #28)	On-Site	Existing Exterior Heating Oil AST installed on exposed ground	
		PCA 3 (Item #52)	On-Site	Existing Hazardous Material Storage Likely Used for Equipment Maintenance	

		PCA 4 (Item #30)	On-Site	Fill Stockpile of unknown quality	
			Off-Site- 12190 Albion Vaughan Road	Existing diesel AST installed on exposed ground	
		PCA 6 (Items #52, #34)	Off-Site- 12249 Highway 50	Existing Truck and Trailer Repair Center, historic metal fabrication	
		PCA 7 (Items #52, #28)	Off-Site- 12275 Highway 50	Repair Center with Fuel Underground Storage Tank (UST)	
		Refer to Dr	awing 3.		
В.	Areas of Potential Environmental Concerns (APECs)	There are PCAs (bo ground wa	re seven (7) APECs on the Phase Two Property when oth on-Site and off-Site) may have affected the soil and/o water at the Phase Two Property:		
		APEC 1	On-Site – Two (2) located in the bas dwelling. Maximum c are expected betwe	909 L heating oil ASTs ement of the residential ontaminant concentrations een 1.5 to 2 mbgs in soil.	
		APEC 2	9-L heating oil AST located rest wall of the residential ontaminant concentrations n 0.75 and 1.5 mbgs in soil.		
		APEC 3	On-Site – Storage of lubricant, or degrea equipment maintenan where evidence of observed on the gr concentrations are ground surfa	unknown liquids (likely oil, aser) potentially used for ce in garage/barn structure of surficial staining was round surface. Maximum e expected between the ce and 0.75 mbgs.	
		APEC 4	On-Site – A stockpile of fill material of unknown quality		
		APEC 5	Off-Site – Existing exterior diesel AST located at 12190 Albion Vaughan Road		
		APEC 6	Off-Site – Existing <i>A.Z Repair Garage</i> truck and trailer repair garage in operating after 2000 and Historic <i>Leaside Sheet Metal</i> and <i>Room-Tal</i> <i>Mechanical</i> metal fabricating after 2000 located at 12249 Highway 50.		
		APEC 7	Off-Site – Existing Cruise Canada RV Rental and Sales centre at 12275 Highway 50		
		Refer to Drawing 3 and Drawing 4 .			

	COPC associated with the abovementioned APECs include the following:				
	APEC	COPC	Media Potentially Impacted	Borehole/ Monitoring Well Location Sampled for COPC	
	1	Petroleum Hydrocarbons (PHCs) Benzene, Toluene, Ethylbenzene, Xylene (BTEX)	Soil and Ground water	BH21-4	
	2	PHCs, BTEX	Soil and Ground water	BH21-5	
	3 PHCs Volatile Organic Compounds		Soil and Ground water	BH21-3	
	4	Metals, As, Sb, Se, and inorganic parameters (Na, B-HWS, Cl-, CN- , Cr(VI), Hg, low or high pH, EC and SAR).	Soil	BH21-6, BH231-7, BH21-8	
	5	PHCs, BTEX	Soil and Ground water	BH21-2	
	6	PHCs, VOCs Metals	Ground water	BH21-1	
	7	PHCs, VOCs, Metals	Ground water	BH21-1	
	Soil samples associated with APECs 1, 2, and 3 we depths between 1.5 and 2 mbgs, 0.75 and 1.5 mbg surface and 0.75 mbgs, respectively, in relation to t locations being installed at ground surface a basement of the dwelling.				
Any subsurface structures and	Subsurface structures identified on, in, or under the Phase Two				
utilities on, in, or under the Phase Two Property	Property include a partial basement associated with the residential building located on the eastern portion of the Site.				
	Subsurface utilities identified on, in, or under the Phase Two Property include municipal water, street lighting, hydro, and Bell Canada.				

C.
Refer to Drawing 2 .
Site-wide, subsurface structures and utilities are generally installed above the ground water table at the site.

Section ii. A description of the physical setting of the Phase Two Property:

The	Phase Two Property is a 1.49-h	ectare, irreg	ular shaped, parcel of land located or	n the east side of												
High	way 50 and west side of Albion V	/aughan Roa	ad, in Caledon, Ontario. Refer to Drav	ving 2.												
А.	Stratigraphy from ground	The observe	ed soil stratigraphy comprised:													
	surface to the deepest aquifer															
	or aquitard investigated		Geologic Unit	Depth Range												
				(m)												
		Surface	Silty clay	0.00 to 0.60												
		Fill Strata	Clayey silt fill	0.30 to 2.30												
		Till Strata	Clayey silt till, grey, with occasional cobbles	1.90 to 6.10												
		Bedrock Not Encountered.														
		Fill strata was identified between 0.30 and 1.90 m below existing grade; minor debris (brick) was observed at two (2) borehole locations, at a depth of between 0.61 to 0.91 mbgs. No evidence o any waste or debris was observed in the strata. Therefore, the observed fill material is considered to be reworked native materials Refer to Cross-Sections A-A' and B-B' .														
		Refer to Cross-Sections A-A' and B-B' . One (1) soil sample was collected in the till strata between 3.81 and 4.57 mbgs to determine the soil grain size for the Phase Two Property. Soil grain size analyses conducted by the laboratory classified the soil as silty sand and clay comprising approximately 29.6% silt and 47.8% clay. Since more than 50% of the particles were smaller than 75 micrometres in diameter, the assessment criteria corresponding to medium-fine textured soils were selected														
B.	Hydrogeological characteristics	The results primary nea (till) layer. Ground wa northerly di	s of the ground water monitoring in ar surface water table resides within the ater flow is interpreted to flow acros rection. Refer to Figure 8.2.3 .	idicated that the e clayey silt native ss the Site in a												

		The following horizontal hydraulic gradient calculations using														
		ground water moni	toring data across	s the site reveale	d the following											
		on the Phase Two	Property:													
				Native (Till)												
				Unit												
			Average	0.02005 m/m												
		Horizontal	Maximum	0.03733 m/m												
		Minimum 0.03845 m/m														
		 Based on grain size analysis testing, the hydraulic conductivity of the native till is 7.11x10⁻⁸ m/s. Therefore, the soil's ability to transmit water across the site (in the native till materials) is slow and verifies that the potential for migration of contamination is limited on the Phase Two Property. Furthermore, a hydraulic conductivity of 7.11x10⁻⁸ m/s is consistent with an unconsolidated deposit of glacial till with silt and loess (Freeze and Cherry, 1979 and represents a moderately impermeable aquitard unit. k Bedrock was not encountered within the maximum extent (12. 														
С.	Approximate depth of bedrock	Bedrock was not	encountered with	in the maximum	extent (12.78											
		mbgs) of the boreh	ole drilling investi	gation. Therefore	e, it is assumed											
		that bedrock exists deeper than 12.78 mbgs across the Phase Two														
		Property.														
		Well records within the Phase One Study Area indicated th														
		bedrock exists app	proximately 55.2 m	nbgs in the vicini	ty of the Phase											
		Two Property.														
D.	Approximate depth to water table	Ground water was lower native (till) u	observed between it.	en 8.53 to 10.04	mbgs in the											
Е.	Any respect in which Section	Section 35, non-po	table site condition	on standards, ap	plies to the											
	35, 41, or 43.1 of the	Phase Two Proper	ty based on the fo	ollowing:												
	regulation applies to the															
	property	 The property a of the property system, as defined (shown in Drav) The proposed 	nd all properties le are supplied by a ined in the Safe D ving 3);	ocated within a 2 municipal drinki prinking Water Ad	250 m radius ng water ct, 2002 residential											
		 The property is municipal offici designation ide 	anot located in an al plan as a well-h entified by the mur	area designated nead protection a nicipality for the	d in the area or other protection of											
		groundwater, a the Phase One agriculture; and	nd there are no w Study Area used d, egional municipal	vells on the prope I for human cons	erty or within umption or											
		to the application of the non-potable site condition standards.														
F	Areas on in or under the	Excess soil was no	t brought to the Si	ite for backfilling	and/or grading											
г.	Phase Two Property where	purposes.														
	excess soil is finally placed															
1	shoose son is many placed	1														

G.	Approximate locations, if	The proposed redevelopment will be residential.
	known, or any proposed	
	buildings and other structures	Residential redevelopment will comprise two (2) adjoining towers
		(6 and 7 storeys) comprising 265 apartment units following the
		demolition of the existing building. The proposed building locations
		are shown in Drawing 4 .

Section iii. Where a contaminant is present on, in, or under the Phase Two Property at a concentration greater than the applicable site condition standard, identification of:

А.	Each area where a contaminant is present on, in	The following limited areas of soil contamination were identified:
	or under the Phase Two	1s. Central portion of the Phase Two Property;
	Property	2s. Southern portion of the Phase Two Property.
		Refer to Drawing 4.
В.	The contaminants associated	Contaminants associated with the aforementioned areas are as
	with each of the areas referred	follows:
	to in subparagraph A	
		1s. Petroleum Hydrocarbons (PHCs) F3
		2s. Lead and Cadmium
С.	Each medium in which a	The aforementioned exceedances occurred in soil at depths of
	contaminant associated with	between 0.00 and 0.10 mbgs and within the stockpiled fill material,
	an area referred to in	as noted above.
	subparagraph is present	
D.	A description and assessment	Limited areas of soil contamination in the central portion of the
	of what is known about each	Phase Two Property are associated with staining adjacent to a
	of the areas referred to in	drum of unknown liquid, likely automotive in use. Areas of
	subparagraph A	contamination in the southern portion of the Phase Two Property
		are associated with the importation of fill materials.
Е.	The distribution, in each of the	Drawing 4 shows the profile locations for Cross-Sections A-A'
	areas referred to in	and B-B' , and depict the horizontal and vertical distribution of the
	subparagraph A	contaminants within the impacted areas.
		The soil contaminants were located in the upper fill materials within
		localized areas and exist on the eastern and southern portion of
		the property as a result of importing fill materials, as discussed
		above.
<i>F</i> .	Anything known about the	See Item D.
	reason for the discharge of the	
	contaminants present on, in or	
	under the Phase Two Property	
	at a concentration greater than	
	the applicable site condition	

	standard into the natural	
	environment	
G.	Anything known about migration of the contaminants present on, in or under the Phase Two Property at a	Delineation boreholes were not advanced as a part of this investigation. Refer to Drawing 4 .
	applicable site condition standard away from any area of potential environmental concern, including the identification of any preferential pathways	
H.	Climatic or meteorological conditions that may have influenced distribution and migration of the contaminants	It is unlikely that meteorological conditions have influenced the distribution and migration of the contaminants under the Phase Two Property as the metal impacts have been identified in two (2) localized areas along the eastern portion of the Site. In addition, the impacted area is located above the saturated zone comprising the ground water table. Furthermore, the hydraulic conductivity revealed the soil's ability to transmit water across the site (in the native till materials) is slow and verifies that the potential for migration of contamination is limited on the Phase Two Property. Ground water data for the Site was not available to evaluate seasonal ground water levels due to climatic or meteorological conditions.
I.	If applicable, information concerning soil vapour intrusion of the contaminants into building including, (1) relevant construction features of a building, such as a basement or crawl space, (2) building heating, ventilation and air conditioning design and operation, (3) subsurface utilities	Soil vapor samples were not collected as part of this Phase Two ESA as the residential dwelling is abandoned and will be demolished.

Section iv. Where contamination is present on, in, or under the Phase Two Property at a concentration greater than the applicable site condition standard, one or more cross-sections:

Refer to Cross-Sections A-A', and B-B'.

Section v. For each area where a contaminant is present on, in or under the property at a concentration greater than the applicable site condition standard for the contaminant, a diagram identifying the release mechanisms, contaminant transport pathway, the human and ecological receptors located on, in, or under the Phase Two Property, receptor exposure points, and routes of exposure:

Primary sources of concern on the Phase Two Property are related to Metal impacted soil due to the stockpiling of fill materials and observed staining within the garage structure at the Phase Two Property. No contaminants in ground water were identified. Exposure pathways related to the impacted soil, include ingestion, immersion, and/or dermal contact of soil, which may impact potential receptors including residents, indoor and/or outdoor workers, subsurface workers, mammals, birds, terrestrial invertebrates, and plants. Refer to **Drawing 5**.

Section vi. If a non-standard delineation was conducted in accordance with Section 7.1 of Schedule E as part of preparing the Phase Two ESA:

A non-standard delineation was not conducted as part of this Phase Two ESA.

Section vii. If the exemption set out in paragraph 1 or 2 of Section 49.1 is being relied upon:

The exemption set out in paragraph 1 of Section 49.1 of Ontario Regulation 153/04 is not being relied upon.

The exemption set out in paragraph 2 of Section 49.1 of Ontario Regulation 153/04 is not being relied upon as part of this Phase Two ESA.

Section viii. If the exemption set out in paragraph 3 of Section 49.1 is being relied upon:

The exemption set out in paragraph 3 of Section 49.1 of Ontario Regulation 153/04 is not being relied upon as part of this Phase Two ESA.

Summary of Remedial Activities:

Analytical results of the Phase Two ESA revealed the presence of PHC Fraction F3 impacted soil in the fill materials within the garage building, which exceeded the MECP Table 3 SCS for residential/ parkland/ institutional (RPI) property use with medium-fine textured soils in a non-potable ground water condition. The objective of the remediation project was to restore the property to the MECP Table 3 SCS for the proposed residential land use with medium-fine textured soils in a non-potable ground water condition. Ground water remediation was not required at the Phase Two Property, as all ground water analytical results met the MECP Table 3 SCS for all parameters analyzed during Palmer's Phase Two ESA. Therefore, Palmer's remediation program targeted the remediation of the PHC impacted soil.

Excavation activities were conducted by Nexxgen Environmental under the supervision of Palmer staff and commenced on October 15, 2021. All impacted soil was removed from the Phase Two Property by the excavating contractor and disposed of at Triple Waste Management Ltd. In Toronto, Ontario.

The remediation program consisted of an area 1.8m x 2.6m localized in the vicinity of BH21-3, as presented in **Drawing 7**. The excavation was advanced to a depth of 0.4 mbgs, and all PHC impacted soil was removed from the Site. Below the excavation depth of Area 1, there was no visual or olfactory evidence of contamination remaining on the Site. In total, 2 m³ of impacted soil was removed from the Phase Two Property.

Upon excavation and removal of impacted material based on the Phase Two ESA findings, Palmer monitored the excavated areas, including conducting visual and olfactory observations, and collected verification samples from both the floor (two samples) and walls (four samples) of the excavated area according to the number of samples required based on the area of the excavated pit, as per O.Reg. 153/04, Schedule E, Table 3. Wall verification samples were collected at depths of 0.3 to 0.4 mbgs. Floor verification samples were collected at depths of 0.4 mbgs. In total, six (6) samples, including one (1) QA/QC sample were submitted for to ALS Environmental for chemical analysis of PHCs and BTEX. The analytical results of the verification samples indicated no exceedances in comparison to the MECP Table 3 SCS for RPI property use with medium-fine textured soils in a non-potable ground water condition. Therefore, Palmer's verification sampling program was deemed complete.

The location of all verification samples that were taken from the impacted area is presented in **Drawing 7.** In addition, **Cross-Section B-B'** depict the horizontal and vertical distribution of the contaminants within the impacted area.

Excess soil was not imported to the Site for backfilling and/or regrading purposes due to future re-grading and construction of basement foundations at the Site for the proposed residential development.

6. Conclusions

In comparison with the (2011) Ontario Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the <u>EPA</u> criteria, the results of the laboratory analyses revealed Petroleum Hydrocarbons (PHCs) exceedances in the soil in the central portion of the Phase Two Property, and Metal and Inorganic exceedances in the southern portion of the Phase Two Property in comparison to the Table 3 SCS for residential/parkland/institutional (RPI) property uses with fine-medium textured soils in a non-potable ground water condition.

Based on the findings of the Phase Two ESA and historical environmental investigations conducted on the Site, laboratory analyses revealed the following contaminant concentrations:

- PHC F3 on the central portion of the Phase Two Property at a depth of 0.00 to 0.10 mbgs, at a concentration of 13,100 µg/g compared to a regulatory criterion of 1,300 µg/g;
- Lead on the southern portion of the Phase Two Property within the stockpiled soil on the southwestern portion of the Phase Two Property, at a concentration of 146 µg/g compared to a regulatory criterion of 120 µg/g; and
- Cadmium on the southern portion of the Phase Two Property within the stockpiled soil on the southwestern portion of the Phase Two Property, at a concentration of 3.06 µg/g compared to a regulatory criterion of 1.2 µg/g;

The aforementioned PHC soil exceedances in the central portion of the Phase Two Property are likely associated with staining observed on the ground adjacent to a drum of unknown liquid. The Lead and Cadmium exceedances in the southern portion of the Phase Two Property are likely associated with the importation of fill of unknown quantity.

Two (2) areas of impacted soil (PHC and Metals) have been identified on the Phase Two Property. These soil contaminants are located in the upper fill materials in the garage structure and within a stockpile of soil located on the southwestern portion of the property.

As the soil analytical results exceeded the Table 3 RPI standards in two (2) areas on the Phase Two Property, remedial activities were conducted to remove all of the PHC impacted upper fill materials within the garage. Stockpiled fill impacted with Cadmium and Lead should be disposed of off-site prior to land clearing and grading activities for the proposed redevelopment of the Site. Palmer has assumed that stockpiled material will be removed off-Site during the regrading of the Phase Two Property. Soil verification samples collected during the soil excavation in the garage structure were below the Table 3 RPI standards, thus the formerly identified area of PHC contamination was successfully remediated on the Phase Two Property.

6.1 Limitations

This report was prepared by Palmer for the account of 12148 Albion Vaughan Inc. in accordance with the professional services agreement.

The conclusions and recommendations detailed in this report are based upon the information available at the time of preparation of the report. No investigative method eliminates the possibility of obtaining imprecise or incomplete information. Professional judgement was exercised in gathering and analyzing the information obtained and in the formulation of our conclusions and recommendations.

The nature of the sampling works makes it possible that contrary conditions may be identified in locations which were not sampled. However, it does suggest that the conditions will be localized and not extensive. The soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations made during drilling and therefore should not be interpreted as exact planes of geological change.

The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects Palmer's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Palmer accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

Unless stated otherwise in this report, provided that the report is still reliable, and less than 18 months old, Palmer may issue a third-party reliance letter to parties, client identifies in writing, upon payment of the then current fee for such letters. All third parties relying on Palmer's report, by such reliance agree to be bound by our proposal and Palmer's standard reliance letter. Palmer's standard reliance letter indicates that in no event shall Palmer be liable for any damages, howsoever arising, relating to third-party reliance on Palmer's report. No reliance by any party is permitted without such agreement. This report is not to be given over to any third party for any purpose whatsoever without the written permission of Palmer.

The original of the technology-based document sent herewith has been authenticated and will be retained by Palmer for a minimum of five years. Since the file transmitted is now out of Palmer's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

Certification

This report was prepared by Samo Szakal, B.A., Ept. Who is currently an Environmental Scientist with Palmer in the Toronto Office. He has experience conducting numerous Phase I ESAs at various land use types, and conducting soil and ground water sampling procedures in accordance with Ontario Regulation 153/04 and 511/09 and the CSA Z768-01 and Z769-00 environmental protocols. Samo is a recognized Environmental Professional (in training) with Eco Canada.

This report was reviewed by Sarah Sipak, B.Sc., an Environmental Geoscience Team Lead in the Toronto office of Palmer. She has over 13 years' experience conducting Phase One and Two ESAs, soil and ground water sampling, and site remediation in accordance with Ontario Regulation 153/04 and 511/09, the CSA Z768-01 and Z769-00 environmental protocols, the Consulting Engineers of Ontario's Generally Accepted Standards for Environmental Investigations, and the Canadian Mortgage and Housing Corporation (CMHC) environmental site investigation procedures for mortgage loan insurance. The aforementioned ESAs have covered all land use types across Canada. Sarah also has numerous years of experience in preparing and

filing Record of Site Conditions (RSCs) with the Ministry of the Environment, Conservation and Parks (MECP). Sarah also has experience conducting Excess Soil Reuse Planning assessments in accordance with Ontario Regulation 406/19.

Prepared By: DRAFT

Samo Szakal, B.A., Ept Environmental Scientist

Reviewed By: DRAFT

Sarah Sipak, B.Sc., P.Geo (limited), QP_{ESA} Environmental Geoscience Team Lead

7. References

- Atlas of Canada, Topographic Maps;
 - o http://atlas.nrcan.gc.ca/Site/english/toporama/index.html
- Chapman and Putnam, The Physiography of Southern Ontario, 1984;
- Freeze, Alan R. and Cherry, John A., Ground water, 1979;
- Google Earth, 2015.
- Phase One Environmental Site Assessment, 12148 Albion Vaughan Road, Caledon, Ontario, issued by Palmer (Project No.: 1604601);
- Terzaghi and Peck, Soil Mechanics in Engineering Practice, 1948;
- The Ontario Geological Survey, 1990; and,
- The Ontario Geological Survey, 2003.

8. Tables and Figures

Tables

8.1.1 Monitoring Well Installation

Monitoring Well ID	Ground Surface Elevation (mAMSL)	Monitoring Well Construction Details	Associated Elevations Below Grade (m)
DUI04 4	000.00	50-mm PVC solid riser pipe	0.00-8.82
BH21-1	229.00	50-mm PVC slotted intake screen	8.82-11.87
D UCK 0		50-mm PVC solid riser pipe	0.00-8.75
BH21-2	229.56	50-mm PVC slotted intake screen	8.75-11.80
Di lo c		50-mm PVC solid riser pipe	0.00-8.77
BH21-4	230.05	50-mm PVC slotted intake screen	8.77-11.82
	220.00	50-mm PVC solid riser pipe	0.00-8.80
BH21-5	229.90	50-mm PVC slotted intake screen	8.80-11.85

8.1.2 Water Levels

Monitoring Well ID	Date	Ground Surface Elevation (mAMSL)	Depth to GW (mbgs)	GW Elevation (mAMSL)					
BH21-1	March 4, 2021	229.00	8.53	220.47					
Di lo i o	March 3, 2021	000 50	8.99	220.57					
BH21-2	March 4, 2021	229.56	10.04	219.52					
	March 3, 2021		9.67	220.38					
BH21-4	March 4, 2021	230.05	9.78	220.87					
DU04 5	March 3, 2021	000.00	9.53	220.03					
BH21-5	March 4, 2021	229.90	9.61	220.29					

8.1.3 LNAPLs and DNAPLs

No light or dense non-aqueous phase liquid measurements were detected at the Phase Two Property, as discussed in *Sections 4.7, 5.2*, and *5.7*.

8.1.4 Soil Data

8.1.4.1 PHCs with BTEX

Soil Analytical Results: Petroleum Hydrocarbons (PHCs) and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)

Network Sample						PHCs BTEX									
µg/g O.Reg. 153/04 MOECC Guideline (2011), Res/Park/Inst Property Use, Medium-Fine Textured Soil, Non-Potable Ground Water Condition Sample Date 65 65 150 1300 5600 0.17 6 15 25 BH21-2 21-2-2 0.76-1.52 O3-Mar-21 <					F1 (C6-C10)	F1 (C6-C10) - BTEX*	F2 (C10-C16)	F3 (C16-C34)	F4 (C34-C50)	Benzene	Toluene	Ethylbenzene	Xylenes, Total (Xylene Mixture)		
O.Reg. 153/04 MOECC Guideline (2011), Res/Park/Inst Property Use, Medium-Fine Textured Soil, Non-Potable Ground Water Condition 65 65 150 1300 5600 0.17 6 15 25 Sample Location Sample ID Sample Interval (mbgs) Sample Date Sample Date 500 500 0.17 6 15 25 BH21-2 21-2-2 0.76-1.52 03-Mar-21 <5.0 <5.0 <10 <500 <0.0068 <0.018 <0.080 <0.050 BH21-3 21-3-1 0.00-0.10 02-Mar-21 <5.0 <5.0 <10 <500 <0.0068 <0.018 <0.080 <0.050 BH21-4 21-4-4 2.29-3.05 02-Mar-21 <5.0 <10 <500 <500 <0.0068 <0.018 <0.080 <0.050 BH21-4 21-4-4D 2.29-3.05 02-Mar-21 <5.0 <10 <500 <500 <0.0068 <0.018 <0.080 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.					µg/g	μg/g	µg/g	µg/g	µg/g	μg/g	µg/g	µg/g	µg/g		
Sample Location Sample ID Sample Interval (mbgs) Sample Date Image: Constraint of the system Sample Date Sample Date Image: Constraint of the system Sample Date Sample Date Image: Constraint of the system Sample Date Sample Date	O.Reg. 153/04 Medium-Fine	MOECC Guideline (2 Textured Soil, Non-Po	2011), Res/Park/Inst stable Ground Water	Property Use, Condition	65	65	150	1300	5600	0.17	6	15	25		
BH21-2 21-2-2 0.76-1.52 03-Mar-21 <5.0 <10 <50 <50 <0.0068 <0.018 <0.080 <0.050 BH21-3 21-3-1 0.00-0.10 02-Mar-21 <5.0	Sample Location	Sample ID	Sample Interval (mbgs)												
BH21-3 21-3-1 0.00-0.10 02-Mar-21 <5.0 <5.0 44 13100 3880 <0.0068 <0.018 <0.080 <0.050 BH21-4 21-4-4 2.29-3.05 02-Mar-21 <5.0	BH21-2	21-2-2	0.76-1.52	03-Mar-21	<5.0	<5.0	<10	<50	<50	<0.0068	<0.018	<0.080	<0.050		
BH21-4 21-4-4 2.29-3.05 02-Mar-21 <5.0 <10 <50 <50 <0.0068 <0.018 <0.080 <0.050 BH21-4 21-4-4D 2.29-3.05 02-Mar-21 <5.0	BH21-3	21-3-1	0.00-0.10	02-Mar-21	<5.0	<5.0	44	13100	3880	<0.0068	<0.018	<0.080	<0.050		
BH21-4 21-4-4D 2.29-3.05 02-Mar-21 <5.0 <10 <50 <50 <0.0068 <0.018 <0.080 <0.050 BH21-5 21-5-2 0.76-1.52 02-Mar-21 <5.0	BH21-4	21-4-4	2.29-3.05	02-Mar-21	<5.0	<5.0	<10	<50	<50	<0.0068	<0.018	<0.080	<0.050		
BH21-5 21-5-2 0.76-1.52 02-Mar-21 <5.0 <5.0 <10 <50 <50 <0.0068 <0.018 <0.080 <0.050	BH21-4	21-4-4D	2.29-3.05	02-Mar-21	<5.0	<5.0	<10	<50	<50	<0.0068	<0.018	<0.080	<0.050		
	BH21-5	21-5-2	<5.0	<5.0	<10	<50	<50	<0.0068	<0.018	<0.080	<0.050				

Notes:		
1.		In guideline row(s) denotes no criteria for that parameter
2.		In data row(s) denotes parameter not analyzed
3.	mbgs	Denotes metres below ground surface
4.	BOLD	Denotes entries exceed the criteria
5.		Criteria is Ontario Regulation 153/04. Table 3 Full Depth Generic Site Condition Sto

Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Insitutional Property Use with Medium-Fine Textured Soils

6. * F1 fraction does not include BTEX; however, the proponent has the choice as to whether or not to subtract BTEX from the analytical result

8.1.4.2 Metals

Soil Analytical Results: Metals														1									
													Me	tals						1			
				Antimony	Arsenic	Barium	Beryllium	Boron (total)	Boron (Hot Water Soluble)*	Cadmium	Chromium Total	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Sodium	Thallium	Uranium	Vanadium	Zinc
O Peg. 182/04	MOFCC Guidaluna	()(11) Pas/Parts/	nat Property	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	μg/g	µg/g	µg/g	µg/g	µg/g	µg/g	μg/g	µg/g	µg/g	µg/g	µg/g
Use, Medium Condition	-Fine Textured Soil,	Non-Potable Grou	nd Water	7.5	18	390	5	120	1.5	1.2	160	22	180	120	6.9	130	2.4	25		1	23	86	340
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																				
21-6	21-6	0.00-0.30	03-Mar-21	<1.0	4.6	59.3	<0.50	10	0.54	0.99	25.6	6.7	47	38.4	1.3	18.5	<1.0	0.41	8.49	<0.50	<1.0	25.6	251
21-7	21-7	0.00-0.30	03-Mar-21	<1.0	5.1	60.1	<0.50	9.7	0.4	0.66	19.9	6.8	31.8	24.5	<1.0	16.3	<1.0	<0.20	8.01	<0.50	<1.0	25.6	165
21-8	21-8	0.00-0.30	03-Mar-21	1.4	4.6	73.2	<0.50	10.9	0.82	3.06	26.9	7.7	110	146	1.7	22.1	<1.0	1.02	10.4	<0.50	<1.0	30.3	336
21-8	21-8D	0.00-0.30	03-Mar-21	1.3	5.4	72.7	<0.50	9.9	0.78	3.06	29.7	7.6	111	106	2.7	21.6	<1.0	1.06	9.27	<0.50	<1.0	28.5	329
Notes 1 2 3 4 5 6	: . mbgs	In guideline row(In data row(s) de Denotes metres b Denotes entries e Criteria is Ontar Property Use wit Denotes the boro	0.00-0.30 03-Mar-21 1.3 5.4 72.7 <0.50 9.9 0.78 3.06 29.7 7.6 111 106 2.7 21.6 <1.0 1.06 9. In guideline row(s) denotes no criteria for that parameter In data row(s) denotes parameter not analyzed Denotes metres below ground surface Denotes entries exceed the criteria Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Reside Property Use with Medium-Fine Textured Soils Denotes the horon standards are for hot water soluble extract for all surface soils. For subsurface soils the standards are for total boron (mixed)													tidentia ed stror	l/Parkl	land/Ins	itutiona, as	al			

8.1.4.3 VOCs

Soil Analytical Results: Volatile Organic Compounds (VOCa)

		225 (42)		8																		W	DCs:																		
O Ray 11504 MORCE Gaudeline (2011). Nav Park land Property					Beroarie	Brunodichlonmetham	Brutofum	Britteonethane	Cuthon Tetrachloride	Chinebeneses	Charoform	Dimuschionmetham	1,2-Dubloroburates	1,3-Dichlandecrasm	1.4-Distribution	Dichlorediflaoromethane	1,1-Dictidoroethane	1,3-Duthloroethane	1,1-Dichloroethylene	ute-1,2-Dichloroethylene	time-1.2-Dickloroeftylene	1,2-Duthloropropunt	1,3-Disthoropopene (cis) + (tune)	Ethythesnoese	Ethylene Dihmmide	Hexam (n)	Mothyl Ediyl Kolone	Methyl Isobutyl Kohme	Method test-Buryd Ether (M/13E)	Addrogene Chloride	Styrem	1,1,1,2-Tetrachioroetham	1,1,2,2-Tetrachloroethane	Tetrachkensethylease	Totaena	1.1.1.Trichloneftame	1,1,2-Thehlomethane	Trackinosthylene	Trichlorothoromethane	Vinyl Clairide	Xylenss, Tobal (Xylene Mixture)
O Reg. 15504 Use, Medium- Condition	MOECC Guideline Fine Testured Soil, 3	(2011), ResiPark Son-Potable Grou	init Property nd Water	28	0.17	13	0.26	0.05	0.12	2.7	0.17	9.4	43	6	0.097	25	11	0.05	0.05	30	0.75	0.085	0.083	15	0.05	34	44	43	1.4	0.96	2.2	0.05	0.85	2.3	6	3.4	0.05	0.52	5.8	0.022	25
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date																ĺ.																						
BH21-3	21-3-1	0.00-0.10	02-Mar-2	1 <0.50	<0.006	8 <0.050	<0.05	0<0.050	<0.050	<0.030	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.042	<0.018	<0.050	<0.50	<0.50	<0.050	<0.050	<0.050	<0.050	<0.050	<0.080	<0.050	<0.050	<0.010	<0.050	<0.020	<0.050

Notes 1 2 3

In guideline row(2) denotes no criteria for that parameter

- In data row(z) denotes parameter not analyzed

mbgs Denotes metres below ground surface

4. BOLD Dessate entries exceed the criteria

-

Cruenta is Onamia Regulation 133-04, Table 3 Full Depth Generic Sile Condition Standards in a Non-Possible Ground Water Condition for Residential Parkined Instantional Property Use with Medium-Fine Textured Solis

Phase Two Environmental Site Assessment (ESA)

Palmer...

8.1.5 Ground Water Data

8.1.5.1 PHCs with BTEX

12148 Albion Vaughan Inc. April 3, 2023 Palmer_1604603 Phase Two Esa - 12148 Albion Vaughan Rd-Draft

-

Ground Water Analytical Results: Petroleum Hydrocarbons (PHCs) and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)

					PHCs				BT	EX		
			F1 (C6-C10)	F1-BTEX	F2 (C10-C16)	F3 (C16-C34)	F4 (C34-C50)	Benzene	Toluene	Ethylbenzene	Xylenes (Total)	
			μg/L	µg/L	μg/L	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L	
O.Reg. 153/04 1 Property Use, 1 Potable Ground	MECP Guideline (20 Medium-Fine Textur d Water Condition	11), All Types of ed Soil, Non-	750	750	150	500	500	430	18000	2300	4200	
Sample Location	Sample ID	Sample Date										
BH21-1	21-1	04-Mar-21	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50	
BH21-2	21-2	04-Mar-21	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50	
BH21-2	21-2D	04-Mar-21	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50	
BH21-4	21-4	03-Mar-21	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50	
BH21-5	21-5	03-Mar-21	<25	<25	<100	<250	<250	<0.50	<0.50	<0.50	<0.50	
Notes 1 2 3	n - 2 3. mbgs	In guideline row(s) In data row(s) den Denotes metres bei	denote. otes par low grou	s no crite cameter i und surf	eria for : not anal lace	that part	ameter					
4 5	BOLD	Denotes entries exe Criteria is Ontario Types of Property	ceed the Regula Uses wi	criteria tion 153 th Medin	/04, Tab um-Fine	le 3 Ful Texture	l Depth d Soils	Generic	Site Con	dition S	tandard:	s in a Non-Potable Ground Water Condition j
6	. *	F1 fraction does no	ot includ	le BTEX	howev	er, the p	roponer	nt has the	e choice i	as to wh	ether or	not to subtract BTEX from the analytical rest

8.1.5.2 Metals

Ground Water Analytical Results: Metals

특 Antimony (Sb)-Dissolved 특 Antimony (Sb)-Dissolved 특 Arsenic (As)-Dissolved 특 Barium (Ba)-Dissolved 특 Barium (Ba)-Dissolved 특 Barium (Ba)-Dissolved 특 Boron (B)-Dissolved 투 Cadmium (Cd)-Dissolved 투 Cadmium (Cd)-Dissolved 투 Cobalt (Co)-Dissolved 투 Molybdenum (Mo)-Dissolved 투 Molybdenum (Mo)-Dissolved 투 Selenium (Se)-Dissolved 투 Selenium (Se)-Dissolved 취 Nickel (Ni)-Dissolved 취 Selenium (Se)-Dissolved 취	편 V anadium (V)-Dissolved 편 Zinc (Zn)-Dissolved
O.Reg. 153/04 MECP Guideline (2011), All Types of Property Use, Medium-Fine Textured Soil, Non- Potable Ground Water Condition 20000 1900 29000 67 45000 2.7 810 66 87 25 9200 490 63 1.5 2300000 510 420	250 1100
Sample Location Sample ID Sample Date	
21-1 21-1 04-Mar-21 0.11 0.72 122 <0.10 63 0.05 <0.50 2.4 0.46 0.07 1.08 3.27 0.137 <0.050 36300 0.01 1.89	<0.50 <1.0
21-2 21-2 04-Mar-21 0.13 1 158 <0.10 59 0.29 <0.50 2.34 2.26 0.19 1 3.09 <0.050 <0.050 97500 0.04 3.05	:0.50 5.2
21-2D 21-2D 04-Mar-21 0.13 0.93 184 <0.10 56 0.28 <0.50 2.52 1.03 0.14 1.09 3.25 <0.050 <0.050 91100 0.04 3	0.50 3.3

Notes:

1.	-	In guideline row(s) denotes no criteria for that parameter
2.	-	In data row(s) denotes parameter not analyzed
3.	mbgs	Denotes metres below ground surface
4.	BOLD	Denotes entries exceed the criteria
		Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for All Types of Property
5.		Uses with Medium-Fine Textured Soils

8.1.5.3 VOCs

Ground Water Analytical Results: Volatile Organic Compounds (VOCs)

ORE Sample Dec Color	U.																					VC	OCs .																		
Offee 133 04 MECP Guideline (2011), All Types of Property Use, Medican-Fine Textured Soil, Nos- 13000 430 8500 770 56 8.4 630 8200 22 0.83 9600 67 400 3100 12 17 17 17 550 140 45 2300 520 150000 58000 140 910 28 15 17 18000 670 30 17 2500 1.7 Sample Location Sample Dire Sample Control Sample Contro Sample Control Sample Control<				h Acetone	Hansane	Bromodichloromethane	E Bromoform	Bromonsthane	표 Carbon tetrachloride	Chlorobenzane	Dibromechtoromethane	L Chloroform	五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五	1,2-Dichlorobenzane	1,3-Dichlorobenzame	T,4-Dichlorobunzane	Dichlorodifluoromethane	1.1-Dichloroethane	편 1.2-Dichloroethane	1.1-Dichloroethylene	a cis-1,2-Dichloroofhylene	5 Imme-1,2-Dichloroethylene	Hethylene Chloride	1.2-Dichloropropute	1,3-Dichloropropens (cis & truns)	Ethylbenzene	F n-Hexane	Methyl Ethyl Ketone	Methyl Isobutyl Ketone	R MTBK	Tan Styrum	[5] 1.1.1.2-Tetrachloroethune	[5] 1.1,2,2-Tetrachloroethane	E Tetmehloroethylene	Tohune	R 1.1.1. Trichloroethano	E 1,1,2-Trichloroethune	h. Trichtoroethylene	표 Trichlorofhoromethane	T inyl chlorida	Ta o-Xylene
Sample Location Sample Due Sa	O.Reg. 153/04 of Property T Potable Grou	4 MECP Guideline (Jse, Medium-Fine T nd Water Condition	2011), All Types entured Soil, Non-	130000	430	85000	770	56	8,4	630	\$2000	22	0.83	9600	9600	67	4400	3100	12	17	17	17	5500	140	45	2300	520	150000	58000	0 1400	9100	28	15	17	18000	6700	30	17	2500	17	4200
BH21-1 21-1 04-Mar-21 30 0.50 2.0 0.50 0.0	Sample Location	Sample 🗊	Sample Date							1																									1						
BH21-2 21-2 04-Mar-21 30 0.50 0.50 0.0	BH21-1	21-1	04-Mar-21	<30	<0.50	0.0	<5.0	<0.50	0.20	<0.50	0.0	<1.0	<0.20	<0.50	<0.50	<0.5	2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.5	0<0.50	0<0.50	0 <0	<20	2.0	<0.50	0<0.50	<0.50	0.50	<0.50	<0.50	<0.50	0.50	<5.0	<0.50	<0.50
BH21-2 21-2D 04-Mar-21 30 0.50 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.	BH21-2	21-2	04-Mar-21	<30	<0.50	0.0	<5.0	<0.50	0<0.20	<0.50	<2.0	<1.0	<0.20	<0.50	<0.50	<0.50	2.0	<0.50	<0.50	<0.50	<0.50	<0.50	5.0	<0.50	<0.5	0<0.50	0<0.50	0 <20	<20	2.0	<0.50	0<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	<5.0	<0.50	<0.50
	BH21-2	21-2D	04-Mar-21	<30	<0.50	0 <2.0	<5.0	<0.50	0.20	<0.50	<2.0	<1.0	<0.20	<0.50	<0.50	<0.5	2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.5	0<0.50	0<0.50	0 <20	<20	2.0	<0.50	0<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0<0.50	<5.0	<0.50	<0.50
 Lutu resu: - Lutu resu: - Latu resu: - Latu	•	Trip Blank		<30	<0.50	0.0	<5.0	<0.50	<0.20	<0.50	<2.0	<1.0	<0.20	<0.50	<0.50	<0.50	2.0	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.5	0<0.50	0<0.50	0 <20	<20	2.0	<0.50	0<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	<5.0	<0.50	<0.50

In data row(s) denotes parameter not analyzed

3. mbgs. Denotes metres below ground surface

BOLD Denotes entries exceed the criteria
 Criteria is Ontario Regulation 1539

Criteria is Ontario Legulation 15304, Table 3 Full Depth Generic Site Condition Standards in a Non-Possible Ground Water Condition for All Types of Property Uses with Medium-Fine Textured Soft

8.1.6 Sediment Data

Sediment sampling of the portion of Robinson Creek present on the Phase Two Property was not conducted during this investigation.

8.1.7 Soil and Ground Water Maximum Concentration Data

8.1.7.1 Soil Maximum Concentration Data

Parameter	MECP Table 3 RPI SCS	Maximum Soil Concentration	Location of Maximum	Sample Depth (m)		
	(µg/g)	(µg/g)	Concentration			
VOCs – BTEX						
Benzene	0.17	<0.0068	Multiple Locations	0.00-3.05		
Ethylbenzene	6	<0.018	Multiple Locations	0.00-3.05		
Toluene	15	<0.080	Multiple Locations	0.00-3.05		
Xylene Mixture	25	<0.050	Multiple Locations	0.00-3.05		
Metals						
Barium	390	73.2	21-8	0.00-0.30		
Beryllium	5	<0.50	21-8	0.00-0.30		
Boron (total)	5	10.9	21-8	0.00-0.30		
Cadmium	1.2	3.06	21-8	0.00-0.30		
Chromium Total	160	29.7	21-8D	0.00-0.30		
Cobalt	22	7.7	21-8	0.00-0.30		
Copper	180	110	21-8D	0.00-0.30		
Lead	120	146	21-8	0.00-0.30		
Molybdenum	6.9	2.7	21-8D	0.00-0.30		
Nickel	130	22.1	21-8	0.00-0.30		
Silver	25	1.06	21-8	0.00-0.30		
Thallium	1	<0.50	21-8D	0.00-0.30		
Uranium	23	<1.0	21-8	0.00-0.30		
Vanadium	86	30.3	21-8	0.00-0.30		
Zinc	340	336	21-8	0.00-0.30		
Metals – Hydride Forming	-					
Antimony	7.5	1.4	21-8	0.00-0.30		
Arsenic	18	5.4	21-8	0.00-0.30		
Selenium	2.4	<1.0	Multiple locations	0.00-0.30		
PHCs						
Petroleum Hydrocarbons F1	65	<5.0	Multiple locations	0.00-3.05		
Petroleum Hydrocarbons F2	150	44	21-3	0.00-3.05		
Petroleum Hydrocarbons F3	1300	13,000	21-3	0.00-3.05		
Petroleum Hydrocarbons F4	5600	3880	21-3	0.00-3.05		

Bananatan	MECP Table 3	Maximum Soil	Location of	Sample
Parameter		Concentration	Maximum	Depth (m)
VOCs	(49,8)	(6,64)	Concentration	
Acetone	28	<0.50	BH21-3	0.00-0.10
Bromomethane	13	<0.50	BH21-3	0.00-0.10
Carbon Tetrachloride	0.12	<0.050	BH21-3	0.00-0.10
Chlorobenzene	2.7	<0.050	BH21-3	0.00-0.10
Chloroform	0.17	<0.050	BH21-3	0.00-0.10
Dichlorobenzene, 1,2-	4.3	<0.050	BH21-3	0.00-0.10
Dichlorobenzene, 1,3-	6	<0.050	BH21-3	0.00-0.10
Dichlorobenzene, 1,4-	0.1	<0.050	BH21-3	0.00-0.10
Dichlorodifluoromethane	25	<0.050	BH21-3	0.00-0.10
Dichloroethane, 1,1-	11	<0.050	BH21-3	0.00-0.10
Dichloroethane, 1,2-	0.05	<0.050	BH21-3	0.00-0.10
Dichloroethylene, 1,1-	0.05	<0.050	BH21-3	0.00-0.10
Dichloroethylene, 1,2-cis-	30	<0.050	BH21-3	0.00-0.10
Dichloroethylene, 1,2-trans-	0.75	<0.050	BH21-3	0.00-0.10
Dichloropropane, 1,2-	0.085	<0.050	BH21-3	0.00-0.10
Dichloropropene, 1,3-	0.083	<0.050	BH21-3	0.00-0.10
Ethylene Dibromide	0.05	<0.042	BH21-3	0.00-0.10
Hexane (n)	34	<0.018	BH21-3	0.00-0.10
Methyl Ethyl Ketone	44	<0.50	BH21-3	0.00-0.10
Methyl Isobutyl Ketone	4.3	<0.50	BH21-3	0.00-0.10
Methyl tert-Butyl Ether (MTBE)	1.4	<0.50	BH21-3	0.00-0.10
Methylene Chloride	0.96	<0.050	BH21-3	0.00-0.10
Styrene	2.2	<0.050	BH21-3	0.00-0.10
Tetrachloroethane, 1,1,1,2-	0.05	<0.050	BH21-3	0.00-0.10
Tetrachloroethane, 1,1,2,2-	0.05	<0.050	BH21-3	0.00-0.10
Tetrachloroethylene	2.3	<0.050	BH21-3	0.00-0.10
Trichloroethane, 1,1,1-	3.4	<0.050	BH21-3	0.00-0.10
Trichloroethane, 1,1,2-	0.05	<0.050	BH21-3	0.00-0.10
Trichloroethylene	0.52	<0.010	BH21-3	0.00-0.10
Trichlorofluoromethane	5.8	<0.50	BH21-3	0.00-0.10
Vinyl Chloride	0.022	<0.020	BH21-3	0.00-0.10
Other Regulated Parameters				

Parameter	MECP Table 3 RPI SCS (µg/g)	Maximum Soil Concentration (μg/g)	Location of Maximum Concentration	Sample Depth (m)
Chromium VI	10	0.25	21-8	0.00-0.30
Cyanide (CN-)	0.051	<0.050	Multiple locations	0.00-0.30
Electrical Conductivity	0.7	0.565	21-8	0.00-0.30
Sodium Adsorption Ratio (unitless)	5	0.30	21-8	0.00-0.30

Note:

1. ND represents Non-Detect.

2. Bold entries exceed the Criteria.

 Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with Medium-fine-Textured Soils.

8.1.7.2 Ground Water Maximum Concentration Data

Parameter	MECP Table 3 RPI SCS (µg/L)	Maximum Ground Water Concentration (µg/L)	Location of Maximum Concentration		
VOCs – BTEX					
Benzene	430	<0.50	Multiple locations		
Ethylbenzene	18000	<2.0	Multiple locations		
Toluene	2300	<5.0	Multiple locations		
Xylene Mixture	4200	<0.50	Multiple locations		
Metals					
Barium	29000	184	BH21-2		
Beryllium	67	<0.10	Multiple locations		
Boron (total)	45000	63	BH21-1		
Cadmium	2.7	0.286	BH21-2		
Chromium Total	810	<0.50	Multiple locations		
Cobalt	66	2.52	BH21-2		
Copper	87	2.26	BH21-2		
Lead	25	0.188	BH21-2		
Molybdenum	9200	1.09	BH21-2		
Nickel	490	3.27	BH21-1		
Silver	1.5	<0.50	Multiple locations		
Thallium	510	0.036	BH21-2		
Uranium	510	3.05	BH21-2		
Vanadium	420	<0.50	Multiple locations		
Zinc	250	5.2	BH21-2		
Metals – Hydride Forming					
Antimony	20000	0.13	BH21-2		
Arsenic	1900	1.00	BH21-2		
Selenium	29000	0.137	BH21-1		
Na Sodium					
Sodium	2,300,000	97500	BH21-2		
PHCs					
Petroleum Hydrocarbons F1	750	<25	Multiple locations		
Petroleum Hydrocarbons F2	150	<100	Multiple locations		
Petroleum Hydrocarbons F3	500	<250	Multiple locations		
Petroleum Hydrocarbons F4	500	<250	Multiple locations		

Bananatan	MECP Table 3	Maximum Ground	Location of		
Parameter		water Concentration	Maximum		
VOCs – Trihalomethanes	(µg/=)	(µg/=)	Concentration		
Bromodichloromethane	85,000	<2.0	Multiple locations		
Bromoform	770	<5.0	Multiple locations		
Dibromochloromethane	56	<0.50	Multiple locations		
VOCs					
Acetone	130,000	<30	Multiple locations		
Bromomethane	56	<0.50	Multiple locations		
Carbon Tetrachloride	8.4	<0.20	Multiple locations		
Chlorobenzene	630	<0.50	Multiple locations		
Chloroform	22	<1.0	Multiple locations		
Dichlorobenzene, 1,2-	0.83	<0.20	Multiple locations		
Dichlorobenzene, 1,3-	9600	<0.50	Multiple locations		
Dichlorobenzene, 1,4-	9600	<0.50	Multiple locations		
Dichlorodifluoromethane	4400	<2.0	Multiple locations		
Dichloroethane, 1,1-	3100	<0.50	Multiple locations		
Dichloroethane, 1,2-	12	<0.50	Multiple locations		
Dichloroethylene, 1,1-	17	<0.50	Multiple locations		
Dichloroethylene , 1,2-cis-	17	<0.50	Multiple locations		
Dichloroethylene, 1,2-trans-	17	<0.50	Multiple locations		
Dichloropropane, 1,2-	140	<0.50	Multiple locations		
Dichloropropene, 1,3-	-	<0.50	Multiple locations		
Hexane (n)	520	<0.50	Multiple locations		
Methyl Ethyl Ketone	15,000,000	<20	Multiple locations		
Methyl Isobutyl Ketone	580,000	<20	Multiple locations		
Methyl tert-Butyl Ether (MTBE)	1400	<2.0	Multiple locations		
Styrene	9100	<2.0	Multiple locations		
Tetrachloroethane, 1,1,1,2-	28	<0.50	Multiple locations		
Tetrachloroethane, 1,1,2,2-	15	<0.50	Multiple locations		
Tetrachloroethylene	17	<0.50	Multiple locations		
Trichloroethane, 1,1,1-	6700	<0.50	Multiple locations		
Trichloroethane, 1,1,2-	30	<0.50	Multiple locations		
Trichloroethylene	17	<0.50	Multiple locations		
Trichlorofluoromethane	1.7	<5.0	Multiple locations		

Palmer.

Parameter	MECP Table 3 RPI SCS	Maximum Ground Water Concentration	Location of Maximum		
	(µg/L)	(µg/L)	Concentration		
Vinyl Chloride	1.7	<0.50	Multiple locations		

Note:

1.

ND represents Non-Detect. Bold entries exceed the Criteria. 2.

3. Criteria is Ontario Regulation 153/04, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with All-Textured Soils.

Drawings

12148 Albion Vaughan Inc. April 3, 2023 Palmer_1604603 Phase Two Esa - 12148 Albion Vaughan Rd-Draft

Photographs

Photograph Log Phase Two ESA 12148 Albion Vaughan Road Project No.: 1604603

Photograph 1	Photograph 2
Photo depicts drilling of BH21-4.	Photo depicts auguring of BH21-5.

Appendix A – General A1 – Sampling and Analysis Plan

Phase Two ESA Sampling and Analysis Plan

Site: 12148 Albion Vaughan Road, Caledon, Ontario

Project #: <u>1604603</u>

Location ID	Media	Sample No.	Approximate Depth (m)	Date of Sample Collection	Date of Analysis	Chemical Analyses	Purpose and Justification
BH21-1	Ground Water	BH21-1	NA	4-Mar-2021	5-Mar-21	Petroleum Hydrocarbons (PHCs), Volatile Organic Compounds (VOCs), Metals	Characterize ground water conditions of a potential contamination source. Collected to verify and/or refute APEC# 6 and 7.
BH21-2	Soil	BH21-2-2	0.76-1.52	3-Mar-2021	8-Mar-2021	PHCs, Benzene, Toluene, Ethylbenzene, Xylene (BTEX)	Worst case soil sample. Collected to verify and/or refute APEC #5.
		BH21-2-6		3-Mar-2021	12-Mar-21	рН	Sample to determine the pH of the soil.
		BH21-2- 6D		3-Mar-2021	12-Mar-21	рН	QA/QC. Duplicate sample of BH21-2-6
	Ground Water	BH21-2	NA	4-Mar-2021	5-Mar-21	PHCs, VOCs, Metals	Characterize ground water conditions of a potential contamination source. Collected to verify and/or refute APEC# 5, 6, and 7.
		BH21-2D	NA	4-Mar-2021	5-Mar-21	PHCs, VOCs, Metals	QA/QC. Duplicate sample of BH 21-2.
BH21-3	Soil	BH21-3	0.00-0.10	2-Mar-2021	8-Mar-2021	PHCs, VOCs	Worst case soil sample. Collected to verify and/or refute APEC #3.
BH21-4	Soil	BH21-4-1	0.00-0.76	2-Mar-2021	12-Mar-21	рН	Sample to determine the pH of the soil.
		BH21-4-4		2-Mar-2021	8-Mar-2021	PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC #1.
		BH21-4- 4D		2-Mar-2021	8-Mar-2021	PHCs, BTEX	QA/QC. Duplicate sample of BH21-4-4
	Ground Water	BH21-4	NA	4-Mar-2021	5-Mar-21	PHCs, BTEX	Characterize ground water conditions of a potential contamination source. Collected to verify and/or refute APEC# 1.

Palm	er"			P Sampliı	hase Two ESA ng and Analysis	Plan	
BH21-5	Soil	BH21-5-2	0.76-1.52	2-Mar-2021	8-Mar-2021	PHCs, BTEX	Worst case soil sample. Collected to verify and/or refute APEC #2.
		BH21-5-7		2-Mar-2021		Grain Size	Soil sample collected to determine grain size of the soil representative of the Site.
	Ground Water	BH21-5	NA	4-Mar-2021	5-Mar-21	PHCs, BTEX	Characterize ground water conditions of a potential contamination source. Collected to verify and/or refute APEC# 2.
BH21-6	Soil	BH21-6	0.00-0.30	3-Mar-2021	12-Mar-21	Metals, As, Sb, Se, and inorganic parameters (Na, B- HWS, Cl-, CN-, Cr(VI), Hg, low or high pH, EC and SAR).	Worst case soil sample. Collected to verify and/or refute APEC #4.
BH21-7	Soil	BH21-7	0.00-0.30	3-Mar-2021	12-Mar-21	Metals, As, Sb, Se, and inorganic parameters (Na, B- HWS, Cl-, CN-, Cr(VI), Hg, low or high pH, EC and SAR).	Worst case soil sample. Collected to verify and/or refute APEC #4.
BH21-8	Soil	BH21-8	0.00-0.30	3-Mar-2021	12-Mar-21	Metals, As, Sb, Se, and inorganic parameters (Na, B- HWS, Cl-, CN-, Cr(VI), Hg, low or high pH, EC and SAR).	Worst case soil sample. Collected to verify and/or refute APEC #4.
		BH21-8D	0.00-0.30	3-Mar-2021	12-Mar-21	Metals, As, Sb, Se, and inorganic parameters (Na, B- HWS, Cl-, CN-, Cr(VI), Hg, low or high pH, EC and SAR).	QA/QC. Duplicate sample of BH21-8

Appendix A – General A2 – Finalized Field Logs

LOG OI	BOREHOL	E BH21-1
--------	----------------	----------

٦

PRO	JECT: 1604603 Phase Two ESA											REF.	NO.: 1	604603
CLIE	NT: 12148 Albion Vaughan Inc					Metho	od: Dir	ect Pu	sh witl	h Split	Spoor	n ENC	L NO.:	
PRO.	JECT LOCATION: 12148 Albion Vaugha	n Ro	ad, C	Caledo	n, ON	Diam	eter: 1	50 mn	n					
DATI	JM: Geodetic					Date:	Mar-(04-202	21			COM	PILED	_{BY} SS
BH L	OCATION: 4856296.391N 604546.994E			101 50		r –						1		
	SOIL PROFILE	-	SAN	IPLES		ŀ	lead S	Space anor F	Comb Readir	bustib	le		н	
(m)		10			SAMPLE REMARKS		v	apor i (pp	om)	ig		AND	VATE VS	
ELEV DEPTH	DESCRIPTION	IA PI	н									REMARKS	ND V TIOI	DETAILS
		TRAT	UMB	ΥΡΕ			-			•			ROU OND	
229.0	Ground Surface	۰ ۱	z	í-		-	3	6 9	9 1	2	15		ΟŬ	
- 228:7	organics	471				Ē								
-	Fill: Clayey silt fill with trace sand, brown, with debris between 0.61					Ē								
1	and 0.91					Ē						-		
						Ē								
Ē						Ē								
227.0						-						-		
E 2.1	Till: Clayey silt till, grey, with cobbles at 2.59m, 4.70m, and	\bigotimes				Ē								
-	6.25m, and a sand seam at 3.50m	\bigotimes				Ē								
3		\bigotimes				Ē								-Bentonite
Ē		\bigotimes				Ē								
Ē		\bigotimes				Ē								
4		\bigotimes				-								
		\bigotimes				È								
-		\bigotimes				È.								
5		\bigotimes				Ē								
Ē		\bigotimes				-								
E.		\bigotimes				-								
- 		\bigotimes				Ē								
6.1	BH Augured to 12.80	XX												
	Sand seam between 8.20 and 9.40													
														-Sand
												Analysis: PHCs,	⊡⊠∵	
												VOCs, Metals		W. L. 220.5 m Mar 04. 2021
													ŀ∃∷	
													目:	
													ŀ.∃:	
φ														-Screen
0.GPJ 21-6													[:目:]	
GHM N ROW													:目:	
BION VAL													[·目·]	
3 12148 M.													[:]目:]	
0100 C														
12.8	END OF BOREHOLE	-	1											
-WV000-	Notes: 1. Upon completion of drilling, a													
NV_JUNE 2	50mm diameter monitoring well													
PALMER 6	2. Augured to 12.53 m													
-														

 $\begin{array}{c} \underline{\text{GROUNDWATER ELEVATIONS}} \\ \text{Measurement} \quad \stackrel{\text{1st}}{\underline{\nabla}} \quad \stackrel{\text{2nd}}{\underline{\Psi}} \quad \stackrel{\text{3rd}}{\underline{\Psi}} \quad \stackrel{\text{4th}}{\underline{\Psi}} \end{array}$

PRO	IECT: 1604603 Phase Two ESA											REF.	NO.: 1	604603
CLIEN	NT: 12148 Albion Vaughan Inc					Metho	od: Dire	ect Pu	sh wit	h Split	Spoor	n ENCI	_ NO.:	
PRO	IECT LOCATION: 12148 Albion Vaugha	in Ro	ad, C	Caledo	n, ON	Diame	eter: 1	50 mm	ı					
DATU	JM: Geodetic					Date:	Mar-0	4-202	1			COM	PILED	BY SS
BH LO	DCATION: 4856318.017N 604569.159E													
	SOIL PROFILE		SAN	IPLES		Г	lead S	Space	Com	oustib	le			
(m) <u>ELEV</u> DEPTH	DESCRIPTION	FRATA PLOT	JMBER	rPE	SAMPLE REMARKS		V	apor F (pp	Readii om) 	ng		LABORATORY ANALYSIS AND REMARKS	ROUND WATER ONDITIONS	WELL CONSTRUCTION DETAILS
230.6	Ground Surface	S	ž	F.			3 (6 9	€ 1	2 1	5		ច់ប័	
<u>230:3</u> 0.3	Fill: Brown silty clay fill with organics Fill: Clayey silt fill with trace sand, brown, with debris between 0.61 and 0.91		1	SS										
			2	SS								Analysis: PHCs, BTEX		
228.5 2.1	Till: Clayey silt till, grey, with cobbles at 2.59m, 4.70m, and 6.25m, and a sand seam at 3.50m		3	SS SS										
3			5	SS										-Bentonite
4		\bigotimes	6	SS										
5		\bigotimes	7	SS										
- <u>224.5</u>	PH Augured to 12.52	\bigotimes	8	SS		- X -								
0.1	Sand seam between 8.20 and 9.40 m											Analysis: PHCs, VOCs, Metals		-Sand W. L. 220.5 m Mar 04, 2021 -Screen
<u>218.0</u> 12.5	END OF BOREHOLE Notes: 1. Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole.													

 $\frac{\text{GROUNDWATER ELEVATIONS}}{\text{Measurement}} \stackrel{\text{1st}}{\underbrace{\overset{2nd}{\Psi}}} \stackrel{3rd}{\underbrace{\overset{3rd}{\Psi}}} \stackrel{\text{4th}}{\underbrace{\overset{4th}{\Psi}}}$

Pa	lmer				LOG OF BOR	EHC	DLE I	BH2 [,]	1-3					1 OF 1
PRO	JECT: 1604603 Phase Two ESA											REF.	NO.: 1	604603
CLIE	NT: 12148 Albion Vaughan Inc					Metho	od: Har	nd Aug	ger			ENC	_ NO.:	
PRO	JECT LOCATION: 12148 Albion Vaugha	an Ro	oad, (Caledo	n, ON	Diam	eter: 3	00 mn	ı					
DAT	UM: Geodetic					Date:	Mar-0)3-202	1			COM	PILED I	BY SS
BH L	OCATION: 4856299.32N 604592.10E													
	SOIL PROFILE	_,	SAN	/IPLES		F	lead S	Space	Com	oustib	е		۳.	
(m)		1					V	apor F (pr	Readir om)	ng		LABORATORY ANALYSIS	ATEF S	
ELEV	DESCRIPTION	A PL(ш						,			REMARKS	JD W	DETAILS
DEPTH		RAT	IMBE	뷥				\sim	1					
229.8	Ground Surface	ST ST	Ĭ	≿		-	36	6 9	9 1	2 1	5		В С С	-
229:5	and petroleum odour	X	1	-								Analysis: PHCs,		
0.3												1003		
1-6-8														
OND GPU 2														
MUGHANR														
V NOIBIN 8														
4503 1214														
2020 160														
0-18 PPM														
OL/WVOC														
ENVIRO 5														
PALMER												<u> </u>		
GROU														

LOG OF	BOREHOL	E BH21-4
--------	---------	----------

٦

PROJ	ECT: 1604603 Phase Two ESA											l	REF. N	NO.: 1	604603
CLIEN	IT: 12148 Albion Vaughan Inc					Meth	od: Dir	ect Pu	sh witł	n Split	t Spooi	n	ENCL	NO.:	
PROJ	ECT LOCATION: 12148 Albion Vaugha	n Ro	ad, C	Caledo	n, ON	Diam	eter: 1	50 mm	۱						22
DATU	IM: Geodetic					Date	Mar-	03-202	1				COMP	PILED E	37 SS
BHLC	DCATION: 4856276.058N 604625.445E		C A A			Γ.									
			SAN				lead \$ V	Space 'apor F	Comb Readir	oustib 1g	le		YSIS	ЦЦ	WELL
(m)		LOT			SAMPLE REMARKS			(pr	om)	0		AND	1010	WAT	CONSTRUCTION
ELEV DEPTH	DESCRIPTION	TA F	BER				j					REMARKS			DETAILS
220.1	Cround Surface	STR ⁴	MUN	ΓΛΡΕ			3	6 9		2	15			CONI CONI	
230.1	Fill: Silty clay fill, brown, with	•••	-	'		-	-				-	-			
-229.5	organics	ŀ	1	SS											
0.6	Fill: Clayey silt fill with trace sand,														
<u>1</u>	brown		2	SS		-						-			
E															
-			3	SS											
12 227 8			Ľ			E—						-			
2.3	Till: Clayey silt till, grey, with trace					Ē						Analysis PHC	<u>_</u>		
	graver	\bigotimes	4	SS		Ē						BTEX	3,		-Bentonite
-		\bigotimes				<u> </u>						-			
		\bigotimes	5	SS											
		\bigotimes				-									
-		\bigotimes	6	SS		E						-			
Ē		\bigotimes				Ē									
		\bigotimes	_			Ē									
-		\bigotimes	<i>'</i>	55		Ē—						-			
-		\bigotimes	8	22											
		\bigotimes	Ŭ	00		Ē							÷		
⁻ 224.0		\bigotimes				<u> </u>									
6.1	Sand seam between 11.10 and 11.6													: : ::	
	m														
													ŀ.		
													İ		
													ŀ		-Sand
													÷		
													:		
													ŀ		
													÷		
												Analysis: PHC	S,	:∄:]	W. L. 220.3 m
												BIEX	ŀ	·目:	Mar 04, 2021
													÷	÷≣÷I	
													ŀ	·目:	
6-0-17 D-6													į.	·目:	Screen
N HOM														泪い	
40 MAN													ŀ	:目:	
12148 AL B													ľ	:目:	
017 0													ŀ	:目:	
12.7	END OF BOREHOLE		1										ŀ	··⊢	
WV000-1	Notes: 1. Upon completion of drilling, a														
VIBO 6 OL	50mm diameter monitoring well was installed in the borehole														
ALMER E															
		•	•			•						•			

 $\begin{array}{c} \underline{\text{GROUNDWATER ELEVATIONS}} \\ \text{Measurement} \quad \stackrel{\text{1st}}{\underline{\nabla}} \quad \stackrel{\text{2nd}}{\underline{\Psi}} \quad \stackrel{\text{3rd}}{\underline{\Psi}} \quad \stackrel{\text{4th}}{\underline{\Psi}} \end{array}$

PROJ	ECT: 1604603 Phase Two ESA											REF.	NO.:	1604603
CLIEN	IT: 12148 Albion Vaughan Inc					Metho	od: Dire	ect Pus	sh wi	th Spli	t Spoo	n ENC	_ NO.:	
PROJ	ECT LOCATION: 12148 Albion Vaugha	n Ro	ad, C	Caledo	n, ON	Diam	eter: 1	50 mm	I					
DATU	IM: Geodetic					Date:	Mar-0	3-202	1			COM	PILED	BY SS
BHLC	DCATION: 4856263.822N 604614.289E													
	SOIL PROFILE		SAN	IPLES			-lood S	nace	Com	buetik				
(m) <u>ELEV</u> DEPTH	DESCRIPTION	ATA PLOT	ABER	ш	SAMPLE REMARKS		V	apor F (pp	Readi m)	ng	JIE	LABORATORY ANALYSIS AND REMARKS	DUND WATER VDITIONS	WELL CONSTRUCTION DETAILS
220.0	Ground Surface	STR	Ŋ	ТҮР			3 6	s g)	12	15		CO CO	
229.9	Fill: Silty clay fill with organics	1X				-				1				
- 0.3	Fill: Clayey silt fill with trace sand, brown, with debris between 0.61 and 0.91m		1	SS								_		
			2	SS								Analysis: PHCs, BTEX		
- 228.0 -2 1.9	Till: Clayey silt till, grey, with trace gravel cobbles at 4.11m		3	SS								-		
- - - - -			4	SS								-		-Bentonite
- - - - - -		\bigotimes	5	SS								-		
			6	SS										
<u>5</u> - - -			7	SS								-		
-		\bigotimes	8	SS		ŧ								
223.8		\bowtie				-								
0.1	Sand seam between 10.2 and 11.3 m											Analysis: PHCs, BTEX		-Sand W. L. 220.3 m Mar 04, 2021 -Screen
12.8	END OF BOREHOLE Notes: 1. Upon completion of drilling, a 50mm diameter monitoring well was installed in the borehole.		-											

 $\begin{array}{c} \underline{\text{GROUNDWATER ELEVATIONS}} \\ \text{Measurement} \quad \stackrel{1\text{st}}{\underline{\checkmark}} \quad \stackrel{2\text{nd}}{\underline{\checkmark}} \quad \stackrel{3\text{rd}}{\underline{\checkmark}} \quad \stackrel{4\text{th}}{\underline{\checkmark}} \end{array}$

Palmer...

Appendix A – General A3 – Certificates of Analysis or Analytical Reports from Laboratories

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) ATTN: Samo Szakal 74 BERKELEY STREET TORONTO ON M5V 1E3 Date Received:04-MAR-21Report Date:11-MAR-21 10:31 (MT)Version:FINAL

Client Phone: 647-795-8152

Certificate of Analysis

 Lab Work Order #:
 L2563694

 Project P.O. #:
 1604603

 Job Reference:
 1604603

 C of C Numbers:
 20-889593

 Legal Site Desc:
 1604603

KN/etaterso

Jennifer Barkshire-Paterson Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Summary of Guideline Exceedances

Guideline												
ALS ID	Client ID	Grouping	Analyte		Result	Guideline Limit	Unit					
Ontario Regulation 153/04 - April 15, 2011 Standards - T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)												
(No pa	(No parameter exceedances)											
Ontario Regulation 153/04 - April 15, 2011 Standards - T3-Non-Potable Ground Water-All Types of Property Uses (Fine)												

(No parameter exceedances)

L2563694 CONT'D.... Job Reference: 1604603 PAGE 3 of 9 11-MAR-21 10:31 (MT)

Dissolved Metals - WATER

		Lab ID		L2563694-1	L2563694-2	L2563694-3
		Sample	e Date	04-MAR-21	04-MAR-21	04-MAR-21
		Sam		21-1	21-2	21-20
		Guide	Limits			
Analyte	Unit	#1	#2			
Dissolved Metals Filtration Location		-	-	FIELD	FIELD	FIELD
Antimony (Sb)-Dissolved	ug/L	20000	20000	0.11	0.13	0.13
Arsenic (As)-Dissolved	ug/L	1900	1900	0.72	1.00	0.93
Barium (Ba)-Dissolved	ug/L	29000	29000	122	158	184
Beryllium (Be)-Dissolved	ug/L	67	67	<0.10	<0.10	<0.10
Boron (B)-Dissolved	ug/L	45000	45000	63	59	56
Cadmium (Cd)-Dissolved	ug/L	2.7	2.7	0.048	0.286	0.277
Chromium (Cr)-Dissolved	ug/L	810	810	<0.50	<0.50	<0.50
Cobalt (Co)-Dissolved	ug/L	66	66	2.40	2.34	2.52
Copper (Cu)-Dissolved	ug/L	87	87	0.46	2.26	1.03
Lead (Pb)-Dissolved	ug/L	25	25	0.071	0.188	0.138
Molybdenum (Mo)-Dissolved	ug/L	9200	9200	1.08	1.00	1.09
Nickel (Ni)-Dissolved	ug/L	490	490	3.27	3.09	3.25
Selenium (Se)-Dissolved	ug/L	63	63	0.137	<0.050	<0.050
Silver (Ag)-Dissolved	ug/L	1.5	1.5	<0.050	<0.050	<0.050
Sodium (Na)-Dissolved	ug/L	2300000	2300000	36300	97500 ^{DLHC}	91100
Thallium (TI)-Dissolved	ug/L	510	510	0.014	0.036	0.035
Uranium (U)-Dissolved	ug/L	420	420	1.89	3.05	3.00
Vanadium (V)-Dissolved	ug/L	250	250	<0.50	<0.50	<0.50
Zinc (Zn)-Dissolved	ug/L	1100	1100	<1.0	5.2	3.3

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2563694 CONT'D.... Job Reference: 1604603 PAGE 4 of 9 11-MAR-21 10:31 (MT)

Volatile Organic Compounds - WATER

		Lab ID Sample Date Sample ID		L2563694-1 04-MAR-21 21-1	L2563694-2 04-MAR-21 21-2	L2563694-3 04-MAR-21 21-2D	L2563694-4 03-MAR-21 21-4	L2563694-5 03-MAR-21 21-5	L2563694-6 04-MAR-21 TRIP BLANK
Analyte	Unit	Guide #1	Limits #2						
Acetone	ug/L	130000	130000	<30 ^{OWP}	<30 ^{OWP}	<30 ^{OWP}			<30
Benzene	ug/L	44	430	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50	<0.50 ^{OWP}	<0.50
Bromodichloromethane	ug/L	85000	85000	<2.0 OWP	<2.0 ^{OWP}	<2.0 ^{OWP}			<2.0
Bromoform	ug/L	380	770	<5.0 ^{OWP}	<5.0 ^{OWP}	<5.0 ^{OWP}			<5.0
Bromomethane	ug/L	5.6	56	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
Carbon tetrachloride	ug/L	0.79	8.4	<0.20 ^{OWP}	<0.20 ^{OWP}	<0.20 ^{OWP}			<0.20
Chlorobenzene	ug/L	630	630	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
Dibromochloromethane	ug/L	82000	82000	<2.0 OWP	<2.0 ^{OWP}	<2.0 ^{OWP}			<2.0
Chloroform	ug/L	2.4	22	<1.0 ^{OWP}	<1.0 ^{OWP}	<1.0 ^{OWP}			<1.0
1,2-Dibromoethane	ug/L	0.25	0.83	<0.20 ^{OWP}	<0.20 ^{OWP}	<0.20 ^{OWP}			<0.20
1,2-Dichlorobenzene	ug/L	4600	9600	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
1,3-Dichlorobenzene	ug/L	9600	9600	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
1,4-Dichlorobenzene	ug/L	8	67	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
Dichlorodifluoromethane	ug/L	4400	4400	<2.0 OWP	<2.0 ^{OWP}	<2.0 ^{OWP}			<2.0
1,1-Dichloroethane	ug/L	320	3100	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
1,2-Dichloroethane	ug/L	1.6	12	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
1,1-Dichloroethylene	ug/L	1.6	17	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
cis-1,2-Dichloroethylene	ug/L	1.6	17	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
trans-1,2-Dichloroethylene	ug/L	1.6	17	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
Methylene Chloride	ug/L	610	5500	<5.0 ^{OWP}	<5.0 ^{OWP}	<5.0 ^{OWP}			<5.0
1,2-Dichloropropane	ug/L	16	140	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
cis-1,3-Dichloropropene	ug/L	-	-	<0.30 ^{OWP}	<0.30 ^{OWP}	<0.30 ^{OWP}			<0.30
trans-1,3-Dichloropropene	ug/L	-	-	<0.30 ^{OWP}	<0.30 ^{OWP}	<0.30 ^{OWP}			<0.30
1,3-Dichloropropene (cis & trans)	ug/L	5.2	45	<0.50	<0.50	<0.50			<0.50
Ethylbenzene	ug/L	2300	2300	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{°OWP}	<0.50	<0.50 ^{OWP}	<0.50
n-Hexane	ug/L	51	520	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
Methyl Ethyl Ketone	ug/L	470000	1500000	<20 OWP	<20 OWP	<20 OWP			<20
Methyl Isobutyl Ketone	ug/L	140000	580000	<20 OWP	<20 ^{OWP}	<20 ^{OWP}			<20
МТВЕ	ug/L	190	1400	<2.0 OWP	<2.0 ^{OWP}	<2.0 OWP			<2.0
Styrene	ug/L	1300	9100	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

* Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2563694 CONT'D.... Job Reference: 1604603 PAGE 5 of 9 11-MAR-21 10:31 (MT)

Volatile Organic Compounds - WATER

		Lab ID		L2563694-1	L2563694-2	L2563694-3	L2563694-4	L2563694-5	L2563694-6
		Sample Date		04-MAR-21	04-MAR-21	04-MAR-21	03-MAR-21	03-MAR-21	04-MAR-21
		Sam	ple ID	21-1	21-2	21-2D	21-4	21-5	TRIP BLANK
		Guida	l imito						
	Unit	Guide #1	LIIIIIIS #2						
Analyte	Unit	#1	#2						
1,1,1,2-Tetrachloroethane	ug/L	3.3	28	<0.50 ^{°OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
1,1,2,2-Tetrachloroethane	ug/L	3.2	15	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
Tetrachloroethylene	ug/L	1.6	17	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
Toluene	ug/L	18000	18000	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50	<0.50 ^{OWP}	<0.50
1,1,1-Trichloroethane	ug/L	640	6700	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
1,1,2-Trichloroethane	ug/L	4.7	30	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
Trichloroethylene	ug/L	1.6	17	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
Trichlorofluoromethane	ug/L	2500	2500	<5.0 ^{OWP}	<5.0 ^{OWP}	<5.0 ^{OWP}			<5.0
Vinyl chloride	ug/L	0.5	1.7	<0.50 ^{OWP}	<0.50 ^{OWP}	<0.50 ^{OWP}			<0.50
o-Xylene	ug/L	-	-	<0.30 ^{OWP}	<0.30 ^{OWP}	<0.30 ^{OWP}	<0.30	<0.30 ^{OWP}	<0.30
m+p-Xylenes	ug/L	-	-	<0.40 ^{OWP}	<0.40 ^{OWP}	<0.40 ^{OWP}	<0.40	<0.40 ^{OWP}	<0.40
Xylenes (Total)	ug/L	4200	4200	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Surrogate: 4-Bromofluorobenzene	%	-	-	89.8	91.2	96.0	95.9	97.0	94.9
Surrogate: 1,4-Difluorobenzene	%	-	-	100.8	99.6	100.8	97.7	98.3	100.1

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse)

Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2563694 CONT'D Job Reference: 1604603 PAGE 6 of 9 11-MAR-21 10:31 (MT)

Hydrocarbons - WATER

2								
			Lab ID	L2563694-1	L2563694-2	L2563694-3	L2563694-4	L2563694-5
		Sample Date		04-MAR-21	04-MAR-21	04-MAR-21	03-MAR-21	03-MAR-21
		Sam	ple ID	21-1	21-2	21-2D	21-4	21-5
		Guide	Limits					
Analyte	Unit	#1	#2					
F1 (C6-C10)	ug/L	750	750	<25 OWP	<25 OWP	<25 OWP	<25	<25 ^{OWP}
F1-BTEX	ug/L	750	750	<25	<25	<25	<25	<25
F2 (C10-C16)	ug/L	150	150	<100	<100	<100	<100	<100
F3 (C16-C34)	ug/L	500	500	<250	<250	<250	<250	<250
F4 (C34-C50)	ug/L	500	500	<250	<250	<250	<250	<250
Total Hydrocarbons (C6-C50)	ug/L	-	-	<370	<370	<370	<370	<370
Chrom. to baseline at nC50		-	-	YES	YES	YES	YES	YES
Surrogate: 2-Bromobenzotrifluoride	%	-	-	85.4	89.4	83.9	82.2	89.6
Surrogate: 3,4-Dichlorotoluene	%	-	-	87.4	98.4	99.7	82.6	87.8

Guide Limit #1: T3-Non-Potable Ground Water-All Types of Property Uses (Coarse) Guide Limit #2: T3-Non-Potable Ground Water-All Types of Property Uses (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Reference Information

Qualifiers for Individual Parameters Listed:

Qualifier	Description
OWP	Organic water sample contained visible sediment (must be included as part of analysis). Measured concentrations of organic substances in water can be biased high due to presence of

sediment.

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

Methods Listed (if application	Methods Listed (if applicable):										
ALS Test Code	Matrix	Test Description	Method Reference**								
BTX-511-HS-WT	Water	BTEX by Headspace	SW846 8260 (511)								
BTX is determined by a	nalyzing by head	dspace-GC/MS.									
F1-F4-511-CALC-WT	Water	F1-F4 Hydrocarbon Calculated Parameters	CCME CWS-PHC, Pub #1310, Dec 2001-L								
Analytical methods used	d for analysis of	CCME Petroleum Hydrocarbons have be	een validated and comply with the Reference Method for the CWS PHC.								
In cases where results f added to the C6 to C50 In samples where BTEX	or both F4 and I hydrocarbons. (and F1 were a	F4G are reported, the greater of the two nalyzed,F1-BTEX represents a value w	results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.								
In samples where PAHs Benzo(a)anthracene, Be from F3.	s, F2 and F3 we enzo(a)pyrene, F	re analyzed, F2-Naphth represents the re Benzo(b)fluoranthene, Benzo(k)fluoranth	esult where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of ene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted								
Unless otherwise qualifi 1. All extraction and ana 2. Instrument performar 3. Linearity of gasoline r	ed, the following alysis holding tim nce showing response within	g quality control criteria have been met for nes were met. ponse factors for C6 and C10 within 30% 15% throughout the calibration range.	or the F1 hydrocarbon range: 6 of the response factor for toluene.								
Unless otherwise qualifi 1. All extraction and and 2. Instrument performan 3. Instrument performan 4. Linearity of diesel or u	Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges: 1. All extraction and analysis holding times were met. 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average. 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors. 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.										
F1-HS-511-WT	Water	F1-O.Reg 153/04 (July 2011)	E3398/CCME TIER 1-HS								
Fraction F1 is determine	ed by analyzing	by headspace-GC/FID.									

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Water F2-F4-O.Reg 153/04 (July 2011) EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MET-D-UG/L-MS-WT Water Diss. Metals in Water by ICPMS (ug/L) EPA 200.8

The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference**
VOC-1,3-DCP-CALC-WT	Water	Regulation 153 VOCs	SW8260B/SW8270C
VOC-511-HS-WT	Water	VOC by GCMS HS O.Reg 153/04 (Jul	v SW846 8260

2011)

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:							
20-889593							
The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:							
Laboratory Definition Code	Laboratory Location						
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA						

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2563694

Report Date: 11-MAR-21

Page 1 of 13

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Contact: Samo Szakal

_

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Water							
Batch R539716	4							
WG3497426-4 DUP Benzene		WG3497426- <0.50	3 <0.50	RPD-NA	ug/L	N/A	30	05-MAR-21
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	05-MAR-21
m+p-Xylenes		0.40	0.44		ug/L	9.5	30	05-MAR-21
o-Xylene		<0.30	0.30	RPD-NA	ug/L	N/A	30	05-MAR-21
Toluene		0.68	0.72		ug/L	5.7	30	05-MAR-21
WG3497426-1 LCS Benzene			101.5		%		70-130	05-MAR-21
Ethylbenzene			99.9		%		70-130	05-MAR-21
m+p-Xylenes			93.4		%		70-130	05-MAR-21
o-Xylene			98.9		%		70-130	05-MAR-21
Toluene			98.9		%		70-130	05-MAR-21
WG3497426-2 MB			~0.50		ug/l		0.5	05 MAR 21
Ethylbenzene			<0.50		ug/L		0.5	05-MAR-21
m+p-Xvlenes			<0.40		ug/L		0.4	05-MAR-21
o-Xylene			< 0.30		ug/L		0.3	05-MAR-21
Toluene			<0.50		ug/L		0.5	05-MAR-21
Surrogate: 1,4-Difluor	obenzene		97.4		%		70-130	05-MAR-21
Surrogate: 4-Bromoflu	orobenzene		95.9		%		70-130	05-MAR-21
WG3497426-5 MS		WG3497426-	3					
Benzene			101.7		%		50-140	05-MAR-21
Ethylbenzene			101.5		%		50-140	05-MAR-21
m+p-Xylenes			94.5		%		50-140	05-MAR-21
o-Xylene			100.6		%		50-140	05-MAR-21
Toluene			100.2		%		50-140	05-MAR-21
F1-HS-511-WT	Water							
Batch R539716	4							
WG3497426-4 DUP F1 (C6-C10)		WG3497426 -3 41	3 33		ug/L	22	30	05-MAR-21
WG3497426-1 LCS F1 (C6-C10)			94.3		%		80-120	05-MAR-21
WG3497426-2 MB F1 (C6-C10)			<25		ug/L		25	05-MAR-21
Surrogate: 3.4-Dichlor	otoluene		100.2		%		60-140	05-MAR-21
WG3497426-5 MS		WG3497426-	3					

Report Date: 11-MAR-21

Page 2 of 13

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Workorder: L2563694

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT	Water							
Batch R5	397164							
WG3497426-5 F1 (C6-C10)	MS	WG3497426-3	78.7		%		60-140	05-MAR-21
Batch R5	397766							
WG3497755-4 F1 (C6-C10)	DUP	WG3497755-3 <25	<25	RPD-NA	ug/L	N/A	30	08-MAR-21
WG3497755-1 F1 (C6-C10)	LCS		110.3		%		80-120	08-MAR-21
WG3497755-2 F1 (C6-C10)	МВ		<25		ug/L		25	08-MAR-21
Surrogate: 3.4-D	Dichlorotoluene		99.5		%		60-140	08-MAR-21
WG3497755-5	MS	WG3407755-3	00.0		,0		00110	00-101/11-21
F1 (C6-C10)	WIS	WG3497733-3	87.5		%		60-140	08-MAR-21
F2-F4-511-WT	Water							
Batch R5	398040							
WG3497802-2 F2 (C10-C16)	LCS		94.5		%		70-130	08-MAR-21
F3 (C16-C34)			94.1		%		70-130	08-MAR-21
F4 (C34-C50)			94.9		%		70-130	08-MAR-21
WG3497802-1	MB							
F2 (C10-C16)			<100		ug/L		100	08-MAR-21
F3 (C16-C34)			<250		ug/L		250	08-MAR-21
F4 (C34-C50)			<250		ug/L		250	08-MAR-21
Surrogate: 2-Bro	omobenzotrifluoride		83.3		%		60-140	08-MAR-21
MET-D-UG/L-MS-W	T Water							
Batch R5	397759							
WG3497672-4	DUP	WG3497672-3	0.14					
Antimony (Sb)-L		0.14	0.14		ug/L	0.2	20	05-MAR-21
Arsenic (As)-Dis	solved	0.53	0.58		ug/L	9.0	20	05-MAR-21
Barium (Ba)-Dis	solved	16.8	16.3		ug/L	3.0	20	05-MAR-21
Beryllium (Be)-D	Dissolved	<0.10	<0.10	RPD-NA	ug/L	N/A	20	05-MAR-21
Boron (B)-Disso	lved	<10	<10	RPD-NA	ug/L	N/A	20	05-MAR-21
Cadmium (Cd)-I	Dissolved	<0.0050	<0.0050	RPD-NA	ug/L	N/A	20	05-MAR-21
Chromium (Cr)-	Dissolved	<0.50	<0.50	RPD-NA	ug/L	N/A	20	05-MAR-21
Cobalt (Co)-Diss	solved	0.78	0.81		ug/L	2.7	20	05-MAR-21
Copper (Cu)-Dis	solved	0.73	0.76		ug/L	3.6	20	05-MAR-21

Workorder: L2563694

Report Date: 11-MAR-21

Page 3 of 13

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

0......

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-UG/L-MS-WT	Water								
Batch R539775	9								
WG3497672-4 DUP	1	WG3497672-	3						
Lead (Pb)-Dissolved		<0.050	<0.050	RPD-NA	ug/L	N/A	20	05-MAR-21	
Molybdenum (Mo)-Dis	solved	0.481	0.479		ug/L	0.6	20	05-MAR-21	
Nickel (Ni)-Dissolved		0.65	0.65		ug/L	0.6	20	05-MAR-21	
Selenium (Se)-Dissolv	ved	0.074	0.063		ug/L	15	20	05-MAR-21	
Silver (Ag)-Dissolved		<0.050	<0.050	RPD-NA	ug/L	N/A	20	05-MAR-21	
Sodium (Na)-Dissolve	d	6260	6370		ug/L	1.7	20	05-MAR-21	
Thallium (TI)-Dissolve	d	<0.010	<0.010	RPD-NA	ug/L	N/A	20	05-MAR-21	
Uranium (U)-Dissolved	d	0.133	0.138		ug/L	3.9	20	05-MAR-21	
Vanadium (V)-Dissolv	ed	<0.50	<0.50	RPD-NA	ug/L	N/A	20	05-MAR-21	
Zinc (Zn)-Dissolved		1.0	1.0		ug/L	2.3	20	05-MAR-21	
WG3497672-2 LCS	rod		102.6		0/		00.400		
Antimony (30)-Dissolv	4		103.0		70 0/		80-120	05-MAR-21	
Barium (Ba)-Dissolved	4		102.5		76 0/		80-120	05-MAR-21	
Benyllium (Be)-Dissolved	a And		05.2		76 0/		80-120	05-MAR-21	
Beron (B) Dissolved	eu		90.0		76 0/		80-120	05-MAR-21	
Codmium (Cd) Dissolved	und		92.2		70 0/		80-120	05-MAR-21	
Chromium (Cr) Dissol	ved		97.0		70 0/		80-120	05-MAR-21	
	veu		90.5		76 0/		80-120	05-MAR-21	
Copper (Cu)-Dissolved	d		97.7		76 0/		80-120	05-MAR-21	
Lead (Ph)-Dissolved	u		102.0		70 0/		80-120	05-MAR-21	
Molybdenum (Mo)-Dis	solved		08.1		76 0/		80-120	05-MAR-21	
Nickel (Ni)-Dissolved	501760		98.0		70 %		80-120	05-MAR-21	
Selenium (Se)-Dissolv	hav		101.0		%		00-120 90-120	05-MAR-21	
Silver (Ag)-Dissolved			98.8		%		80 120	05-MAR-21	
Sodium (Na)-Dissolve	d		97.6		%		90 120	05-MAR-21	
Thallium (TI)-Dissolve	d		99.7		%		00-120 90-120	05-MAR-21	
Liranium (Li)-Dissolve	4		96.1		%		00-120 90-120	05-MAR-21	
	od		100.8		%		00-120 90-120	05-MAR-21	
Zinc (Zn)-Dissolved	cu		98.7		%		80 120	05-MAR-21	
			50.7		70		00-120	00-IVIAR-21	
Antimony (Sb)-Dissolv	ved		<0.10		ug/L		0.1	05-MAR-21	
Arsenic (As)-Dissolved	d		<0.10		ug/L		0.1	05-MAR-21	
Barium (Ba)-Dissolved	ł		<0.10		ug/L		0.1	05-MAR-21	

Workorder: L2563694

Report Date: 11-MAR-21

Page 4 of 13

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R539	7759							
WG3497672-1 M	MB							
Beryllium (Be)-Dis	solved		<0.10		ug/L		0.1	05-MAR-21
Boron (B)-Dissolve	ed		<10		ug/L		10	05-MAR-21
Cadmium (Cd)-Dis	ssolved		<0.0050		ug/L		0.005	05-MAR-21
Chromium (Cr)-Dis	ssolved		<0.50		ug/L		0.5	05-MAR-21
Cobalt (Co)-Dissol	lved		<0.10		ug/L		0.1	05-MAR-21
Copper (Cu)-Disso	olved		<0.20		ug/L		0.2	05-MAR-21
Lead (Pb)-Dissolve	ed		<0.050		ug/L		0.05	05-MAR-21
Molybdenum (Mo)	-Dissolved		<0.050		ug/L		0.05	05-MAR-21
Nickel (Ni)-Dissolv	ved		<0.50		ug/L		0.5	05-MAR-21
Selenium (Se)-Dis	solved		<0.050		ug/L		0.05	05-MAR-21
Silver (Ag)-Dissolv	ved		<0.050		ug/L		0.05	05-MAR-21
Sodium (Na)-Disso	olved		<50		ug/L		50	05-MAR-21
Thallium (TI)-Disso	olved		<0.010		ug/L		0.01	05-MAR-21
Uranium (U)-Disso	blved		<0.010		ug/L		0.01	05-MAR-21
Vanadium (V)-Diss	solved		<0.50		ug/L		0.5	05-MAR-21
Zinc (Zn)-Dissolve	d		<1.0		ug/L		1	05-MAR-21
WG3497672-5 N	NS	WG3497672-3						
Antimony (Sb)-Dis	solved		97.3		%		70-130	05-MAR-21
Arsenic (As)-Disso	blved		105.5		%		70-130	05-MAR-21
Barium (Ba)-Disso	lved		N/A	MS-B	%		-	05-MAR-21
Beryllium (Be)-Dis	solved		94.5		%		70-130	05-MAR-21
Boron (B)-Dissolve	ed		87.4		%		70-130	05-MAR-21
Cadmium (Cd)-Dis	ssolved		100.8		%		70-130	05-MAR-21
Chromium (Cr)-Dis	ssolved		96.9		%		70-130	05-MAR-21
Cobalt (Co)-Dissol	lved		96.0		%		70-130	05-MAR-21
Copper (Cu)-Disso	olved		97.2		%		70-130	05-MAR-21
Lead (Pb)-Dissolve	ed		97.3		%		70-130	05-MAR-21
Molybdenum (Mo)	-Dissolved		94.0		%		70-130	05-MAR-21
Nickel (Ni)-Dissolv	ved		95.1		%		70-130	05-MAR-21
Selenium (Se)-Dis	solved		113.5		%		70-130	05-MAR-21
Silver (Ag)-Dissolv	ved		95.3		%		70-130	05-MAR-21
Sodium (Na)-Disso	olved		N/A	MS-B	%		-	05-MAR-21
Thallium (TI)-Disso	olved		99.0		%		70-130	05-MAR-21
Uranium (U)-Disso	blved		99.1		%		70-130	05-MAR-21

Report Date: 11-MAR-21

Page 5 of 13

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Workorder: L2563694

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R5397759								
WG3497672-5 MS		WG3497672-3	3		0/			
Vanadium (V)-Dissolved			99.0		%		70-130	05-MAR-21
ZINC (ZN)-DISSOIVED			99.9		70		70-130	05-MAR-21
VOC-511-HS-WT	Water							
Batch R5397766		W00407755						
1,1,1,2-Tetrachloroethar	ne	<0.50 <0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
1,1,2,2-Tetrachloroethar	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
1,1,1-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
1,1,2-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
1,1-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
1,1-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
1,2-Dibromoethane		<0.20	<0.20	RPD-NA	ug/L	N/A	30	08-MAR-21
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
1,2-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
1,2-Dichloropropane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
1,3-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
Acetone		<30	<30	RPD-NA	ug/L	N/A	30	08-MAR-21
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
Bromodichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	08-MAR-21
Bromoform		<5.0	<5.0	RPD-NA	ug/L	N/A	30	08-MAR-21
Bromomethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
Carbon tetrachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	08-MAR-21
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	08-MAR-21
cis-1,2-Dichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
cis-1,3-Dichloropropene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	08-MAR-21
Dibromochloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	08-MAR-21
Dichlorodifluoromethane)	<2.0	<2.0	RPD-NA	ug/L	N/A	30	08-MAR-21
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-MAR-21
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	08-MAR-21
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	08-MAR-21

Workorder: L2563694

Report Date: 11-MAR-21

Page 6 of 13

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Contact: Samo Szakal

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed VOC-511-HS-WT Water R5397766 Batch WG3497755-4 DUP WG3497755-3 Methyl Isobutyl Ketone <20 <20 **RPD-NA** ug/L N/A 30 08-MAR-21 Methylene Chloride <5.0 <5.0 **RPD-NA** ug/L N/A 30 08-MAR-21 MTBE <2.0 <2.0 RPD-NA ug/L N/A 30 08-MAR-21 o-Xylene < 0.30 < 0.30 **RPD-NA** ug/L N/A 30 08-MAR-21 Styrene <0.50 < 0.50 **RPD-NA** ug/L N/A 30 08-MAR-21 Tetrachloroethylene <0.50 <0.50 **RPD-NA** ug/L N/A 30 08-MAR-21 Toluene < 0.50 <0.50 **RPD-NA** ug/L N/A 30 08-MAR-21 ug/L trans-1,2-Dichloroethylene < 0.50 < 0.50 **RPD-NA** N/A 30 08-MAR-21 trans-1,3-Dichloropropene <0.30 <0.30 **RPD-NA** ug/L N/A 30 08-MAR-21 Trichloroethylene <0.50 <0.50 **RPD-NA** ug/L N/A 30 08-MAR-21 Trichlorofluoromethane <5.0 <5.0 **RPD-NA** ug/L N/A 30 08-MAR-21 Vinyl chloride <0.50 < 0.50 **RPD-NA** ug/L N/A 30 08-MAR-21 WG3497755-1 LCS 1,1,1,2-Tetrachloroethane 93.3 % 70-130 08-MAR-21 1,1,2,2-Tetrachloroethane 89.1 % 70-130 08-MAR-21 1,1,1-Trichloroethane 90.5 % 08-MAR-21 70-130 1,1,2-Trichloroethane 86.3 % 70-130 08-MAR-21 1,1-Dichloroethane 87.8 % 70-130 08-MAR-21 1,1-Dichloroethylene 91.7 % 70-130 08-MAR-21 1,2-Dibromoethane 83.3 % 70-130 08-MAR-21 1,2-Dichlorobenzene 94.8 % 70-130 08-MAR-21 1,2-Dichloroethane 84.2 % 70-130 08-MAR-21 86.0 % 1,2-Dichloropropane 70-130 08-MAR-21 1,3-Dichlorobenzene 90.8 % 70-130 08-MAR-21 1,4-Dichlorobenzene 91.2 % 70-130 08-MAR-21 Acetone 89.4 % 08-MAR-21 60-140 85.5 % Benzene 70-130 08-MAR-21 Bromodichloromethane 90.7 % 70-130 08-MAR-21 Bromoform 101.1 % 70-130 08-MAR-21 Bromomethane 87.8 % 60-140 08-MAR-21 Carbon tetrachloride 92.1 % 70-130 08-MAR-21 Chlorobenzene 93.0 % 70-130 08-MAR-21 Chloroform 89.5 % 70-130 08-MAR-21

Workorder: L2563694

Report Date: 11-MAR-21

Page 7 of 13

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5397766								
WG3497755-1 LCS								
cis-1,2-Dichloroethylene			90.5		%		70-130	08-MAR-21
cis-1,3-Dichloropropene			78.6		%		70-130	08-MAR-21
Dibromochloromethane			86.2		%		70-130	08-MAR-21
Dichlorodifluoromethane			85.3		%		50-140	08-MAR-21
Ethylbenzene			86.7		%		70-130	08-MAR-21
n-Hexane			87.6		%		70-130	08-MAR-21
m+p-Xylenes			89.2		%		70-130	08-MAR-21
Methyl Ethyl Ketone			82.5		%		60-140	08-MAR-21
Methyl Isobutyl Ketone			75.1		%		60-140	08-MAR-21
Methylene Chloride			87.8		%		70-130	08-MAR-21
MTBE			90.5		%		70-130	08-MAR-21
o-Xylene			98.8		%		70-130	08-MAR-21
Styrene			91.7		%		70-130	08-MAR-21
Tetrachloroethylene			82.6		%		70-130	08-MAR-21
Toluene			88.9		%		70-130	08-MAR-21
trans-1,2-Dichloroethyler	ne		91.2		%		70-130	08-MAR-21
trans-1,3-Dichloropropen	ie		80.0		%		70-130	08-MAR-21
Trichloroethylene			89.1		%		70-130	08-MAR-21
Trichlorofluoromethane			91.7		%		60-140	08-MAR-21
Vinyl chloride			94.9		%		60-140	08-MAR-21
WG3497755-2 MB								
1,1,1,2-Tetrachloroethan	е		<0.50		ug/L		0.5	08-MAR-21
1,1,2,2-Tetrachloroethan	е		<0.50		ug/L		0.5	08-MAR-21
1,1,1-Trichloroethane			<0.50		ug/L		0.5	08-MAR-21
1,1,2-Trichloroethane			<0.50		ug/L		0.5	08-MAR-21
1,1-Dichloroethane			<0.50		ug/L		0.5	08-MAR-21
1,1-Dichloroethylene			<0.50		ug/L		0.5	08-MAR-21
1,2-Dibromoethane			<0.20		ug/L		0.2	08-MAR-21
1,2-Dichlorobenzene			<0.50		ug/L		0.5	08-MAR-21
1,2-Dichloroethane			<0.50		ug/L		0.5	08-MAR-21
1,2-Dichloropropane			<0.50		ug/L		0.5	08-MAR-21
1,3-Dichlorobenzene			<0.50		ug/L		0.5	08-MAR-21
1,4-Dichlorobenzene			<0.50		ug/L		0.5	08-MAR-21
Acetone			<30		ug/L		30	08-MAR-21

Workorder: L2563694

Report Date: 11-MAR-21

Page 8 of 13

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5397766								
WG3497755-2 MB			-0 50		ug/I		0.5	
Bromodichloromothano			<0.50		ug/L		0.5	08-MAR-21
Bromotorm			<2.0		ug/L		2	08-MAR-21
Bromonothana			<0.0		ug/L		5	08-MAR-21
Bromomethane			<0.00		ug/L		0.5	08-MAR-21
			<0.20		ug/L		0.2	08-MAR-21
Chlorobenzene			<0.50		ug/L		0.5	08-MAR-21
			<1.0		ug/L		1	08-MAR-21
cis-1,2-Dichloroethylene			<0.50		ug/L		0.5	08-MAR-21
cis-1,3-Dichloropropene			<0.30		ug/L		0.3	08-MAR-21
Dibromochloromethane			<2.0		ug/L		2	08-MAR-21
Dichlorodifluoromethane			<2.0		ug/L		2	08-MAR-21
Ethylbenzene			<0.50		ug/L		0.5	08-MAR-21
n-Hexane			<0.50		ug/L		0.5	08-MAR-21
m+p-Xylenes			<0.40		ug/L		0.4	08-MAR-21
Methyl Ethyl Ketone			<20		ug/L		20	08-MAR-21
Methyl Isobutyl Ketone			<20		ug/L		20	08-MAR-21
Methylene Chloride			<5.0		ug/L		5	08-MAR-21
MTBE			<2.0		ug/L		2	08-MAR-21
o-Xylene			<0.30		ug/L		0.3	08-MAR-21
Styrene			<0.50		ug/L		0.5	08-MAR-21
Tetrachloroethylene			<0.50		ug/L		0.5	08-MAR-21
Toluene			<0.50		ug/L		0.5	08-MAR-21
trans-1,2-Dichloroethyler	ne		<0.50		ug/L		0.5	08-MAR-21
trans-1,3-Dichloropropen	e		<0.30		ug/L		0.3	08-MAR-21
Trichloroethylene			<0.50		ug/L		0.5	08-MAR-21
Trichlorofluoromethane			<5.0		ug/L		5	08-MAR-21
Vinyl chloride			<0.50		ug/L		0.5	08-MAR-21
Surrogate: 1,4-Difluorobe	enzene		101.9		%		70-130	08-MAR-21
Surrogate: 4-Bromofluor	obenzene		99.1		%		70-130	08-MAR-21
WG3497755-5 MS 1,1,1,2-Tetrachloroethan	e	WG3497755-3	100.0		%		50-140	08-MAR-21
1,1,2,2-Tetrachloroethan	е		81.9		%		50-140	08-MAR-21
1,1,1-Trichloroethane			98.1		%		50-140	08-MAR-21
1,1,2-Trichloroethane			90.4		%		50-140	08-MAR-21

Workorder: L2563694

Report Date: 11-MAR-21

Page 9 of 13

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5397766 WG3497755-5 MS		WG3497755-3						
1,1-Dichloroethane			118.9		%		50-140	08-MAR-21
1,1-Dichloroethylene			98.6		%		50-140	08-MAR-21
1,2-Dibromoethane			85.4		%		50-140	08-MAR-21
1,2-Dichlorobenzene			101.0		%		50-140	08-MAR-21
1,2-Dichloroethane			90.1		%		50-140	08-MAR-21
1,2-Dichloropropane			94.1		%		50-140	08-MAR-21
1,3-Dichlorobenzene			97.9		%		50-140	08-MAR-21
1,4-Dichlorobenzene			97.6		%		50-140	08-MAR-21
Acetone			92.4		%		50-140	08-MAR-21
Benzene			93.1		%		50-140	08-MAR-21
Bromodichloromethane			98.7		%		50-140	08-MAR-21
Bromoform			99.5		%		50-140	08-MAR-21
Bromomethane			92.4		%		50-140	08-MAR-21
Carbon tetrachloride			100.5		%		50-140	08-MAR-21
Chlorobenzene			100.1		%		50-140	08-MAR-21
Chloroform			97.6		%		50-140	08-MAR-21
cis-1,2-Dichloroethylene			96.9		%		50-140	08-MAR-21
cis-1,3-Dichloropropene			82.2		%		50-140	08-MAR-21
Dibromochloromethane			90.1		%		50-140	08-MAR-21
Dichlorodifluoromethane			85.1		%		50-140	08-MAR-21
Ethylbenzene			92.3		%		50-140	08-MAR-21
n-Hexane			91.2		%		50-140	08-MAR-21
m+p-Xylenes			95.1		%		50-140	08-MAR-21
Methyl Ethyl Ketone			81.3		%		50-140	08-MAR-21
Methyl Isobutyl Ketone			69.3		%		50-140	08-MAR-21
Methylene Chloride			95.1		%		50-140	08-MAR-21
MTBE			100.4		%		50-140	08-MAR-21
o-Xylene			105.2		%		50-140	08-MAR-21
Styrene			96.1		%		50-140	08-MAR-21
Tetrachloroethylene			86.5		%		50-140	08-MAR-21
Toluene			94.5		%		50-140	08-MAR-21
trans-1,2-Dichloroethyler	ne		97.7		%		50-140	08-MAR-21
trans-1,3-Dichloroproper	ne		80.6		%		50-140	08-MAR-21

Workorder: L2563694

Report Date: 11-MAR-21

Page 10 of 13

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R539776	6							
WG3497755-5 MS Trichloroethylene		WG3497755-3	97.5		%		50-140	08-MAR-21
Trichlorofluoromethan	е		98.4		%		50-140	08-MAR-21
Vinyl chloride			99.4		%		50-140	08-MAR-21
Batch R539967	3							
WG3500398-1 LCS								
1,1,1,2-Tetrachloroeth	ane		86.8		%		70-130	11-MAR-21
1,1,2,2-Tetrachloroeth	ane		52.8	LCS-L	%		70-130	11-MAR-21
1,1,1-Trichloroethane			95.0		%		70-130	11-MAR-21
1,1,2-Trichloroethane			91.4		%		70-130	11-MAR-21
1,1-Dichloroethane			118.3		%		70-130	11-MAR-21
1,1-Dichloroethylene			98.7		%		70-130	11-MAR-21
1,2-Dibromoethane			96.2		%		70-130	11-MAR-21
1,2-Dichlorobenzene			98.5		%		70-130	11-MAR-21
1,2-Dichloroethane			94.9		%		70-130	11-MAR-21
1,2-Dichloropropane			93.9		%		70-130	11-MAR-21
1,3-Dichlorobenzene			111.3		%		70-130	11-MAR-21
1,4-Dichlorobenzene			105.7		%		70-130	11-MAR-21
Acetone			120.2		%		60-140	11-MAR-21
Benzene			94.4		%		70-130	11-MAR-21
Bromodichloromethan	e		93.0		%		70-130	11-MAR-21
Bromoform			70.8		%		70-130	11-MAR-21
Bromomethane			96.7		%		60-140	11-MAR-21
Carbon tetrachloride			96.1		%		70-130	11-MAR-21
Chlorobenzene			95.7		%		70-130	11-MAR-21
Chloroform			97.2		%		70-130	11-MAR-21
cis-1,2-Dichloroethyler	ne		102.3		%		70-130	11-MAR-21
cis-1,3-Dichloroproper	ne		88.0		%		70-130	11-MAR-21
Dibromochloromethan	e		83.8		%		70-130	11-MAR-21
Dichlorodifluorometha	ne		98.9		%		50-140	11-MAR-21
Ethylbenzene			98.8		%		70-130	11-MAR-21
n-Hexane			95.1		%		70-130	11-MAR-21
m+p-Xylenes			96.6		%		70-130	11-MAR-21
Methyl Ethyl Ketone			101.3		%		60-140	11-MAR-21
Methyl Isobutyl Ketone	e		70.5		%		60-140	11-MAR-21

Workorder: L2563694

Report Date: 11-MAR-21

Page 11 of 13

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5399673								
WG3500398-1 LCS								
Methylene Chloride			101.6		%		70-130	11-MAR-21
MIBE			97.4		%		70-130	11-MAR-21
o-Xylene			100.5		%		70-130	11-MAR-21
Styrene			89.2		%		70-130	11-MAR-21
Tetrachloroethylene			104.8		%		70-130	11-MAR-21
Toluene			105.3		%		70-130	11-MAR-21
trans-1,2-Dichloroethyle	ene		101.0		%		70-130	11-MAR-21
trans-1,3-Dichloroprope	ene		92.9		%		70-130	11-MAR-21
Trichloroethylene			94.7		%		70-130	11-MAR-21
Trichlorofluoromethane			98.6		%		60-140	11-MAR-21
Vinyl chloride			101.2		%		60-140	11-MAR-21
WG3500398-2 MB 1.1.1.2-Tetrachloroetha	ne		<0.50		ua/L		0.5	11-MAR-21
1,1,2,2-Tetrachloroetha	ne		<0.50		ug/L		0.5	11-MAR-21
1,1,1-Trichloroethane			<0.50		ug/L		0.5	11-MAR-21
1,1,2-Trichloroethane			<0.50		ug/L		0.5	11-MAR-21
1,1-Dichloroethane			<0.50		ug/L		0.5	11-MAR-21
1,1-Dichloroethylene			<0.50		ug/L		0.5	11-MAR-21
1,2-Dibromoethane			<0.20		ug/L		0.2	11-MAR-21
1,2-Dichlorobenzene			<0.50		ug/L		0.5	11-MAR-21
1,2-Dichloroethane			<0.50		ug/L		0.5	11-MAR-21
1,2-Dichloropropane			<0.50		ug/L		0.5	11-MAR-21
1,3-Dichlorobenzene			<0.50		ug/L		0.5	11-MAR-21
1,4-Dichlorobenzene			<0.50		ug/L		0.5	11-MAR-21
Acetone			<30		ug/L		30	11-MAR-21
Benzene			<0.50		ug/L		0.5	11-MAR-21
Bromodichloromethane			<2.0		ug/L		2	11-MAR-21
Bromoform			<5.0		ug/L		5	11-MAR-21
Bromomethane			<0.50		ug/L		0.5	11-MAR-21
Carbon tetrachloride			<0.20		ug/L		0.2	11-MAR-21
Chlorobenzene			<0.50		ug/L		0.5	11-MAR-21
Chloroform			<1.0		ug/L		1	11-MAR-21
cis-1,2-Dichloroethylene	Э		<0.50		ug/L		0.5	11-MAR-21
cis-1,3-Dichloropropene	9		<0.30		ug/L		0.3	11-MAR-21

Workorder: L2563694

Report Date: 11-MAR-21

Page 12 of 13

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Contact: Samo Szakal

.

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5399673								
WG3500398-2 MB Dibromochloromethane			<2.0		ug/L		2	11-MAR-21
Dichlorodifluoromethan	e		<2.0		ug/L		2	11-MAR-21
Ethylbenzene			<0.50		ug/L		0.5	11-MAR-21
n-Hexane			<0.50		ug/L		0.5	11-MAR-21
m+p-Xylenes			<0.40		ug/L		0.4	11-MAR-21
Methyl Ethyl Ketone			<20		ug/L		20	11-MAR-21
Methyl Isobutyl Ketone			<20		ug/L		20	11-MAR-21
Methylene Chloride			<5.0		ug/L		5	11-MAR-21
MTBE			<2.0		ug/L		2	11-MAR-21
o-Xylene			<0.30		ug/L		0.3	11-MAR-21
Styrene			<0.50		ug/L		0.5	11-MAR-21
Tetrachloroethylene			<0.50		ug/L		0.5	11-MAR-21
Toluene			<0.50		ug/L		0.5	11-MAR-21
trans-1,2-Dichloroethyle	ene		<0.50		ug/L		0.5	11-MAR-21
trans-1,3-Dichloroprope	ene		<0.30		ug/L		0.3	11-MAR-21
Trichloroethylene			<0.50		ug/L		0.5	11-MAR-21
Trichlorofluoromethane			<5.0		ug/L		5	11-MAR-21
Vinyl chloride			<0.50		ug/L		0.5	11-MAR-21
Surrogate: 1,4-Difluorot	penzene		100.4		%		70-130	11-MAR-21
Surrogate: 4-Bromofluo	robenzene		94.2		%		70-130	11-MAR-21
Workorder: L2563694

Report Date: 11-MAR-21

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client: 74 BERKELEY STREET TORONTO ON M5V 1E3 Samo Szakal

Contact:

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
LCS-L	Lab Control Sample recovery was below ALS DQO. Reference Material and/or Matrix Spike results were acceptable. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

<f2-< th=""><th>→</th><th>—_F3—→←_F4—</th><th>→</th></f2-<>	→	—_F3—→ ← _F4—	→								
nC10	nC16	nC34	nC50								
174°C	287°C	481°C	575°C								
346°F	549°F	898°F	1067°F								
Gasolin	e →	← Mot	tor Oils/Lube Oils/Grease								
	← Diesel/Jet Fuels →										

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th colspan="11">$\bullet F2 \rightarrow \bullet F3 \rightarrow \bullet F4 \rightarrow F4$</th></f2-<>	$\bullet F2 \rightarrow \bullet F3 \rightarrow \bullet F4 \rightarrow F4$										
nC10	nC16	nC34	nC50								
174°C	287⁰C	481°C	575°C								
346°F	549°F	898°F	1067°F								
Gasolin	e →	< Mot	or Oils/Lube Oils/Grease								
	← Diesel/Jet Fuels →										

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th colspan="11">$\bullet F2 \rightarrow \bullet F3 \rightarrow \bullet F4 \rightarrow F4$</th></f2-<>	$\bullet F2 \rightarrow \bullet F3 \rightarrow \bullet F4 \rightarrow F4$										
nC10	nC16	nC34	nC50								
174°C	287⁰C	481°C	575°C								
346°F	549°F	898°F	1067ºF								
Gasolin	e →	< Mot	or Oils/Lube Oils/Grease								
	← Diesel/Jet Fuels →										

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→</th><th>—_F3—→←_F4—</th><th>▶</th><th></th></f2-<>	→	—_F3—→←_F4—	▶								
nC10	nC16	nC34	nC50								
174°C	287⁰C	481°C	575°C								
346°F	549°F	898°F	1067°F								
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease—								
	← Diesel/Jet Fuels →										

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→ ←</th><th>—_F3—→←_F4—</th><th>▶</th><th></th></f2-<>	→ ←	—_F3—→←_F4—	▶								
nC10	nC16	nC34	nC50								
174°C	287°C	481°C	575°C								
346°F	549°F	898°F	1067°F								
Gasolin	ie 🔶	← Mot	tor Oils/Lube Oils/Grease								
	← Diesel/Jet Fuels →										

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

COC Number: 20 - 889593

Page of

	Report To	Contact and company name below will appea	r on the final report	Reports / Recipients				Turnaround Time (TAT) Requested							9 1911-1911					
Constant Starting Starting Starting Worge COCID Records with CAL Price	Company:	PAI MEr eminonmental 1	onsulting avoid	Select Report Format: PDF EXCEL EDD (DIGITAL)				Routine [R] if received by 3pm M-F - no surcharges apply												
Participa Participa Participa Operation Developer (Developer Advance) Participa	Contact:	Sam Szak.		Merge QC/Q0	CI Reports with COA) □ N/A		day (P4)	if receive	d by 3pm	M-F- 20%	6 rush surcl	narge minimi	um					
Company states and address of the risk state of the	Phone:	905 399 34M)	Compare Res	ults to Criteria on Report - p	provide details below if	box checked		3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum					(ALS use only)			NE.			
State 1/4 Monthly Str. Email to Fase Statuto Control C		Company address below will appear on the final	report	Select Distributi	ion: 🛋 Email		FAX	1 day [E] if received by 3pm M-F - 100% rush surcharge minimum												
Composed Formal 2 Specified Image: Specified	Street:	74 Revkety St	. /	Email 1 or Fax	Samo. STAL	Kal Wapa	aca] •	Same day [E2] if received by 10am M-S - 200% rush surcharge. Additional fees											
Descal Colit A.5. A. 2.107 Email 3 Desc. Desc. <thdesc.< th=""> Desc. Desc.<</thdesc.<>	City/Province:	tranto travanto	9.N	Email 2 📿	overn. sila	K Q nora	ca		way apply to rush requests on weekends, statutory holidays and non-routine tests					5						
Nameda 2 Report 70 Image 2 Report 70 I	Postal Code:	A 5 4	+2117	Email 3		CPCG		Date and Time Required for all E&P TATs: 12-34						- 21						
Copy of Hunder With Report Proc Proc <th< td=""><td>Invoice To</td><td>Same as Report To</td><td>NO</td><td></td><td>Invoice R</td><td>ecipients</td><td></td><td></td><td></td><td></td><td>For all te</td><td>sts with ru</td><td>sh TATs requ</td><td>ested, pleas</td><td>e contact you</td><td colspan="3">ur AM to confirm availability.</td></th<>	Invoice To	Same as Report To	NO		Invoice R	ecipients					For all te	sts with ru	sh TATs requ	ested, pleas	e contact you	ur AM to confirm availability.				
Order of Marco Construct Hall Prov. Mission neede (attack by goad) Email 1 of Statistical Of Statis Of Statis Of Statistical Of Statis Of St		Copy of Invoice with Report Provide YES	NO	Select Invoice	Distribution:		FAX						A	nalysis R	Request					
Contact: All according of the second sec	Company:	Palmer enviormental (0)	sulting awar	Email 1 or Fax	accornting	8 Precs	.co	18		In	dicate Filt	ered (F), P	reserved (P) or Filtered	and Preserv	ed (F/P) belo	w		B	es)
Project Information Oil and Gis Required Fuelds (Editor use) Image: Control of the control of t	Contact:	Accounting		Email 2 🧲	anaha s	Pak a p	erg-Ca	┛╝											l H	ğ
ALB Account # / Quole # ////////////////////////////////////		Project Information			Oil and Gas Require	d Fields (Client us	50)	12	1 W										ğ	ee
Optimized intervences Reduing Code: Provide Code: Provid	ALS Account #	Quote # 24400		AFE/Cost Center:		PO#		15	X		21							17	E R) (S)
PO: ARE BOULEGO Provide of the point Provide of the point <td>Job #:</td> <td>1604603</td> <td></td> <td>Major/Minor Code:</td> <td>-</td> <td>Routing Code:</td> <td></td> <td>ļŌ</td> <td>Pra </td> <td>1</td> <td>ダイ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ΙĬ</td> <td>AG</td> <td>ARI</td>	Job #:	1604603		Major/Minor Code:	-	Routing Code:		ļŌ	Pra	1	ダイ							ΙĬ	AG	ARI
Location ALS Law Work Order # (ALS use only): ALS Sample # ALS Contacl_ Fold(::: Sample:: S ALS Sample # ALS Contacl_ Fold(::: Sample::	PO / AFE:	604603		Requisitioner:				12			216							Z	OR	R
ALS Lab Work Order & (ALS use only): ALS Contect, Bolkin: Sample: S. Bate Sample Type Bate Bate <td< td=""><td>LSD:</td><td>-</td><td></td><td>Location:</td><td></td><td></td><td></td><td>Jē</td><td></td><td>. .</td><td>Và</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td>S S</td><td>ST</td><td>E E</td></td<>	LSD:	-		Location:				Jē		. .	Và	10						S S	ST	E E
Calculation of the control of the c	AL SL at Wor		2101	ALS Contact	- Alli	Sampler:	$\hat{\boldsymbol{\zeta}}$	l H		<i>≩</i>								Ш	B	E
All Sample F Sample femification and/or Coordinates (CH3 win why) Date (This description will appear on the report) Sample Type (CH3 win why) Sample Ty	ALO LOU (TOI		35VOM	120 00111010	sound	3	<u> </u>		1.		\mathbb{N}	10						Ē		ы С Ш
(ALS use only) (This description will appear on the report) (d2-mmm-yy) (h1mm) (mmm-y) (h1mm) (mmm-y) (h1mm) (mmm-y) (h1mm) (mmm-y) (h1mm) (h	ALS Sample #	Sample Identification	and/or Coordinates		Date	Time	Sample Type	15	R.		A I	\mathbb{N}						. I₹	XI	ISI
Ministry Water (DV) Samples' (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SMMPLE RECEIPTERTALS (ALS use hoty) Drinking Water (DV) Samples' (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SMMPLE RECEIPTERTALS (ALS use hoty) Drinking Water (DV) Samples' (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SMMPLE RECEIPTERTALS (ALS use hoty) Are samples to magen unsupported use? If an intervent receiption (ALS use only) Selecting from drop-down below (Excel COC only) Selecting from the result evaluation by selecting from drop-down below (Excel COC only) Selecting from drop-down below (Excel COC only) Selecting from drop-down below (Excel COC only) Are samples to magen unsupported use? If an intervent we can be only (Excel COC only) Selecting from drop-down below (Excel COC only) Selecting from drop-down below (Excel COC only) If the intervent we can be only intervent we can be only (Excel COC only) If an intervent we can be only (Excel COC only) Selecting from drop-down below (Excel COC only) If the intervent we can be only (Excel COC only) If the intervent we can be only (Excel COC only) Selecting from drop-down below (Excel COC only) If the intervent we can be only (Excel COC only) If the intervent we can be only (Excel COC only) If the intervent we can be o	(ALS use only)	(This description will a	ppear on the report)	<u> </u>	(dd-mmm-yy)	(hh:mm)		<u>z</u>	R	1	70							S S	ш	S
Image: Second		12-1			41-3-61	11 AM	Warn	6	\succ)	×									
Mining Water (DW) Samples' (client use) Notes / Specify Limits for result evaluation by salecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETALS (ALS use Sonty) Drinking Water (DW) Samples' (client use) Notes / Specify Limits for result evaluation by salecting from drop-down below (Excel COC only) Cooling Method:		71-2			14	IVAM	- 11	b	\mathbf{x}	<u>ک</u>	۷									
21-4 2-3-21 12pm 11 4 <		51-7D			1		11	h	$ \mathbf{x} $	5	r									
Image: Stample Stample 3-3-21 Z/min 4		21-11			2-3-71	17.0.00	11	ŭ	M		7				1				Γ	
Tury blank P = 0 C P int P = 0	The Start of Start				2-3-71	7.000	11	<u> </u>	<i>W</i>			1		+ +-			+-+	_		
Implement Implement Implement					5-61	<u> </u>	+		m		-					┼┼				<u> </u>
Drinking Water (DW) Samples' (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT OSTAILS (ALS use bonly) Drinking Water (DW) Samples' (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Cooling Method: Note Note Note Arb samples taken from a Reguladd DW System?	44-12-12-3	Tripbline		· · · ·		· · ·	+		+		_					+				
Drinking Water (DW) Samples' (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETAILS (ALS use only) Are samples taken from a Regulated DW System? VES NO Cooling Method: NO YES NO Are samples for hugan consumption/ use? Date YES NO YES NO SHIPMENT RELEASE (client use) Immediate the sample for hugan consumption/ use? FINAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES °C YES NO SHIPMENT RELEASE (client use) Immediate the sample for hugan consumption (ALS use only) Time: Received by: Time: Received by: Time: Received by: Time: Received by: Time: State only	- Maria	· · · · · · · · · · · · · · · · · · ·					1									┞──╋─				<u> </u>
Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETAILS (ALS use only) Are samples taken from a Regulated DW System? VES NO ICE COEIng Method: NO ICE COOLING INITIATES Are samples tor mugan borisupation/ use? VES NO ICE VES NO ICE Cooling Method: ICE ICE Cooling Initiation: IFE NO ShiPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (ALS use only) Initiation: IFE INITIAL SHIPMENT RECEPTION (ALS use only) Initiation: IFE INITIAL Released by Date: APA AND COULDE FOR ALL SHIPMENT RECEPTION (ALS use only) Initiation: IFE INITIAL SHIPMENT RECEPTION (ALS use only) Released by Date: APA AND Date: Initiation: IFE INITIAL SHIPMENT RECEPTION (ALS use only) Released by Date: APA AND Image:																				
Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETAILS (ALS use only) Are samples taken from a Regulated DW System? VE Nome ICI ICIE MACKS FROZEN COOLING INITIATED Are samples taken from a Regulated DW System? VE NO ICI ICIE MACKS FROZEN COOLING INITIATED Are samples for human borsumption/ use? VE NO ICIE MACKS FROZEN COOLING INITIATED ShiPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (ALS use only) Samples (Inter: VE VE NA Released by Dates Junt AL SHIPMENT RECEPTION (ALS use only) Inter: Received by: Date: Mathematication Time: Released by Dates APA AND SATENDARY CODY VELION CODE VELION CODE VELION CODE Time:																				
Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Cooling Method: NONE Ick NONE NONE Ick NONE NONE Ick NONE NONE																				
Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETAILS (ALS use only) Are samples taken from a Regulated DW System? Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Cooling Method: Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Are samples taken from a Regulated DW System? H H H Submission Comments identified on Sample Receipt Notification: Image: Cooling Method: Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) YES NO H H Submission Comments identified on Sample Receipt Notification: Image: Cooling Method: Image: Cooling Method						1										1-1-				
Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETAILS (ALS use only) Are samples taken from a Regulated DW System? IC ICE						1		+	+							+ + + -	-		1	
Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from urbp-down delow Are samples taken from a Regulated DW System? VES NONE ICE ICE ICE ICE ICE ICE Cooling Method: INTIAL ShipMENT RECEPTION (ALS use only) Are samples tor human consumption/ use? VES NO Imit: Received by: Imi			Maina / Crissle	hi l imite for social	t ovaluation by coloritie	I from dron down						SAM	PLE REC	EIPTOET	AILS (AL	S use on	y) 🐉		1	Ser. 1
Are samples taken from a Regulated DW System? VYES DN 0 Are samples for human consumption/ use? VYES DN 0 SHIPMENT RELEASE (client use) Date: D	Drinkin	g Water (DW) Samples ¹ (client use)	Notes / Spech	y contra tor resul	(Excel COC only)	iy nom urop-uown	DEIOW	Cool	ing Met	hod:		្ត 🗂	ICE S	LICE PACK	S 📋 FI	ROZEN		LING INITI	ÂŤED	al an
VES NO Are samples for human borlsupption/ use? Q Q G G G G G G G G G NA Sample Custody Seals Intact: US Sample Custody Seals Intact: US Sample Custody Seals Intact US	Are camples take	n from a Regulated DW System?		-				Subi	nission	Comme	nts iden	ified on	Sample I	leceipt No	otification:	F				
Are samples for human borisuppetion/ use? VES NO SHIPMENT RELEASE (client use) Released by Date: Dat		es 👖 NO /		3, T	3 500			Cool	er Cust	ody Sea	Is Intact		∏ Yes I	NA S	Sample Ci	ustody Sei	la Intact:		ස 🗖	N/A
Image: Prest No Image: Prest No SHIPMENT RELEASE (client use) Image: Prest No Released by: Date: Date: Date: Date: </td <td>Are samples for</td> <td>numan consumption/ use?</td> <td>19 NLOG 15</td> <td></td> <td>/ 10></td> <td></td> <td></td> <td></td> <td>4</td> <td>IIITIAL CO</td> <td>OLER TE</td> <td>MPERAT</td> <td>JRES °C</td> <td>积</td> <td></td> <td>FINAL CO</td> <td>ER TEMPE</td> <td>RATURES</td> <td>°C</td> <td>بدهبت</td>	Are samples for	numan consumption/ use?	19 NLOG 15		/ 10>				4	IIITIAL CO	OLER TE	MPERAT	JRES °C	积		FINAL CO	ER TEMPE	RATURES	°C	بدهبت
SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (ALS use only) FINAL SHIPMENT RECEPTION (ALS use only) Released by: Date: July: July: Date: July:		ES NO						5	2						03		5.6			Sign Maga
Released by Dates - 3- 22 Time: Received by: Karan Date: A Do Date: 19: Date		SHIPMENT RELEASE (client use)	<u></u>		INITIAL SHIPMEN	T RECEPTION (A	LS use only)			Ž		6	NAL SH	IPMENT	RECEPT	ON (ALS	use only)		「「「「」」	
TAR ALS LOCATIONS AND SAMPLING INCOMMATION WHITE LABOBATAOV CODY VELICIAL CLEAT CODY	Released by	Date: 2-	21 Time:	Received by:	V	Date:	1.1	Time	× [Receiv	ed by:	N	17	Date	lih	1	1	T	ΨÛ	5
											-	J	1		412	<u> </u>	188 - C		AUG	2020 FRO

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the while - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) ATTN: Samo Szakal 74 BERKELEY STREET TORONTO ON M5V 1E3 Date Received:04-MAR-21Report Date:17-MAR-21 10:46 (MT)Version:FINAL

Client Phone: 647-795-8152

Certificate of Analysis

Lab Work Order #: L2563701 Project P.O. #: 1604603 Job Reference: 1604603 C of C Numbers: Legal Site Desc:

Khirefaterso

Jennifer Barkshire-Paterson Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Summary of Guideline Exceedances

Guideline ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
Ontario Reg	gulation 153/04 - April 15, 2011 Sta	ndards - T3-Soil-Res/Park/In	nst. Property Use (Coarse)			
L2563701-4	21-3-1	Hydrocarbons	F3 (C16-C34) F4 (C34-C50)	13100 3880	300 2800	ug/g ug/g
L2563701-12	2 21-8	Metals	Cadmium (Cd) Lead (Pb)	3.06 146	1.2 120	ug/g ug/g
L2563701-13	8 21-8D	Metals	Cadmium (Cd)	3.06	1.2	ug/g
Ontario Reg	gulation 153/04 - April 15, 2011 Sta	ndards - T3-Soil-Res/Park/In	nst. Property Use (Fine)			
L2563701-4	21-3-1	Hydrocarbons	F3 (C16-C34)	13100	1300	ug/g
L2563701-12	2 21-8	Metals	Cadmium (Cd) Lead (Pb)	3.06 146	1.2 120	ug/g ug/g
L2563701-13	8 21-8D	Metals	Cadmium (Cd)	3.06	1.2	ug/g

Physical Tests - SOIL

			Lab ID	L2563701-1	L2563701-2	L2563701-3	L2563701-4	L2563701-5	L2563701-6	L2563701-7	L2563701-8	L2563701-9
		Sampl	e Date	02-MAR-21	02-MAR-21	02-MAR-21	02-MAR-21	02-MAR-21	02-MAR-21	03-MAR-21	03-MAR-21	03-MAR-21
		Sam	ple ID	21-4-1	21-4-4	21-4-4D	21-3-1	21-5-2	21-5-7	21-2-2	21-2-6	21-2-6D
		Guide	Limits									
Analyte	Unit	#1	#2									
Conductivity	mS/cm	0.7	0.7									
Grain Size Curve		-	-						SEE			
									ATTACHED			
% Moisture	%	-	-		11.9	11.6	1.25	17.8		17.7		
рН	pH units	-	-	7.55							7.69	7.79

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2563701 CONT'D Job Reference: 1604603 PAGE 4 of 16 17-MAR-21 10:46 (MT)

Physical Tests - SOIL

-							
			Lab ID	L2563701-10	L2563701-11	L2563701-12	L2563701-13
		Samp	le Date	03-MAR-21	03-MAR-21	03-MAR-21	03-MAR-21
		San	nple ID	21-6	21-7	21-8	21-8D
		Guide	Limits				
Analyte	Unit	#1	#2				
Conductivity	mS/cm	0.7	0.7	0.520	0.565	0.513	0.469
Grain Size Curve		-	-				
% Moisture	%	-	-	14.7	15.2	14.0	12.4
рН	pH units	-	-	7.51	7.61	7.67	7.73

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2563701 CONT'D.... Job Reference: 1604603 PAGE 5 of 16 17-MAR-21 10:46 (MT)

Particle Size - SOIL

		Lab ID Sample Date Sample ID			
Analyte	Unit	Guide #1	Limits #2		
Gravel (4.75mm - 3in.)	%	-	-	<1.0	
Medium Sand (0.425mm - 2.0mm)	%	-	-	6.8	
Coarse Sand (2.0mm - 4.75mm)	%	-	-	1.8	
Fine Sand (0.075mm - 0.425mm)	%	-	-	13.8	
Silt (0.002mm - 0.075mm)	%	-	-	44.9	
Silt (0.005mm - 0.075mm)	%	-	-	29.6	
Clay (<0.002mm)	%	-	-	32.5	
Clay (<0.005mm)	%	-	-	47.8	

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Cyanides - SOIL

		l Sample Sam	Lab ID e Date ple ID	L2563701-10 03-MAR-21 21-6	L2563701-11 03-MAR-21 21-7	L2563701-12 03-MAR-21 21-8	L2563701-13 03-MAR-21 21-8D
Analyte	Unit	Guide #1	Limits #2				
Cyanide, Weak Acid Diss	ug/g	0.051	0.051	<0.050	<0.050	<0.050	<0.050

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2563701 CONT'D.... Job Reference: 1604603 PAGE 7 of 16 17-MAR-21 10:46 (MT)

Saturated Paste Extractables - SOIL

		Samp	Lab ID le Date	L2563701-10 03-MAR-21	L2563701-11 03-MAR-21	L2563701-12 03-MAR-21	L2563701-13 03-MAR-21
		Sar	nple ID	21-6	21-7	21-8	21-8D
Analyte	Unit	Guide #1	e Limits #2				
SAR	SAR	5	5	0.29	0.26	0.30	0.28
Calcium (Ca)	mg/L	-	-	56.6	63.3	80.7	75.6
Magnesium (Mg)	mg/L	-	-	4.81	4.87	6.82	5.84
Sodium (Na)	mg/L	-	-	8.49	8.01	10.4	9.27

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse)

Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Metals - SOIL

		Sample Sam	Lab ID e Date ple ID	L2563701-10 03-MAR-21 21-6	L2563701-11 03-MAR-21 21-7	L2563701-12 03-MAR-21 21-8	L2563701-13 03-MAR-21 21-8D
Analyte	Unit	Guide #1	Limits #2				
Antimony (Sb)	ug/g	7.5	7.5	<1.0	<1.0	1.4	1.3
Arsenic (As)	ug/g	18	18	4.6	5.1	4.6	5.4
Barium (Ba)	ug/g	390	390	59.3	60.1	73.2	72.7
Beryllium (Be)	ug/g	4	5	<0.50	<0.50	<0.50	<0.50
Boron (B)	ug/g	120	120	10.0	9.7	10.9	9.9
Boron (B), Hot Water Ext.	ug/g	1.5	1.5	0.54	0.40	0.82	0.78
Cadmium (Cd)	ug/g	1.2	1.2	0.99	0.66	3.06	3.06
Chromium (Cr)	ug/g	160	160	25.6	19.9	26.9	29.7
Cobalt (Co)	ug/g	22	22	6.7	6.8	7.7	7.6
Copper (Cu)	ug/g	140	180	47.0	31.8	110	111
Lead (Pb)	ug/g	120	120	38.4	24.5	146	106
Mercury (Hg)	ug/g	0.27	1.8	0.0524	0.0349	0.152	0.152
Molybdenum (Mo)	ug/g	6.9	6.9	1.3	<1.0	1.7	2.7
Nickel (Ni)	ug/g	100	130	18.5	16.3	22.1	21.6
Selenium (Se)	ug/g	2.4	2.4	<1.0	<1.0	<1.0	<1.0
Silver (Ag)	ug/g	20	25	0.41	<0.20	1.02	1.06
Thallium (TI)	ug/g	1	1	<0.50	<0.50	<0.50	<0.50
Uranium (U)	ug/g	23	23	<1.0	<1.0	<1.0	<1.0
Vanadium (V)	ug/g	86	86	25.6	25.6	30.3	28.5
Zinc (Zn)	ug/g	340	340	251	165	336	329

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse)

Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2563701 CONT'D Job Reference: 1604603 PAGE 9 of 16 17-MAR-21 10:46 (MT)

Speciated Metals - SOIL

		Sampl	Lab ID le Date	L2563701-10 03-MAR-21	L2563701-11 03-MAR-21	L2563701-12 03-MAR-21	L2563701-13 03-MAR-21
		San	nple ID	21-6	21-7	21-8	21-8D
		Cuida	Limito				
Analyte	Unit	guide #1	#2				
Chromium, Hexavalent	ug/g	8	10	<0.20	<0.20	<0.20	0.25

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2563701 CONT'D.... Job Reference: 1604603 PAGE 10 of 16 17-MAR-21 10:46 (MT)

Volatile Organic Compounds - SOIL

		L	ab ID	L2563701-2	L2563701-3	L2563701-4	L2563701-5	L2563701-7
		Sample	Date	02-MAR-21	02-MAR-21	02-MAR-21	02-MAR-21	03-MAR-21
		Sam	ple ID	21-4-4	21-4-4D	21-3-1	21-5-2	21-2-2
		Cuidal	imito					
Analyte U	Jnit	guide i #1	#2					
Acetone	ug/g	16	28			<0.50		
Benzene	ug/g	0.21	0.17	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068
Bromodichloromethane	ug/g	13	13			<0.050		
Bromoform	ug/g	0.27	0.26			<0.050		
Bromomethane	ug/g	0.05	0.05			<0.050		
Carbon tetrachloride	ug/g	0.05	0.12			<0.050		
Chlorobenzene	ug/g	2.4	2.7			<0.050		
Dibromochloromethane	ug/g	9.4	9.4			<0.050		
Chloroform	ug/g	0.05	0.18			<0.050		
1,2-Dibromoethane	ug/g	0.05	0.05			<0.050		
1,2-Dichlorobenzene	ug/g	3.4	4.3			<0.050		
1,3-Dichlorobenzene	ug/g	4.8	6			<0.050		
1,4-Dichlorobenzene	ug/g	0.083	0.097			<0.050		
Dichlorodifluoromethane	ug/g	16	25			<0.050		
1,1-Dichloroethane	ug/g	3.5	11			<0.050		
1,2-Dichloroethane	ug/g	0.05	0.05			<0.050		
1,1-Dichloroethylene	ug/g	0.05	0.05			<0.050		
cis-1,2-Dichloroethylene	ug/g	3.4	30			<0.050		
trans-1,2-Dichloroethylene	ug/g	0.084	0.75			<0.050		
Methylene Chloride	ug/g	0.1	0.96			<0.050		
1,2-Dichloropropane	ug/g	0.05	0.085			<0.050		
cis-1,3-Dichloropropene	ug/g	-	-			<0.030		
trans-1,3-Dichloropropene	ug/g	-	-			<0.030		
1,3-Dichloropropene (cis & trans)	ug/g	0.05	0.083			<0.042		
Ethylbenzene	ug/g	2	15	<0.018	<0.018	<0.018	<0.018	<0.018
n-Hexane u	ug/g	2.8	34			<0.050		
Methyl Ethyl Ketone	ug/g	16	44			<0.50		
Methyl Isobutyl Ketone	ug/g	1.7	4.3			<0.50		
MTBE	ug/g	0.75	1.4			<0.050		
Styrene	ug/g	0.7	2.2			<0.050		

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

* Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2563701 CONT'D Job Reference: 1604603 PAGE 11 of 16 17-MAR-21 10:46 (MT)

Volatile Organic Compounds - SOIL

	L	ab ID	L2563701-2	L2563701-3	L2563701-4	L2563701-5	L2563701-7
	Sample	Date	02-MAR-21	02-MAR-21	02-MAR-21	02-MAR-21	03-MAR-21
	Sam	ole ID	21-4-4	21-4-4D	21-3-1	21-5-2	21-2-2
	Guide I	imits					
Jnit	#1	#2					
ug/g	0.058	0.05			<0.050		
ug/g	0.05	0.05			<0.050		
ug/g	0.28	2.3			<0.050		
ug/g	2.3	6	<0.080	<0.080	<0.080	<0.080	<0.080
ug/g	0.38	3.4			<0.050		
ug/g	0.05	0.05			<0.050		
ug/g	0.061	0.52			<0.010		
ug/g	4	5.8			<0.050		
ug/g	0.02	0.022			<0.020		
ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020
ug/g	-	-	<0.030	<0.030	<0.030	<0.030	<0.030
ug/g	3.1	25	<0.050	<0.050	<0.050	<0.050	<0.050
%	-	-	104.1	107.5	96.2	100.5	104.4
%	-	-	103.2	106.3	108.3	98.7	103.3
	Jnit ug/g ug/g ug/g ug/g ug/g ug/g ug/g ug/	L Sample Sample Sample Sample Sample Sample Sample Sample Guide I ug/g 0.058 ug/g 0.058 ug/g 0.28 ug/g 0.38 ug/g 0.061 ug/g 0.061 ug/g 0.02 ug/g 0.22 ug/g 0.21 ug/g 0.21 ug/g 0.21 ug/g 0.21 ug/g 0.21 ug/g 0.21 ug/g 3.1 % -	Lab ID Sample Date Sample Date Sample Date sample Date sample Date sample Date sample Date sample Date sample DateQueGuide IIII (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Lab ID Sample Date Sample IDL2563701-2 02-MAR-21 21-4-4JnitGuide Lines #1L2563701-2 02-MAR-21 21-4-4ug/sGuide Lines #1L2563701-2 02-MAR-21 21-4-4ug/sGuide Lines #1H2ug/s0.050.05ug/g0.0580.05ug/g0.052.3ug/g0.052.3ug/g0.033.4ug/g0.050.05ug/g0.0610.52ug/g0.010.02ug/g0.020.021ug/g0.020.021ug/g0.020.021ug/g0.10.020ug/g3.125ug/g3.125ug/g0.1104.1%-103.2	Lab ID Sample Date Sample IDL2563701-2 02-MAR-21 21-4-4L2563701-3 02-MAR-21 21-4-4DJnitGuide Lines #1L2563701-3 02-MAR-21 21-4-4DL2563701-3 02-MAR-21 21-4-4Dug/sGuide Lines #1L2563701-2 02-MAR-21 21-4-4DL2563701-3 02-MAR-21 21-4-4Dug/sO.058 0.0580.05L2563701-2 02-MAR-21 21-4-4DL2563701-3 02-MAR-21 21-4-4Dug/s0.058 0.0580.05L2563701-2 02-MAR-21 21-4-4DL2563701-3 02-MAR-21 21-4-4Dug/s0.058 0.0580.05L2563701-2 0.050L2563701-2 0.050ug/s0.058 0.0510.050ug/s0.061 0.0520.050ug/s0.061 0.0520.050ug/s0.01 0.0210.020ug/s0.02 0.021ug/s0.02 0.021ug/s0.02 0.021ug/s0.02 0.021ug/s0.02 0.021ug/s0.02 0.021ug/s0.02 0.021ug/s0.02 0.02ug/s0.02 0.021ug/s0.021 0.021ug/s0.02 0.021ug/s0.02 0.021ug/s0.02 0.021ug/s0.021 0.021ug/s0.021 0.021ug/s0.021 0.021ug/s </td <td>Lab ID Sample Date Sample IDL2563701-2 02-MAR-21 21-4-4L2563701-3 02-MAR-21 21-4-4DL2563701-4 02-MAR-21 21-3-1JnitGuide Limits #1L2563701-2 121-4-4DL2563701-3 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1ug/gO.058 9.0580.05L2563701-2 21-4-4DL2563701-3 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1ug/g0.058 #1J.14-40Semiclean 21-4-4DSemiclean 02-MAR-21 21-3-1ug/g0.058 9.0580.05Semiclean 9.050Semiclean 9.050ug/g0.058 9.0380.05Semiclean 9.050Semiclean 9.050ug/g0.051 9.0290.052Semiclean 9.020Semiclean 9.020ug/g0.061 9.0200.052Semiclean 9.020Semiclean 9.020ug/g0.061 9.0200.052Semiclean 9.020Semiclean 9.020ug/g0.01 9.0200.020Semiclean 9.020Semiclean 9.020ug/g0.02 9.0200.020Semiclean 9.020Semiclean 9.020ug/g0.1 9.125 9.020Semiclean 9.020Semiclean 9.020Semiclean 9.020ug/g0.1 9.1101.2106.3108.3</td> <td>Lab ID Sample Date Sample IDL2563701-2 02-MAR-21 21-44L2563701-3 02-MAR-21 21-44DL2563701-4 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L256370-6 02-MAR-21 21-52L256370-6 02-MAR-21 21-52L256370-6 02-MAR-21 21-52L256370-6 02-MAR-21<</td>	Lab ID Sample Date Sample IDL2563701-2 02-MAR-21 21-4-4L2563701-3 02-MAR-21 21-4-4DL2563701-4 02-MAR-21 21-3-1JnitGuide Limits #1L2563701-2 121-4-4DL2563701-3 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1ug/gO.058 9.0580.05L2563701-2 21-4-4DL2563701-3 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1ug/g0.058 #1J.14-40Semiclean 21-4-4DSemiclean 02-MAR-21 21-3-1ug/g0.058 9.0580.05Semiclean 9.050Semiclean 9.050ug/g0.058 9.0380.05Semiclean 9.050Semiclean 9.050ug/g0.051 9.0290.052Semiclean 9.020Semiclean 9.020ug/g0.061 9.0200.052Semiclean 9.020Semiclean 9.020ug/g0.061 9.0200.052Semiclean 9.020Semiclean 9.020ug/g0.01 9.0200.020Semiclean 9.020Semiclean 9.020ug/g0.02 9.0200.020Semiclean 9.020Semiclean 9.020ug/g0.1 9.125 9.020Semiclean 9.020Semiclean 9.020Semiclean 9.020ug/g0.1 9.1101.2106.3108.3	Lab ID Sample Date Sample IDL2563701-2 02-MAR-21 21-44L2563701-3 02-MAR-21 21-44DL2563701-4 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1L2563701-4 02-MAR-21 21-3-1L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L2563701-6 02-MAR-21 21-52L256370-6 02-MAR-21 21-52L256370-6 02-MAR-21 21-52L256370-6 02-MAR-21 21-52L256370-6 02-MAR-21<

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse)

Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2563701 CONT'D Job Reference: 1604603 PAGE 12 of 16 17-MAR-21 10:46 (MT)

Hydrocarbons - SOIL

2								
		L	_ab ID	L2563701-2	L2563701-3	L2563701-4	L2563701-5	L2563701-7
		Sample	e Date	02-MAR-21	02-MAR-21	02-MAR-21	02-MAR-21	03-MAR-21
		Sam	ple ID	21-4-4	21-4-4D	21-3-1	21-5-2	21-2-2
		Guide	Limits					
Analyte	Unit	#1	#2					
F1 (C6-C10)	ug/g	55	65	<5.0	<5.0	<5.0	<5.0	<5.0
F1-BTEX	ug/g	55	65	<5.0	<5.0	<5.0	<5.0	<5.0
F2 (C10-C16)	ug/g	98	150	<10	<10	44	<10	<10
F3 (C16-C34)	ug/g	300	1300	<50	<50	13100	<50	<50
F4 (C34-C50)	ug/g	2800	5600	<50	<50	3880	<50	<50
Total Hydrocarbons (C6-C50)	ug/g	-	-	<72	<72	17100	<72	<72
Chrom. to baseline at nC50		-	-	YES	YES	YES	YES	YES
Surrogate: 2-Bromobenzotrifluoride	%	-	-	92.6	89.4	87.2	94.2	90.0
Surrogate: 3,4-Dichlorotoluene	%	-	-	80.2	86.2	52.6 SURR- ND	79.4	83.3

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse)

Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Qualifiers for Individual Parameters Listed:

	nuiviuual Fa	ameters Lister	4.	
Qualifier	Description			
SURR-ND	Surrogate re	ecovery margina	Ily exceeded ALS DQO. Reported non-	detect results for associated samples were deemed to be unaffected.
Methods Liste	d (if applicab	le):		
ALS Test Code	9	Matrix	Test Description	Method Reference**
B-HWS-R51	1-WT	Soil	Boron-HWE-O.Reg 153/04 (July 2011)) HW EXTR, EPA 6010B
A dried solic	l sample is ex	tracted with calc	ium chloride, the sample undergoes a h	eating process. After cooling the sample is filtered and analyzed by ICP/OES.
Analysis cor	nducted in acc	cordance with th	e Protocol for Analytical Methods Used i	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
BTX-511-HS	-WT	Soil	BTEX-O.Reg 153/04 (July 2011)	SW846 8260
BTX is deter	rmined by extr	racting a soil or	sediment sample as received with metha	anol, then analyzing by headspace-GC/MS.
Analysis cor	nducted in acc	cordance with th	e Protocol for Analytical Methods Used i	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
CN-WAD-R5	11-WT	Soil	Cyanide (WAD)-O.Reg 153/04 (July 2011)	MOE 3015/APHA 4500CN I-WAD
The sample chloride the	is extracted w n reacts with a	vith a strong bas a combination of	e for 16 hours, and then filtered. The filt barbituric acid and isonicotinic acid to f	rate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen orm a highly colored complex.
Analysis cor	nducted in acc	cordance with th	e Protocol for Analytical Methods Used i	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
CR-CR6-IC-	NT	Soil	Hexavalent Chromium in Soil	SW846 3060A/7199
This analysi The procedu	s is carried ou ure involves ar	it using procedu nalysis for chron	res adapted from "Test Methods for Eva nium (VI) by ion chromatography using c	luating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). diphenylcarbazide in a sulphuric acid solution.
Analysis cor	nducted in acc	cordance with th	e Protocol for Analytical Methods Used i	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
EC-WT		Soil	Conductivity (EC)	MOEE E3138
A representa	ative subsamp	ole is tumbled w	ith de-ionized (DI) water. The ratio of wa	ter to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.
Analysis cor	nducted in acc	cordance with th	e Protocol for Analytical Methods Used i	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
F1-F4-511-C	ALC-WT	Soil	F1-F4 Hydrocarbon Calculated Parameters	CCME CWS-PHC, Pub #1310, Dec 2001-S
Analytical m	ethods used f	for analysis of C	CME Petroleum Hydrocarbons have bee	en validated and comply with the Reference Method for the CWS PHC.
Hydrocarbor	n results are e	expressed on a c	Iry weight basis.	
In cases wh	ere results for	both F4 and F4	G are reported, the greater of the two re	sults must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be

added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Methods Listed (if applicable):	
---------------------------------	--

ALC Test Code	Motrix	Test Description
ALS TEST CODE	Matrix	Test Description

Method Reference**

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

1. All extraction and analysis holding times were met.

2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.

3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

1. All extraction and analysis holding times were met.

2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.

3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.

4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Soil F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Soil F2-F4-O.Reg 153/04 (July 2011) CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sg is analyzed gravimetrically.

Notes:

1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.

2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.

3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.

4. F4G: Gravimetric Heavy Hydrocarbons

5. F4G-sg: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.

6. Where both F4 (C34-C50) and F4G-sg are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.

7. F4G-sg cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.

8. This method is validated for use.

9. Data from analysis of validation and quality control samples is available upon request.

10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

GRAIN SIZE-HYD-SK Soil Grain Size by Hydrometer ASTM D6913/D7928

Particle size curve is generated from dry sieving (particles > 2 mm), wet sieving (particles 2 mm-75 um) and hydrometer readings (particles < 75 um)

ASTM D422-63 has been withdrawn, the ASTM D6913/D7928 standard serves as the successor method.

HG-200.2-CVAA-WT Soil Mercury in Soil by CVAAS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT Soil Metals in Soil by CRC ICPMS EPA 200.2/6020B (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

L2563701 CONT'D.... Job Reference: 1604603 PAGE 15 of 16 17-MAR-21 10:46 (MT)

Methods Listed (if applicab	le):		17-MAR-21 10:46 (MT)
ALS Test Code	Matrix	Test Description	Method Reference**
Limitations: This method Ba, Be, Cr, S, Sr, Ti, Tl, V digestion.	is intended to /, W, and Zr. 1	liberate environmentally available meta Elemental Sulfur may be poorly recover	Is. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, ed by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or
Analysis conducted in acc of the Analytical Test Gro	cordance with up (ATG) has	the Protocol for Analytical Methods Use been requested (the Protocol states the	ed in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset at all analytes in an ATG must be reported).
MOISTURE-WT	Soil	% Moisture	CCME PHC in Soil - Tier 1 (mod)
PH-WT	Soil	рН	MOEE E3137A
A minimum 10g portion o using a pH meter and ele	f the sample is ctrode.	s extracted with 20mL of 0.01M calcium	chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed
Analysis conducted in acc	cordance with	the Protocol for Analytical Methods Use	d in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
SAR-R511-WT	Soil	SAR-O.Reg 153/04 (July 2011)	SW846 6010C
A dried, disaggregated sc and Mg are reported as p	olid sample is e er CALA requi	extracted with deionized water, the aque rements for calculated parameters. The	eous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca ese individual parameters are not for comparison to any guideline.
Analysis conducted in acc	cordance with	the Protocol for Analytical Methods Use	d in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
VOC-1,3-DCP-CALC-WT	Soil	Regulation 153 VOCs	SW8260B/SW8270C
VOC-511-HS-WT	Soil	VOC-O.Reg 153/04 (July 2011)	SW846 8260 (511)
Soil and sediment sample	es are extracte	d in methanol and analyzed by headspa	ace-GC/MS.
Analysis conducted in acc of the Analytical Test Gro	cordance with up (ATG) has	the Protocol for Analytical Methods Use been requested (the Protocol states the	ed in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset at all analytes in an ATG must be reported).
XYLENES-SUM-CALC-W	T Soil	Sum of Xylene Isomer Concentratio	ns CALCULATION
Total xylenes represents	the sum of o-x	ylene and m&p-xylene.	
*ALS test methods may inco	rporate modific	cations from specified reference method	Is to improve performance.
Chain of Custody Numbers:			
The last two letters of the ab	ove test code	(s) indicate the laboratory that performe	d analytical analysis for that test. Refer to the list below:
Laboratory Definition Code	Laborato	ry Location	

SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

 $\ensuremath{\textit{mg/L}}\xspace$ - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Report Date: 17-MAR-21

Page 1 of 14

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Workorder: L2563701

Contact: Samo Szakal

_

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
B-HWS-R511-WT	Soil							
Batch R5400597								
WG3501050-4 DUP Boron (B), Hot Water Ex	×t.	L2563469-4 <0.10	<0.10	RPD-NA	ug/g	N/A	30	12-MAR-21
WG3501050-2 IRM Boron (B), Hot Water Ex	xt.	WT SAR4	93.6		%		70-130	12-MAR-21
WG3501050-3 LCS Boron (B), Hot Water Ex	xt.		102.0		%		70-130	12-MAR-21
WG3501050-1 MB Boron (B), Hot Water Ex	xt.		<0.10		ug/g		0.1	12-MAR-21
BTX-511-HS-WT	Soil							
Batch R5397771								
WG3497897-4 DUP Benzene		WG3497897-3 <0.0068	<0.0068	RPD-NA	ug/g	N/A	40	08-MAR-21
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	08-MAR-21
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	08-MAR-21
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	08-MAR-21
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	08-MAR-21
WG3497897-2 LCS Benzene			113 1		%		70-130	08-MAR-21
Ethylbenzene			107.9		%		70-130	08-MAR-21
m+p-Xvlenes			100.0		%		70-130	08-MAR-21
o-Xvlene			106.9		%		70-130	08-MAR-21
Toluene			106.2		%		70-130	08-MAR-21
WG3497897-1 MB							10100	
Benzene			<0.0068		ug/g		0.0068	08-MAR-21
Ethylbenzene			<0.018		ug/g		0.018	08-MAR-21
m+p-Xylenes			<0.030		ug/g		0.03	08-MAR-21
o-Xylene			<0.020		ug/g		0.02	08-MAR-21
Toluene			<0.080		ug/g		0.08	08-MAR-21
Surrogate: 1,4-Difluorob	penzene		109.9		%		50-140	08-MAR-21
Surrogate: 4-Bromofluo	robenzene		112.3		%		50-140	08-MAR-21
WG3497897-5 MS		WG3497897-3						
Benzene			121.6		%		60-140	08-MAR-21
Ethylbenzene			120.9		%		60-140	08-MAR-21
m+p-Xylenes			112.3		%		60-140	08-MAR-21
o-Xylene			119.6		%		60-140	08-MAR-21
Toluene			119.0		%		60-140	08-MAR-21

Report Date: 17-MAR-21

Page 2 of 14

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Workorder: L2563701

Contact: Samo Szakal

.

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CN-WAD-R511-WT	Soil							
Batch R5400288	•							
WG3499691-3 DUP		L2563686-1						
Cyanide, Weak Acid Di	SS	<0.050	<0.050	RPD-NA	ug/g	N/A	35	12-MAR-21
WG3499691-2 LCS								
Cyanide, Weak Acid Di	SS		93.4		%		80-120	12-MAR-21
WG3499691-1 MB								
Cyanide, Weak Acid Di	SS		<0.050		ug/g		0.05	12-MAR-21
WG3499691-4 MS		L2563686-1						
Cyanide, Weak Acid Di	ss		94.5		%		70-130	12-MAR-21
CR-CR6-IC-WT	Soil							
Batch R5400261								
WG3499684-4 CRM		WT-SOC012						
Chromium, Hexavalent			108.3		%		70-130	12-MAR-21
WG3499684-3 DUP		1 2563686-1						
Chromium, Hexavalent		< 0.20	<0.20	RPD-NA	ug/g	N/A	35	12-MAR-21
WG3499684-2 ICS								
Chromium, Hexavalent			97.8		%		80-120	12-MAR-21
WG3499684-1 MB								
Chromium, Hexavalent			<0.20		ug/g		0.2	12-MAR-21
	0							
EC-WI	5011							
Batch R5402004	•	W00504050 0						
Conductivity		WG3501052-3	0 306		mS/cm	0.0	20	16 MAD 21
		0.500	0.000		ino/oin	0.0	20	10-IVIAR-21
WG3501052-2 IRM		WT SAR4	111 3		%		70 120	16 MAD 01
			111.5		70		70-130	10-IVIAR-21
WG3503075-1 LCS			07.0		0/_		00 110	
			97.0		70		90-110	16-MAR-21
WG3501052-1 MB			~0.0040		mS/cm		0.004	16 MAD 01
Conductivity			<0.0040		mo/cm		0.004	10-IVIAR-21
F1-HS-511-WT	Soil							
Batch R5397771								
WG3497897-4 DUP		WG3497897-3						
F1 (C6-C10)		<5.0	<5.0	RPD-NA	ug/g	N/A	30	08-MAR-21
WG3497897-2 LCS								
F1 (C6-C10)			94.6		%		80-120	08-MAR-21
WG3497897-1 MB								
F1 (C6-C10)			<5.0		ug/g		5	08-MAR-21
Surrogate: 3,4-Dichloro	otoluene		99.5		%		60-140	08-MAR-21

Report Date: 17-MAR-21

Page 3 of 14

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Workorder: L2563701

Contact: Samo Szakal

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT		Soil							
Batch R5	397771								
WG3497897-5 F1 (C6-C10)	MS		WG3497897-3	93.6		%		60-140	08-MAR-21
Batch R5	398390								
WG3498750-4 F1 (C6-C10)	DUP		WG3498750-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	09-MAR-21
WG3498750-2 F1 (C6-C10)	LCS			112.3		%		80-120	09-MAR-21
WG3498750-1 F1 (C6-C10)	MB			<50		ua/a		5	00 MAP 21
Surrogate: 3 4-	Dichloroto	luene		132.2		«g,g %		0 60-140	09-MAR-21
		lucite	W/024007E0 2	152.2		70		00 140	09-IMAR-21
F1 (C6-C10)	IVIS		WG3498750-3	114.3		%		60-140	09-MAR-21
F2-F4-511-WT		Soil							
Batch R5	399867								
WG3499461-3	DUP		WG3499461-5			,			
F2 (C10-C16)			<10	<10	RPD-NA	ug/g	N/A	30	11-MAR-21
F3 (C16-C34)			<50	<50	RPD-NA	ug/g	N/A	30	11-MAR-21
F4 (C34-C50)			<50	<50	RPD-NA	ug/g	N/A	30	11-MAR-21
WG3499461-2 F2 (C10-C16)	LCS			87.6		%		80-120	11-MAR-21
F3 (C16-C34)				84.5		%		80-120	11-MAR-21
F4 (C34-C50)				82.0		%		80-120	11-MAR-21
WG3499461-1 F2 (C10-C16)	МВ			<10		ug/g		10	11-MAR-21
F3 (C16-C34)				<50		ug/g		50	11-MAR-21
F4 (C34-C50)				<50		ug/g		50	11-MAR-21
Surrogate: 2-Br	omobenzo	otrifluoride		96.0		%		60-140	11-MAR-21
WG3499461-4	MS		WG3499461-5						
F2 (C10-C16)				87.2		%		60-140	11-MAR-21
F3 (C16-C34)				85.8		%		60-140	11-MAR-21
F4 (C34-C50)				75.9		%		60-140	11-MAR-21
GRAIN SIZE-HYD-S	SK	Soil							
Batch R5	401924								
WG3501238-1 Gravel (4.75mm	DUP n - 3in.)		L2565063-1 <1.0	<1.0	RPD-NA	%	N/A	25	16-MAR-21

Samo Szakal

Quality Control Report

Workorder: L2563701

Report Date: 17-MAR-21

Page 4 of 14

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Contact:

_

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
GRAIN SIZE-HYD-SK	Soil							
Batch R5401924								
WG3501238-1 DUP		L2565063-1						
Coarse Sand (2.0mm - 4	.75mm)	<1.0	<1.0	RPD-NA	%	N/A	5	16-MAR-21
Medium Sand (0.425mm	i - 2.0mm)	1.2	<1.0	RPD-NA	%	N/A	5	16-MAR-21
Fine Sand (0.075mm - 0	.425mm)	4.9	4.2	J	%	0.7	5	16-MAR-21
Silt (0.005mm - 0.075mr	n)	53.2	54.3	J	%	1.1	5	16-MAR-21
Clay (<0.005mm)		40.4	40.2	J	%	0.2	5	16-MAR-21
Silt (0.002mm - 0.075mr	n)	72.9	73.0	J	%	0.1	5	16-MAR-21
Clay (<0.002mm)		20.7	21.5	J	%	0.8	5	16-MAR-21
WG3501238-2 IRM		2020-PSA_SO	IL					
Medium Sand (0.425mm	i - 2.0mm)		7.2		%		2-12	16-MAR-21
Fine Sand (0.075mm - 0	.425mm)		35.9		%		29.6-39.6	16-MAR-21
Silt (0.005mm - 0.075mr	n)		31.9		%		27.4-37.4	16-MAR-21
Clay (<0.005mm)			25.0		%		21-31	16-MAR-21
Silt (0.002mm - 0.075mr	n)		36.2		%		32.3-42.3	16-MAR-21
Clay (<0.002mm)			20.6		%		16.1-26.1	16-MAR-21
HG-200.2-CVAA-WT	Soil							
Batch R5400365								
WG3501035-2 CRM		WT-SS-2						
Mercury (Hg)			97.1		%		70-130	12-MAR-21
WG3501035-6 DUP		WG3501035-5	0 0229		ua/a	2.0	40	10 MAD 01
		0.0230	0.0225		ug/g	5.0	40	12-WAR-21
Mercury (Hg)			99.0		%		80-120	12-MAR-21
WG3501035-1 MB							00.20	
Mercury (Hg)			<0.0050		mg/kg		0.005	12-MAR-21
MET-200.2-CCMS-WT	Soil							
Batch R5400523								
WG3501035-2 CRM		WT-SS-2						
Arsenic (As)			108.5		%		70-130	12-MAR-21
Barium (Ba)			113.2		%		70-130	12-MAR-21
Beryllium (Be)			112.3		%		70-130	12-MAR-21
Boron (B)			10.6		mg/kg		3.5-13.5	12-MAR-21
Cadmium (Cd)			107.2		%		70-130	12-MAR-21
Chromium (Cr)			113.4		%		70-130	12-MAR-21
Cobalt (Co)			109.1		%		70-130	12-MAR-21

Workorder: L2563701

Report Date: 17-MAR-21

Page 5 of 14

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Contact: Samo Szakal

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5400523								
WG3501035-2 CRM		WT-SS-2			0/			
Copper (Cu)			108.7		%		70-130	12-MAR-21
			124.0		%		70-130	12-MAR-21
Molybdenum (Mo)			109.6		%		70-130	12-MAR-21
Nickel (Ni)			108.2		%		70-130	12-MAR-21
Selenium (Se)			0.14		mg/kg		0-0.34	12-MAR-21
Silver (Ag)			99.1		%		70-130	12-MAR-21
Thallium (TI)			0.074		mg/kg		0.029-0.129	12-MAR-21
Uranium (U)			98.4		%		70-130	12-MAR-21
Vanadium (V)			113.0		%		70-130	12-MAR-21
Zinc (Zn)			104.8		%		70-130	12-MAR-21
WG3501035-6 DUP Antimony (Sb)		WG3501035-5 0.14	0.13		ug/g	5.6	30	12-MAR-21
Arsenic (As)		6.63	5.90		ug/g	12	30	12-MAR-21
Barium (Ba)		72.5	60.4		ug/g	18	40	12-MAR-21
Beryllium (Be)		0.81	0.73		ug/g	9.8	30	12-MAR-21
Boron (B)		7.4	6.5		ug/g	12	30	12-MAR-21
Cadmium (Cd)		0.064	0.055		ug/g	15	30	12-MAR-21
Chromium (Cr)		26.3	23.7		ug/g	10	30	12-MAR-21
Cobalt (Co)		14.0	12.8		ug/g	9.1	30	12-MAR-21
Copper (Cu)		30.4	27.7		ug/g	9.4	30	12-MAR-21
Lead (Pb)		11.6	11.0		ua/a	5.1	40	12-MAR-21
Molvbdenum (Mo)		0.46	0.42		ua/a	7.8	40	12-MAR-21
Nickel (Ni)		23.4	21.0		ua/a	11	30	12-MAR-21
Selenium (Se)		0.25	0.28		ua/a	9.2	30	12-MAR-21
Silver (Aa)		<0.10	<0.10	RPD-NA	ua/a	N/A	40	12-MAR-21
Thallium (TI)		0.155	0.144		ua/a	73	30	12-MAR-21
Uranium (U)		0.532	0 492		ua/a	7.7	30	12-MAR-21
Vanadium (V)		39.4	35.9		ug/g	0.2	30	12-MAR 21
$Z_{inc}(Z_n)$		63.5	57.7		ug/g	9.5	30	12-MAR 21
		00.0	57.7		49/9	5.4	30	12-WAR-21
Antimony (Sb)			115.9		%		80-120	12-MAR-21
Arsenic (As)			114.8		%		80-120	12-MAR-21
Barium (Ba)			113.1		%		80-120	12-MAR-21

Workorder: L2563701

Report Date: 17-MAR-21

Page 6 of 14

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Contact: Samo Szakal

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5400523								
WG3501035-4 LCS			109.0		0/		00.400	
Beron (P)			100.2		70 0/		80-120	12-MAR-21
			107.3		70		80-120	12-MAR-21
			108.4		%		80-120	12-MAR-21
			114.6		%		80-120	12-MAR-21
			114.5		%		80-120	12-MAR-21
Copper (Cu)			110.6		%		80-120	12-MAR-21
Lead (Pb)			111.7		%		80-120	12-MAR-21
Molybdenum (Mo)			110.1		%		80-120	12-MAR-21
Nickel (Ni)			110.4		%		80-120	12-MAR-21
Selenium (Se)			112.4		%		80-120	12-MAR-21
Silver (Ag)			106.1		%		80-120	12-MAR-21
Thallium (TI)			113.4		%		80-120	12-MAR-21
Uranium (U)			102.3		%		80-120	12-MAR-21
Vanadium (V)			116.0		%		80-120	12-MAR-21
Zinc (Zn)			109.0		%		80-120	12-MAR-21
WG3501035-1 MB								
Antimony (Sb)			<0.10		mg/kg		0.1	12-MAR-21
Arsenic (As)			<0.10		mg/kg		0.1	12-MAR-21
Barium (Ba)			<0.50		mg/kg		0.5	12-MAR-21
Beryllium (Be)			<0.10		mg/kg		0.1	12-MAR-21
Boron (B)			<5.0		mg/kg		5	12-MAR-21
Cadmium (Cd)			<0.020		mg/kg		0.02	12-MAR-21
Chromium (Cr)			<0.50		mg/kg		0.5	12-MAR-21
Cobalt (Co)			<0.10		mg/kg		0.1	12-MAR-21
Copper (Cu)			<0.50		mg/kg		0.5	12-MAR-21
Lead (Pb)			<0.50		mg/kg		0.5	12-MAR-21
Molybdenum (Mo)			<0.10		mg/kg		0.1	12-MAR-21
Nickel (Ni)			<0.50		mg/kg		0.5	12-MAR-21
Selenium (Se)			<0.20		mg/kg		0.2	12-MAR-21
Silver (Ag)			<0.10		mg/kg		0.1	12-MAR-21
Thallium (TI)			<0.050		mg/kg		0.05	12-MAR-21
Uranium (U)			<0.050		mg/kg		0.05	12-MAR-21
Vanadium (V)			<0.20		mg/kg		0.2	12-MAR-21
Zinc (Zn)			<2.0		mg/kg		2	12-MAR-21

Report Date: 17-MAR-21

Page 7 of 14

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Workorder: L2563701

Contact: Samo Szakal

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-WT		Soil							
Batch R5	398906								
WG3499642-3 % Moisture	DUP		L2563640-9 15.1	15.2		%	0.6	20	10-MAR-21
WG3499642-2 % Moisture	LCS			100.0		%		90-110	10-MAR-21
WG3499642-1 % Moisture	MB			<0.25		%		0.25	10-MAR-21
Batch R5	398907								
WG3499644-3 % Moisture	DUP		L2563640-30 17.3	17.1		%	1.3	20	10-MAR-21
WG3499644-2 % Moisture	LCS			99.95		%		90-110	10-MAR-21
WG3499644-1 % Moisture	MB			<0.25		%		0.25	10-MAR-21
PH-WT		Soil							
Batch R5	399363								
WG3499647-1 рН	DUP		L2563640-26 7.39	7.42	J	pH units	0.03	0.3	10-MAR-21
WG3499969-1 рН	LCS			6.98		pH units		6.9-7.1	10-MAR-21
SAR-R511-WT		Soil							
Batch R5	400641								
WG3501052-4	DUP		WG3501052-3	3					
Calcium (Ca)			24.5	24.7		mg/L	0.8	30	12-MAR-21
Sodium (Na)			11.5	11.6		mg/L	0.9	30	12-MAR-21
Magnesium (Mg	g)		9.61	9.73		mg/L	1.2	30	12-MAR-21
WG3501052-2	IRM		WT SAR4	00.5		9/		70.400	
Sodium (Na)				99.0		78 %		70-130	12-MAR-21
Magnesium (Mg	r)			92.0 100.0		76 0/		70-130	12-IMAR-21
				100.0		78		70-130	12-MAR-21
Calcium (Ca)	LUS			108.3		%		80-120	12-MAR-21
Sodium (Na)				103.0		%		80-120	12-MAR-21
Magnesium (Mg	g)			102.8		%		80-120	12-MAR-21
WG3501052-1	MB								
Calcium (Ca)				<0.50		mg/L		0.5	12-MAR-21
Sodium (Na)				<0.50		mg/L		0.5	12-MAR-21
Magnesium (Mg	g)			<0.50				0.5	

Report Date: 17-MAR-21

Page 8 of 14

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Workorder: L2563701

Contact: Samo Szakal

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SAR-R511-WT	Soil							
Batch R5400641								
Magnesium (Mg)			<0.50		mg/L		0.5	12-MAR-21
VOC-511-HS-WT	Soil							
Batch R5398390)							
WG3498750-4 DUP 1,1,1,2-Tetrachloroetha	ane	WG3498750-3 <0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
1,1,2,2-Tetrachloroetha	ane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
1,1,1-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
1,1,2-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
1,1-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
1,1-Dichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
1,2-Dibromoethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
1,2-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
1,2-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
1,2-Dichloropropane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
1,3-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
1,4-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
Acetone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	09-MAR-21
Benzene		<0.0068	<0.0068	RPD-NA	ug/g	N/A	40	09-MAR-21
Bromodichloromethane)	<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
Bromoform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
Bromomethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
Carbon tetrachloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
Chlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
Chloroform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
cis-1,2-Dichloroethylen	e	<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
cis-1,3-Dichloropropene	е	<0.030	<0.030	RPD-NA	ug/g	N/A	40	09-MAR-21
Dibromochloromethane	9	<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
Dichlorodifluoromethan	e	<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	09-MAR-21
n-Hexane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
Methylene Chloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
MTBE		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21

Workorder: L2563701

Report Date: 17-MAR-21

Page 9 of 14

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET

TORONTO ON M5V 1E3

Contact: Samo Szakal

_

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R53983	90							
WG3498750-4 DU	Р	WG3498750	-3		,			
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	09-MAR-21
Methyl Ethyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	09-MAR-21
Methyl Isobutyl Ketor	ne	<0.50	<0.50	RPD-NA	ug/g	N/A	40	09-MAR-21
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	09-MAR-21
Styrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
Tetrachloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	09-MAR-21
trans-1,2-Dichloroeth	iylene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
trans-1,3-Dichloropro	ppene	<0.030	<0.030	RPD-NA	ug/g	N/A	40	09-MAR-21
Trichloroethylene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	09-MAR-21
Trichlorofluorometha	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	09-MAR-21
Vinyl chloride		<0.020	<0.020	RPD-NA	ug/g	N/A	40	09-MAR-21
WG3498750-2 LC	S							
1,1,1,2-Tetrachloroet	hane		98.9		%		60-130	09-MAR-21
1,1,2,2-Tetrachloroet	hane		93.6		%		60-130	09-MAR-21
1,1,1-Trichloroethane	e		99.9		%		60-130	09-MAR-21
1,1,2-Trichloroethane	e		94.6		%		60-130	09-MAR-21
1,1-Dichloroethane			94.7		%		60-130	09-MAR-21
1,1-Dichloroethylene			95.6		%		60-130	09-MAR-21
1,2-Dibromoethane			100.2		%		70-130	09-MAR-21
1,2-Dichlorobenzene			104.3		%		70-130	09-MAR-21
1,2-Dichloroethane			94.8		%		60-130	09-MAR-21
1,2-Dichloropropane			99.8		%		70-130	09-MAR-21
1,3-Dichlorobenzene			99.96		%		70-130	09-MAR-21
1,4-Dichlorobenzene			104.7		%		70-130	09-MAR-21
Acetone			100.9		%		60-140	09-MAR-21
Benzene			98.5		%		70-130	09-MAR-21
Bromodichlorometha	ne		103.6		%		50-140	09-MAR-21
Bromoform			98.5		%		70-130	09-MAR-21
Bromomethane			92.9		%		50-140	09-MAR-21
Carbon tetrachloride			105.8		%		70-130	09-MAR-21
Chlorobenzene			103.1		%		70-130	09-MAR-21
Chloroform			100.6		%		70-130	09-MAR-21

Samo Szakal

Quality Control Report

Workorder: L2563701

Report Date: 17-MAR-21

Page 10 of 14

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Contact:

_

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5398390								
WG3498750-2 LCS			100.0		0/			
cis-1,2-Dichloroethylene			100.8		%		70-130	09-MAR-21
cis-1,3-Dichloropropene			99.5		%		70-130	09-MAR-21
Dibromochloromethane			97.4		%		60-130	09-MAR-21
Dichlorodifluoromethane			71.1		%		50-140	09-MAR-21
Ethylbenzene			103.1		%		70-130	09-MAR-21
n-Hexane			89.7		%		70-130	09-MAR-21
Methylene Chloride			98.0		%		70-130	09-MAR-21
MTBE			102.0		%		70-130	09-MAR-21
m+p-Xylenes			103.5		%		70-130	09-MAR-21
Methyl Ethyl Ketone			92.2		%		60-140	09-MAR-21
Methyl Isobutyl Ketone			96.0		%		60-140	09-MAR-21
o-Xylene			110.8		%		70-130	09-MAR-21
Styrene			100.5		%		70-130	09-MAR-21
Tetrachloroethylene			107.5		%		60-130	09-MAR-21
Toluene			102.7		%		70-130	09-MAR-21
trans-1,2-Dichloroethylen	e		97.4		%		60-130	09-MAR-21
trans-1,3-Dichloropropen	е		99.8		%		70-130	09-MAR-21
Trichloroethylene			106.3		%		60-130	09-MAR-21
Trichlorofluoromethane			97.3		%		50-140	09-MAR-21
Vinyl chloride			94.4		%		60-140	09-MAR-21
WG3498750-1 MB								
1,1,1,2-Tetrachloroethane	е		<0.050		ug/g		0.05	09-MAR-21
1,1,2,2-Tetrachloroethane	е		<0.050		ug/g		0.05	09-MAR-21
1,1,1-Trichloroethane			<0.050		ug/g		0.05	09-MAR-21
1,1,2-Trichloroethane			<0.050		ug/g		0.05	09-MAR-21
1,1-Dichloroethane			<0.050		ug/g		0.05	09-MAR-21
1,1-Dichloroethylene			<0.050		ug/g		0.05	09-MAR-21
1,2-Dibromoethane			<0.050		ug/g		0.05	09-MAR-21
1,2-Dichlorobenzene			<0.050		ug/g		0.05	09-MAR-21
1,2-Dichloroethane			<0.050		ug/g		0.05	09-MAR-21
1,2-Dichloropropane			<0.050		ug/g		0.05	09-MAR-21
1,3-Dichlorobenzene			<0.050		ug/g		0.05	09-MAR-21
1,4-Dichlorobenzene			<0.050		ug/g		0.05	09-MAR-21
Acetone			<0.50		ug/g		0.5	09-MAR-21

Samo Szakal

Quality Control Report

Workorder: L2563701

Report Date: 17-MAR-21

Page 11 of 14

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Contact:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5398390								
WG3498750-1 MB			-0.0068				0.0069	
Bromodichloromothana			<0.0008		ug/g		0.0000	09-MAR-21
Bromoform			<0.050		ug/g		0.05	09-MAR-21
Bromomothana			<0.050		ug/g		0.05	09-MAR-21
Bromometnane			<0.050		ug/g		0.05	09-MAR-21
Carbon tetrachioride			<0.050		ug/g		0.05	09-MAR-21
Chlorobenzene			<0.050		ug/g		0.05	09-MAR-21
Chloroform			<0.050		ug/g		0.05	09-MAR-21
cis-1,2-Dichloroethylene)		<0.050		ug/g		0.05	09-MAR-21
cis-1,3-Dichloropropene			<0.030		ug/g		0.03	09-MAR-21
Dibromochloromethane			<0.050		ug/g		0.05	09-MAR-21
Dichlorodifluoromethane	9		<0.050		ug/g		0.05	09-MAR-21
Ethylbenzene			<0.018		ug/g		0.018	09-MAR-21
n-Hexane			<0.050		ug/g		0.05	09-MAR-21
Methylene Chloride			<0.050		ug/g		0.05	09-MAR-21
MTBE			<0.050		ug/g		0.05	09-MAR-21
m+p-Xylenes			<0.030		ug/g		0.03	09-MAR-21
Methyl Ethyl Ketone			<0.50		ug/g		0.5	09-MAR-21
Methyl Isobutyl Ketone			<0.50		ug/g		0.5	09-MAR-21
o-Xylene			<0.020		ug/g		0.02	09-MAR-21
Styrene			<0.050		ug/g		0.05	09-MAR-21
Tetrachloroethylene			<0.050		ug/g		0.05	09-MAR-21
Toluene			<0.080		ug/g		0.08	09-MAR-21
trans-1,2-Dichloroethyle	ne		<0.050		ug/g		0.05	09-MAR-21
trans-1,3-Dichloroprope	ne		<0.030		ug/g		0.03	09-MAR-21
Trichloroethylene			<0.010		ug/g		0.01	09-MAR-21
Trichlorofluoromethane			<0.050		ug/g		0.05	09-MAR-21
Vinyl chloride			<0.020		ug/g		0.02	09-MAR-21
Surrogate: 1,4-Difluorob	enzene		123.8		%		50-140	09-MAR-21
Surrogate: 4-Bromofluor	robenzene		118.0		%		50-140	09-MAR-21
WG3498750-5 MS 1,1,1,2-Tetrachloroethar	ne	WG3498750-3	115.0		%		50-140	09-MAR-21
1,1,2,2-Tetrachloroethar	ne		105.3		%		50-140	09-MAR-21
1,1,1-Trichloroethane			118.7		%		50-140	09-MAR-21
1,1,2-Trichloroethane			111.3		%		50-140	09-MAR-21

Workorder: L2563701

Report Date: 17-MAR-21

Page 12 of 14

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Contact: Samo Szakal

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5398390								
WG3498750-5 MS		WG3498750-	3					
1,1-Dichloroethane			115.9		%		50-140	09-MAR-21
1,1-Dichloroethylene			117.7		%		50-140	09-MAR-21
1,2-Dibromoethane			118.5		%		50-140	09-MAR-21
1,2-Dichlorobenzene			118.6		%		50-140	09-MAR-21
1,2-Dichloroethane			112.9		%		50-140	09-MAR-21
1,2-Dichloropropane			116.2		%		50-140	09-MAR-21
1,3-Dichlorobenzene			115.0		%		50-140	09-MAR-21
1,4-Dichlorobenzene			119.8		%		50-140	09-MAR-21
Acetone			125.3		%		50-140	09-MAR-21
Benzene			115.7		%		50-140	09-MAR-21
Bromodichloromethane			119.0		%		50-140	09-MAR-21
Bromoform			115.9		%		50-140	09-MAR-21
Bromomethane			115.7		%		50-140	09-MAR-21
Carbon tetrachloride			122.3		%		50-140	09-MAR-21
Chlorobenzene			118.2		%		50-140	09-MAR-21
Chloroform			120.4		%		50-140	09-MAR-21
cis-1,2-Dichloroethylene)		121.5		%		50-140	09-MAR-21
cis-1,3-Dichloropropene	•		112.9		%		50-140	09-MAR-21
Dibromochloromethane			115.0		%		50-140	09-MAR-21
Dichlorodifluoromethane	e		111.7		%		50-140	09-MAR-21
Ethylbenzene			116.9		%		50-140	09-MAR-21
n-Hexane			113.1		%		50-140	09-MAR-21
Methylene Chloride			118.8		%		50-140	09-MAR-21
MTBE			115.4		%		50-140	09-MAR-21
m+p-Xylenes			117.0		%		50-140	09-MAR-21
Methyl Ethyl Ketone			112.8		%		50-140	09-MAR-21
Methyl Isobutyl Ketone			114.0		%		50-140	09-MAR-21
o-Xylene			126.2		%		50-140	09-MAR-21
Styrene			115.5		%		50-140	09-MAR-21
Tetrachloroethylene			120.8		%		50-140	09-MAR-21
Toluene			116.6		%		50-140	09-MAR-21
trans-1,2-Dichloroethyle	ne		117.2		%		50-140	09-MAR-21
trans-1,3-Dichloroprope	ne		115.5		%		50-140	09-MAR-21

Workorder: L2563701 Report Date: 17-MAR-21 Page 13 of 14 PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client: 74 BERKELEY STREET TORONTO ON M5V 1E3 Contact: Samo Szakal Test Matrix Reference Result Qualifier Units RPD Limit Analyzed

VOC-511-HS-WT	Soil			
Batch R5398390				
WG3498750-5 MS	WG3498750-3			
Trichloroethylene	121.5	%	50-140	09-MAR-21
Trichlorofluoromethane	120.8	%	50-140	09-MAR-21
Vinyl chloride	122.2	%	50-140	09-MAR-21
Workorder: L2563701

Report Date: 17-MAR-21

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client: 74 BERKELEY STREET TORONTO ON M5V 1E3 Samo Szakal

Contact:

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS Laboratory Group

819-58th Street, Saskatoon,SK

PARTICLE SIZE DISTRIBUTION CURVE

PALMER ENVIRONMENTAL CONSUL

Project Number:Client Sample ID21-5-7Lab Sample IDL2563701-6Date Sample Received 04-Mar-21Test Completion Date:16-Mar-21Analyst:HML

Client Name:

Gasoline → ← Motor Oils/Lube Oils/Grease → ← Diesel/Jet Fuels →

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→ ←</th><th>F3→ ↓F4</th><th>•</th></f2-<>	→ ←	F3→ ↓ F4	•									
nC10	nC16	nC34	nC50									
174°C	287⁰C	481°C	575⁰C									
346°F	549°F	898°F	1067°F									
Gasolin	Gasoline											
← Diesel/Jet Fuels →												

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→ ←</th><th>—_F3—→←_F4—</th><th>▶</th><th></th></f2-<>	→ ←	—_F3—→←_F4—	▶									
nC10	nC16	nC34	nC50									
174°C	287°C	481°C	575°C									
346°F	549°F	898°F	1067°F									
Gasolin	Gasoline											
	← Diesel/Jet Fuels →											

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→ ←</th><th>—F3→►←F4—</th><th>►</th></f2-<>	→ ←	—F3 → ►←F4—	►									
nC10	nC16	nC34	nC50									
174°C	287°C	481°C	575⁰C									
346°F	549°F	898°F	1067°F									
Gasolin	Gasoline -> Motor Oils/Lube Oils/Grease											
← Diesel/Jet Fuels →												

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

Diesel/Jet Fuels→

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

COC Number: 20 -

Page

of

Report To	Contact and company name below will app	ear on the final report		Reports / R	ecipients		I	Tur	naroun	d Time	(TAT) R	equeste	d		·····					
Company:	Palmer Environmental Consulting Group I	nc.	Select Report F	ormat: 🗹 PDF [EXCEL E	DD (DIGITAL)	ROL	tine [R] if rece	ived by 3	ipm M-F	- no sur	charges a	oply							
Contact:	Samo Szakal		Merge QC/QC	Reports with COA	🖸 YES 📋 NO	D 🗌 N/A	🗌 4 d	ay [P4] if receiv	/ed by 3p	om M-F	- 20% ru	sh surcha	rge minim	um						
Phone:	905-399-3410		🗹 Compare Resu	3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum					um	AFFIX ALS BARCODE LABEL HERE			RE							
-	Company address below will appear on the fin	al report	Select Distributi		ay [P2] if receiv av [F] if receiv	ived by 3 ed by 3n	ipm M-F	- 50% n	ush surch:	arge minim me minim	um	(ALS use only)								
Street:	74 Berkeley Street		Email 1 or Fax	San	ne day [E2] If a	eceived I	by 10am	M-S - 2	00% rush	surcharge	Addition	al								
City/Province:	Toronto, ON		Email 2 sarah.sipak@pecg.ca						rees may apply to rush requests on weekends, statutory holidays and non- routine tests											
Postal Code:	M5A 2W7		Email 3					ate and Time	Required	d for all	E&P TAT	8:		2-	3-5	λ				
Invoice To	Same as Report To	√] NO		Invoice Re	cipients				For all te	ests with	rush TAT	s requeste	d, please c	ontact you	r AM to c	onfirm ava	llability.			
	Copy of Invoice with Report VES [NO	Select Invoice	Distribution: 🔽 EM	AIL 🗌 MAIL 🗌] FAX						Anal	ysis Rec	quest						
Company:	Palmer Environmental Consulting Group I	nc.	Email 1 or Fax	accounting@pecg.	ca		SS	In	dicate Fil	Itered (F)), Preserv	ed (P) or	Filtered an	d Presen	ed (F/P)	below		T	8	9
Contact:	Accounting		Email 2	sarah.sipak@pecg	.ca		<u> </u>											i	Ĩ	1 g
L	Project Information		Oll	and Gas Required	Fields (client	use)					64.1		1					ا م ا	ğ	e e
ALS Account #	#/Quote #: 24400/		AFE/Cost Center:		PO#		Ē	$ \lambda $			v							L'I	ž) Š
Job #:	1604	603	Major/Minor Code:		Routing Code:		6	NI I			5							오	B	8
PO / AFE:	1604	1603 06	Requisitioner:				ပု	22										Ī	2	8
LSD:		L/	Location:				0	\Im			1							0	ы Ц	E
ALS Lab Worl	k Order # (ALS use only):	13701	ALS Contact:	J Barkshire	Sampler:	SS	BER			H		E E						PLES	DED	ECTED
ALS Sample #	Sample Identification	and/or Coordinates		Date	Time		1	E E	\leq	0	2 6	\$						X	Ē	SPI
(ALS use only)	(This description will a	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	ž	NO	Z	TH	H(r)	$\{ \mid$						8	ă	SU
	21-4-	•		-2-MAY-21	10am	5011	1			X										
	21-4-	-4		- <u>.</u>	<u>، در الا</u>	1.	3	X												
	21-4-	-41					2	$\overline{\mathbf{v}}$			+-		-+	1						
	21-3-	-1		N		11	3										+			
	21-5-1			1	Zom	11	3	X										Π		
	21-5-	7		· · · ·	<u> </u>	11	T													
	21-2-	9	······	21.7	10	1	1	X			- <u>r</u>	1					+			
	21-7-1	<u> </u>		5100 0	10an	11		<u> </u>		$\overline{\mathbf{v}}$		╉╼╍╌╉		+			-+			
	21-7-	2D	······	11	<u>\</u>	17	1			ΰt		┼─┼		+			+			
	71-6	<u> </u>		11	2Dan	11	,		V	<u>-</u>			-				+			
	71-7			((7,,	11	1		Ŷ											
	71-8			11		1	1		$\frac{1}{2}$		-	 +	-			+-	+			
Drinking	Water (DW) Samples ¹ (client use)	Notes / Specify L	imits for result e	valuation by selectin	g from drop-dov	vn below				SA	MPLE	RECEIP	T DETA	LS (AL	S use (only)				
Ann an ann lan Anla			(E	xcel COC only)			Cooli	ng Method:		ONE		$\mathbf{X}^{\mathbf{c}}$	PACKS	FR FR	OZEN			i INITL	ATED	
Are samples tak		nn. r	> -2	Des			Subr	nission Com	ments i	identifie	d on S	ample F	eceipt N	lotificati	on:	YES		NO		
		U Key 15	5 13	i cas			Coole	er Custody S	eals in	tact:		:S 🗌 N	A Sar	mple Cu	istody S	Seals Int	act:	YES	<u>s 🗆</u>	N/A
Are samples for	human consumption/ use?						-		OOLER	TEMPE	RATURE	s °C	-+-	┉┯╉	INAL CO	OLER TE		URES	r <u>c</u>	·
<u> </u>	/ES [_] NO						-2	2					(<u>ئ م</u>	2		<u></u>		L	
Pologod by	SHIPMENT RELEASE (client use)	1	NITIAL SHIPMENT	RECEPTION (/	ALS use only)					FINAL	SHIPM	ENT RE	CEPTI	DN (AL	S use o	nly)	T		
released by	The Date: 3-3/	2 Time:	Received by:	KAHAN	^{Date:} 3/Y	12021	Time V	12 Rece	ived by	<i>r</i> :	7	111	Dates Ol	141	А			IIme	17	F
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING	G INFORMATION		WHO		V COPY VEL	OW.	LIENT COP	v			5-V-		-+ #	<u> </u>			·	AUG 2	020 PRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any were samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

COC Number: 20 -

orm

Page of

Report To	Contact and company name below will appear on the final report	Reports / R	Recipients		Turnaround Time (TAT) Requested						_							
Company:	Palmer Environmental Consulting Group Inc.	Select Report Format: 🔽 PDF	Routine [R] if received by 3pm M-F - no surcharges apply															
Contact:	Samo Szakal	Merge QC/QCI Reports with COA	4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum							٥ - ا	AFFIX ALS BARCODE LABEL HERE (ALS use only)				Æ			
Phone:	905-399-3410	Compare Results to Criteria on Report	3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum							n m					-			
	Company address below will appear on the final report	Select Distribution: 🗹 EMAIL	L 2 day [P2] if received by 3pm M-F - 30% rush surcharge minimum							m								
Street:	74 Berkeley Street	Email 1 or Fax samo.szakal@pec	Same day [E2] If received by 10am M-5 - 200% rush surcharge. Additio							Additiona od non-	onal A							
City/Province:	Toronto, ON	Email 2 sarah.sipak@pecc	g.ca		routine tests													
Postal Code:	M5A 2W7	Email 3			Đ	hate and '	fime Requ	ired for all	E&P TAT);		12-						
Invoice To	Same as Report To	Invoice R	ecipients				For a	il tests with	rush TATa	requested,	please cor	itact your	our AM to confirm availability.					
	Copy of Invoice with Report VES NO	Select Invoice Distribution: 🕢 EN		FAX						Analys	sis Req	Jest						
Company:	Palmer Environmental Consulting Group Inc.	Email 1 or Fax accounting@pecg	J.Ca		S S		Indicate	Flitered (F), Preserv	edi (P) or Fi	tered and	Preserve	ed (F/P) t	volex			8	es)
Contact:	Accounting	Email 2 sarah.sipak@pec	g.ca														٤I	ē
	Project Information	Oil and Gas Require	d Fields (client us	50)	1¥							T T	T				<u></u>	8
ALS Account #	/ Quote #: 24400/	AFE/Cost Center:	PO#		Ē						ļ					닐	2	0
lob #:	1604603	Major/Minor Code:	Routing Code:		18											오	۳ ۵	8
	1604603	Requisitioner			υ	. 1			ļ							z	8	Ŋ
	100 4000	Location:			5	H			1							0	۲ ۲	Ŧ
130.			T		Ř	l'I										<u>ы</u> [ő l	Ē
ALS Lab Worl	k Order # (ALS use only):	ALS Contact: J Barkshire	Sampler:	SS	E M	10.							Ì			đ١	Ξļ	EC
	Sample Identification and/or Coordinates	Date	Time		Ξ.	-										Σ	ĒΙ	SPI
ALS Sample #	(This description will appear on the report)	(dd-mmm-vv)	(hh:mm)	Sample Type	' z ^										3	ă	ร	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2-2-21	2	5011	Ħ			1						-		T		
	- <u>CI-8D</u>	5 3 61	- cpm-	JUIL_	+-'-		_					+-+		-+		\neg		
					<u> </u>	┝		╃╍╍╁╾				┼	<u> </u>					
					ļ							\downarrow				ł		
									1.									
					1													
	······································							1				11						
						-+		┽──┼╴		+	+							
						+		·		┼─┼┈		++	┝━━━╋╼					
								\downarrow					\vdash		_	┝──┨		
													Ιſ					
					+	+		++						-				
					+	╉╍╍╋		+		┼──┼─		+						
	L,			<u> </u>	+					FCEIDT	DETAI		S USO (anivi		ل ــــــا		_
Drinking	Water (DW) Samples ¹ (client use) Notes / Specify	Limits for result evaluation by select	ing from drop-dow	n below	Con	ina Mot	hod:	J NONE			PACKS		OZEN	<u>,,,,,</u>			ATED	
	the second se	(Excer COC Only)			CUU	mignier				ampie R	ceint N	otificati	ion:			NO		
		\mathcal{T}	Sub	Inasion	odu Sool	na intent			San	nnie Cu	ustody 5	Seals Ir	tact.	T YE!	sП	N/A		
		53 15 V	000	INIT UNIT	TIAL COOL	ER TEMP		5°C		F	FINAL COOLER TEMPERATURES *C							
Are samples for	human consumption/ use?											22	ΣΙΙΓ					
			T DECENTION /A	1 C una anka	<u>د ا</u>			<u> </u>	EINAI	SUIDUI		CEPTI		S use	oniv)		1	
	/ SHIPMENT RELEASE (client use)	INITIAL SHIPMEN	Date: / /	Lo use only)	Tim	<u></u>	Receiver	t by	01		ale 7		7 1			Time	17	7
Released by:		Keceived by. KAMAn	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2021	hV:	is I	10001701	y.	\sim	Y .	31	41	+1			H	Ψ	C
REFER TOMAC				Y COPY YEL	LOW	CLIENT	COPY				$\underline{}$		`			ي المستخدر	AUG 2	20 FROM

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

www.alsglobal.com

Failure to choice all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Appendix A – General A4 – Residue Management

AS Millwick Drive, Toronto, ON. M T. 416.6888.474	ENT LTD. A9L 1Y3 47 BIN # OU	DATE: : P.O.#:_	W.O. #: 241129
CUSTOMER: NE	XT GEN		
SERVICE ADDRESS:	2148 ALBION	VAUGHAN B'CITY:	KLEINBURG
MATERIAL LIST - che SOIL BRICK OR BLOCK CONCRETE ASPHALT	eck all that apply MIXED WASTE WOOD CARDBOARD DRYWALL	SERVICE: DELIVERY REMOVAL DELIVERY REMOVAL DELIVERY READINGE	BIN SIZE: 14 YARD 20 YARD 40 YARD COMPACTOR
 MARBLE STRAW MASTIC 	 METAL ROOFING PLASTIC 	 WAIT & LOAD AFTER HOURS WAIT TIME ON SIT 	©
NOTES DIT	RT		
READ CONDITIONS CAREFULLY Our Insurance policy prohibits waste for Unsafe loads will be refused. We are not removing or moving containers. We de NO LQUID OR HAZARDOUS WASTE. The m is made in full and the material is accept will be returned with associated fees bin WHITE: OFFICE CANARY: CUSTOMER	Y BEFORE YOU SIGN: rom being piled higher than the contain responsible for damage to property when only accept 100% Non-hazardous solid naterial is the customer's responsibility until j ted at a M.O.E.C.C. licensed facility. Refus illed accordingly.	r walls. blacing, waste. ayment d loads Customer not availat Customer not availat DRIVER'S INITIALS	ble for signature

		48 Millwick Drive	TICKET#	DATE	SCALE	OPERATOR	
		IGK Toronto, ON	MT 169587	10/15/2021	JP		
L TRAN	ISFE	M9L 1Y3 PH:(416) 863-9222 Fax:(416) 863-1496	TIME IN	TIME OUT	TRUCK #	CONTAINER	
			1:29 pm	1:39 pm	TRIPLEWA		
				RE	FERENCE		
			038				
Millwid ronto, (ck I ON	M9L 1Y3 INVOICE	GROSS WE TARE WE NET WE	IGHT 28,010kg IGHT 17,980kg IGHT 10,030kg	Scale In Scale Out	SCALE WEIGF	
QTY. UI	NIT	DESCRIPTION	RATE	SUBTOTAL	TAX	TOTAL	
1.00	ld	Clean Fill (10-14 Yard)					
signing this tic	cket, I	accept all weights, classifications and charges contained herein	n, and certify this mate	rial to be 100% non-ha	zardous solid waste and	TOTAL	

responsibility for any injury to persons or damage to vehicles. As the soil generator I hereby certify, the amount excavated from the source residential property does not exceed 1,000 cubic metres; does not have any known contamination, the property has not been used to store equipment or material [fuels, pesticides, solvents, batteries, etc.] that may have caused contamination and has not come from, or adjacent to, a remediation project, commercial or industrial property. Millwick Transfer Limited reserves the right to refuse and reload material that does not meet the above criteria. Please contact the office for further information.

CHANGE DUE

PAID

SIGNATURE

Appendix A – General A5 – Survey of Phase Two

TOTAL LOT SROSS SIT VET DEVEL 3 - GROS 3.1 - TOWE 3ROUND F ND FLOOF TH TO 6TH OTAL GFA	AREA E AREA						SIDEN	ITIAL AR	EA)			1 7 7	Name of Pro Fausto Corte MIX-USED (oject: ese Archito CONDO D	ect EVELOPM	IENT AT 121	18 ALBION V	AUGHAN RD. B	OLTON - CALEDON		
GROSS SIT JET DEVEL 3 - GRO 3.1 - TOWE 3ROUND F ND FLOOF TH TO 6TH OTAL GFA	E AREA					m	2	SQ/	'FT				Location:	ord road	l Init 35 & 5	5					
NET DEVEL 3 - GRO 3.1 - TOWE AROUND F ND FLOOF TH TO 6TH OTAL GFA						1537	6.75	16551	3.96			Ň	Vaughan, Oi	ntario		ilding Cor	o Doto Mo	trix Dort 2 9	0	OBC Re	ference
ROUND F ROUND F ND FLOOI RD FLOOF TH TO 6TH OTAL GFA		AREA				1136	0.98	12228	8.57			ГЕМ		0	IIIano Bu		e Dala Ma	unx - Part 3 o		References are to Di [A] for Division A o	vision B unless no or [C] for Division C
ROUND F ND FLOOI RD FLOOI TH TO 6TH DTAL GFA	ER A (RES	OR ARI	EA L CONDO	GFA)								1 F	Project Desc	cription: 2-	-6 Storeys (Condo Buildii	g [New Addition	Part 11 11.1 to 11.4	Part 3	Part 9
ROUND F ND FLOO RD FLOOF TH TO 6TH DTAL GFA				Q	TY.	m	2	SQ/	′FT			_				Change of Us	• [Alteration			9.10.1.3.
ND FLOO RD FLOOI TH TO 6TH DTAL GFA	LOOR LE	EVEL			1	1691	.04	18202	2.15			2 M 3 E	Major Occup Building Area	ancy(s) a (m²)	Grou NEW:	p C 4577.3 m2		TOTAL: 4577.3	m2	3.1.2.1.(1) 1.4.1.2 [A] 1	1.4.1.2 [A]
D FLOO! H TO 6TH TAL GFA	R LEVEL				1	1870).88	2013	7.98			4 (Gross Area	(m²)	NEW:	25760.00 m2		TOTAL: 25760.0	00 m2	1.4.1.2 [A]	1.4.1.2 [A]
TAL GFA	R LEVEL				1	1882	2.24	20260	0.26			5 1 6 1	Number of S	toreys	Abov e Fighter Ad	ve Grade: 6	E	Below Grade: 1		1.4.1.2 [A] & 3.2.1 3.2.2.10 & 3.2.5.	.1. 9.10.20.
	H FLOOR	LEVEL			3	1109	0.88	11038	0.79			7 E	Building Clas	ssification	:	GROU	P C 3.2.2.43			3.2.2.70.B	9.10.2.
- TOWE	ER B (RES	BIDENTIA	L CONDO	GFA)		1103	0.00	11300	,1.10			8 5	Sprinkler Sy	stem Prop	oosed D	 entire bui selected 	ding compartments	in li s 🔲 not	eu of roof rating required	3.2.2.67 3.2.1.5	9.10.8.2.
OUND F	LOOR LE	EVEL			1	1799	9.09	1936	5.23							selected	oor areas		ISTING NO CHANGE	3.2.2.17	
D FLOO!	R LEVEL				1	1933	3.11	2080	7.82			9 5	Standpipe re	auired		basemen		X Yes Γ	ΠΝο	3.2.9.	N/A
) FLOOF	R LEVEL				1	1943	3.36	20918	8.15			10 F	Fire Alarm re	equired				Yes [No	3.2.4.	9.10.18.
I TO 6TH	H FLOOR	LEVEL			3	5830	0.08	62754	4.46			11 \ 12 F	Water Servio	ce/Supply	is Adequat	e	[r	Yes		3.2.5.7.	N/A
TAL GFA	4	(0=1)				1150	5.64	12384	5.67			13 (Construction	Restrictio	ons	Comb Permi	ustible ted	Non-combus Required	stible Both	3.2.2.67	9.10.6.
	HOMES	(GFA)		1	1	171	66					14 A	Actual Const	truction	N1/A	Comb	ustible	Non-combus	stible 🔲 Both	3 2 1 1 (3)-(8)	9.10.4.1.
	LOOR LE	EVEL			1	654	.53	7045	5.30			15 (Occupant loa	ad based	on	m²/pe	son	design of bu	ilding	3.1.17	9.9.1.3.
D FLOO	R LEVEL				1	654	.53	7045	5.30			16 F	Barrier-free (Occup	bancy:	Load:		Load	d: 770 m2	3.8	952
D FLOOI	R LEVEL ((TERRAC	E)		1	275	.84	2969	9.12			17 F	Hazardous S	Substance	s	Yes Yes		(Explain).		3.3.1.2. & 3.3.1.1	9 9.10.1.3.(4)
TAL GFA	Ą					1756	6.56	17059	9.72			18	Required Fire		Horizo	ntal Assemb	ies	Lis	ted Design No.	3.2.2.2083 & 3.2.1.4	9.10.8. 9.10.9.
- AMEN	IITY SPAC	CE (GFA)											Resistance Rating (FPP)	e Fic	por:	0.75	Hours				
	LOOR LE	EVEL			1	432	.68	4657	7.33				(, , , , , , , , , , , , , , , , , , ,	Ro	oof:	0	Hours		ted Desize M	_	
		(TFRRA	CE)		1	435	.12	4683	s.59 9.12						⊢RR	o Supportir Members	J	Lis or D	escription (SB-3)		
WER A	., LLVEL	עי ב וזהא(' 1	630	.34	6784	<i>2</i> 1.92					Flo	oor:	De 75 nitteo Max. % c	HoPinspos % o	sed f	S1		
WER B					1	575	.52	6194	1.85			19 5	EBF Spatial Sepa	(m) Reference aration - C	onstruction	Opening: of Exterior V	Hoopenir /alls - Existing	ngs g Building		3.2.3	9.10.14.
DTAL GF.	A			20% OF DEVE AREA = 227	ELOPABLE LOT 72.2 m2 (min.)	2349	9.50	2763	9.31			W	/all Area	a of L.[D. L/H or			FRR (Hours)	Listed Co Design or Description	Comb. Constr. Non	c. Non-com
5 - SERVI	ICE AREA	AS (GFA)										Front No	orth NO CH	ANGE -	·	_		-	-		-
WER A -	STORAG	λE				138	.78	1493	3.82			Rear So	outh NO CH ast NO CH	ANGE – ANGE –		-	-	-	-		-
WER B -	STORAG	ìΕ				263	.59	2834	.08 1 89			Right W	est NO CH	ANGE -	-	-	-	-	-		-
6 - GRAN	` ID TOTAL	. GFA				2696	5.94	29076	60.77												
FLOO	R SPAC	CE INDI	EX (FSI)			1		1													
I = TOTA	AL GFA / I	LOT ARE	A				15376.75	/ 25760.09													
TAL SITE	E FSI						1.75	times													
TAL USA	ABLE SITE	E FSI					2.37	times							-			· · · · · · · · · · · · · · · · · · ·			
		YPF			TOW	(ER 4		TOW	ERS		TOW	/FR B			٥ پ	40	(5		F	PARKING	
UNIT TYPE	SQ/FT	m2	GROUND FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOR	5TH FLOOR	6TH FLOOR	GROUND FLOOR	2ND FLOOR	3RD FLOOR	4TH FLOOF	R 5TH FLOOR	6TH FLOOP	L TOTAL UN PER TYPE	1PKG. PER m2 OR PORTION THEREOF	PARKINU RATIO		BY LAW - PAR	KING REQUIREN	IENTS
TYPE 1	633.6	58.86	4	4	3	3	3	3	4	4	4	4	4	4	44	0.84	37.00	CONDO UNITS PARKING SPAC	1 PARKING SPOT PER PORTION THEREOF TO A PARKING SP	EACH 70M2 OR A MAXIMUM OF 2 2 PACES	283
TYPE 2	685.75	63.71	3	3	3	з	3	з	0	0	0	0	0	0	18	0.91	16.38			-	
TYPE 3	649.62	60.35	0	1	1	1	1	1	0	0	0	0	0	0	5	0.86	4.31	TOWNHOMES	2 CARS PER UNIT + 0.25 PER UNIT FOR V	PARKING SPACES VISITORS	20
TYPE 4	592.30	55.03	0	0	0	0	0	0	0	1	0	0	0	0	1	0.79	0.79				
TYPE 1	800	74.32	1	1	0	0	0	0	0	0	0	0	0	0	2	1.06	2.12	VISITOR -TOWNHOMES	0.25 PARKING SPACES VISITORS ON A LOT WITH DWFI LING I	S PER UNIT FOR H FOUR OR MORE JNITS	3
TYPE 2	825.16	76.66	1	1	0	0	0	0	0	0	0	0	0	0	2	1.10	2.19				
TYPE 3	955.97	88.81	1	1	1	1	1	1	0	0	0	0	0	0	6	1.27	7.61	NET TOTAL PARKING BEQUIBED		3	306
TYPE 4	899.23	83.54	1	1	1	1	1	1	0	0	0	0	0	0	6	1.19	7.16				
TYPE 5	812.45	75.48	1	1	1	1	1	1	0	0	0	0	0	0	6	1.08	6.47	GRAND TOTAL PARKING REQUIRED	-		306 sp
TYPE 6	923	85.75	0	0	0	0	0	0	1	1	0	0	0	0	2	1.22	2.45				
TYPE 7	1004.22	93.30	0	0	0	0	0	0	1	1	0	0	0	0	2	1.33	2.67		RESIDENT (H	IANDICAP) RES	DENT TO
TYPE 8	609.47	56.62	0	0	0	0	0	0	0	1	0	0	0	0	1	0.81	0.81	PROVIDEI			
TYPE 1	1001.10	93.01	3	3	3	3	3	3	0	0	0	0	0	0	18	1.33	23.92	P1 LEVEL	15		291
TYPE 2	944.57	87.75	1				1		0	0		0	0		6	1.25	7.52	GROUND FLOC	2 2		13
TYPE 3	961.38	89.32	1				1		0	0					6	1.28	1.40	GRAND TOTAL PARKING PROVIDED	17		304 321 s
TYPE 4	1114.62	103.55					0		U	0						1.48	1.48				
TYPE 5	1011.47	93.97					U		U							1.34	1.34	ΗΔΝΟΙΟ	AP PARKING SPACE (TVP	.)	
TTPE 6	1005 41	92.64					0		∠ 1	<i>2</i> 1	² 1	2	∠		6	1.32	8 01			,	
TYPE	1072.34	90.70	0 0				0		1							1.04	1 42				
TYPE 7	932.07	86.60					0		1	5	5	5	5	5	20	1.42	37 15			FLOOR)	
TYPE 7 TYPE 8	933.07	82.90					0		Э 1	2	Э 1) D		3U E	1.24	7 10			. 2001)	
TYPE 7 TYPE 8 TYPE 9	002.04	86.67	n 0				0		1	1						1.20	7 43		6000		
TYPE 7 TYPE 8 TYPE 9 TYPE 10	1 932.87		0 0	0	0		0	0	1					'	6	1.19	7.13			ROUND P1)	
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11	1 932.87 2 895.61	83.20		0	0		0	0	1	0	0	0	0	0		1.32	1.32		000	27 00 × 60 00	
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11 TYPE 12 TYPE 12	1 932.87 2 895.61 3 992.85	83.20 92.24	0	I Ť			-		0	0	0	0	0	0	5	1.48	7.40		2700×0	2700 x	
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11 TYPE 12 TYPE 13 TYPE 13 TYPE 14	1 932.87 2 895.61 3 992.85 11114.62	83.20 92.24 103.55	0	1	1	1		1	0	0	0	0	0	0	5	1.34	6.71	300		8000	>
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11 TYPE 12 TYPE 13 TYPE 13 TYPE 1 TYPE 12	932.87 895.61 992.85 11114.62 1011.47	83.20 92.24 103.55 93.97	0	1	1	1	1		0		-		-					7	27	-	
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11 TYPE 12 TYPE 13 TYPE 1 TYPE 12 TYPE 13 TYPE 1 TYPE 12 TYPE 12 TYPE 13 TYPE 2 TYPE 2	 932.87 932.87 895.61 992.85 1114.62 1011.47 1043.68 	83.20 92.24 103.55 93.97 96.96	0	1	1	1	1 1	1	0	0	0	0	0	0	5	1.39	6.93 I		6000	6000 AISLE SPACE	
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11 TYPE 12 TYPE 13 TYPE 2 TYPE 3 TYPE 3	 932.87 932.87 895.61 992.85 1114.62 1011.47 1043.68 1244.17 	83.20 92.24 103.55 93.97 96.96 115.59	0	1 1 1 0	1 1 1 1	1	1 1 1	1	0	0	0	0	0	0	5	1.39	6.93 6.60		6000	6000 AISLE SPACE	
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11 TYPE 12 TYPE 13 TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5	932.87 895.61 992.85 11114.62 1011.47 1043.68 1244.17 1237.55	83.20 92.24 103.55 93.97 96.96 115.59 114.97		1 1 1 0 0	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1 1 1	0 0 0	0 0 0	0	0	0 0 0	0 0 0	5	1.39 1.65 1.64	6.93 6.60 6.57	2 F	PARKING LEG	6000 AISLE SPACE	
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11 TYPE 12 TYPE 13 TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5 TYPE 6	932.87 932.87 895.61 1114.62 11114.62 1011.47 1043.68 1244.17 1237.55 1073.34	83.20 92.24 103.55 93.97 96.96 115.59 114.97 99.72		1 1 1 0 0 0	1 1 1 1 1 1 0	1 1 1 1 1 0	1 1 1 1 0	1 1 1 1 0	0 0 0 0 0	0 0 0 1	0 0 0 1	0 0 0 1	0 0 0 1	0 0 0 1	5 4 4 5	1.39 1.65 1.64 1.42	6.936.606.577.12	2 F A1.0 S	PARKING LEG	AISLE SPACE	
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11 TYPE 12 TYPE 13 TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5 TYPE 6 TYPE 7	932.87 932.87 895.61 1114.62 11114.62 1011.47 1043.68 1244.17 1237.55 1073.34 992.85	83.20 92.24 103.55 93.97 96.96 115.59 114.97 99.72 92.24		1 1 0 0 0 0	1 1 1 1 1 0 0	1 1 1 1 1 0	1 1 1 0 0	1 1 1 0 0	0 0 0 0 0	0 0 0 1	0 0 0 1	0 0 0 1 1	0 0 1 1	0 0 1 1	5 4 4 5 5	1.39 1.65 1.64 1.42 1.32	6.936.606.577.126.59	2 F A1.0 5	PARKING LEG SCALE: N/A	AISLE SPACE	
ТҮРЕ 7 ТҮРЕ 8 ТҮРЕ 9 ТҮРЕ 10 ТҮРЕ 11 ТҮРЕ 12 ТҮРЕ 13 ТҮРЕ 13 ТҮРЕ 14 ТҮРЕ 12 ТҮРЕ 13 ТҮРЕ 14 ТҮРЕ 1 ТҮРЕ 3 ТҮРЕ 4 ТҮРЕ 5 ТҮРЕ 6 ТҮРЕ 7 ТҮРЕ 8	932.87 932.87 895.61 1114.62 11114.62 1011.47 1043.68 1244.17 1237.55 1073.34 992.85 1153.37	83.20 92.24 103.55 93.97 96.96 115.59 114.97 99.72 92.24 107.15		1 1 0 0 0 0 0	1 1 1 1 1 0 0 0	1 1 1 1 1 0 0	1 1 1 0 0 0	1 1 1 0 0 0		0 0 1 1 0	0 0 1 1	0 0 1 1 1	0 0 1 1 1	0 0 1 1 1	5 4 4 5 5 5 4	1.39 1.65 1.64 1.42 1.32 1.53	 6.93 6.60 6.57 7.12 6.59 6.12 	2 F A1.0 5	PARKING LEG SCALE: N/A TON	6000 AISLE SPACE	BLOCK 2
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11 TYPE 12 TYPE 13 TYPE 14 TYPE 12 TYPE 13 TYPE 14 TYPE 15 TYPE 3 TYPE 4 TYPE 5 TYPE 6 TYPE 7 TYPE 8 TYPE 9	932.87 932.87 895.61 1114.62 1114.62 1011.47 1043.68 1244.17 1237.55 1073.34 992.85 1153.37 1015.89	83.20 92.24 103.55 93.97 96.96 115.59 114.97 99.72 92.24 107.15 94.38		1 1 0 0 0 0 0 0	1 1 1 1 1 0 0 0 0	1 1 1 1 0 0 0 0	1 1 1 0 0 0 0	1 1 1 0 0 0 0		0 0 1 1 0 0	0 0 1 1 1 1	0 0 1 1 1 1	0 0 1 1 1 1	0 0 1 1 1 1	5 4 5 5 4 4	1.39 1.65 1.64 1.42 1.32 1.53 1.35	 6.93 6.60 6.57 7.12 6.59 6.12 5.39 	END UNIT 1	BLOCK 1	6000 AISLE SPACE	BLOCK 2
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11 TYPE 12 TYPE 13 TYPE 14 TYPE 1 TYPE 12 TYPE 13 TYPE 14 TYPE 3 TYPE 4 TYPE 5 TYPE 6 TYPE 7 TYPE 8 TYPE 9 TYPE 10	932.87 932.87 895.61 1114.62 1114.62 1011.47 1043.68 1244.17 1237.55 1073.34 992.85 11153.37 1015.89 0 1192.72	83.20 92.24 103.55 93.97 96.96 115.59 114.97 99.72 92.24 107.15 94.38 110.81		1 1 0 0 0 0 0 0 0 0	1 1 1 1 1 0 0 0 0 0 0	1 1 1 1 0 0 0 0 0	1 1 1 0 0 0 0 0	1 1 1 0 0 0 0 0 0		0 0 1 1 0 0	0 0 1 1 1 1 1	0 0 1 1 1 1 1 1	0 0 1 1 1 1 1 1	0 0 1 1 1 1 1	5 4 5 5 4 4 4 4	1.39 1.65 1.64 1.42 1.32 1.53 1.35 1.58	 6.93 6.60 6.57 7.12 6.59 6.12 5.39 6.33 	2 F A1.0 S END UNIT 1 (TOTAL: 1731.48 SQ/FT - 160.86 M2)	END UNIT 2 (TOTAL: 1742.14 SQ/FT - 161.85 M2)	6000 AISLE SPACE IEND WNHOMES DIATE END UNIT 1 OTAL: 1731.48 SQ/FT 173.160.86 M2)	BLOCK 2 END UNIT 2 UNIT (TOTAL: UNI '42.14 SQ/FT 161.85 M2) - 1
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11 TYPE 12 TYPE 12 TYPE 12 TYPE 12 TYPE 12 TYPE 12 TYPE 13 TYPE 2 TYPE 3 TYPE 4 TYPE 5 TYPE 6 TYPE 7 TYPE 8 TYPE 9 TYPE 10 PAR	932.87 932.87 895.61 1114.62 1114.62 1011.47 1043.68 1244.17 1237.55 1073.34 992.85 11153.37 1015.89 1192.72	83.20 92.24 103.55 93.97 96.96 1115.59 99.72 99.72 92.24 107.15 94.38 1110.81 ER TOWER		1 1 0 0 0 0 0 0 0 0 0 21	1 1 1 1 1 0 0 0 0 0 0 0 20	1 1 1 1 0 0 0 0 0 20	1 1 1 0 0 0 0 0 0 20	1 1 1 0 0 0 0 0 0 20	0 0 0 0 0 0 0 0 0 19	0 0 1 1 0 0 0 21	0 0 1 1 1 1 1 1 20	0 0 1 1 1 1 1 1 20	0 0 1 1 1 1 1 1 20	0 0 1 1 1 1 1 1 20	5 4 5 5 4 4 4 4	1.39 1.65 1.64 1.42 1.32 1.53 1.35 1.58	6.93 6.60 6.57 7.12 6.59 6.12 5.39 6.33 283	END UNIT 1 (TOTAL: 1731.48 SQ/FT - 160.86 M2) 1	BLOCK 1 END UNIT 2 (TOTAL: 1742.14 SQ/FT - 161.85 M2) INTERME UNIT - (TI 155.92 1 1 3	6000 AISLE SPACE IEND WNHOMES DIATE ICITAL: OTAL: 1731.48 SQ/FT 1 1	BLOCK 2 END UNIT 2 UNIT (TOTAL: UNI 167.162, FT 161.85 M2) - 1 1
TYPE 7 TYPE 8 TYPE 9 TYPE 10 TYPE 11 TYPE 12 TYPE 14 TYPE 2 TYPE 3 TYPE 4 TYPE 5 TYPE 6 TYPE 7 TYPE 8 TYPE 9 TYPE 10 PAR TOT	I 932.87 I 932.87 I 992.85 I 1114.62 I 1011.47 I 1043.68 I 1244.17 I 1237.55 I 1073.34 992.85 11153.37 I 1015.89 I 1192.72 I INTS PER	83.20 92.24 103.55 93.97 96.96 115.59 114.97 99.72 99.72 92.24 107.15 94.38 1110.81 ER TOWER	0 0 0 0 0 0 0 0 0 0 0 0 0 0 19	1 1 0 0 0 0 0 0 0 0 21	1 1 1 1 1 0 0 0 0 0 0 0 0 0 20	1 1 1 1 0 0 0 0 0 0 20 20	1 1 1 0 0 0 0 0 20	1 1 1 0 0 0 0 0 20	0 0 0 0 0 0 0 0 19	0 0 1 1 0 0 0 21	0 0 1 1 1 1 1 20	0 0 1 1 1 1 1 20 20	0 0 1 1 1 1 1 1 20	0 0 1 1 1 1 1 20	5 4 5 5 4 4 4 4 4 4 4 4 4	1.39 1.65 1.64 1.42 1.32 1.53 1.35 1.58	 6.93 6.60 6.57 7.12 6.59 6.12 5.39 6.33 283 	END UNIT 1 (TOTAL: 1731.48 SQ/FT - 160.86 M2) 1	END UNIT 2 (TOTAL: 1742.14 SQ/FT - 161.85 M2) 1 10	6000 AISLE SPACE IEND WNHOMES DIATE END UNIT 1 OTAL: 1731.48 SQ/FT 1 1	BLOCK 2 END UNIT 2 INTE (TOTAL: UNI '42.14 SO/FT 161.85 M2) -1 1 1 1 10

	Name of Project Fausto Cortese MIX-USED CON	Architect DO DEV	ELOPM	ENT AT 12148 /	ALBION VAL	JGHAN RI	D. BC	OLTON - CALEI	DON			
	Location: 3560 Rutheford Vaughan, Ontari	road, Uni o	t 35 & 55	5								
		Onta	rio Bui	ldina Code I	Data Matri	x - Part	3 &	9		OBC Refer	ence	
										References are to Divisio	ion B unless note	
1	Project Descripti	on: 2-6 S	itoreys C	ondo Building	\boxtimes	New		Part 11		Part 3	Part 9	
				hande of Lise		Addition		11.1 to 11.4		1.1.2. [A]	1.1.2. 9.10.1.3.	
2	Major Occupano	v(s)	Grour			7 4101 4101				3 1 2 1 (1)	9.10.2.	
3	Building Area (m	2)		1577.2 m ²	т	TAL - 457	7.2 r	n 2		1 4 1 2 [A] 1	1412[4]	
	Building Area (m) NEW: 45/7.3 m2 IOTAL: 45/7.3 m2 Onese Area (m2) Views 45/7.3 m2 TOTAL: 45/7.3 m2											
4	Gross Area (IIF)		NEW: 2	25760.00 m2	10	DTAL: 257	60.0	0 m2		1.4.1.2 [A]	1.4.1.2 [A]	
5	Number of Store	ys 		1.4.1.2 [A] & 3.2.1.1.	9.10.4.							
6	Number of Stree		gnter Ac							3.2.2.10 & 3.2.5.	9.10.20.	
7	Building Classifie	ation:			3.2.2.43					3.2.2.70.B	9.10.2.	
8	Sprinkler Systen	1 Propose		entire building	g 	님	in lie	eu of roof rating		3.2.2.67	9.10.6.2.	
				selected com	partments	님				3.2.1.5		
	basement									3.2.2.17 INDEX	INDEX	
9	Standpipe requir	ed			\boxtimes	Yes	Г	No		3.2.9.	N/A	
10	Fire Alarm requi	ed		3.2.4.	9.10.18.							
11	Water Service/Supply is Adequate									3.2.5.7.	N/A	
12	High Building									3.2.6	N/A	
13	Construction Re	strictions		Combusti	^{ble} 🛛	Non-com	bust	ible 🔲 B	oth	3.2.2.67	9.10.6.	
	Actual Construct	ion		Combusti	ble 🛛	Non-com	, ibust	ible 🔲 B	oth			
14	Mezzanine Area	(m ²): N	/A							3.2.1.1.(3)-(8)	9.10.4.1.	
15	Occupant load b	ased on		m ² /persor		design o	f buil	ding		3.1.17	9.9.1.3.	
		Occupano	cy:	Load:	_	l	_oad	: 770 m2				
16	Barrier-free Desi	gn		X Yes	No (E	xplain):				3.8	9.5.2.	
17	Hazardous Subs	tances		Yes	No No					3.3.1.2. & 3.3.1.19	9.10.1.3.(4)	
18	Required		Horizor	ntal Assemblies			Liste	ed Design No.		3.2.2.2083 &	9.10.8.	
	Fire		FF	RR (Hours)		0	or De	scription (SB-3)		3.2.1.4	9.10.9.	
	Rating	Floor:		0.75	Hours							
		Roof:		0	Hours							
			FRR	of Supporting			Liste	ed Design No.				
			ſ	/lembers		0	or De	scription (SB-3)				
		Floor:		De750 itted	HoPenesposed	1		S1				
	EBF (m)	Rkqojf:		Max. % of Openings	% of Hoog penings	6						
19	Spatial Separation	on - Cons	struction	of Exterior Walls	s - Existing E	Building				3.2.3	9.10.14.	
	Wall Area of	L.D.	L/H or			FR	R	Listed	Corr	b Constr None	Non-comb	
Left	2		H/L			(Hou	ırs)	Description	Con	st Cladding	Const	
Front	North NO CHANG	ie –	-	-	-	-		-	-	-	-	
Rear	South NO CHANG	ie –	-	_	-	-		-	-	-	-	
_	East NO CHANG	ie –	_	_	-	-		-	-	-	-	
Right	West NO CHANG	ie –	-	-	-	-		-	-	-	-	

OJECT No:

AWING No:

REVIEWED BY

A1.0

2010

Palmer...

Appendix B – Remediation

B.1 Remedial Actions

Analytical results of the Phase Two ESA revealed the presence of PHC Fraction F3 within the garage structure (Area 1), and Cadmium and Lead located within the stockpiled material (Area 2) located on southwestern portion of the on the Subject Property, as presented in **Drawing 4**. Palmer has assumed that the impacted stockpiled material will be removed during regrading of the Site prior to development.

Ground water remediation was not required, as all ground water analytical results met the MECP Standards for all parameters analyzed.

Therefore, Palmer's remediation program targeted the remediation of the PHC Fraction F3 impacted soil.

Based on borehole analytical results (as presented in **Appendix A3**), fill materials located in Area 1 were to be excavated along the eastern portion of the Phase Two Property and disposed of off-Site, which consisted of the following:

Area	Location on Phase Two Property	Approximate Volume of Impacted Soil Removed (m ³)	Contaminants of Concern			
1	Eastern portion of the Subject Property, in the vicinity of staining observed within the garage structure	2	PHC Fraction F3			

Excavation activities were conducted by Nexxgen Environmental under the supervision of Palmer staff, and commenced on October 15, 2021. Nexxgen Environmental excavated Area 1, as shown in the **Photograph Appendix**.

No evidence of free product, odours and/or staining were observed in the vicinity of the Area 1 upon completion of soil excavation activities.

During the excavation activities, soil was directly placed into metal bins used for transport. All impacted soil was removed from the Phase Two Property by the excavating contractor (Nexxgen Environmental) and disposed of at Triple Waste Management Ltd. In Toronto, Ontario. In total, approximately 2 m³ (4.11 tonnes) of impacted soil was removed from the Phase Two Property. Copies of approved permits are presented in **Appendix B5**.

Upon excavation and removal of impacted material, Palmer monitored the excavated areas, including visual and olfactory observations and conducted verification sampling. Verification samples were submitted to ALS Environmental for chemical analyses of the parameters of concern from the excavated area, as mentioned above. Duplicate samples were also submitted for QA/QC purposes.

Soil was not imported to the Site for backfilling purposes and the excavation area remained open, as the Phase Two Property will be re-graded following the demolition of the existing garage structure.

A review of the soil analytical results collected during remediation activities (presented in **Appendix B6**) indicated that all collected wall and floor verification soil samples complied with the MECP Table 3 Standards for the proposed residential land use with medium-fine textured soils in a non-potable ground water condition. Therefore, all PHC Fraction F3 impacted soil was removed and disposed of off-site. Testing or monitoring of ground water was not completed as ground water contamination was not detected during the Phase Two ESA and was not encountered during excavation activities. The Lead and Cadmium impacted soils within the stockpile located at the southern portion of the Phase Two Property will be disposed of during the regrading of the Phase Two Property. Thus, upon completion of remedial activities, the soil in the vicinity of the existing garage on the Phase Two Property was restored to the MECP Table 3 Standards.

B.2 Free Flowing Product

Free flowing product was not observed during the Phase Two ESA or remedial activities.

B.3 Confirmation Sampling and Analysis

Upon excavation of the impacted area, the excavated area was monitored for any visual and/or olfactory observations. If any odours and/or staining were observed, further excavation was conducted until all malodorous or stained soil was removed from the wall or floor of the excavated area.

The excavated area, as presented in **Drawings 6** and **7**, consisted of the following:

Area	Lateral Dimensions (m)	Vertical Dimensions (m)	Maximum Depth Below Grade (m)	Number of Collected Floor Samples	Number of Collected Wall Samples	Parameters Analyzed
1	1.8	2.6	0.4	2	4	PHCs, BTEX

Vertical and lateral dimensions of each of the excavated area is presented in **Cross-Section B-B'** and **Drawing 7**.

Verification samples from both the floor and walls of the excavated areas were collected in accordance to the number of samples required based on the floor area of the test pit, as per O.Reg. 153/04 Schedule E, Table 3. If analytical results of any of the submitted verification samples revealed exceedances of any parameters analyzed, that area of the test pit was further excavated and another verification sample was collected until all analytical results indicated a contaminant concentration within the Table 3 Standards. Once all analytical results for the excavated area indicated that all verification samples complied with the MECP Table 3 standards for residential land use with medium-fine textured soils in a non-potable ground water condition, the excavation area was subsequently considered remediated.

Based on the field observations, "worst case" soil samples were collected from both the floor and wall of the excavated area and submitted for laboratory analyses in the vicinity of the depths where previous exceedances were encountered. In Area 1, two (2) floor and four (4) wall samples were collected for laboratory analysis, as shown in **Drawing 7**. Verification samples were submitted for analyses of contaminants that exceeded the Table 3 Standards during the Phase Two ESA, as previously discussed in *Section C.1*. Analytical results are presented in **Appendix C6**.

Analytical results of each of the submitted verification samples are presented in **Drawing 7 and Cross-Section B-B'** and are as follows:

Table 8. Soil Analytical Results: PHC with BTEX

		PHCs BTEX										
		F1 (C6-C10)	F1 (C6-C10) - BTEX*	F2 (C10-C16)	F3 (C16-C34)	F4 (C34-C50)	Benzene	Toluene	Ethylbenzene	Xylenes, Total (Xylene Mixture)		
	µg/g	µg/g	μg/g	µg/g	µg/g	μg/g	μg/g	μg/g	μg/g			
O.Reg. 153/04 Use, Medium-I Condition	MOECC Guideline (Fine Textured Soil, N	(2011), Res/Park/I Jon-Potable Grour	nst Property nd Water	<mark>6</mark> 5	65	150	1300	5600	0.17	6	15	25
Sample Location	Sample ID	Sample Interval (mbgs)	Sample Date									
North wall	21-NW-1	0.3	15-Oct-21	<5.0	<5.0	<10	<50	<50	<0.0068	<0.018	<0.080	<0.050
East wall	21-EW-1	0.3	15-Oct-21	<5.0	<5.0	<10	<50	<50	<0.0068	<0.018	<0.080	<0.050
South wall	21-SW-1	0.3	15-Oct-21	<5.0	<5.0	<10	<50	<50	<0.0068	<0.018	<0.080	<0.050
South wall	21-SW-1D	0.3	15-Oct-21	<5.0	<5.0	<10	<50	<50	<0.0068	<0.018	<0.080	<0.050
Floor	21-F-1	0.3	15-Oct-21	<5.0	<5.0	<10	<50	<50	<0.0068	<0.018	<0.080	<0.050
Floor	21-F-2	0.4	15-Oct-21	<5.0	<5.0	<10	<50	<50	<0.0068	<0.018	<0.080	<0.050

a) Petroleum Hydrocarbons $(F_1 - F_4)$ with BTEX

B.4 Conclusions

One (1) identified area of impacted soil comprising PHC Fraction F3 was excavated and in total, approximately 2 m³ (4.11 tonnes) of impacted soil was hauled off-site by Nexxgen Environmental and disposed of at Triple Waste Management Ltd.

Verification sampling was conducted, and the laboratory analytical results of the verification samples indicated no exceedances in comparison to the MECP Table 3 standards for the proposed residential land use with medium-fine textured soils in a non-potable ground water condition. Upon receipt of analytical results indicating that all verification samples comply with the MECP Table 3 Standards, the excavation area was deemed complete and backfilling did not occur.

In conclusion, all impacted soil was removed and disposed of off-site and the Phase Two Property has been restored to the MECP Table 3 standards for the proposed residential land use with medium-fine textured soils in a non-potable ground water condition.

Palmer...

Appendix B – Remediation B5 – Approved Permits

			W.O. #: 241631
Iripie	BIN # IN:	DATE:	CT. 15, 202
48 Millwick Drive, Toronto, ON. MS T. 416.688.474	BIN # OUT:	P.O. #:	
CUSTOMER: NEX	GEN		1
SERVICE ADDRESS: 12	148 ALBIO	N-VAUGHANCITY: 4	LETN BERG
MATERIAL LIST - chec SOIL BRICK OR BLOCK CONCRETE ASPHALT MARBLE STRAW MASTIC	ck all that apply MIXED WASTE WOOD CARDBOARD DRYWALL METAL ROOFING PLASTIC	SERVICE: DELIVERY REMOVAL EXCHANGE RE-LOCATE WAIT & LOAD AFTER HOURS WAIT TIME ON SITE:	BIN SIZE: 14 YARD 20 YARD 40 YARD COMPACTOR
NOTES			
READ CONDITIONS CAREFULLY Our Insurance policy prohibits waste for Unsafe loads will be refused. We are not m removing or moving containers. We of NOLIQUID OR HAZARDOUS WASTE. The m is made in full and the material is accept will be returned with associated fees bill WHITE: OFFICE CANARY: CUSTOMER	BEFORE YOU SIGN: om being piled higher than the container wal esponsible for damage to property when placin noly accept 100% Non-hazardous solid was laterial is the customer's responsibility until payme ed at a M.O.E.C.C. licensed facility. Refused loa lled accordingly.	Ils. Ils.	CUSTOMER'S ACKNOWLEDGEMENT

		A8 Millwick Drive	TICKET#	DATE	SCALE OF	PERATOR			
	Γ_{Λ}	Toronto, ON	MT 169474	10/15/2021	Pedi	ro			
11	ANSFE	M9L 1Y3 PH:(416) 863-9222 Fax:(416) 863-1496	TIME IN	TIME IN TIME OUT TRUCK #					
			7:31 am	7:41 am	TRIPLEWA				
				RE	FERENCE				
			016						
8 Mill oronto	wick , ON	Management Ltd. Dr. INVOICE M9L 1Y3 INBOUND	GROSS WE TARE WE NET WE	IGHT 20,070kg IGHT 15,960kg IGHT 4,110kg	Scale In Scale Out	SCALE WEIGH			
QTY.	UNIT	DESCRIPTION	RATE	SUBTOTAL	TAX	TOTAL			
4.11	mt	Non-Hazardous Solid Waste							
By signing th	is ticket.	accept all weights, classifications and charges contained herei	n, and certify this mate	erial to be 100% non-ha	zardous solid waste and	TOTAL			
by signing un	rea not to	dump liquid or "bazardous waste" material as defined in On	tario Regulation 347.	Millwick Transfer Limite	d does not assume any				

As the soil generator I hereby certify, the amount excavated from the source residential property does not exceed 1,000 cubic metrics, does not note any known contamination, the property has not been used to store equipment or material [fuels, pesticides, solvents, batteries, etc.] that may have caused contamination and has not come from, or adjacent to, a remediation project, commercial or industrial property. Millwick Transfer Limited reserves the right to refuse and reload material that does not meet the above criteria. Please contact the office for further information.

CHANGE DUE CHEQUE #

SIGNATURE

Palmer...

Appendix B – Remediation B6 – Certificates of Analysis or Analytical Reports from Laboratories

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) ATTN: Samo Szakal 74 BERKELEY STREET TORONTO ON M5V 1E3 Date Received:15-OCT-21Report Date:22-OCT-21 12:54 (MT)Version:FINAL

Client Phone: 647-795-8152

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L2651843 1604603 1604603 20-953130

KARANPARTAP SINGH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
Ontario Reg (No pa	julation 153/04 - Apr rameter exceedances)	il 15, 2011 Standards - T3-Soil-Res/Pa	rk/Inst. Property Use (Coarse)			
Ontario Reg	julation 153/04 - Apr	il 15, 2011 Standards - T3-Soil-Res/Pa	rk/Inst. Property Use (Fine)			
(No pa	rameter exceedances)					

L2651843 CONT'D Job Reference: 1604603 PAGE 3 of 7 22-OCT-21 12:54 (MT)

Physical Tests - SOIL

··· ·									
		L	_ab ID	L2651843-1	L2651843-2	L2651843-3	L2651843-4	L2651843-5	L2651843-6
		Sample	e Date	15-OCT-21	15-OCT-21	15-OCT-21	15-OCT-21	15-OCT-21	15-OCT-21
		Sam	ple ID	21-SW-1	21-SW-1D	21-EW-1	21-NW-1	21-F-1	21-F-2
Analyte	Unit	Guide #1	Limits #2						
% Moisture	%	-	-	18.7	18.6	20.3	17.7	14.3	19.3

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse) Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2651843 CONT'D Job Reference: 1604603 PAGE 4 of 7 22-OCT-21 12:54 (MT)

Volatile Organic Compounds - SOIL

		I	_ab ID	L2651843-1	L2651843-2	L2651843-3	L2651843-4	L2651843-5	L2651843-6
		Sample	e Date	15-OCT-21	15-OCT-21	15-OCT-21	15-OCT-21	15-OCT-21	15-OCT-21
		Sam	ple ID	21-SW-1	21-SW-1D	21-EW-1	21-NW-1	21-F-1	21-F-2
		Guide	Limits						
Analyte	Unit	#1	#2						
Benzene	ug/g	0.21	0.17	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068
Ethylbenzene	ug/g	2	15	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Toluene	ug/g	2.3	6	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080
o-Xylene	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
m+p-Xylenes	ug/g	-	-	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
Xylenes (Total)	ug/g	3.1	25	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Surrogate: 4-Bromofluorobenzene	%	-	-	108.4	93.3	99.9	103.6	104.6	98.7
Surrogate: 1,4-Difluorobenzene	%	-	-	116.2	99.6	104.8	104.0	111.0	109.8

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse)

Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2651843 CONT'D Job Reference: 1604603 PAGE 5 of 7 22-OCT-21 12:54 (MT)

Hydrocarbons - SOIL

	L	ab ID	L2651843-1	L2651843-2	L2651843-3	L2651843-4	L2651843-5	L2651843-6
	Sample	Date	15-OCT-21	15-OCT-21	15-OCT-21	15-OCT-21	15-OCT-21	15-OCT-21
	Sam	ple ID	21-SW-1	21-SW-1D	21-EW-1	21-NW-1	21-F-1	21-F-2
	Guide	Limits						
Init	#1	#2						
Jg∕g	55	65	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Jg∕g	55	65	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Jg∕g	98	150	<10	<10	<10	<10	<10	<10
Jg∕g	300	1300	<50	<50	<50	<50	<50	<50
Jg∕g	2800	5600	<50	<50	<50	<50	<50	<50
Jg∕g	-	-	<72	<72	<72	<72	<72	<72
	-	-	YES	YES	YES	YES	YES	YES
%	-	-	78.1	80.1	86.5	88.5	93.1	90.8
%	-	-	94.7	95.8	96.2	90.0	97.0	96.0
	nit 9/9 9/9 9/9 9/9 9/9 9/9 9/9 9/9 %	L Sample Sam (Sam)	Lab ID Sample Date Sample ID Guide Limits #1 #2 g/g 55 65 g/g 55 65 g/g 55 65 g/g 98 150 g/g 300 1300 g/g 2800 5600 g/g - - g/g - -	Lab ID Sample Date Sample ID L2651843-1 15-OCT-21 21-SW-1 Guide Limits #1 15-OCT-21 21-SW-1 g/g 55 65 <5.0	Lab ID Sample Date Sample ID L2651843-1 15-OCT-21 21-SW-1D L2651843-2 15-OCT-21 21-SW-1D Guide Limits #1 15-OCT-21 21-SW-1D L2651843-2 15-OCT-21 21-SW-1D g/g 55 65 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Lab ID Sample Date Sample ID L2651843-1 15-OCT-21 21-SW-1 L2651843-2 15-OCT-21 21-SW-1D L2651843-3 15-OCT-21 21-SW-1D Guide Limits #1 #2 L2651843-3 15-OCT-21 21-SW-1D L2651843-3 15-OCT-21 21-SW-1D L2651843-3 15-OCT-21 21-SW-1D guide Limits #1 #2 L2651843-3 15-OCT-21 21-SW-1D L2651843-3 15-OCT-21 21-SW-1D L2651843-3 15-OCT-21 21-SW-1D L2651843-3 15-OCT-21 21-SW-1D guide Limits #1 #2 Limits #1 L2651843-3 15-OCT-21 21-SW-1D L2651843-3 15-OCT-21 21-SW-1D L2651843-3 15-OCT-21 21-SW-1D guide Limits guide State	Lab ID Sample Date Sample ID L2651843-1 15-OCT-21 21-SW-1 L2651843-2 15-OCT-21 21-SW-1D L2651843-3 15-OCT-21 21-EW-1 L2651843-3 15-OCT-21 21-EW-1 L2651843-4 15-OCT-21 21-EW-1 guide Limits yfg 55 65 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.	Lab ID Sample Date Sample ID L2651843-1 15-OCT-21 21-SW-1 L2651843-2 15-OCT-21 21-SW-1D L2651843-3 15-OCT-21 21-EW-1 L2651843-4 15-OCT-21 21-NW-1 L2651843-4 15-OCT-21 21-NW-1 L2651843-5 15-OCT-21 21-NW-1 guide tmits mit tmits #1 tmits #2 tmits 42 L2651843-4 15-OCT-21 21-SW-1D L2651843-3 15-OCT-21 21-EW-1 L2651843-4 15-OCT-21 21-NW-1 gy 55 65 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0

Guide Limit #1: T3-Soil-Res/Park/Inst. Property Use (Coarse)

Guide Limit #2: T3-Soil-Res/Park/Inst. Property Use (Fine)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Reference Information

Methods Listed (if applic	able).			22-OCT-21 12:54 (MT)
ALS Test Code	Matrix	Test Description	Method Reference**	
BTX-511-HS-WT	Soil	BTEX-O.Reg 153/04 (July 2011)	SW846 8260	
BTX is determined by	extracting a soi	I or sediment sample as received with me	thanol, then analyzing by headspace-GC/MS.	
Analysis conducted in November 30, 2020), u	accordance wit Inless a subset	th the Protocol for Analytical Methods Use t of the Analytical Test Group (ATG) has b	d in the Assessment of Properties under Part XV.1 of the Environmental Preen requested (the Protocol states that all analytes in an ATG must be rep	otection Act (July 1, 2011 and as of orted).
F1-F4-511-CALC-WT	Soil	F1-F4 Hydrocarbon Calculated Parameters	CCME CWS-PHC, Pub #1310, Dec 2001-S	
Analytical methods use	ed for analysis	of CCME Petroleum Hydrocarbons have b	been validated and comply with the Reference Method for the CWS PHC.	
Hydrocarbon results ar	e expressed or	n a dry weight basis.		
In cases where results	for both F4 and	d F4G are reported, the greater of the two	results must be used in any application of the CWS PHC guidelines and th	e gravimetric heavy hydrocarbons cannot be
added to the C6 to C50 In samples where BTE) hydrocarbons X and F1 were	analyzed,F1-BTEX represents a value v	where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has b	een subtracted from F1.
In samples where PAH Benzo(a)anthracene, E from F3.	ls, F2 and F3 w Benzo(a)pyrene	vere analyzed, F2-Naphth represents the r e, Benzo(b)fluoranthene, Benzo(k)fluoranth	result where Naphthalene has been subtracted from F2. F3-PAH represent nene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Pher	s a result where the sum of nanthrene, and Pyrene has been subtracted
Unless otherwise quali 1. All extraction and ar 2. Instrument performa 3. Linearity of gasoline	fied, the followi alysis holding to ance showing re response withi	ing quality control criteria have been met fo times were met. esponse factors for C6 and C10 within 30% in 15% throughout the calibration range.	or the F1 hydrocarbon range: % of the response factor for toluene.	
Unless otherwise quali 1. All extraction and ar 2. Instrument performa 3. Instrument performa 4. Linearity of diesel or	fied, the followi alysis holding t ance showing C ance showing th motor oil respo	ing quality control criteria have been met fo times were met. 210, C16 and C34 response factors within ne C50 response factor within 30% of the a onse within 15% throughout the calibratior	or the F2-F4 hydrocarbon ranges: 10% of their average. average of the C10, C16 and C34 response factors. n range.	
F1-HS-511-WT	Soil	F1-O.Reg 153/04 (July 2011)	E3398/CCME TIER 1-HS	
Fraction F1 is determin	ned by extractin	ng a soil or sediment sample as received v	vith methanol, then analyzing by headspace-GC/FID.	
Analysis conducted in November 30, 2020), u	accordance wit Inless a subset	th the Protocol for Analytical Methods Use t of the Analytical Test Group (ATG) has b	d in the Assessment of Properties under Part XV.1 of the Environmental Preen requested (the Protocol states that all analytes in an ATG must be rep	rotection Act (July 1, 2011 and as of orted).
F2-F4-511-WT	Soil	F2-F4-O.Reg 153/04 (July 2011)	CCME Tier 1	
Petroleum Hydrocarbo F4 are analyzed by GC	ns (F2-F4 fract C-FID. F4G-sg	ions) are extracted from soil with 1:1 hexa is analyzed gravimetrically.	ne:acetone using a rotary extractor. Extracts are treated with silica gel to r	emove polar organic interferences. F2, F3, &
Notes: 1. F2 (C10-C16): Sum	of all hydrocarl	bons that elute between nC10 and nC16.		

- F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
 F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sg: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sg are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4. 7. F4G-sg cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.

Reference Information

Methods Listed (if applicable	e):			22-001-21 12.34 (MT)
ALS Test Code	Matrix T	Test Description	Method Reference**	
9. Data from analysis of val 10. Reported results are ex	lidation and qua pressed as milli	lity control samples is available upon re grams per dry kilogram, unless otherwi	equest. se indicated.	
Analysis conducted in acco November 30, 2020), unles	ordance with the ss a subset of the	Protocol for Analytical Methods Used in e Analytical Test Group (ATG) has bee	n the Assessment of Properties under Part XV.1 of the Environmental Protection Act (Jul n requested (the Protocol states that all analytes in an ATG must be reported).	ly 1, 2011 and as of
MOISTURE-WT	Soil	% Moisture	CCME PHC in Soil - Tier 1 (mod)	
XYLENES-SUM-CALC-WT	Soil	Sum of Xylene Isomer Concentrations	CALCULATION	
Total xylenes represents th	e sum of o-xyler	ne and m&p-xylene.		
**ALS test methods may incorp	orate modificatio	ons from specified reference methods to	o improve performance.	
Chain of Custody Numbers:				
20-953130				
The last two letters of the abo	ve test code(s)	indicate the laboratory that performed a	nalytical analysis for that test. Refer to the list below:	
Laboratory Definition Code	Laboratory L	ocation		
WT	ALS ENVIRC	DNMENTAL - WATERLOO, ONTARIO,	CANADA	

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Samo Szakal

Quality Control Report

Workorder: L2651843

Report Date: 22-OCT-21

Page 1 of 4

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Contact:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Soil							
Batch R5	625737							
WG3641251-4 Benzene	DUP	WG3641251-3 <0.0068	<0.0068	RPD-NA	ug/g	N/A	40	21-OCT-21
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	21-OCT-21
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	21-OCT-21
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	21-OCT-21
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	21-OCT-21
WG3641251-2 Benzene	LCS		64.8	MES	%		70-130	21-OCT-21
Ethylbenzene			86.3		%		70-130	21-OCT-21
m+p-Xylenes			87.7		%		70-130	21-OCT-21
o-Xylene			94.6		%		70-130	21-OCT-21
Toluene			74.8		%		70-130	21-OCT-21
WG3641251-1 Benzene	МВ		<0.0068		ug/g		0.0068	21-OCT-21
Ethylbenzene			<0.018		ug/g		0.018	21-OCT-21
m+p-Xylenes			<0.030		ug/g		0.03	21-OCT-21
o-Xylene			<0.020		ug/g		0.02	21-OCT-21
Toluene			<0.080		ug/g		0.08	21-OCT-21
Surrogate: 1,4-I	Difluorobenzene		118.9		%		50-140	21-OCT-21
Surrogate: 4-Br	omofluorobenzene		114.2		%		50-140	21-OCT-21
WG3641251-5 Benzene	MS	WG3641251-3	102.9		%		60-140	21-OCT-21
Ethylbenzene			94.8		%		60-140	21-OCT-21
m+p-Xylenes			99.1		%		60-140	21-OCT-21
o-Xylene			99.6		%		60-140	21-OCT-21
Toluene			93.3		%		60-140	21-OCT-21
F1-HS-511-WT	Soil							
Batch R5	625737							
WG3641251-4 F1 (C6-C10)	DUP	WG3641251-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	21-OCT-21
WG3641251-2 F1 (C6-C10)	LCS		99.97		%		80-120	21-OCT-21
WG3641251-1 F1 (C6-C10)	МВ		<5.0		ug/g		5	21 - 00T-21
Surrogate: 3 4-I	Dichlorotoluene		112.8		~ .		- 60-140	21-001-21 21-0CT-21
WG3641251-5	MS	WG3641251-3						21 001 21

Quality Control Report

Report Date: 22-OCT-21

Page 2 of 4

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3

Workorder: L2651843

Contact: Samo Szakal

Test	N	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT	Ś	Soil							
Batch R5	5625737								
WG3641251-5 F1 (C6-C10)	MS		WG3641251-3	101.3		%		60-140	21-OCT-21
F2-F4-511-WT	\$	Soil							
Batch R5	5624355								
WG3639290-3 F2 (C10-C16)	DUP		WG3639290-5 <10	<10	RPD-NA	ug/g	N/A	30	19-OCT-21
F3 (C16-C34)			<50	<50	RPD-NA	ug/g	N/A	30	19-OCT-21
F4 (C34-C50)			<50	<50	RPD-NA	ug/g	N/A	30	19-OCT-21
WG3639290-2	LCS								
F2 (C10-C16)				84.3		%		80-120	19-OCT-21
F3 (C16-C34)				87.0		%		80-120	19-OCT-21
F4 (C34-C50)				91.4		%		80-120	19-OCT-21
WG3639290-1 F2 (C10-C16)	MB			<10		ug/g		10	19-OCT-21
F3 (C16-C34)				<50		ua/a		50	19-OCT-21
F4 (C34-C50)				<50		ua/a		50	19-OCT-21
Surrogate: 2-Br	omobenzot	rifluoride		84.0		~9·9		60-140	19-OCT-21
WG3639290-4	MS		WG3639290-5	-					10 001 21
F2 (C10-C16)	ine		1100000200 0	79.9		%		60-140	19-OCT-21
F3 (C16-C34)				84.8		%		60-140	19-OCT-21
F4 (C34-C50)				90.8		%		60-140	19-OCT-21
Batch R5	5626845								
WG3642228-3	DUP		WG3642228-5						
F2 (C10-C16)			<10	<10	RPD-NA	ug/g	N/A	30	22-OCT-21
F3 (C16-C34)			<50	<50	RPD-NA	ug/g	N/A	30	22-OCT-21
F4 (C34-C50)			<50	<50	RPD-NA	ug/g	N/A	30	22-OCT-21
WG3642228-2	LCS					0/			
F2 (C10-C16)				96.9		%		80-120	22-OCT-21
F3 (C16-C34)				94.8		%		80-120	22-OCT-21
F4 (C34-C50)				94.4		%		80-120	22-OCT-21
WG3642228-1 F2 (C10-C16)	MB			<10		ug/g		10	22-OCT-21
F3 (C16-C34)				<50		ug/g		50	22-OCT-21
F4 (C34-C50)				<50		ug/g		50	22-OCT-21
Surrogate: 2-Br	omobenzot	rifluoride		92.6		%		60-140	22-OCT-21

Quality Control Report

Report Date: 22-OCT-21

Page 3 of 4

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3 Contact: Samo Szakal

Workorder: L2651843

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F2-F4-511-WT		Soil							
Batch F	85626845								
WG3642228-4	MS		WG3642228-	5					
F2 (C10-C16)				91.3		%		60-140	22-OCT-21
F3 (C16-C34)				91.3		%		60-140	22-OCT-21
F4 (C34-C50)				97.5		%		60-140	22-OCT-21
MOISTURE-WT		Soil							
Batch F	85622676								
WG3639306-3	DUP		L2651810-7						
% Moisture			5.22	5.18		%	0.9	20	17-OCT-21
WG3639306-2	LCS								
% Moisture				101.2		%		90-110	17-OCT-21
WG3639306-1	МВ								
% Moisture				<0.25		%		0.25	17-OCT-21

Workorder: L2651843

Report Date: 22-OCT-21

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 BERKELEY STREET TORONTO ON M5V 1E3 Contact: Samo Szakal

Joniaci.

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

<f2-< th=""><th>→</th><th>—_F3—→←_F4—</th><th>→</th><th></th></f2-<>	→	—_F3 —→ ←_F4—	→	
nC10	nC16	nC34	nC50	
174°C	287⁰C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasoline 🔶 🖌 🔶 Mo			tor Oils/Lube Oils/Grease—	
← Diesel/Jet Fuels →				

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→ ←</th><th>F3▶◀F4</th><th>•</th></f2-<>	→ ←	F3▶◀F4	•
nC10	nC16	nC34	nC50
174°C	287⁰C	481°C	575⁰C
346°F	549°F	898°F	1067⁰F
Gasoline Motor (or Oils/Lube Oils/Grease 🗕 🕨
← Diesel/Jet Fuels →			

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→</th><th>F3→↓F4</th><th>→</th><th></th></f2-<>	→	F3→ ↓ F4	→						
nC10	nC16	nC34	nC50						
174°C	287°C	481°C	575°C						
346°F	549°F	898°F	1067ºF						
Gasoline 🔸 🛛 🔶			tor Oils/Lube Oils/Grease	-					
	← Diesel/Jet Fuels →								

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

←F2-	→	—F3—→ ∢ —F4-	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067ºF					
Gasoline 🔸 🛛 🔶 I			otor Oils/Lube Oils/Grease—					
	← Diesel/Jet Fuels →							

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→</th><th>—F3—→∢—F4-</th><th>→</th><th></th></f2-<>	→	—F3—→ ∢ —F4-	→					
nC10	nC16	nC34	nC50					
174°C	287ºC	481°C	575°C					
346°F	549°F	898°F	1067°F					
Gasoline 🔸 🗧		< M	otor Oils/Lube Oils/Grease					
•	←── Diesel/Jet Fuels→							

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→</th><th>—F3→✦—F4—</th><th>*</th><th></th></f2-<>	→	—F3 → ✦—F4—	*							
nC10	nC16	nC34	nC50							
174°C	287⁰C	481°C	575°C							
346°F	549°F	898°F	1067°F							
Gasoline 🔸 🛛 🛀			or Oils/Lube Oils/Grease—							
	← Diesel/Jet Fuels →									

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ody (COC) / Analytical Request Form

of

Page

Δ	
(ALS)	www.alsgiobal.com

anada Toll Free: 1 800 668 9878

																		-	and the second se	
Report To	Contact and company name below will appear	רטיקסו וחמוו חו חו חו		Reports / F	tecipients			1	Turnarour	nd Time (TA	T) Reques	ted								
Company:	iany: Pillmer Environmental Corry Ma Gravo			Select Report Format: PDF EXCEL EDD (DIGITAL)				Routine [R] if received by 3pm M-F - no surcharges apply												
Contact:	Same Scarked / Merge QC/QCI Reports with COA VES INO INVA					4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum														
Phone:	405 300 3410 Compare Results to			mpare Results to Criteria on Report - provide details below if box checked			3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum							AFFIX ALS BARCODE LABEL HERE (ALS use only)						
	Company address below will appear on the final report Sele			Select Distribution: 🗹 EMAIL 🗆 MAIL 🗖 FAX				2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum							(120 000 0111)					
Street:	The Bencelly Screel - Email for Eax Sama SPA Kull DOPEN CO.					Logy [c] if received by 10am M-S - 200% rush surcharge minimum														
City/Province:	To courte ON Email 2				may apply to rush requests on weekends, statutory holidays and non-routine tests															
Postal Code:	MAA ZW7		Email 3 😋	arith siza	KW DELG	- (6	Date and Time Required for all E&P TATs: 73/10/01													
Invoice To	Same as Report To	NO		Invoice R	ecipients		For all tests with rush TATs requested, please contact your AM to confirm availability.													
	Copy of Invoice with Report	NO	Select Invoice Distribution: EMAIL MAIL FAX				Analysis Request													
Company:	Pulmer Environment at PASU	Him Grap	Email 1 or Fax	ACCOUNTING	QPLEA	Cil .	SS		Indicate	Filtered (F), P	reserved (P)	or Filtered	and Presen	/ed (F/P) t	elow		T	<u>A</u>	(s	
Contact:	Accounting	····	Email 2 🕤	wan. S. Pak	RU DECA.	ca] 🗒											IR	lote	
	Project Information			Dil and Gas Require	d Fields (client us	se)] ₹	X										ğ	- e	
ALS Account # /	Quote #.		AFE/Cost Center:		PO#		ΙĘ.	12										R	(s)	
Job #:	104603	$\sim \sim$	Major/Minor Code:		Routing Code:		ō	<u>e</u>									ΞI	9GE	ARD	
PO / AFE:	160,603		Requisitioner:					トト									z	OR	AZ!	
LSD:	· • •	pp	Location:] Ō	0									0	ST	H	
ALS Lab Worl	Order # (ALS use only): 1 2 (5)	18212	ALS CAntadt;).		Sampler:	S - Kel	l H	X									Щ	B	E	
	L201	070	- Mark	Y	Jun Jun	w senna	8										đ		Du l	
ALS Sample #	Sample Identification a	and/or Coordinates		Date	Time	Sample Type	5	3									Å	Ę	ISN	
(ALS use only)	(This description will ap	opear on the report)		(dd-mmm-yy)	(hh:mm)		<u>اچ</u>					++					<u></u>	<u> </u>	<u> </u>	
				5/10/ 4	11:00	Soll_	12	×				<u> </u>								
	71-5W-1D			<u> </u>	,			\uparrow											i	
	U = EW - I							+												
	VI VW-1					1		4												
	7 E-1				+ (11											_	
				+ · · · · · · · · · · · · · · · · · · ·		<u> </u>	+17	1	-+-+-					+						
	I'Ll F= K				<u> </u>		rV.	r				++		+						
																_				
										-		++	-	++					-	
i		Notes / Specif	in Limits for result	evaluation by selectin	a from dron-down	helow	+			SAM	LE RECI	EIPT DE	TAILS (AI	.S use o	niv)			I		
Drinking Water (DW) Samples ¹ (client use)			y Linnis for result	Excel COC only)	g nom arop-down	below														
Are samples taker	n from a Regulated DW System?	0 Dec 16-	1			-	Submission Comments identified on Sample Receipt Notification:													
			э ,				Cool	Cooler Custody Seals Intact: YES N/A Sample Custody Seals Intact:							ct:	📋 YES		N/A		
Are samples for human consumption/ use?			In/					IN	NITIAL COOLER	TEMPERATU	IRES °C			FINAL C	OOLER TE	MPERATL	RES °C			
T YE	s 🗖 NO	15 14.	17/1				119	1.9					9.1							
	SHIPMENT RELEASE (client use)	,INITIAL SHIPMENT RECEPTION (ALS use only)							F	INAL SH	IPMENT	RECEPT	ION (AL	S use on	ly)					
Released by: 16/10/21 Time:			Received by:				Time	°,y I	Received by	FHI		Date:	วดอเ	-10-	- in Time:					
<u> </u>			I	WYNIL			12					'	<u>xen</u>				α . \cup	~	<u> </u>	

REFER TO BACK POSE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY Failure Control of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Appendix C – Soil Excavated at the Phase Two Property or Excess Soil Brought to the Phase Two Property

C.1 Excess Soil Brought to RSC Property

Excess soil was not imported to the Phase Two Property for backfilling and/or regrading activities where soil was excavated in the vicinity of the garage structure.

C.2 Segregation of Soil

Excavated soil in Area 1 at the Phase Two Property was not segregated, and all excavated material was transported off-Site. Soil was not imported to the Phase Two Property as the Site will be re-graded following the demolition of the existing garage structure.

C.3 Stockpiles

Excavated soil was not stockpiled at the Phase Two Property and was excavated directly into metal bins for transport off-Site.