Hydrogeological Assessment Report, 12489 and 12861 Dixie Road, Caledon, Ontario

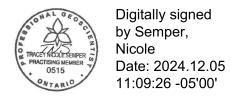
Final Report

December 5, 2024

Prepared for: QuadReal Properties Group 199 Bay Street, Suite 4900 P.O. Box 373 Toronto, ON M5L 1G2

Prepared by: Stantec Consulting Ltd. 300W-675 Cochrane Drive Markham, ON L3R 0B8

Project Number: 121624777 / 121624778



Limitations and Sign-off

The conclusions in the Report title Hydrogeological Assessment Report, 12489 & 12861 Dixie Road, Caledon, Ontario are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from QuadReal Properties Group (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided to applicable authorities having jurisdiction and others for whom the Client is responsible, Stantec does not warrant the services to any third party. The report may not be relied upon by any other party without the express written consent of Stantec, which may be withheld at Stantec's discretion.

Prepared by:

Signature T. Nicole Semper, P.Geo.

Senior Hydrogeologist Printed Name and Title

Reviewed by:

Signature

Stephen Di Biase, P.Geo.

Senior Hydrogeologist

Printed Name and Title

Table of Contents

Limitat	ions and	Sign-off	i
Table o	of Content	S	. . ii
Abbrev	viations		iv
1	Introduct	ion	. 1
2	Physical	Setting	3
2.1	Topograp	hy and Drainage	3
2.2	Local Geo	blogy	3
2.3	Local Hyd	Irogeology	4
2.4	Source W	ater Protection	4
3	Methodo	logy	6
3.1	Site Instru	Imentation	6
3.2	Water Lev	/el Monitoring	7
3.3	Hydraulic	Response Testing	7
3.4	Groundwa	ater Sampling and Testing	. 8
4	Local Ge	ology and Hydrogeology	. 9
4.1		blogy	
4.2	Local Hyd	Irogeology	
	4.2.1	Groundwater Levels and Flow	
	4.2.2	Hydraulic Conductivity and Infiltration Rates	
	4.2.3	Groundwater Quality	10
5	Water Ba	lance	12
5.1		ogy	
5.2	Pre-Deve	lopment Water Balance	13
6	Impact A	ssessment and Mitigation Measures	15
6.1		ater Recharge	
6.2		ater Discharge	
6.3		ion Dewatering	
	6.3.1	Dewatering Zone of Influence	
	6.3.2	Average Daily Dewatering Rate	
	6.3.3	Peak Dewatering Rate	
	6.3.4	Recommended Groundwater Control Measures	
	6.3.5	Disposal of Pumped Groundwater	
6.4	•	and Private Well Supply Interference	
6.5		Vater Impacts	
6.6	•	ainment and Response	
7		ons	
8	Referenc	es	26

List of Appendices

Appendix A	Figures
Figure 1:	Site Location
Figure 2:	Topography and Drainage
Figure 3:	Surficial Geology
Figure 4:	Site Instrumentation
Figure 5:	Cross-Section A-A'
Figure 6:	Cross-Section B-B'
Figure 7:	Cross-Section C-C'
Figure 8.1:	Hydrographs - Monitoring Wells (12489 Dixie Road)
Figure 8.2:	Hydrographs - Monitoring Wells (12861 Dixie Road)
Figure 9:	Hydrographs – Surface Water (SW1-23, SW2-23, SW3-23 and SW4-23)
Figure 10:	Groundwater Flow
Figure 11:	Water Chemistry - Piper Plot (MW46-23, MW55-23, MW15-23, MW31-23 and MW33-23)
Figure 12:	Predicted Water Table Drawdown vs Distance (12489 Dixie Road)
Figure 13:	Predicted Water Table Drawdown vs Distance (12861 Dixie Road)
Appendix B	Tables
Appendix B Table 1:	Tables Monitoring Well Construction Details
••	
Table 1:	Monitoring Well Construction Details
Table 1: Table 2:	Monitoring Well Construction Details Water Level Monitoring Data
Table 1: Table 2: Table 3:	Monitoring Well Construction Details Water Level Monitoring Data Infiltration Testing Assessment
Table 1: Table 2: Table 3: Table 4:	Monitoring Well Construction Details Water Level Monitoring Data Infiltration Testing Assessment Summary of Groundwater Analytical Results
Table 1: Table 2: Table 3: Table 4: Table 5.1:	Monitoring Well Construction Details Water Level Monitoring Data Infiltration Testing Assessment Summary of Groundwater Analytical Results Pre-Development Monthly Water Balance – 12489 Dixie Road
Table 1: Table 2: Table 3: Table 4: Table 5.1: Table 5.2:	Monitoring Well Construction Details Water Level Monitoring Data Infiltration Testing Assessment Summary of Groundwater Analytical Results Pre-Development Monthly Water Balance – 12489 Dixie Road Post-Development Monthly Water Balance – 12489 Dixie Road
Table 1: Table 2: Table 3: Table 4: Table 5.1: Table 5.2: Table 6.1:	Monitoring Well Construction Details Water Level Monitoring Data Infiltration Testing Assessment Summary of Groundwater Analytical Results Pre-Development Monthly Water Balance – 12489 Dixie Road Post-Development Monthly Water Balance – 12489 Dixie Road Pre-Development Monthly Water Balance – 12861 Dixie Road
Table 1: Table 2: Table 3: Table 4: Table 5.1: Table 5.2: Table 6.1: Table 6.2:	Monitoring Well Construction Details Water Level Monitoring Data Infiltration Testing Assessment Summary of Groundwater Analytical Results Pre-Development Monthly Water Balance – 12489 Dixie Road Post-Development Monthly Water Balance – 12489 Dixie Road Pre-Development Monthly Water Balance – 12861 Dixie Road Post-Development Monthly Water Balance – 12861 Dixie Road
Table 1: Table 2: Table 3: Table 4: Table 5.1: Table 5.2: Table 6.1: Table 6.2: Table 7:	Monitoring Well Construction Details Water Level Monitoring Data Infiltration Testing Assessment Summary of Groundwater Analytical Results Pre-Development Monthly Water Balance – 12489 Dixie Road Post-Development Monthly Water Balance – 12489 Dixie Road Pre-Development Monthly Water Balance – 12861 Dixie Road Post-Development Monthly Water Balance – 12861 Dixie Road Summary of MECP Water Well Record Data
Table 1: Table 2: Table 3: Table 4: Table 5.1: Table 5.2: Table 6.1: Table 6.2: Table 7: Appendix C	Monitoring Well Construction Details Water Level Monitoring Data Infiltration Testing Assessment Summary of Groundwater Analytical Results Pre-Development Monthly Water Balance – 12489 Dixie Road Post-Development Monthly Water Balance – 12489 Dixie Road Pre-Development Monthly Water Balance – 12861 Dixie Road Post-Development Monthly Water Balance – 12861 Dixie Road Summary of MECP Water Well Record Data Borehole Record
Table 1: Table 2: Table 3: Table 4: Table 5.1: Table 5.2: Table 6.1: Table 6.2: Table 7: Appendix C Appendix D	Monitoring Well Construction Details Water Level Monitoring Data Infiltration Testing Assessment Summary of Groundwater Analytical Results Pre-Development Monthly Water Balance – 12489 Dixie Road Post-Development Monthly Water Balance – 12489 Dixie Road Pre-Development Monthly Water Balance – 12861 Dixie Road Post-Development Monthly Water Balance – 12861 Dixie Road Summary of MECP Water Well Record Data Borehole Record Hydraulic Conductivity Testing Analytical Solutions
Table 1: Table 2: Table 3: Table 4: Table 5.1: Table 5.2: Table 6.1: Table 6.2: Table 7: Appendix C Appendix D Appendix E	Monitoring Well Construction Details Water Level Monitoring Data Infiltration Testing Assessment Summary of Groundwater Analytical Results Pre-Development Monthly Water Balance – 12489 Dixie Road Post-Development Monthly Water Balance – 12489 Dixie Road Pre-Development Monthly Water Balance – 12861 Dixie Road Post-Development Monthly Water Balance – 12861 Dixie Road Summary of MECP Water Well Record Data Borehole Record Hydraulic Conductivity Testing Analytical Solutions Laboratory Certificates of Analysis

 \bigcirc

Abbreviations

AMSL	above mean sea level
AO	Aesthetic Objectives
BGS	below ground surface
BV	Bureau Veratis
CEISMP	Comprehensive Environmental Impact Study and Management Plan
CTCSPA	CTC Source Protection Committee
EASR	Environmental Activity and Sector Registry
ECA	Environmental Compliance Approval
ECCC	Environment and Climate Change Canada
ET	evapotranspiration
FSSMR	Functional Servicing and Stormwater Management Report
HDPE	high density polyethylene
HR	Hydrogeological Assessment Report
HVA	Highly Vulnerable Aquifer
IMAC	Interim Maximum Acceptable Criteria
IPZ	Intake Protection Zone
Levelogger	Solinst Edge Levelogger®
LID	Low Impact Development
MAC	Maximum Acceptable Criteria
MECP	Ontario Ministry of the Environment, Conservation and Parks
NTU	Nephelometric Turbidity Units
ODWS	Ontario Drinking Water Quality Standards
OG	Operational Guidelines
OGS	Ontario Geological Survey
OP	Official Plan

Hydrogeological Assessment Report, 12489 and 12861 Dixie Road, Caledon, Ontario Abbreviations December 5, 2024

OPA	Official Plan Amendment
O. Reg.	Ontario Regulation
PPS	Provincial Policy Statement
PWQO	Provincial Water Quality Objectives
QuadReal	QuadReal Properties Group
SGRA	Significant Groundwater Recharge Area
Site	12489 & 12861 Dixie Road, Caledon, Ontario
Stantec	Stantec Consulting Ltd.
Stantec TRCA	Stantec Consulting Ltd. Toronto and Region Conservation Authority
	Ũ
TRCA	Toronto and Region Conservation Authority
TRCA WHPA	Toronto and Region Conservation Authority Wellhead Protection Area
TRCA WHPA WWR	Toronto and Region Conservation Authority Wellhead Protection Area Water Well Record

1 Introduction

Stantec Consulting Ltd. (Stantec) was retained by QuadReal Property Group (QuadReal) to prepare a Hydrogeological Assessment Report (HR) in support of an Official Plan Amendment (OPA) Application, and Zoning By-law Amendment (ZBLA) for the properties with municipal addresses 12489 & 12861 Dixie Road in the Town of Caledon, herein referred to as the "Primary Subject Area (PSA)".

The PSA is generally located west of Bramalea Road, north of Mayfield Road, east of Dixie Road and south of Old School Road, in the Town of Caledon as shown on Figure 1 (Appendix A). The PSA is bound by Old School Road to the north, Dixie Road to the west, a golf course to the east, and agricultural lands to the south. The PSA includes two connected parcels of land, which encompass a total area of approximately 116.4 ha. The PSA is currently used for agricultural purposes and are established with two residential dwellings, several barns, and outbuildings. The majority of undeveloped lands are under active management including an active cattle range and approximately eight crop fields planted with Soybean or Corn.

There are two permanent watercourses on the PSA: (1) a tributary of the West Humber River, which is located in the central portion of the PSA and (2) Kilmanagh Creek located at the southwest corner of the PSA. Valleylands surround both watercourses. The core valleyland features are designated provincially as Natural Heritage System (NHS) within the Greenbelt Protected Countryside and regionally as part of the Region of Peel's Core Areas of the Greenlands System.

The proposed developments include the erection of five industrial warehouse buildings and the development of associated parking areas and private roads. To service the development, two stormwater ponds and associated subsurface infrastructure are also proposed.

Given this geographical setting, development applications concerning the PSA are subject to policies including, but not limited to, those outlined in: the Provincial Policy Statement (PPS) (Ministry of Municipal Affairs and Housing [MMAH], 2020), the Growth Plan (MMAH, 2020), the Region of Peel Official Plan (OP) (Peel Region, 2024), the Town of Caledon OP (Town of Caledon, 2024), and the Endangered Species Act (2007) (ESA).

This HR should be read in conjunction with the Functional Servicing and Stormwater Management Report (FSSMR), dated December 5, 2024 and the Comprehensive Environmental Impact Study and Management Plan (CEISMP), dated December 4, 2024 both prepared by Stantec Consulting. These reports will describe the location, extent, sensitivity and significance of natural features and functions within the PSA, evaluate the factors and influences important to their sustainability, establish goals and objectives for terrestrial and aquatic systems (i.e., natural heritage) and water resource systems in accordance with the PPS, the Region's OP, Caledon's OP, and the applicable Watershed Plans and Subwatershed Studies, and the SABE SWS.

The purpose of this hydrogeological study is to document baseline groundwater conditions throughout the PSA and evaluate how the form and/or function of the groundwater system could potentially be impacted by future development. Specifically, the objectives of the hydrogeological assessment are to:

- Characterize the geological and hydrogeological conditions throughout the PSA, including identifying the hydrostratigraphic/aquifer units, hydraulic conductivity of the subsurface deposits, groundwater depths and flow regimes, groundwater recharge and discharge zones/features, and groundwater quality.
- Complete a pre- and post-development water balance for the PSA and evaluate the potential effects that land use changes could have on the groundwater recharge function of the PSA, including a preliminary evaluation of potential measures that could be employed throughout the Site under the post-development condition to mitigate these impacts (i.e., maintain pre-development infiltration targets).
- 3. Assess whether proposed site servicing will intercept the groundwater table and evaluate what mitigation measures could be employed to the PSA to minimize any potential disturbances to groundwater levels and pre-development flow patterns.
- 4. Evaluate whether proposed land use activities conform to Source Water Protection requirements as stipulated in the *Clean Water Act, S.O. 2006, Chapter 22.*
- 5. Propose other strategies that could be used at the PSA to mitigate any of the potential impacts mentioned above.

This report is arranged into eight sections, including this introduction (Section 1). Section 2 presents the physical setting of the PSA at a broad scale. Section 3 outlines the methods utilized to evaluate the Site-specific hydrogeological conditions. Section 4 presents the results of the Site-specific investigations. Section 5 presents a water balance analysis for the PSA. Section 6 discusses the potential impacts of future development on the hydrogeological form and function on the PSA and potential mitigation measures for identified impacts. Report conclusions and references are listed in Sections 7 and 8, respectively.

All figures and tables referenced in this report are presented in Appendices A and B, respectively. Appendices C to G present the Borehole Logs, Hydraulic Conductivity Test Results, Groundwater Quality Laboratory Certificates of Analysis, and Source Protection Information and Site Design Plan, respectively.

2 Physical Setting

2.1 Topography and Drainage

Topography and drainage in proximity to the PSA is shown on Figure 2. Total relief is approximately 12 m at the 12861 Dixie Road parcel, with terrain sloping in a southeastern direction from approximately 270 m above mean sea level (AMSL) on the north side of the property towards a topographic low of approximately 258 m AMSL associated with the existing watercourse in the south side of the property. Total relief is approximately 13 m at the 12489 Dixie Road parcel, with local terrain sloping from a high of approximately 267 m AMSL along a ridge extending in an easterly direction across the central portion of the property, towards valley lands situated at approximately 254 m AMSL along the northern and southern limits of the property.

The surface watercourses at the PSA reflect the western-most tributaries of the West Humber River Subwatershed. The watercourses flow in a southeasterly to easterly direction across the PSA and confluence in the Claireville Conservation Area approximately 10 km southeast of the Site. The West Humber River ultimately drains southeasterly to the Lower Humber River and into Lake Ontario. Stantec has been advised by QuadReal that a previous landowner installed tile drains throughout the PSA, to mitigate ponding of water in localized depressions. Infiltrated water, captured by these tile drains, outflow into the onsite watercourses. The location and extent of tile drainage across the PSA has not been confirmed by Stantec.

2.2 Local Geology

Geological and hydrogeological conditions throughout the region have been mapped and described by the Oak Ridges Moraine Groundwater Program (ORMGO, 2018), the CTC Source Protection Committee (CTCSPC, 2022a), and the Ontario Geological Survey (2010). Near surface overburden soils, as mapped by the Ontario Geological Survey (OGS, 2010), are shown on Figure 3. The hydrostratigraphic significance of these soils are listed below from youngest to oldest:

Alluvial Deposits: Shown as brown (Unit 19) on Figure 3, these soils reflect modern deposits of loose, unconsolidated sand, gravel, silt and clay associated with the West Humber River flood plain.

Halton Till (Aquitard): Shown as green (Unit 5d) on Figure 3, this soil reflects a dense sandy silt to clayey silt till interbedded with silt, clay, sand and gravel. The Halton Till is thought to originate from ice-marginal sediments from the late glacial advance of the Laurentide Ice Sheet in the Lake Ontario basin, resulting in a dense till with a drumlinized surface (Sharpe and Russel 2007). The Halton Till is typically 10 m to 45 m in thickness locally (ORMGP, 2018). The horizontal and vertical hydraulic conductivity of the Halton Till is reported to be in the range of 10⁻⁶ m/s to 10⁻⁷ m/s (Kassenaar and Wexler, 2006). The Halton Till is provide adequate yield for local domestic supplies.

Mackinaw Interstadial Deposits (Aquifer): an aquifer unit consisting of discontinuous thin layers of glaciofluvial sands and gravels believed to have been deposited in outwash channels and lakes around the same time as the Oak Ridges Moraine deposits formed. Regional mapping indicates this unit is discontinuous and may range from 0 m to 20 m in thickness near the PSA (ORMGP, 2018).

Queenston Formation (Aquitard): Dense, thinly bedded reddish-brown shale of Upper Ordovician age, containing frequent layers of hard, grey limestone and occasional clay and siltstone layers. Often highly weathered in the upper five meters of the formation leading to blending with the overburden deposits above. Below this weathered layer, the shale is not highly fractured and, as a result, is not considered to be a high yielding aquifer system. According to Ontario Ministry of Environment, Conservation and Parks (MECP) Water Well Records (WWR) and ORMGP (2018) mapping within 500 m of the PSA (Figure 3), the shale bedrock surface is generally encountered from 220 m AMSL to 245 m AMSL, which corresponding to depths between 20 m to 45 m below ground surface (BGS) near the PSA.

2.3 Local Hydrogeology

Regional mapping (ORMGP, 2018) indicates the shallow water table in proximity to the PSA is generally encountered from 250 m AMSL to 260 m AMSL (5 m to 15 m BGS) with groundwater flow direction to the southeast. The groundwater recharge rate in the West Humber River Watershed is estimated at 125 mm/year (TRCA, 2023).

Most municipal wells and private domestic wells located within the Toronto and Region Source Protection Area obtain their potable water supply from the Oak Ridges Aquifer Complex (or Equivalent) or the Thorncliffe Aquifer (TRSPA, 2022a).

2.4 Source Water Protection

As established under the *Ontario Clean Water Act*, 2006, S.O., 2006, c. 22, source protection areas and associated land use restrictions exist for all municipal drinking water sources in the Toronto and Region Source Protection Area (CTCSPC, 2022a). Within the Source Protection Area, the MECP has designated four areas that warrant a higher level of protection from potential threats to the quality and/or quantity of drinking water sources and include:

- Intake Protection Zones (IPZ)
- Highly Vulnerable Aquifers (HVA)
- Significant Groundwater Recharge Areas (SGRA)
- Wellhead Protection Areas (WHPA)

Source Protection Mapping, as provided by the MECP (2024), is provided in Appendix F.

According to information available from the Region of Peel (2023) website, the South Peel Drinking Water System supplies drinking water sourced from Lake Ontario to Brampton, Mississauga, and the southern parts of Caledon. There are also four well-based municipal drinking water systems in Caledon sourced from groundwater: Palgrave-Caledon East, Caledon Village – Alton, Cheltenham, and Inglewood Drinking Water Systems. Review of available mapping (Region of Peel, 2023) indicated the PSA is located within the South Peel Drinking Water System area.

An Intake Protection Zones (IPZ) is a zone established around surface water intake where it takes surface water two hours or less to flow to these intakes. These zones also include land adjacent to streams and storm sewers where runoff can quickly reach the intake. The area considered most vulnerable to contamination is delineated as a 120 m diameter circle around the intake and is referred to as Intake Protection Zone One (IPZ-1). Intake Protection Zone 2 (IPZ-2) represents the two hour time-of-travel that surface water moving through inland pathways such as creeks and storm sewers will take to discharge near the lake intakes. According to regional mapping available from the MECP Source Water Protection Information Atlas (MECP, 2024), the PSA does not intercept any IPZ (Appendix F).

Highly vulnerable aquifers (HVA) are defined as subsurface, geologic formations that are sources of drinking water, which could relatively easily be affected by the release of pollutants on the ground surface. The factors considered in assessing the vulnerability of an aquifer include the depth to the aquifer and water table, the physical properties of the overlying soil and/or rock, and the aquifer composition. According to MECP (2024) mapping (Appendix F), there are no HVA present beneath the PSA.

Groundwater recharge represents the proportion of precipitation and/or surface water run-off that infiltrates to the subsurface and reaches the groundwater table. The volume of water that infiltrates to the subsurface is largely influenced by site topography, the physical properties of the soil and land cover characteristics. The CTCSPC (2022a) defines a significant groundwater recharge area (SGRA) to be an area where the annual recharge rate is greater than the average plus 15% or more across the source protection region. According to the TRCA (2023), the average groundwater recharge rate within the West Humber River Watershed is estimated at 125 mm/year. According to MECP (2024) mapping (Appendix F), the lands within the PSA are not classified as SGRA. As discussed in Section 4, onsite borehole data indicate that the PSA is predominantly covered by sandy lean clay deposits that extend to depths of at least 9.8 m BGS, having a horizontal hydraulic conductivity on the order of 10⁻⁷ m/s or lower. Consequently, these surficial sandy lean clay deposits act as an aquitard and limit the downward movement of infiltrating water to underlying aquifer systems.

A wellhead protection area (WHPA) is an area delineated on the ground surface of zones within an aquifer that specifies the amount of time it would take groundwater to flow from the water table to the intake of a given municipal well. The PSA does not intercept any WHPA (MECP, 2024).

3 Methodology

Section 3 provides the methodology used to obtain the data required to complete the hydrogeological investigation. The major components of the hydrogeological investigation included the following:

- borehole drilling / monitoring well installation and development
- groundwater level monitoring
- groundwater sampling and testing
- hydraulic response testing

The methodology for these tasks is described in Sections 3.1 to 3.4 below.

3.1 Site Instrumentation

As part of a geotechnical investigation by Stantec (2024), a total of 69 boreholes (BH01-23 to BH69-23) were advanced on the PSA between January 23 and March 3, 2023 to depths ranging from approximately 3.55 m BGS to 9.75 m BGS. The boreholes were strategically located to obtain spatially representative soil and groundwater samples beneath the site. Borehole locations are shown on Figure 4.

The boreholes were advanced using a track-mounted drill rig equipped with hollow-stem augers operated by a specialist drilling subcontractor. Stantec personnel recorded the subsoil and groundwater conditions encountered in the boreholes. The soil samples were recovered at regular 0.76 m and 1.52 m intervals using a 51 mm (outside diameter) split-tube sampler by conducting Standard Penetration Tests (SPTs) in accordance with the procedures outlined in ASTM specification D1586. All soil samples recovered from the boreholes were placed in moisture-proof bags and returned to our laboratory for detailed geotechnical classification and testing, as required. Copies of the borehole logs are provided in Appendix C.

Figures 5 (Section A-A'), 6 (Section B-B'), and 7 (Section C-C') present stratigraphic profiles that traverses the PSA from the northwest to southeast and east to west. These profiles show the interpreted subsurface stratigraphy based on the previously mentioned borehole data and nearby MECP WWR data (Figure 3).

A single monitoring well was installed in the following 16 boreholes across the PSA in accordance with Ontario Regulation 903 (O. Reg. 903) as recently amended: BH04-23, BH09-23, BH13-23, BH15-23, BH19-23, BH25-23, BH31-23, BH33-23, BH38-23, BH46-23, BH48-23, BH49-23, BH51-23, BH55-23, BH61-23, and BH64-23. Each monitoring well consists of 50 mm inside diameter, Schedule 40 PVC pipe, with a No. 10 slot screen (0.01-inch slot) having a minimum screen length of 3.0 m. The annular space between the monitoring well pipe and surrounding geological formation was backfilled with well sand to the top of screen, with the remainder of the annular space being filled with a granular bentonite to prevent a hydraulic connection from occurring between the soil layers along the length of the casing. The monitoring wells were completed with above ground lockable protective steel casings that were cemented into place to 0.3 m BGS. The elevation of the existing grade and top-of-pipe at each monitoring well was

surveyed to a geodetic benchmark by the Geomatics division of Stantec. The boreholes without monitoring wells were backfilled with a low-permeability mixture of granular bentonite and auger spoils in accordance with the requirements of O. Reg. 903.

Following installation, Stantec personnel developed the monitoring wells to remove drilling fluids, solids or other particulates that may have been introduced during drilling/installation. Stantec personnel purged each monitoring well on using dedicated 16 mm inside diameter high density polyethylene (HDPE) tubing connected to a D-25 Waterra[™] foot valve. Using the dedicated tubing, Stantec personnel purged a minimum of 10 standing column volumes from wells/piezometers to clear out any fine-grained sediments and, subsequently, establish a proper hydraulic connection with the native aquifer material. Only one to three standing columns of water were purged from those monitoring wells having poor water level recovery. Well construction details and survey data are summarized in Table 1, Appendix B.

Staff gauges were installed along watercourses in the PSA to measure surface water levels. One staff gauge (SW1-23; Figure 4) was installed in the south watercourse at the 12489 Dixie Road parcel, near the southern boundary. Three staff gauges (SW2-23, SW3-23, and SW4-23; Figure 4) were installed in the watercourses near the Dixie Road and Old School Road property boundary and in the southern area of the 12861 Dixie Road parcel.

3.2 Water Level Monitoring

Groundwater levels were recorded at the monitoring wells using a combination of automated and manual measurement methods. Stantec personnel manually measured water levels at the monitoring wells during several site visits between February 17 and April 9, 2024. To provide a continuous record of water level monitoring, Stantec personnel installed a Solinst Edge Levelogger® (Levelogger) into the water column of each monitoring well. A Levelogger was also installed at staff gauge SW01-23, SW2-23, SW3-23, and SW4-23 to monitor the surface water levels. The Leveloggers collected water level measurements at one-hour intervals from February 22, 2023 through April 9, 2024 to capture seasonal surface water and groundwater fluctuations across the PSA.

A summary of the manual groundwater level measurements is provided in Table 2. Hydrographs presenting both the automatic and manually collected groundwater data are provided on Figures 8.1 and 8.2, with the surface water data provided on Figure 9. The precipitation and temperature data provided on the hydrographs were obtained from the Environment Canada website for the Toronto International Airport Climate Station (ID 6158731), located approximately 18 km southeast of the PSA. Groundwater elevations and interpreted flow direction based on May 2023 data are shown on Figure 10.

3.3 Hydraulic Response Testing

Stantec performed in-situ hydraulic response testing at 11 monitoring wells (MW04-23, MW13-23, MW15-23, MW19-23, MW31-23, MW33-23, MW46-23, MW48-23, MW51-23, MW55-23, and MW64-23) on February 17 and March 21 and 22, 2023 to estimate the horizontal hydraulic conductivity of the overburden soils at the PSA. The testing consisted of creating an instantaneous change in the well water level by removing a known volume of water followed by recording the time taken for the water level to

return to static conditions (i.e., a rising head or bail test). Data were analyzed using the Hvorslev (1951) solution. Testing provided an estimate of the horizontal hydraulic conductivity of the sediments within the screened interval for each monitoring well. Table 2 provides a summary of the calculated horizontal hydraulic conductivities, with the test results and analytical solutions presented on Figures D-1 through D-11 in Appendix D.

The infiltration potential of the glacial till soils has been inferred from an established relationship between vertical hydraulic conductivity and infiltration rate presented in the Credit Valley Conservation and Toronto and Region Conservation Authority (CVC-TRCA, 2010) Low Impact Stormwater Management Planning and Design Guideline - Version 1.0. Table 3 provides a summary of the calculated vertical hydraulic conductivities and infiltration rates estimated for the glacial till soils encountered onsite. Since hydraulic conductivity in the horizontal direction is generally an order (potentially two orders for clay-based deposits) of magnitude higher than hydraulic conductivity in the vertical hydraulic conductivities for deep overburden deposits were assumed to be one order of magnitude lower than in-situ measured horizontal hydraulic conductivities calculated at the monitoring wells.

3.4 Groundwater Sampling and Testing

Groundwater quality samples were collected from five monitoring wells (MW15-23, MW31-23, and MW33-23 at 12861 Dixie Road and MW46-23 and MW55-23) on February 23 and March 22, 2023. The samples were collected to help establish pre-development groundwater quality conditions at the PSA. Groundwater sampling involved using the same tubing that was used to develop the monitoring wells. Prior to collecting the sample, Stantec personnel purged each well until the field parameters of pH, temperature, and conductivity stabilized, indicating that the sample would be reflective of groundwater drawn from the aquifer system (and not stagnant water residing in the well casing).

Following purging, sampled groundwater was poured directly from the HDPE tubing into lab supplied sample bottles. Groundwater samples collected for metals analysis were field filtered using disposable in-line 0.45 µm (micron) filters attached to the HDPE tubing. The groundwater samples were carefully packed into coolers with ice, which was added to maintain sample temperatures below 10°C during transit to the analytical laboratory. Samples were delivered to Bureau Veritas (BV) for analysis of general inorganic parameters and dissolved metals. Chain of custody forms were completed and included with the samples.

The results of the groundwater quality testing are summarized in Table 4. Copies of the laboratory certificate of analysis are presented in Appendix E.

4 Local Geology and Hydrogeology

4.1 Local Geology

Figure 4 shows the location of Cross-Sections A-A' (Figure 5), B-B' (Figure 6), and C-C' (Figure 7), which profile the borehole drilling logs (Appendix C) and nearby MECP WWR subsurface conditions. Borehole drilling results indicate uniform soil conditions beneath the PSA, reflecting a massive deposit of sandy clay glacial till (Halton Till) from near ground surface to a depth of at least 9.8 m BGS. The glacial till soils reflect a surface aquitard across the PSA, limiting the vertical seepage of water (i.e., groundwater recharge).

Bedrock was not encountered during the onsite drilling by Stantec. A review of MECP WWRs (Figure 3) was completed to estimate depth to bedrock beneath the PSA. One WWR mapped as occurring within the northwest area of the PSA (Well ID 4901406) reported top bedrock at approximately 27 m BGS. The closest off-site WWR that extends into bedrock is mapped along the east side of Dixie Road (Well ID 4904249), approximately 5 m west of the PSA, and encountered shale at approximately 30 m BGS.

4.2 Local Hydrogeology

4.2.1 Groundwater Levels and Flow

Figures 8.1 and 8.2 and Table 2 present the continuous and manual groundwater level data measured within onsite monitoring wells from February 2023 through April 2024. Figure 9 presents the continuous and manual surface water level data measured at staff gauges SW1-23 to SW4-23 during the monitoring period. It is noted that monitoring wells MW15-23 and MW51-23 and staff gauge SW1-23 were damaged, and therefore reflect incomplete records.

Based on the data collected during the monitoring period, the groundwater table across the Site ranged from approximately 252 m AMSL to 267.8 m AMSL. Monitoring wells MW9-23, MW25-23, MW38-23 and MW49-23 were generally dry during the monitoring period.

A cyclical pattern of groundwater fluctuations is common within shallow groundwater systems in southern Ontario. High water table conditions occur in the winter and spring (i.e., January to May) due to lower evapotranspiration losses and/or a melting snowpack, which provide a greater volume of water for recharge. Low water table conditions occur in the late summer to early fall as more water is drawn from the subsurface over this period to meet evapotranspiration demands. Groundwater hydrographs shown on Figures 8.1 and 8.2 show seasonal fluctuations, with a range of approximately 1 m to 6 m. Hydrographs with a low range (e.g., less than 2 m) are located within low lying areas (i.e., near watercourses), while those with greater range are located within tablelands. The broad range of seasonal water table fluctuations is characteristic of the low soil hydraulic conductivity, as described in Section 4.2.2. Monitoring well MW13-23 showed sharp responses to precipitation / snow melt events in the spring of 2024. These sharp responses reflect ponding of water at the wellhead and are not reflective of actual water table elevation. Overall, the cyclical pattern of water table fluctuations is shown in the 1-year continuous monitoring record from February 2023 to April 2024. Seasonal high water table elevations observed in the spring of 2023 were repeated in the spring of 2024.

As shown in Figure 9, surface water levels fluctuated up to approximately 0.6 m at SW1-23 and SW2-23, 0.3 m at SW3-23, and 0.4 m at SW4-13 during the monitoring period. These fluctuations were typically in response to wet weather flow events (i.e., snow melt or storm events).

Figure 10 presents the groundwater elevation contours and the interpreted direction of horizontal flow through the overburden deposits beneath the Site using manual water level measurements collected from the onsite monitoring wells in May 2023. The groundwater elevation contours are approximate as the location and extent of tile drainage across the Site is expected to control the groundwater flow pattern locally. Overall, groundwater contours tend to follow the prevailing topography of the Site, with flow moving in southeastern and northwestern directions across the Site towards the watercourses. The water table ranges from approximately 267 m AMSL in the north to approximately 258 m AMSL in the south, with flow moving in a direction towards the two watercourses crossing the Site. The water table ranges from approximately 267 m AMSL in the north to approximately 252 m AMSL in the south, with flow moving in a direction towards the two matercourses crossing the Site. The water table ranges from approximately 267 m AMSL in the north to approximately 252 m AMSL in the south, with flow moving in a direction towards the two matercourses crossing the Site. The water table ranges from approximately 267 m AMSL in the north to approximately 252 m AMSL in the south, approximately 267 m AMSL in the north to approximately 252 m AMSL in the south.

4.2.2 Hydraulic Conductivity and Infiltration Rates

Horizontal hydraulic conductivity estimates calculated from onsite hydraulic response testing of monitoring wells screened within sandy clay till (Halton Till) are on the order of 10⁻⁷ m/s to 10⁻⁹ m/s (Table 2). These calculated values are consistent with the literature values of hydraulic conductivity provided for these deposits (Fetter, 1994).

Overall, the estimated bulk (i.e., geometric mean) horizontal hydraulic conductivity calculated for the overburden deposits is 5×10^{-8} m/s (Table 3). Assuming an effective soil porosity of 0.1 (for glacial till; Fetter, 1994) and taking the geometric mean hydraulic conductivity (5×10^{-8} m/s) and average horizontal gradient of 0.046 m/m, the average horizontal groundwater flow velocity within the shallow overburden beneath the Site is estimated at 2.3 x 10^{-8} m/s, or 0.73 m/year.

Soil infiltration rates have been estimated based on an established relationship between vertical hydraulic conductivity and infiltration rate presented in CVC-TRCA (2010). The results, as summarized in Table 3, indicate typical infiltration rates of 22 mm/hour or less in the glacial till soil. Overall, the recharge function of the PSA is expected to be low, given that infiltration will be limited by the low permeability silty clay till that covers the site.

4.2.3 Groundwater Quality

Table 4 provides baseline groundwater quality data for the onsite monitoring wells sampled within the Site, with results compared against the Provincial Water Quality Objectives (PWQO; MOEE, 1999) and the Ontario Drinking Water Quality Standards (O. Reg. 169/03) (ODWS) for health-related (i.e., Maximum Acceptable Criteria (MAC) and Interim Maximum Acceptable Criteria (IMAC)) and non-health related (i.e., Aesthetic Objectives (AO) and Operational Guidelines (OG)) parameters. Technical documentation of the ODWS is provided in Ministry of the Environment (MOE), 2006.

Figures 11.1 and 11.2 provide a comparison of the groundwater quality analyses at onsite monitoring well locations. Groundwater within the shallow overburden at the PSA is generally characterized by calciumbicarbonate and/or magnesium-bicarbonate type water. Groundwater quality type at MW33-23 (near Old School Road) reflects a calcium-chloride type. The difference in groundwater quality is expected to reflect the greater contribution of salt-laden runoff from Old School Road, with the infiltration of this water resulting in greater concentrations of sodium and chloride being recharged to the groundwater system.

As shown in Table 4, none of the tested parameters were detected above applicable ODWS healthrelated criteria except for nitrate. The concentrations of nitrate at MW46-23 (37.7 mg/L) and MW55-23 (78.3 mg/L) exceeded the ODWS MAC (10 mg/L) and reflects the agricultural property use. Relative to the ODWS, the groundwater quality results indicate elevated concentrations of manganese, hardness, dissolved organic carbon and/or total dissolved solids. Sodium concentrations were elevated above the ODWS Health Reporting Limit and/or OG at MW15-23 MW33-23, MW46-23, and MW55-23, with chloride also elevated above OG at MW33-23. These exceedances are common in the overburden of southern Ontario.

Groundwater quality results exceeded PWQO guidelines for cobalt, copper, and zinc (Table 4), which is also common. Additionally, uranium exceeded the PWQO (0.005 mg/L) at MW31-23 (0.0068 mg/L).

5 Water Balance

Water balance calculations have been completed to approximate onsite infiltration volumes. A comparison of water balance data under pre- and post-development conditions has been completed to determine the potential impacts of development on the PSA's infiltration function. The methodology for the water balance calculations is provided in Section 5.1. Results of the pre-development water balance analysis are presented in Section 5.2. The comparison of pre- and post-development conditions is presented in Section 6.1.

5.1 Methodology

A water balance is an accounting of the distribution of components of the hydrologic cycle and can be simplified in the following equation:

where:

P = precipitation;	ET = evapotranspiration;	S = change in groundwater storage;
R = runoff; and	I = infiltration	

The water balance is used to compare pre- and post-development conditions and to determine what mitigation methods may be required. The key component of the water balance is evapotranspiration (ET), which is calculated using the soil moisture balance model developed by Thornthwaite and Mather (1957). The Thornthwaite and Mather model assumes that different soil textures have a characteristic capacity to hold water. Any deficit to the soil holding capacity must be met before water can infiltrate.

Monthly values of precipitation (rainfall plus snowmelt) and potential evapotranspiration rates are input to the model. Potential evapotranspiration is calculated based on temperature, heat index, and an adjusting factor for latitude. The actual evapotranspiration is calculated using the input precipitation, calculated potential evapotranspiration, and change in soil moisture storage.

Infiltration and runoff are calculated using the water surplus, ground slope, soil type, and ground cover. Values for infiltration and runoff are generated as a depth and are reported in millimetres (mm). These depth values can generate annual volumetric values by inputting known areas for land use under pre- and post-development conditions. An infiltration deficit is calculated as the difference between pre-development infiltration and post-development infiltration.

12

Temperature and precipitation averages for the region from 1981-2010 climate normals were obtained from the Environment and Climate Change Canada (ECCC) website for the Toronto Lester B. Peason International Airport Climate Station (Climate ID 6158733) climate station, located approximately 18 km to the southeast of the PSA. Stantec has assumed that the monthly average temperature and precipitation collected at the Toronto Lester B. Peason International Airport Climate Station trends that have historically occurred at the PSA.

For pre-development condition, soil moisture capacity was set at 250 mm corresponding to predominantly clay loam with pasture / shrubs landscape according to the MECP *SWM Planning Design Manual* (MECP, 2003). Site lands planned for commercial/industrial use under the post-development condition are expected to have approximately 51% of its area converted to impervious surfaces at 12489 Dixie Road and 73% at 12861 Dixie Road. Similarly, the land area being used for stormwater management purposes (i.e., pond) or roadways will have an impervious cover of 100% (i.e., no pervious area). Stantec is assuming that the PSA topography and soils will remain relatively unchanged between the pre- and post-development condition, and the overall imperviousness of the PSA will reflect 51% at 12489 Dixie Road and 73% at 12861 Dixie Road.

Water balance calculations completed for the 12489 Dixie Road parcel are shown in Tables 5.1 and 5.2, and in Tables 6.1 and 6.2 for the 12861 Dixie Road parcel.

A feature-based water balance using the Thornthwaite and Mather (1957) methodology outlined in Section 5.1 was completed with detailed analysis presented in the Functional Servicing and Stormwater Management Report.

5.2 **Pre-Development Water Balance**

The water balance calculations generated unique values of actual evapotranspiration, water surplus, infiltration, and runoff for each characteristic soil. As shown in Tables 5.1 and 6.1, the average annual precipitation in the PSA is estimated at 987 mm based on data obtained from the Toronto Lester B. Peason International Airport Climate Station (Environment Canada, 2023). Annual actual evapotranspiration is estimated at 572 mm, equating to 415 mm of surplus water that is available for runoff and infiltration within the PSA.

The average annual volume of infiltration to 12489 Dixie Road under pre-development conditions is estimated at approximately 84,306 m³/year or unit rate of approximately 145 mm/year (Table 5.1). The infiltration rate is slightly above the average groundwater recharge rate of 125 mm/year estimated by TRCA (2023) for the West Humber River Watershed. The average annual volume of runoff under pre-development conditions is estimated to be 156,569 m³/year or 269 mm/year (Table 5.1).

Similarly, at 12861 Dixie Road, the average annual volume of infiltration to the property under predevelopment conditions is estimated at approximately 84,451 m³/year or 145 mm/year (Table 6.1). As shown in Table 6.1, the average annual volume of runoff under pre-development conditions is estimated at 156,838 m³/year or 269 mm/year (Tabe 6.1).

Hydrogeological Assessment Report, 12489 and 12861 Dixie Road, Caledon, Ontario 5 Water Balance December 5, 2024

Overall, the total average annual volume of infiltration occurring at the PSA under pre-development conditions is estimated at approximately 168,757 m³/year, with the average annual volume of runoff estimated at 313,407 m³/year.

6 Impact Assessment and Mitigation Measures

6.1 Groundwater Recharge

The proposed development includes three industrial buildings within 12489 Dixie Road and two industrial buildings within 12861 Dixie Road, a SMW pond on each parcel, and parking spaces surrounding the industrial facilities. The remaining areas to the north and south of the industrial facilities will be landscaped / natural heritage areas. Portions of the properties will be converted to impervious surfaces as a part of proposed development and, subsequently, a reduction in the volume of water infiltrating to the subsurface is anticipated. The potential impacts of redevelopment on the recharge function of the PSA are discussed below.

Based on the proposed Site Plan (shown in Appendix G), under post-development conditions it is expected that pervious surfaces will decrease to approximately 49% and 27% at the 12489 Dixie Road and 12861 Dixie Road parcels, respectively. The detailed water balance for post-development conditions are provided in Tables 5.2 and 6.2 for 12489 and 12681 Dixie Road, respectively. As shown in Table 5.2, the unmitigated post-development infiltration rate for 12489 Dixie Road is estimated to be approximately 41,355 m³/year (71 mm/year), representing a deficit of approximately 42,951 m³/year (74 mm/year). At 12681 Dixie Road (Table 6.2), the unmitigated post-development infiltration rate is estimated to be approximately 22,782 m³/year (39 mm/year), representing a deficit of approximately 61,670 m³/year (106 mm/year). Overall, the total unmitigated post-development infiltration rate for the PSA is estimated at approximately 64,137 m³/year, representing a deficit of approximately 104,620 m³/year.

Given the projected post-development infiltration deficit, Stantec is recommending that groundwater recharge mitigation measures be adopted, as part of the Functional Servicing Plan. Low Impact Development (LID) is a stormwater management strategy that seeks to mitigate the impacts of increased runoff by managing runoff as close to source as possible, with the implementation of such strategies also providing the residual benefit of offsetting potential infiltration losses associated with the increase in impervious surfaces associated with a given development. Traditional post-development infiltration measures such as infiltration trenches / basins, soakaway pits, and pervious pipes may not be suitable for the Site due to the silty clay soils that cover these lands, given that these soils are characterized by low infiltration potential. However, the infiltration augmentation options as described in CVC-TRCA (2010) could be potentially available for use across the Site to assist in maximizing infiltration under the post-development condition are as follows:

- Roof downspout disconnection
- Vegetated filter strips
- Grass swales or enhanced grassed swales

The suitability of using the previously mentioned infiltration augmentation options within the PSA should be evaluated at the detailed design stage of proposed developments. Overall, it is reasonable to conclude that the application of some or all the previously mentioned infiltration augmentation measures will assist in achieving the maximum groundwater recharge possible throughout the PSA under the post-development condition.

6.2 Groundwater Discharge

As shown in the groundwater flow presented in Figure 10, groundwater outflows at surface watercourses locally. These surface water features reflect the groundwater discharge areas. As shown in the hydrographs, the water table elevation is sensitive to weather and seasonal precipitation (Section 4.2.1). Local land use changes should not affect the local water table. As such, groundwater flow patterns and outflow to discharge areas should remain unaffected by the proposed development. Long term monitoring can be undertaken to confirm the local water table is being maintained post-development. The long term monitoring plan should be developed during the detailed design stage of the proposed development.

6.3 Construction Dewatering

Developments within the PSA will be connected to underground utility infrastructure (e.g., storm and sanitary sewers). Preliminary grading plans indicate that the deepest utility to be constructed will be the SWM ponds. The proposed SWM pond at 12489 Dixie Road will have a base elevation ranging from approximately 255.5 m AMSL to 256.5 m AMSL, reflecting a depth of approximately 9 m to 10 m BGS. The proposed SWM pond at 12861 Dixie Road will have a base elevation ranging from approximately 256.5 m AMSL to 257.5 m AMSL, reflecting a depth of approximately 8 m to 9 m BGS. The Site servicing excavations will therefore intercept the water table elevation, which was encountered at elevations ranging from approximately 252 m AMSL to 267.8 m AMSL across the Site (Figures 8.1 and 8.2).

Construction dewatering activities are expected to be completed on an as-required basis, with the rate of this dewatering dictated by the amount of construction occurring within the PSA at a given time and the elevation to which the groundwater table must be lowered to install infrastructure. Groundwater seepage into the excavation areas should be limited recognizing the low horizontal hydraulic conductivity soils (10⁻⁷ m/s to 10⁻⁹ m/s, as discussed in Section 4.2.2). Estimates of the dewatering zone of influence (ZOI) and pumping rates are provided below based on the following conservative assumptions and available information at the time of report preparation:

- The area of dewatering for the SWM pond at 12489 Dixie Road is assumed at approximately 1.8 ha (18,000 m²) with an equivalent radius of circular excavation of approximately 76 m. The proposed bottom elevation of the SWM pond will be at 255.5 m AMSL. The maximum depth of dewatering is assumed to be approximately 255 m AMSL.
- The area of dewatering for the SWM pond at 12681 Dixie Road is assumed at approximately 1.0 ha (10,000 m²) with an equivalent radius of circular excavation of approximately 56.4 m. The proposed bottom elevation of the SWM pond will be at 256.5 m AMSL. The maximum depth of dewatering is assumed to be approximately 256 m AMSL.

- Static groundwater elevations of approximately 265 m AMSL and 263 m AMSL (Figure 9) were assumed in the calculations for the 12489 and 12861 Dixie Road excavations, respectively.
- The base of the active groundwater flow system is assumed to be the shale bedrock surface, interpreted to be approximately 235 m AMSL locally, reflecting saturated overburden thicknesses of 28 m and 30 m for 12489 and 12861 Dixie Road, respectively.
- The geometric mean horizontal hydraulic conductivity calculated at 5 x 10⁻⁸ m/s (Table 3 and Section 4.2.2) was assumed in the dewatering calculations.

6.3.1 Dewatering Zone of Influence

Applying the Theis analytical solution, the dewatering zone of influence (i.e., lateral extent of groundwater level drawdown) can be estimated as follows:

$$s(r,t) = \frac{Q}{4\pi T} W\left(\frac{r^2 S}{4Tt}\right)$$

where s(r, t) = drawdown at distance (r) and time (t) after the start of pumping

Q = pumping rate required to achieve the required drawdown at a single source (approx. 3 m³/day at 12489 Dixie Road and 2.4 m³/day at 12861 Dixie Road)

T = aquifer transmissivity (m²/day; K = 5 x10⁻⁸ m/s x aquifer thickness)

S = overburden storativity (1% is typical for unconfined fine grained soil)

W = Theis well function

Presuming that steady-state pumping conditions will be reached within approximately 3 days of pumping, the dewatering zone of influence (ZOI) is interpreted to be approximately 30 m and 20 m from the edge of the dewatering areas for the 12489 and 12861 Dixie Road SWM pond excavations, respectively. Profiles of the interpreted drawdown versus distance for the 12489 and 12861 Dixie Road excavations, are shown on Figures 11 and 12, respectively.

6.3.2 Average Daily Dewatering Rate

For a point source excavation (i.e., SWM pond), the steady state groundwater pumping rate (Q_7) required to maintain a depressed water table elevation at the required dewatering depth, over the excavation area footprint, can be estimated by applying the following equilibrium equation (Powers et al., 2007) for unconfined aquifer conditions:

$$Q_T = \frac{\pi \mathrm{K}(H^2 - h^2)}{\ln R_o/r_w}$$

where K = hydraulic conductivity of the overburden soil (5 x10⁻⁸ m/s);

H = height of water level within the aquifer (30 m and 28 m for 12489 and 12861 Dixie Road);

h = desired water height within the aquifer (20 m and 21 m for 12489 and 12861 Dixie Road);

 R_0 = radius of influence (106 m and 76 m; representing a ZOI, beyond radius of dewatering area);

r_w = radius of dewatering area (76 m and 56 m at 12489 and 12861 Dixie Road);

Based on these equations, the typical steady-state pumping rates required to maintain a depressed water table over the proposed excavation dewatering area footprints are calculated to be approximately 20 m³/day at 12489 Dixie Road and 15 m³/day at 12861 Dixie Road.

6.3.3 Peak Dewatering Rate

During construction, higher dewatering rates will be required on occasions, following precipitation events. A normal precipitation event, considered as 25 mm falling within a 24-hour storm event, was used to calculate stormwater inflow into the excavations. Such precipitation would result in approximately 450 m³ and 250 m³ of stormwater loading on the excavation footprints at 12489 and 12861 Dixie Road, respectively. To address removal of stormwater, additional dewatering rates of 450 m³/day and 250 m³ should be considered for the respective excavations.

The peak dewatering rate required in support of the proposed construction should reflect the sum total of the interpreted stormwater removal rate and steady state inflow rate, which is approximately 470 m³/day at 12489 Dixie Road and 265 m³/day at 12861 Dixie Road. It is therefore expected that temporary construction dewatering can be accommodated with the registration of an Environmental Activity Sector Registry (EASR), which allows construction dewatering up to 400 m³/day. Under an EASR, multiple excavations with non-overlapping areas of influence can be simultaneously dewatered, up to 400 m³/day per excavation. This flow rate should be capable of removing stormwater inflow into temporary excavation areas in a timely manner, as summarized below.

Dewatering Condition	Steady-State Groundwater Inflow (m³/day)	Stormwater Removal (m³/day)	Peak Dewatering Rate (m³/day)
Temporary Construction – 12489 Dixie Road	20	450	470
Temporary Construction – 12861 Dixie Road	15	250	265

6.3.4 Recommended Groundwater Control Measures

In general, groundwater control measures to support onsite construction is expected to reflect conventional pumping from filtered sumps within excavations. This groundwater control measure will lower the groundwater table to the base of a given excavation for a short duration. The effects of local dewatering are calculated to be limited in lateral extent from the excavation area (i.e., 20 m to 30 m from the excavation face), due to the hydraulic conductivity of the soil (on the order of 10⁻⁸ m/s or lower). Steady state groundwater flow into the proposed excavation areas is low (i.e., less than 50 m³/day). These groundwater pumping rates will not adversely affect surface water flow conditions in the nearby surface watercourses.

In response to the limited dewatering rates and ZOI, impacts to local private wells or the nearby surface watercourses are not anticipated. Overall, the residual effects of dewatering will be reversible once pumping ceases as groundwater levels will recover as local groundwater levels re-equilibrate with the local water table.

If site servicing infrastructure, once installed, occurs below the groundwater table, mitigation measures may be required to minimize the disturbance that site servicing could have on pre-development groundwater flow patterns. Typically, the most common mitigation measure is the installation of anti-seepage (cut-off) collars to prevent the preferential movement of groundwater along the servicing alignments. The use of anti-seepage collars will likely be required given that the subsurface of the PSA is characterized by deposits where groundwater movement is more restricted (e.g., sandy clay soils). An assessment for the need, total number and exact placements of anti-seepage collars along the servicing alignments can be explored in more detail during the detailed design phase.

6.3.5 Disposal of Pumped Groundwater

The analytical results of the groundwater samples (refer to Section 4.2.3 above) indicated groundwater quality results exceeded PWQO guidelines for cobalt, copper, and zinc. Additionally, uranium exceeded the PWQO at one location (i.e., MW31-23); however, localized dewatering is not expected within this area of the PSA.

Based on the available groundwater quality results, it is expected that treatment of groundwater will be required to reduce concentrations of metals and total suspended solids to discharge to the environment during construction dewatering. Water quality monitoring of construction dewatering (frequency, parameters, and criteria) will need to be conducted in accordance with any regulatory discharge agreements and/or requirements, as required, to ensure applicable criteria are met prior to discharge. A qualified person (QP) should review with respect to the applicable criteria to determine if discharge to the environment is appropriate. Additional groundwater quality monitoring measures are detailed below.

If discharge to the environment is recommended, the discharge point will be to a low lying, well-vegetated area promoting infiltration and located to maximize the distance to the nearest surface waterbody or wetland (greater than 30 m where possible). The Contractor shall complete the following mitigation measures and monitoring:

- The inlet pump head is to be surrounded with clear stone, filter fabric or equivalent, if applicable.
- All water will be discharged through a geotextile filter bag or equivalent, which will act as an
 energy dissipation and erosion control measure. In the event that the filter bag is overwhelmed by
 sediment or the quantity of water, a sediment removal basin will be constructed, which may
 consist of a temporary enclosure constructed with straw bales, silt fence, or both. It is the
 Contractor's responsibility to provide additional treatment as required.
- Discharge may be directed to the ground surface provided there is no visible sheen or olfactory indicators of possible contamination, and onsite mitigation measures are taken. Visual and olfactory inspections of the discharge location shall be completed daily.
- Discharge of water to the natural environment shall not be directed across pavement, sidewalks, or any other impervious surfaces.

- The sediment control is to be located within a vegetated area surrounded with silt fence or approved equal and located downstream of the construction activity within the proposed construction area, on the property, or where landowner agreements are in place. The exact location of discharge will be determined by the Contractor during construction. When selecting a discharge location, the slopes surrounding the discharge location will be limited where possible to reduce the potential for erosion and scouring. The discharge location shall be inspected daily to verify that no significant erosion or sedimentation is occurring.
- No equipment or materials are to be stored in vegetated discharge areas.
- The Contractor is to ensure that the sediment control is located such that flows are dispensed/directed through a vegetated area down gradient of the work area and are not directed toward watercourses.
- Direct discharge to watercourses is not permitted.

If dewatering discharge to land occurs within 30 m of a surface waterbody (watercourse) or wetland with standing water, the following criteria must be met:

- The turbidity of the discharge shall not exceed 8 Nephelometric Turbidity Units (NTU) above the background level of the nearest waterbody or wetland.
- Background turbidity levels in the waterbody or wetland must be measured outside of the influence of the discharge location and measured on the same day of discharge.
- If turbidity of the discharge exceeds 8 NTU above the background levels of the waterbody or wetland, the dewatering activities must be adjusted with the implementation of additional mitigation measures to reduce discharge turbidity to within 8 NTU of the waterbody or wetland.
- If turbidity monitoring is not feasible due to minimal to no surface water present at the waterbody or wetland, turbidity monitoring will not be required.

The Contractor may also consider using an appropriate water treatment system with a mobile Environmental Compliance Approval (ECA) for sewage works that governs for the collection, transmission, treatment, and disposal of groundwater with allowance for treated water to be discharged to the environment. The Contractor would be required to complete all testing, monitoring and mitigation measures as required by the mobile ECA.

If a visual sheen or olfactory indicators are noted, discharge water will be contained within holding tanks and removed off-site to a licensed facility with an MECP ECA permitted to receive this wastewater. Analysis and testing of the water would be completed in accordance with the receiving facility. A water treatment specialist may also be consulted to determine appropriate additional mitigation measures.

6.4 Municipal and Private Well Supply Interference

As noted in Section 2.4, the Site is located within the South Peel Drinking Water System area, which obtains its drinking water supplies from Lake Ontario (Region of Peel, 2023). Based on review of available source water protection mapping (Appendix F), the Site does not intercept any WHPA, HVA, SGRA, or IPZ. As such, no interfere to the municipal water supply is expected.

A review of MECP WWRs identified 57 WWR within 500 m of the PSA (Figure 3), with 27 potential wells reported for domestic / livestock, one industrial, and one water supply use. Details of these wells are summarized in Table 7 (Appendix B). The remaining 28 WWRs were reported as observation, monitoring or test wells, abandoned, or provided no information on use. As shown in Table 7, local private water wells were installed between 1954 and 2005, with eight off-site wells completed within bedrock to depths from approximately 20 m BGS to 69 m BGS, two shallow overburden wells completed to depths of approximately 11 m BGS and 14.3 m BGS, and 18 intermediate/deep overburden wells completed to depths from approximately 18 m BGS to 44 m BGS. Static water levels in the shallow overburden wells ranged from 6.1 m BGS to 11.3 m BGS and ranged from 1.5 m BGS to 17.1 m BGS in intermediate/deep overburden wells. The static water levels in the bedrock wells ranged from 6.1 m to 18.3 m BGS.

The nearest mapped supply well (Well ID 4904249) is located approximately 5 m west of the PSA (associated with the adjacent residence at 12707 Dixie Road) for domestic use (Figure 3 and Table 7). This well was installed in 1973 to a depth of 39 m BGS within bedrock, with overburden reported to consist of approximately 30 m of clay before encountering bedrock. The static water level was reported at 15.2 m BGS. The nearest mapped shallow overburden supply well (Well ID 4901408) is located approximately 18 m west of the PSA (associated with the adjacent residence at 12891 Dixie Road) for domestic use (Figure 3 and Table 7). This well was installed in 1967 to a depth of 11 m BGS within overburden consisting of a 10.7 m thick layer of clay underlain by sand to the end of hole. The static water level was reported at 6.1 m BGS in the well. The other reported shallow overburden well (Well ID 4901407) is mapped greater than 350 m to the north of the PSA (Figure 3).

The above review indicates the presence of private wells on nearby properties. Shallow water supply wells are more susceptible to well interference; however, the private supply wells within 500 m of the PSA are predominantly intermediate/deep installations. The nearest mapped private supply wells include one shallow overburden well constructed to a depth of 11 m BGS and one deep bedrock well constructed to a depth of 39 m BGS (Table 7), associated with adjacent residences along Dixie Road. Given the thick overburden clay material present across the PSA, the anticipated below ground construction activity, the distance to the nearest private supply wells and the limited predicted ZOI, no private well interference is expected.

In the event of a well interference during construction, a private water well complaint contingency plan will be implemented by QuadReal or its Contactor, which will include an offer to arrange immediate provision of temporary potable or non-potable water, depending on the resident's needs, until the matter is resolved.

6.5 Surface Water Impacts

With respect to the proposed groundwater dewatering, surface water interference is not expected based on the low steady-state pumping rates and limited extent of drawdown predicted (Section 6.3.1 and 6.3.2). Dewatering and surface water management measures will be implemented during construction to direct surface water away from the open excavation areas. Furthermore, groundwater quality monitoring will need to be conducted to ensure the dewatering effluent meets applicable criteria. Mitigation and contingency measures will also be in place, as detailed in Section 6.3.5, to reduce the potential for impact to surface water systems due to groundwater dewatering.

6.6 Spill Containment and Response

The potential exists for spills during any construction activity, with the most probable type of spill occurring being attributable to the refuelling of major construction equipment that cannot readily leave the site (e.g., earth movers). The potential impacts of a spill could be the contamination of soils, groundwater and/or surface water. By implementing proper protocols for the handling of fuels and lubricants during construction, the risk of a spill occurring will be greatly reduced. The procedures to be implemented to prevent onsite spills are as follows:

- all trucks or other road vehicles would be refuelled and maintained offsite, where practicable
- refuelling and lubrication of other construction equipment would not be allowed within 30 m of a drainage system or dewatering excavation
- regular inspections of hydraulic and fuel systems on machinery, with leaks being repaired immediately upon detection or the equipment being removed from site
- spill kits containing absorbent materials would be kept on hand
- implement best management practices and develop an emergency spill response plan

Standard containment facilities and emergency response materials are to be maintained onsite as required, with refuelling, equipment maintenance, and other potentially contaminating activities being confined to designated areas. As appropriate, spills are to be reported immediately to the MECP Spills Action Centre.

7 Conclusions

For the hydrogeological assessment provided above, which has considered field studies undertaken between January 2023 and April 2024, the following conclusions are respectfully submitted:

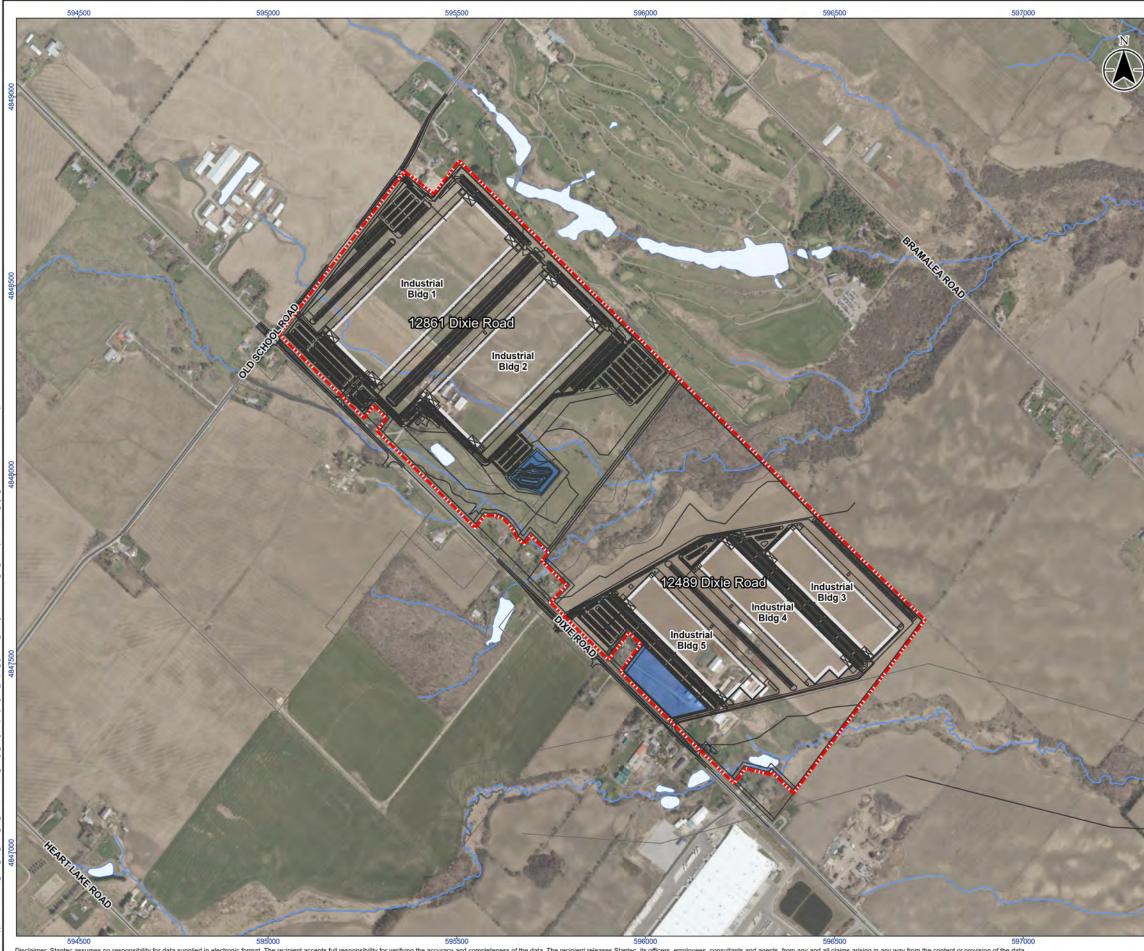
- The PSA is covered by a vertically and horizontally continuous unit of sandy clay till (i.e., the Halton Till), which forms an aquitard across the Site surface and, subsequently, limits groundwater recharge. Underlying bedrock at the PSA is mapped as Queenston Formation shale, which reflects the base of the overburden groundwater flow system.
- 2. Groundwater is encountered within the sandy clay till at the PSA. Groundwater elevations ranged from approximately 252 m AMSL to 267.8 m AMSL across the PSA during the monitoring period (February 2023 to April 2024). Overall, the cyclical pattern of water table fluctuations is shown in the 1-year continuous monitoring record from February 2023 to April 2024. The consistency of the monitoring data indicates no unusual trends that need to be addressed and that there is sufficient monitoring data to inform the stormwater strategy at the site.
- 3. Groundwater flow tends to follow the prevailing topography, with flow moving in southeastern and northwestern directions across the PSA towards the surface watercourses, at an average horizontal hydraulic gradient of 0.046 m/m. These surface water features reflect the groundwater discharge areas. Groundwater flow patterns and outflow to discharge areas should remain unaffected by the proposed development. Long term monitoring can be undertaken to confirm the local water table is being maintained post-development. The long term monitoring plan should be developed during the detailed design stage of the proposed development.
- 4. In-situ well testing indicates the horizontal hydraulic conductivity of the glacial till soil is on the order of 10⁻⁷ m/s to 10⁻⁹ m/s across the PSA. Overall, the estimated bulk (i.e., geometric mean) horizontal hydraulic conductivity calculated for the overburden deposits is 5 x 10⁻⁸ m/s. The average horizontal groundwater flow velocity within the shallow overburden beneath the PSA is estimated at 0.73 m/year.
- 5. Estimates of vertical hydraulic conductivity of the shallow overburden deposits are on the order of 10⁻⁸ m/s to 10⁻¹⁰ m/s. Overall, the PSA is characterized by low groundwater recharge potential (i.e., generally 22 mm/hour or less), given that infiltration is limited by the low permeability surficial sandy clay till deposits that cover the PSA.
- 6. Groundwater in the shallow groundwater system is generally characterized by magnesiumbicarbonate and calcium-bicarbonate type water. Groundwater quality near Old School Road reflects a calcium-chloride type, reflecting the greater contribution of salt-laden runoff from infiltrating to the groundwater system. No tested parameters having health-related Ontario Drinking Water Standards (ODWS) were detected above their applicable standards, except for nitrate, which reflects the agricultural property use. Groundwater quality exceeded Provincial Water Quality Objectives (PWQO) for selected metals (cobalt, copper, and zinc), which is typical in southern Ontario. Uranium also exceeded the PWQO at one location (MW31-23).

- 7. The PSA does not intersect any source water protection policy areas, Wellhead Protection Areas (WHPA), Significant Groundwater Recharge Areas (SGRA) or highly vulnerable aquifers (HVAs).
- 8. At 12489 Dixie Road, a calculated 84,306 m³ of annual infiltration occurs under the pre-development condition. Under the post-development condition, Stantec estimates that 51% of the land surface will be converted to impervious cover, reducing annual infiltration to 41,355 m³ and resulting in an annual infiltration deficit of approximately 42,951 m³.
- 9. At 12861 Dixie Road, a calculated 84,451 m³ of annual infiltration occurs under the pre-development condition. Under the post-development condition, Stantec estimates that 73% of the land surface will be converted to impervious cover, reducing annual infiltration to 22,782 m³ and resulting in an annual infiltration deficit of approximately 61,670 m³.
- Overall, the total average annual volume of infiltration occurring at the PSA under pre-development is estimated at approximately 168,757 m³/year. The total unmitigated post-development infiltration rate for the PSA is estimated at approximately 64,137 m³/year, representing a deficit of approximately 104,620 m³/year.
- 11. Future development of the PSA will increase the overall imperviousness of these lands, resulting in an overall reduction in infiltration under the post-development condition. Although the pre-development infiltration potential of the PSA is low based on existing soil conditions, the development should include strategies that attempt to infiltrate as much stormwater as possible post-development to mimic the existing recharge function provided by these lands. Potential Low Impact Development (LID) infiltration augmentation options available to the site are likely to include roof downspout disconnection, vegetated filter strips and/or grassed swale or enhanced grassed swales. The suitability of using these infiltration augmentation options should be evaluated at the detailed design stage of proposed developments. Applying these measures, the proposed development should not affect the quality or quantity of local surface water features.
- 12. Groundwater control measures will be required to manage minor groundwater seepage into temporary excavation areas. Due to the low hydraulic conductivity of the glacial till soils, dewatering rates and zones of influence are expected to be minor for temporary excavations (i.e., less than 50 m³/day and 30 m distance from the open excavations, respectively). Water management within the excavation areas will predominantly reflect capture of stormwater inflow. The total dewatering rate required to support site servicing is interpreted to be approximately 470 m³/day at 12489 Dixie Road and 265 m³/day at 12861 Dixie Road. It is therefore expected that construction dewatering can be accommodated with the registration of an Environmental Activity Sector Registry (EASR), which allows construction dewatering up to 400 m³/day. Under an EASR, multiple excavations with non-overlapping areas of influence can be simultaneously dewatered up to 400 m³/day per excavation.

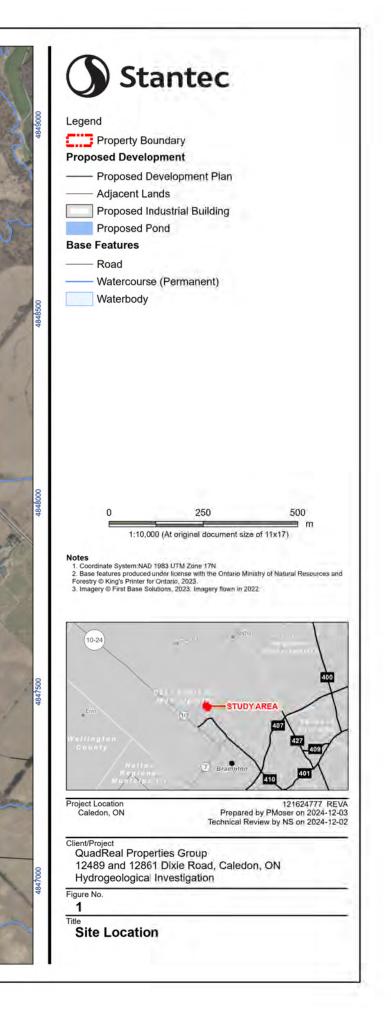
24

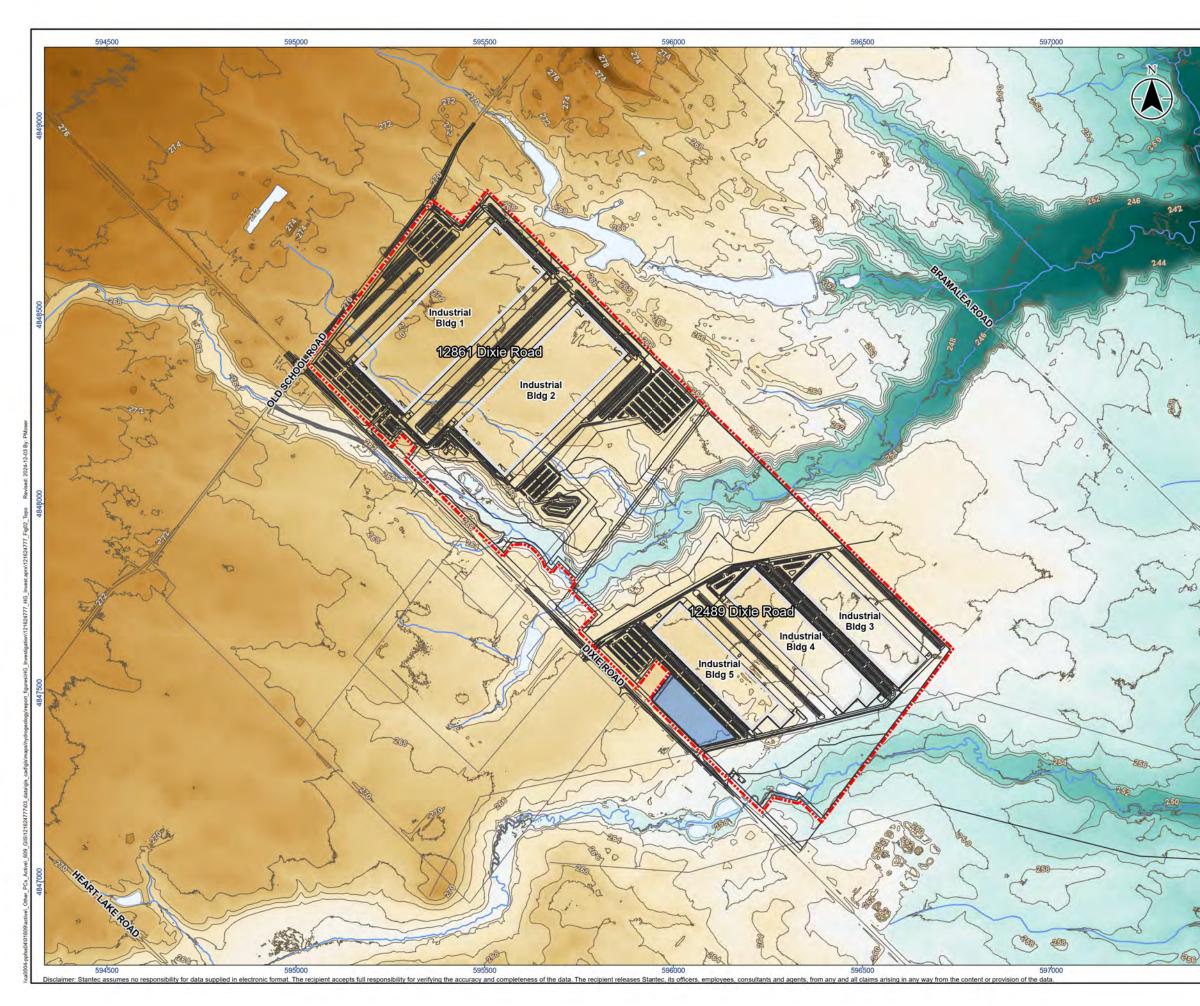
- 13. Given the steady-state dewatering rates and zones of influence are expected to be minor for temporary excavations (i.e., less than 50 m³/day and 30 m distance from the open excavations, respectively), the proposed temporary construction dewatering measures should not affect local private wells and should have no discernible effect on the normal flow conditions within local surface water features.
- 14. Based on the available groundwater quality results, it is expected that treatment of groundwater will be required to reduce concentrations of metals and total suspended solids to discharge to the environment during construction dewatering. Dewatering and surface water management measures will be implemented during construction to direct surface water away from the open excavation areas. Mitigation and contingency measures will be in place to reduce the potential for impact to surface water systems due to groundwater dewatering.
- 15. Servicing may occur below the groundwater table in some areas of the PSA. Efforts may be required to minimize the disturbance that this servicing could have on pre-development groundwater flow patterns. Typically, the most common mitigation measure is the installation of anti-seepage (cut-off) collars to prevent the preferential movement of groundwater along the servicing alignments. An assessment for the need, total number and exact placements of anti-seepage collars along the servicing alignments should be explored in more detail during the detailed design phase.
- 16. Review of MECP well records within 500 m of the PSA indicates the presence of potential private wells on nearby properties. Given the thick overburden clay material present across the PSA, the anticipated below ground construction activity, the distance to the nearest private wells, and the limited dewatering rates and predicted zone of influence, no private well interference is expected.

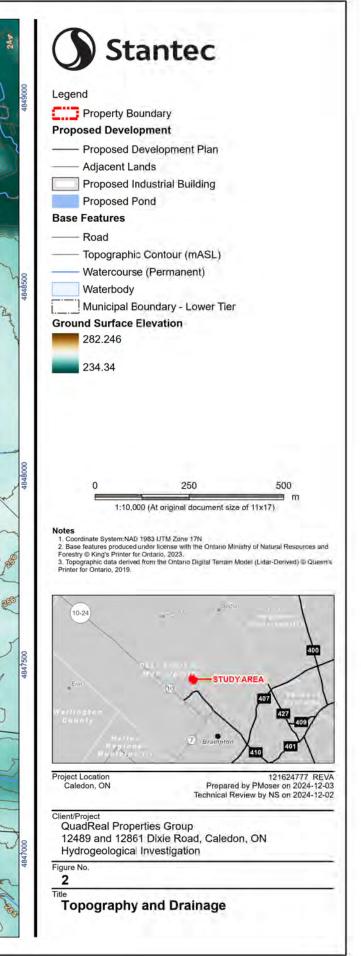
8 References

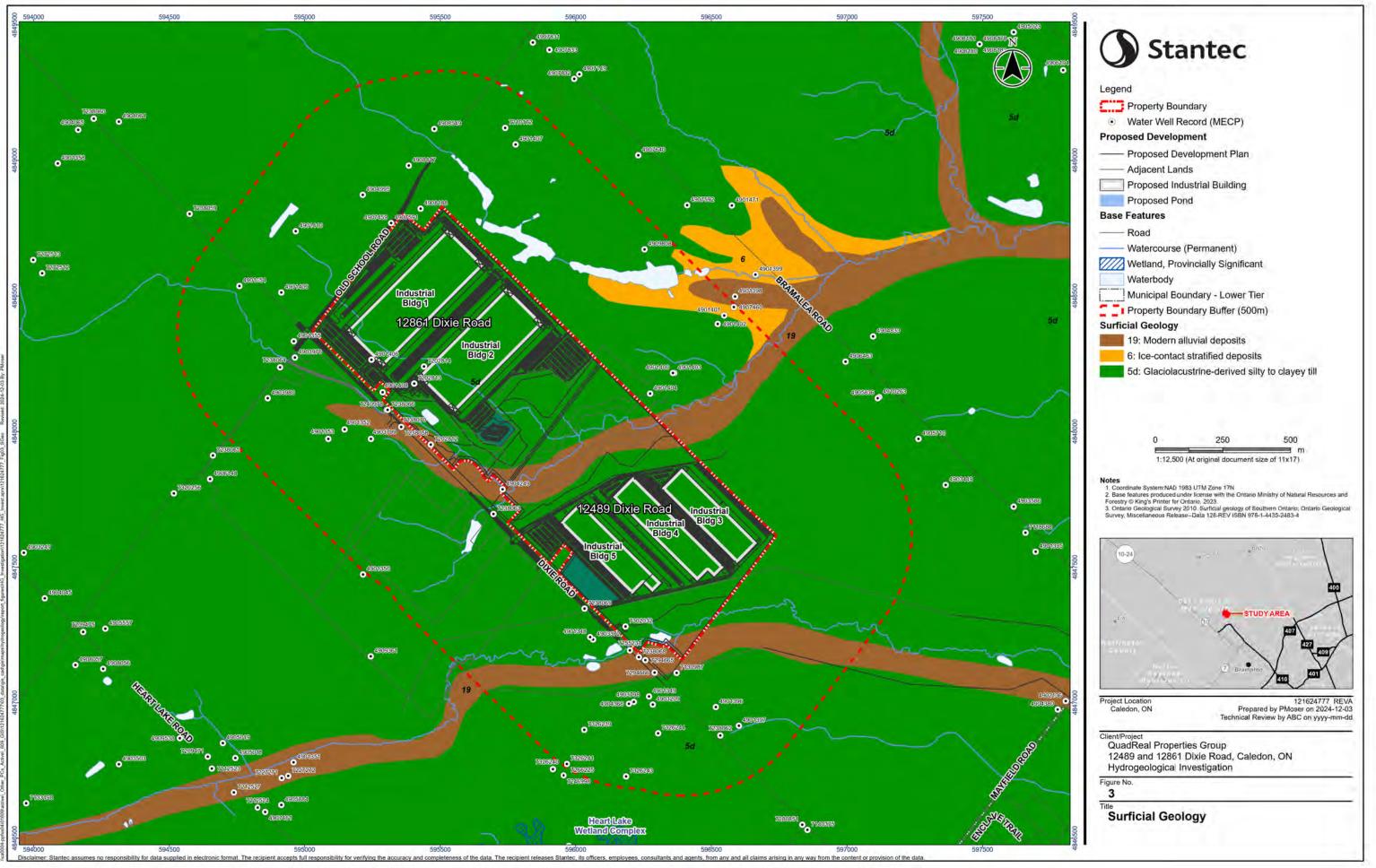

- American Society for Testing and Materials International. 2000. ASTM D2488 00. Standard Practice for Description and Identification of Soils.
- CTC Source Protection Committee (CTCSPC), 2022a. Approved Updated Assessment Report: Toronto and Region Source Protection Area. Version 5.0. Approved February 23, 2022.
- CTC Source Protection Committee (CTCSPC), 2022b. Approved Source Protection Plan: CTC Source Protection Region. Version 5.0. Approved February 23, 2022.
- Credit Valley Conservation Toronto and Region Conservation Authority. 2010. Low Impact Development Stormwater Management Planning and Design Guide – Version 1.0.
- Environment Canada, 2023. Canadian Climate Normals 1981-2010, Toronto Lester B. Pearson Int'l A, Climate ID 6158733 Accessed November 2023. (http://climate.weather.gc.ca/climate_normals/index_e.html)
- Fetter, C.W. 1994. Applied Hydrogeology. 3d ed. New Jersey: Prentice-Hall, Inc.
- Hvorslev, M. (1951) Time Lag and Soil Permeability in Ground-Water Observations, Waterways Exper. Sta. Corps of Engrs, U.S. Army, Vicksburg.
- Ministry of the Environment (MOE). 1990. Wells. Regulation under the Ontario Water Resources Act. Regulation 903 of the Revised Regulations of Ontario, 1990.
- Ministry of the Environment. 2003. Stormwater Management Planning and Design Manual. March 2003.
- Ministry of the Environment. 2006. Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines. Original publication June 2003. Revised June 2006.
- Ministry of Environment and Energy. 1995. MOEE Hydrogeological Technical Information Requirements for Land Development Applications. April 1995.
- Ministry of the Environment, Conservation and Parks (MECP). 2024. Source Water Protection Information Atlas. Accessed November 2024. (<u>https://www.gisapplication.lrc.gov.on.ca/SourceWaterProtection/Index.html?viewer=SourceWaterProtection.SWPViewer&locale=en-US</u>)
- Oak Ridges Moraine Groundwater Program Website (ORMGP), 2018. Accessed November 24, 2023 (<u>https://www.oakridgeswater.ca/</u>).
- Ontario Geological Survey (OGS). 2010. Surficial Geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release -- Data 128 Revised.

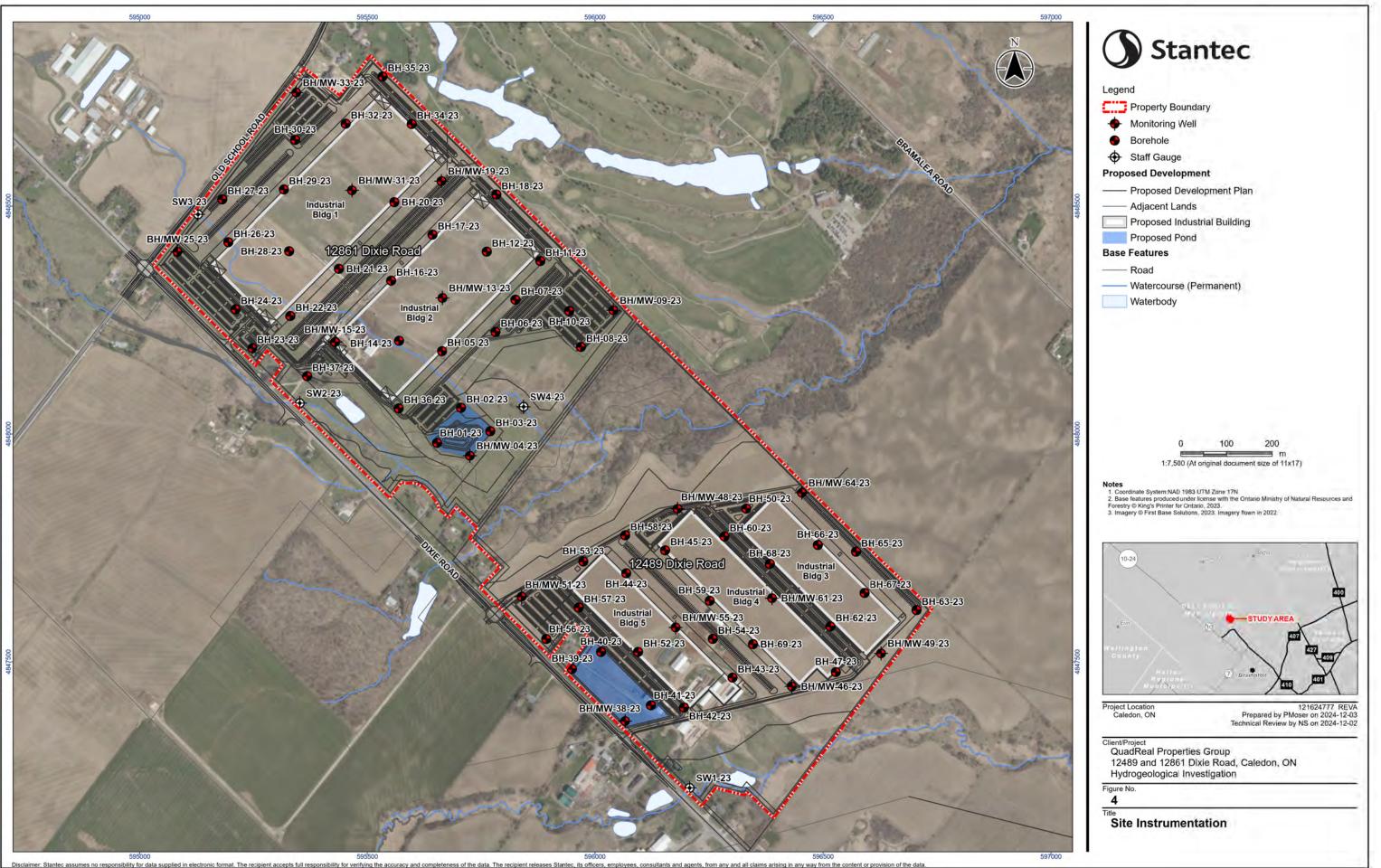
Region of Peel Website (Region of Peel), 2023. Accessed November 2023. (https://www.peelregion.ca/drinking-water/).

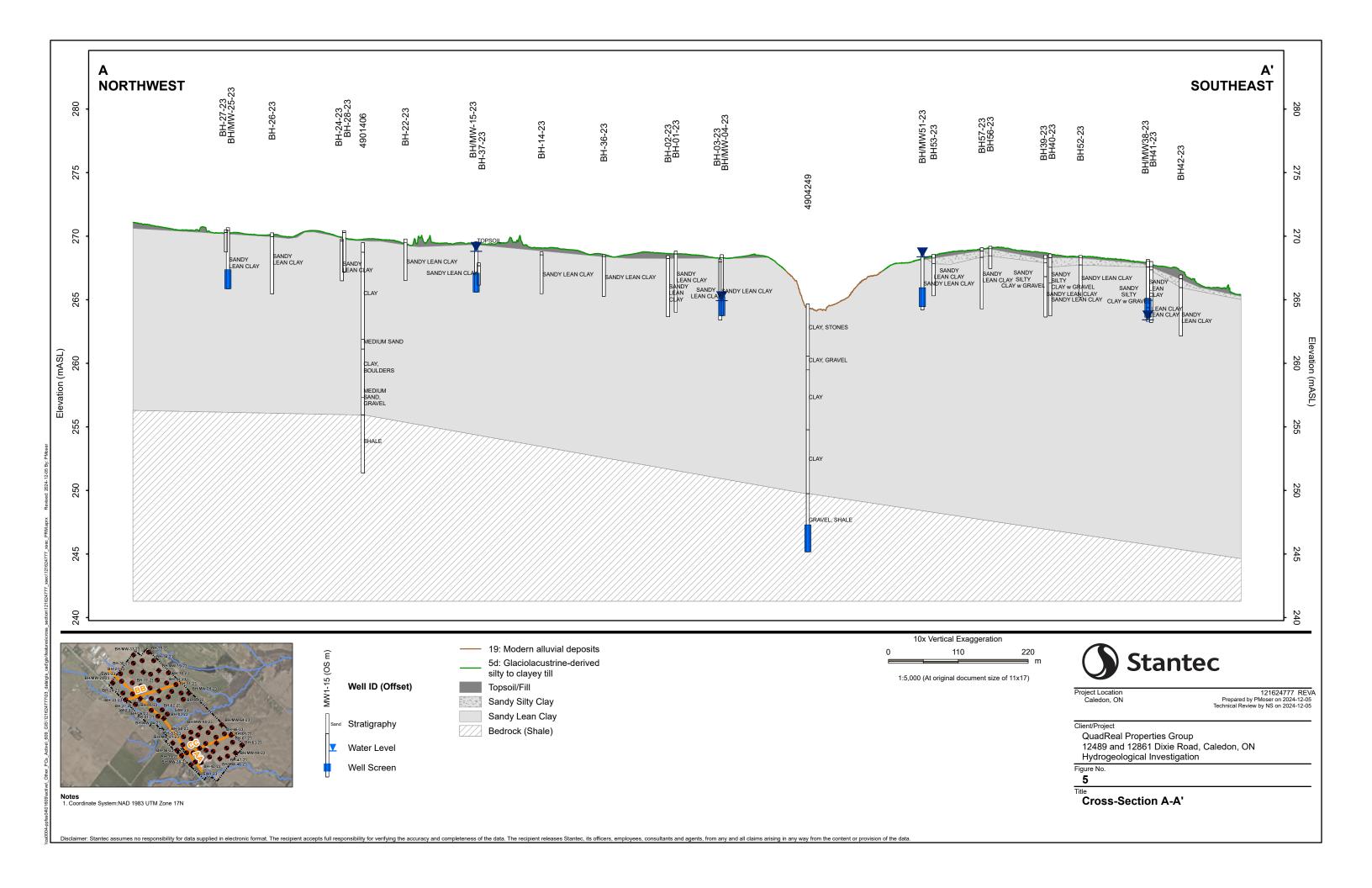

- Sharpe, D.R. and H.A.J. Russel. 2007. A new depositional model for Halton Till sediment, Greater Toronto Area. CANQUA Ottawa 2007. Canadian Quaternary Association Conference, June 4-8, 1007. Carleton University, Ottawa, Ontario, Canada.
- Stantec Consulting Ltd. (Stantec), 2024. Geotechnical Investigation and Design Report, 12489 and 12861 Dixie Road, Caledon, ON. November 29, 2024.
- Thornthwaite, C.W. and Mather, J.W. 1955. The water balance. Philadelphia, PA: Drexel Institute of Technology, Climatological Laboratory Publication No.8.
- Thornthwaite, C.W., and Mather J.W., 1957. Instructions and Tables for Computing Potential Evapotranspiration and the water balance. Drexel Institute of Technology, Laboratory of Climatology, Publications in Climatology, Volume X, No. 3. Centerton, New Jersey.
- Toronto and Region Conservation Authority (TRCA), 2023. Humber River Watershed Characterization Report. October 2023.

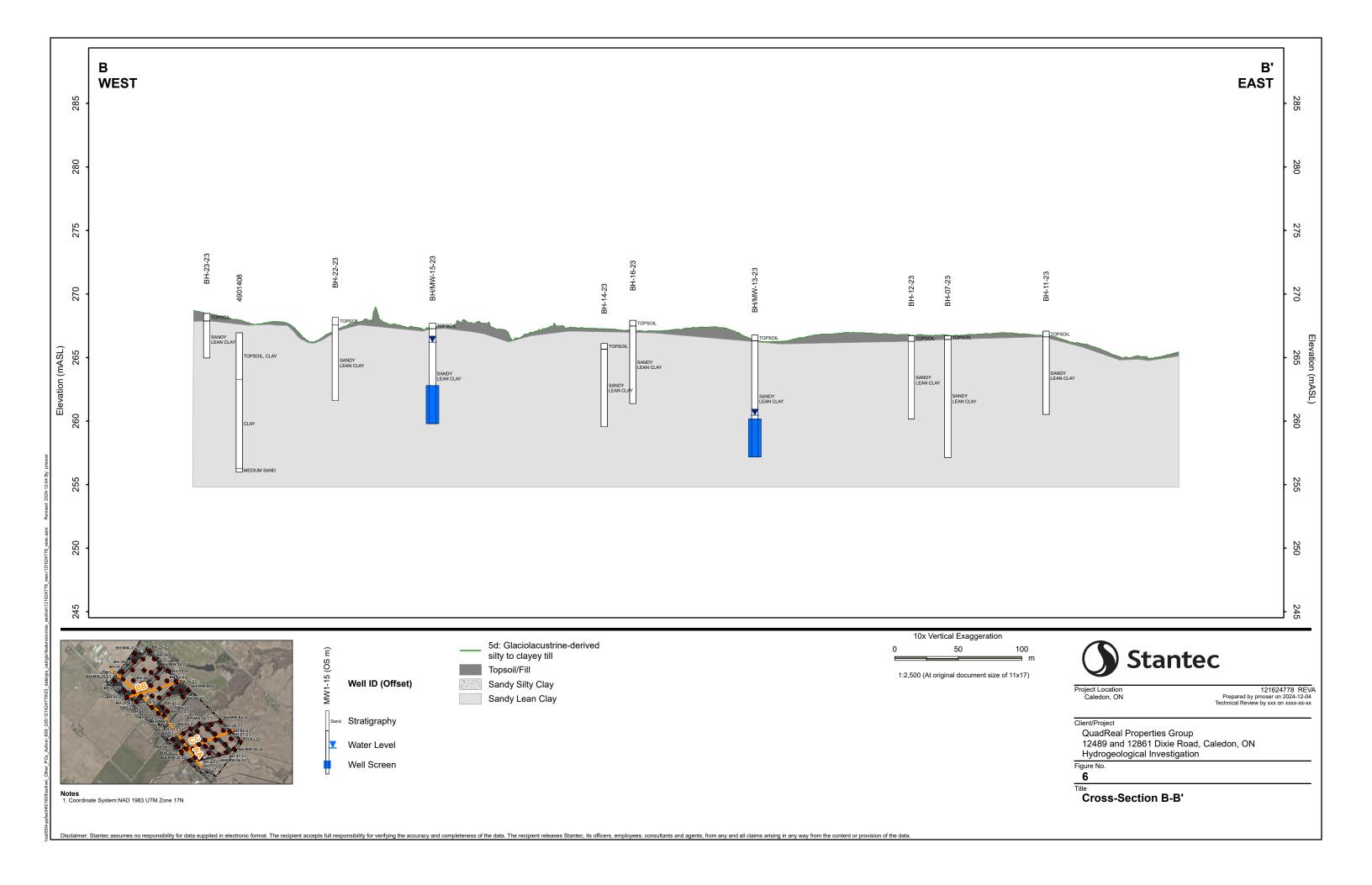

Appendices

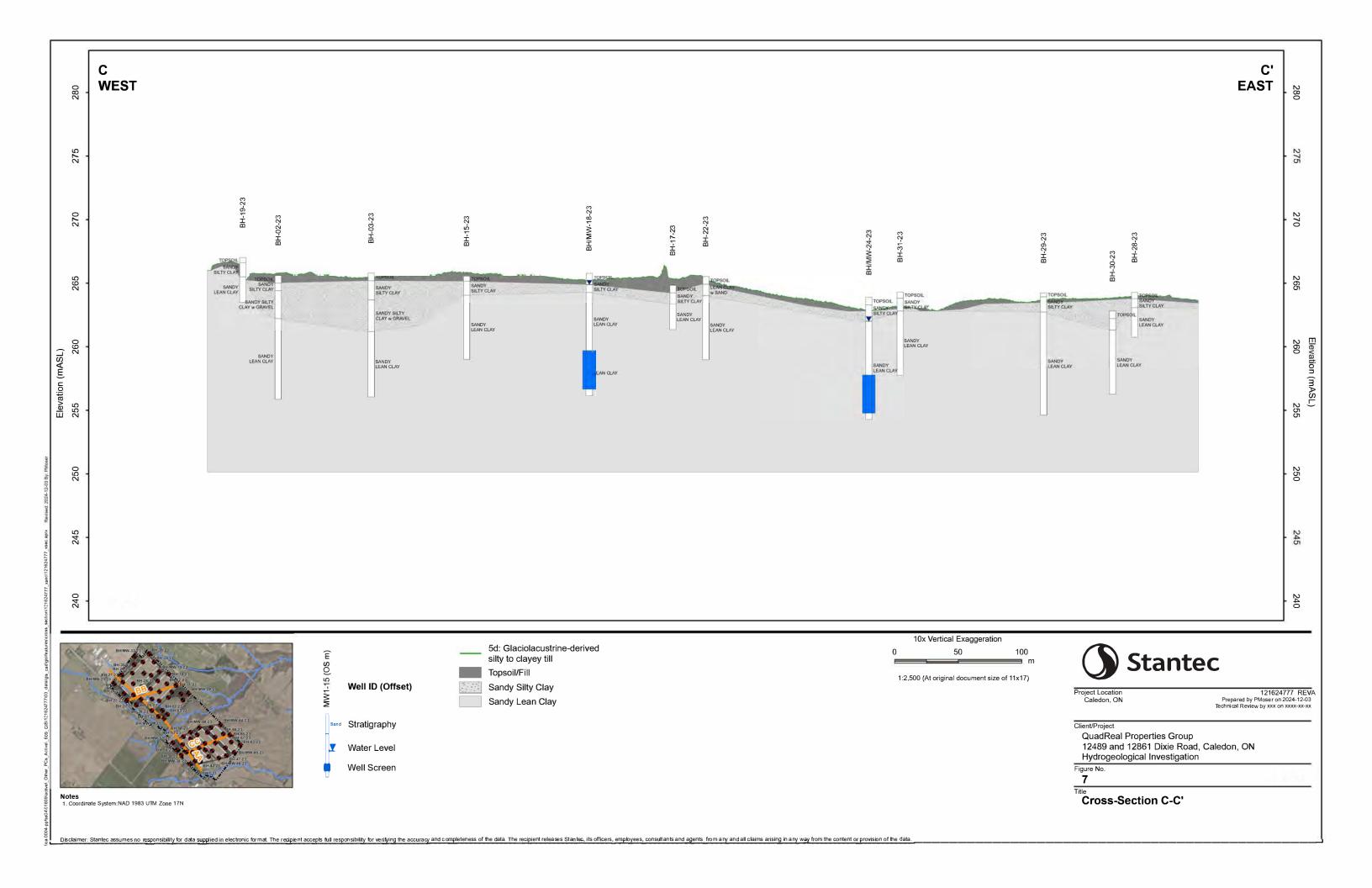

Appendix A Figures

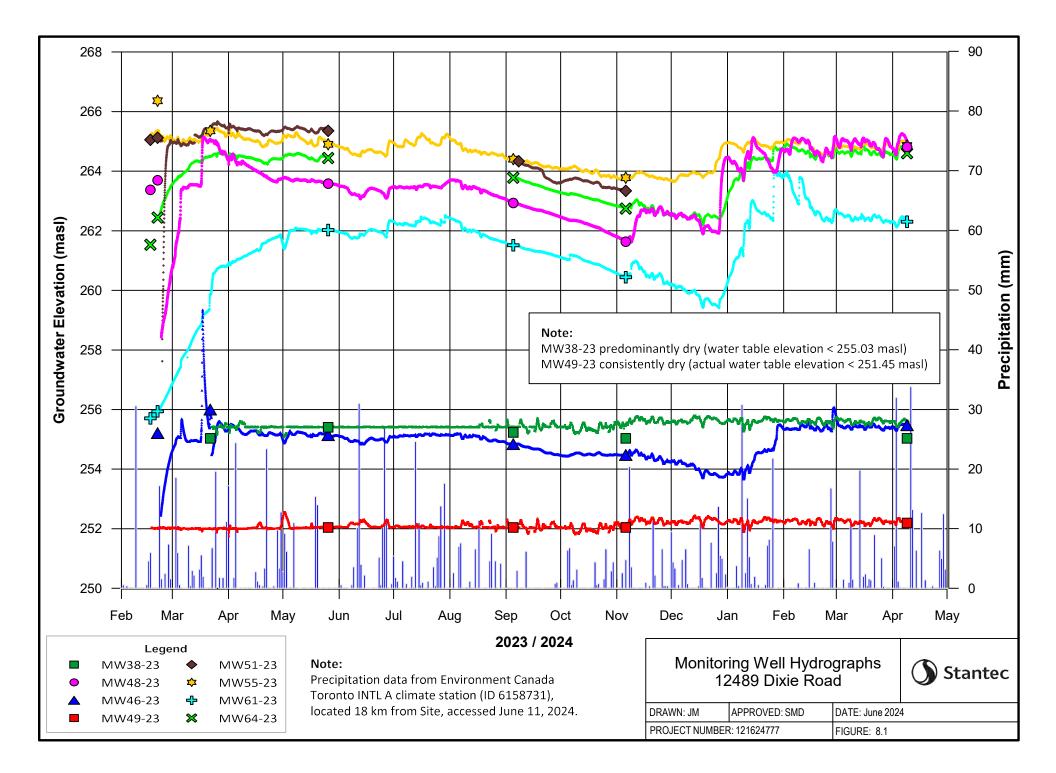


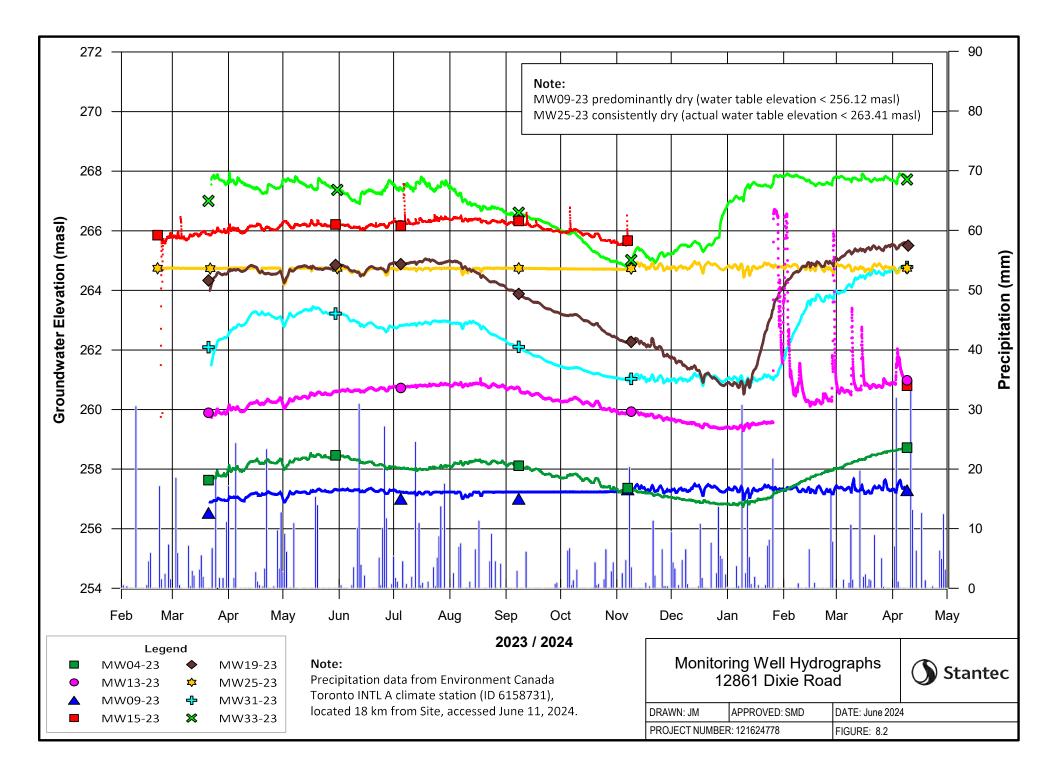

596000 596500 597000 pplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

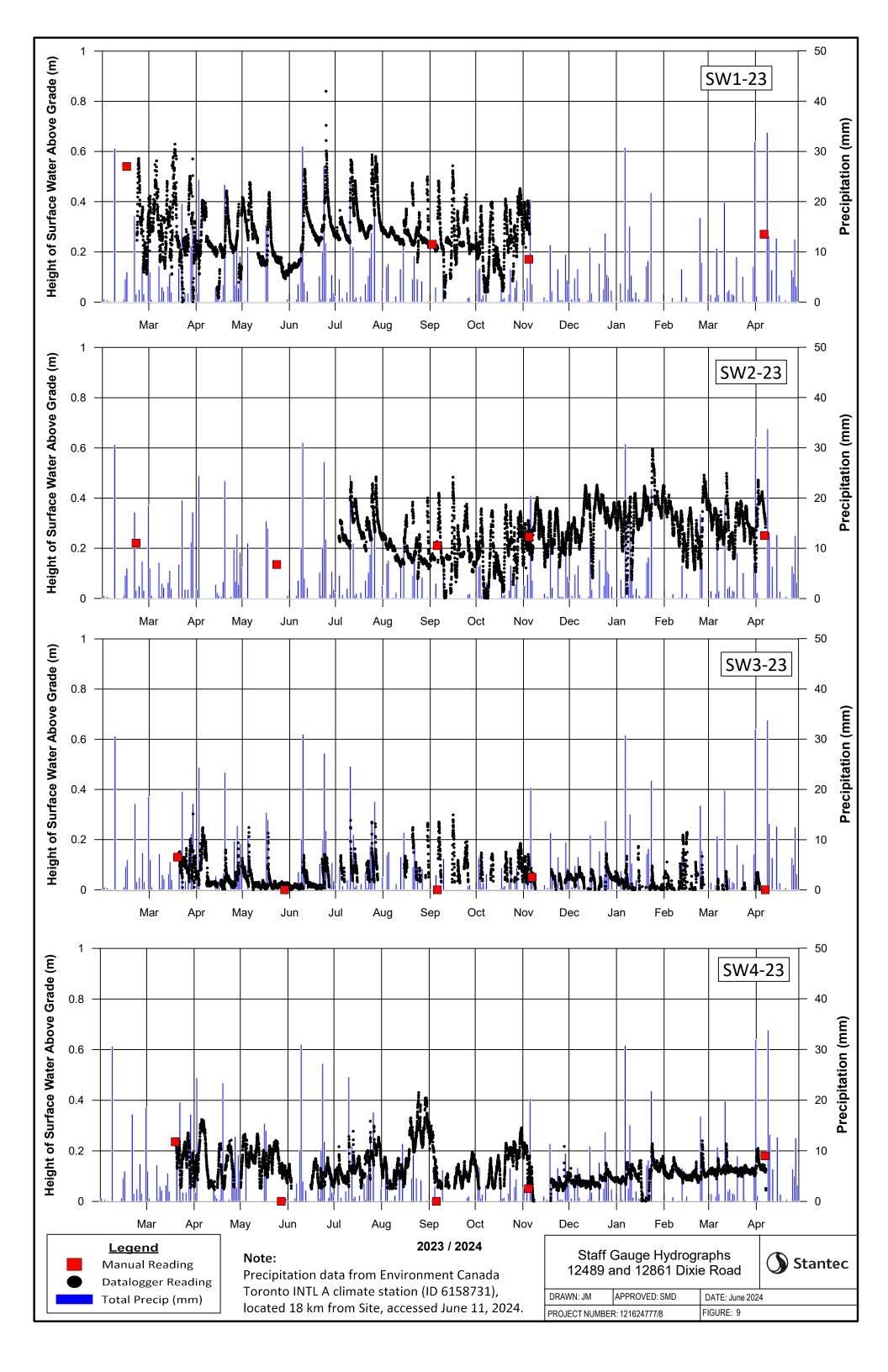


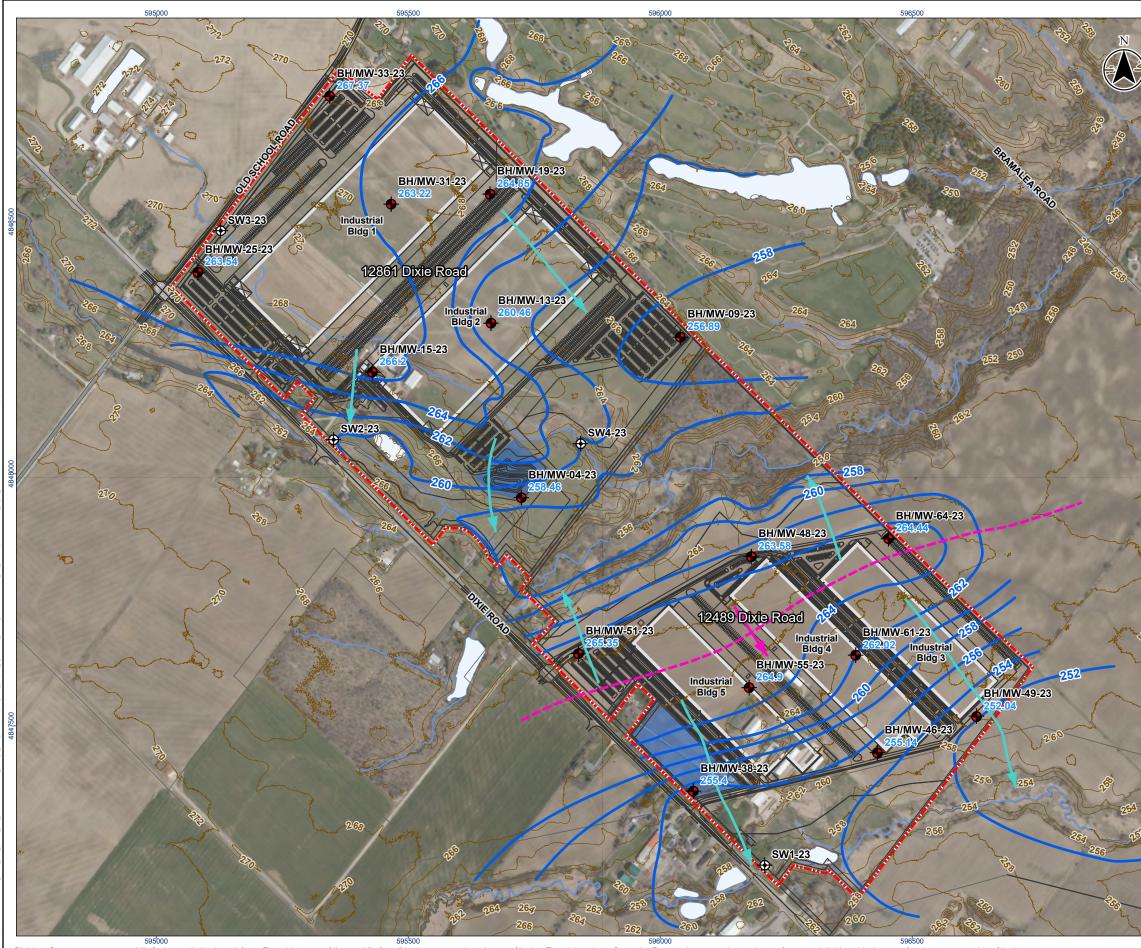


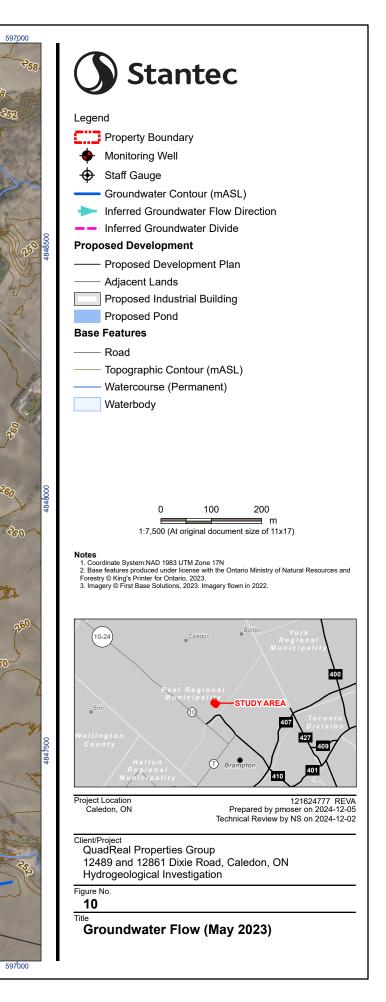


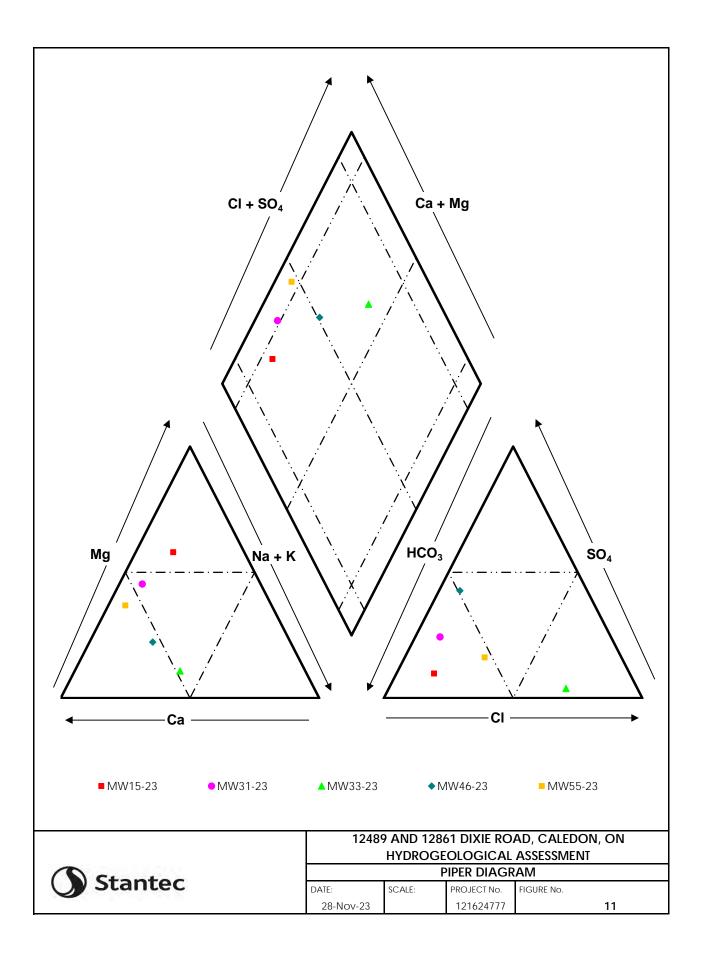


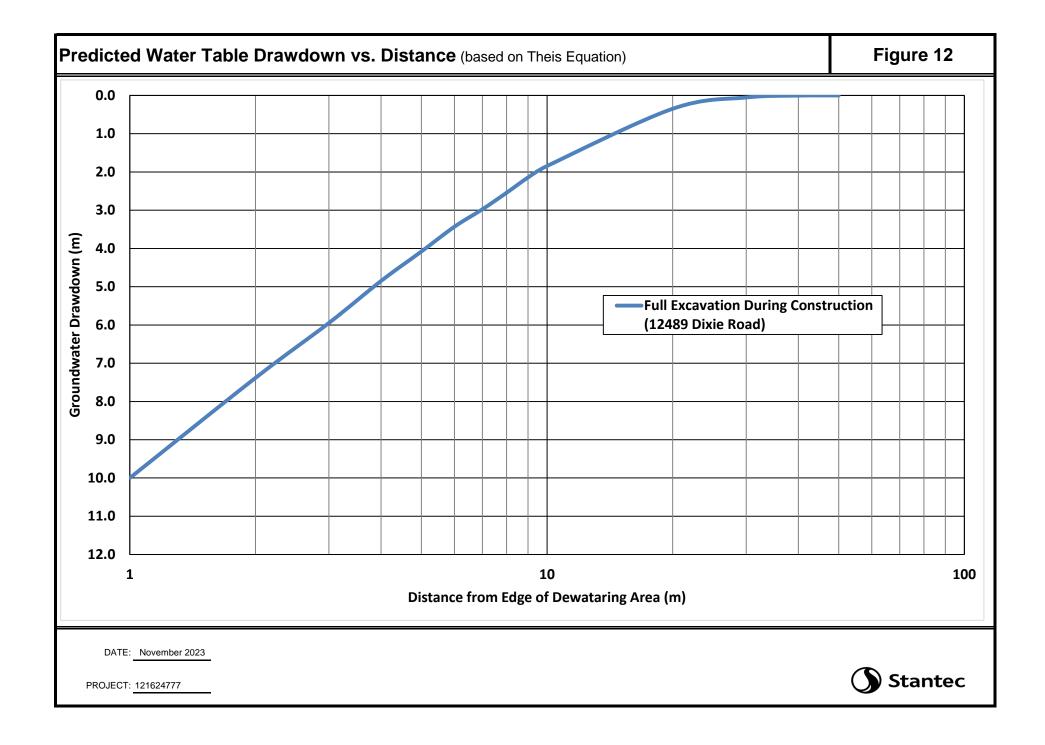


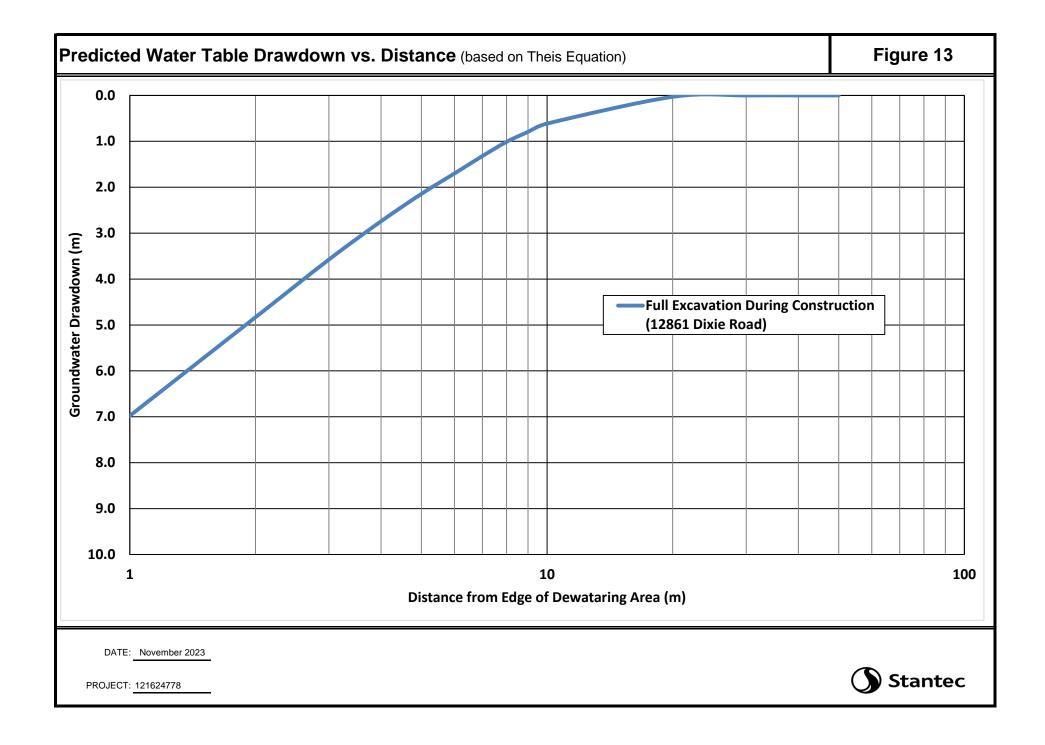












Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

Appendix B Tables

Table 1Monitoring Well Construction DetailsDixie Road DevelopmentQuadReal Properties Group

Well ID	UTM Cod	ordinates	Eleva	tions	Well	Well S	Screen	Screened
	Northing	Easting	Top of	Ground	Base	Тор	Bottom	Material Description
			Casing (m AMSL)	Surface (m AMSL)	Elevation (m AMSL)	(m AMSL)	(m AMSL)	
12861 Dixie Road	_				-	-		
BH/MW04-23	4847953	595724	266.53	265.68	256.54	259.59	256.54	SANDY LEAN CLAY
BH/MW09-23	4848272	596040	266.24	265.26	256.12	259.17	256.12	SANDY LEAN CLAY
BH/MW13-23	4848298	595666	267.76	266.77	257.63	260.68	257.63	SANDY LEAN CLAY
BH/MW15-23	4848202	595429	267.58	267.72	258.58	261.62	258.58	SANDY LEAN CLAY
BH/MW19-23	4848555	595663	268.32	267.74	258.59	261.64	258.59	LEAN CLAY WITH SAND TO SANDY LEAN CLAY
BH/MW25-23	4848400	595082	271.13	269.93	263.22	266.27	263.22	SANDY LEAN CLAY
BH/MW31-23	4848534	595466	270.30	269.42	259.82	263.18	259.82	SANDY LEAN CLAY
BH/MW33-23	4848750	595344	269.15	268.26	258.66	262.01	258.66	SANDY LEAN CLAY
12489 Dixie Road								
BH/MW38-23	4847389	596080	265.13	264.94	255.80	258.84	255.80	SANDY LEAN CLAY
BH/MW46-23	4847444	596433	261.73	260.71	251.56	254.61	251.56	SANDY LEAN CLAY
BH/MW48-23	4847842	596180	266.45	265.43	256.28	259.33	256.28	SANDY LEAN CLAY
BH/MW49-23	4847513	596626	261.69	260.58	251.43	254.48	251.43	SANDY LEAN CLAY
BH/MW51-23	4847620	595839	267.89	266.59	257.45	260.50	257.45	SANDY LEAN CLAY
BH/MW55-23	4847566	596186	266.83	265.78	256.63	259.68	256.63	LEAN CLAY
BH/MW61-23	4847639	596359	264.98	263.90	254.76	257.80	254.76	SANDY LEAN CLAY
BH/MW64-23	4847867	596468	266.26	265.23	256.09	259.13	256.09	SANDY LEAN CLAY

Notes:

m AMSL = meters above mean sea level

m BGS = meters below ground surface

m BTOC = meters below top of well casing

- = data not available

Table 2 Water Level Monitoring Data Dixie Road Development QuadReal Properties Group

Well ID	Date	Well	Depth	Top of Casing Elevation	Pipe Stick-up	Gro	oundwater L	evel	Inferred Hydraulic Conductivity
		(m BTOC)	(m AMSL)	(m AMSL)	(m)	(m BTOC)	(m BGS)	(m AMSL)	(m/s)
12861 Dixie Roa	d			ļ					
BH/MW04-23	21-Mar-23	9.80	256.72	266.53	0.66	8.90	8.24	257.63	5.5E-07
	30-May-23					8.07	7.41	258.46	
	8-Sep-23					8.42	7.76	258.11	
	7-Nov-23					9.17	8.51	257.36	
	9-Apr-24					7.81	7.15	258.72	
BH/MW09-23	21-Mar-23	10.12	256.12	266.24	0.60	9.71	9.11	256.53	
	26-May-23					9.35	8.75	256.89	
	5-Jul-23			266.62	0.98	Dry	Dry	-	
	8-Sep-23					Dry	Dry	-	
	7-Nov-23					8.92	8.32	257.70	
	9-Apr-24					Dry	Dry	-	
BH/MW13-23	21-Mar-23	10.13	257.63	267.76	0.61	7.87	7.26	259.89	1.5E-07
	26-May-23			000.44	0.00	7.30	6.69	260.46	
	5-Jul-23			268.14	0.99	NM	-	-	
	8-Sep-23					NM	-	-	
	9-Nov-23					7.83	6.84	260.31	
	9-Apr-24	0.00	050.50	007 50	0.44	6.79	5.80	261.36	4 45 00
BH/MW15-23	21-Feb-23	9.00	258.58	267.58	-0.14	1.73	1.87	265.85	4.4E-08
	30-May-23					1.38	1.52	266.20	
	5-Jul-23					1.42	1.56	266.16	
	8-Sep-23					1.25	1.39	266.33	
	7-Nov-23					NM	-	-	
	9-Apr-24	0.70			0.50	NM	-	-	
BH/MW19-23	21-Mar-23	9.72	258.59	268.32	0.58	4.00	3.42	264.32	4.2E-09
	30-May-23					3.47	2.89	264.85	
	5-Jul-23			268.73	0.99	3.45	2.46	265.28	
	8-Sep-23					4.45	3.46	264.28	
	9-Nov-23					6.06	5.07	262.67	
	9-Apr-24		000.44	074.40		2.83	1.84	265.90	
BH/MW25-23	21-Feb-23	7.72	263.41	271.13	1.01	Dry	Dry	-	
	22-Mar-23					Dry	Dry	-	
	31-May-23					Dry	Dry	-	
	8-Sep-23					Dry	Dry	-	
	9-Nov-23 9-Apr-24					6.40 6.39	5.39 5.38	264.73 264.74	
BH/MW31-23	21-Mar-23	10.26	260.04	270.30	0.66	8.21	7.55	262.09	1.9E-08
	30-May-23	10.20	200.04	210.00	0.00	7.08	6.42	263.22	1.32-00
	8-Sep-23					8.20	7.54	262.10	
	9-Nov-23					9.28	8.62	261.03	
	9-Apr-24					5.53	4.87	264.78	
BH/MW33-23	21-Mar-23	10.15	259.00	269.15	0.55	2.16	1.61	267.00	7.1E-08
	31-May-23					1.78	1.23	267.37	
	8-Sep-23					2.55	2.00	266.60	
	9-Nov-23					4.15	3.60	265.01	
(0 (00 D: · -	9-Apr-24			I		1.40	0.85	267.75	
12489 Dixie Roa								1	
BH/MW38-23	22-Mar-23	10.10	255.03	265.13	0.96	Dry	Dry	-	
	25-May-23					9.73	8.77	255.40	
	5-Sep-23					9.91 Dr/	8.95 Dru	255.23	
	6-Nov-23					Dry Dry	Dry Dry	-	
	9-Apr-24	<u> </u>				Dry	Dry	-	

Table 2 Water Level Monitoring Data Dixie Road Development QuadReal Properties Group

Well ID	Date	Well I	Depth	Top of Casing Elevation	Pipe Stick-up	Gro	oundwater L	evel	Inferred Hydraulic Conductivity
		(m BTOC)	(m AMSL)	(m AMSL)	(m)	(m BTOC)	(m BGS)	(m AMSL)	(m/s)
BH/MW46-23	21-Feb-23	10.18	251.54	261.73	1.04	6.52	5.48	255.21	1.9E-08
	22-Mar-23					5.73	4.69	256.00	
	26-May-23					6.59	5.55	255.14	
	5-Sep-23					6.89	5.85	254.84	
	6-Nov-23					7.23	6.19	254.50	
	9-Apr-24					6.29	5.25	255.44	
BH/MW48-23	17-Feb-23	10.14	256.31	266.45	1.00	3.08	2.08	263.37	4.3E-08
	21-Feb-23					2.76	1.76	263.69	
	26-May-23					2.87	1.87	263.58	
	5-Sep-23					3.52	2.52	262.93	
	6-Nov-23					4.82	3.82	261.63	
	9-Apr-24					1.64	0.64	264.81	
BH/MW49-23	21-Feb-23	10.24	251.45	261.69	1.10	Dry	Dry	-	
	26-May-23					Dry	Dry	-	
	5-Sep-23					Dry	Dry	-	
	6-Nov-23					Dry	Dry	-	
	9-Apr-24					9.60	8.51	252.09	
BH/MW51-23	17-Feb-23	10.74	257.15	267.89	1.60	2.84	1.24	265.05	8.5E-09
	21-Feb-23			267.59	1.30	2.78	1.48	264.82	
	26-May-23					2.55	1.25	265.05	
	8-Sep-23					3.57	2.27	264.03	
	6-Nov-23					4.55	3.25	263.04	
D11/0 00/55 00	9-Apr-24	40.00	050.00	000.00	4.00	NM	NM	-	4 4 5 0 7
BH/MW55-23	21-Feb-23	10.20	256.63	266.83	1.06	0.47	-0.59	266.36	1.1E-07
	22-Mar-23					1.48	0.42	265.35	
	26-May-23					1.93	0.87	264.90	
	5-Sep-23					2.43	1.37	264.40 263.78	
	6-Nov-23 9-Apr-24					3.05	1.99		
BH/MW61-23		10.15	254.82	264.98	1.01	2.04	0.98 8.27	264.79 255.70	
	17-Feb-23 21-Feb-23	10.15	204.82	204.98	1.01	9.28 9.04	8.27 8.03	255.70 255.94	
	21-Feb-23 26-May-23					9.04 2.96	8.03 1.95	255.94 262.02	
	26-iviay-23 5-Sep-23					2.90	2.46	262.02	
	5-Sep-23 6-Nov-23					3.47 4.54	2.46	261.51	
	9-Apr-24					4.54 2.68	3.53 1.67	260.44 262.30	
BH/MW64-23	9-Apr-24 17-Feb-23	10.17	256.09	266.26	1.03	4.73	3.70	262.30	2.0E-07
D1//WWW04-23	21-Feb-23	10.17	200.09	200.20	1.00	3.82	2.79	262.44	2.00-01
	26-May-23					1.82	0.79	264.44	
	5-Sep-23					2.48	1.45	263.78	
	6-Nov-23					3.53	2.50	262.74	
	9-Apr-24					1.73	0.70	264.54	

Notes:

m AMSL = meters above mean sea level

m BGS = meters below ground surface

m BTOC = meters below top of well casing

= data not available

NM = not measured

Testing Location ID	Horizontal Hydraulic Conductivity		lydraulic Ictivity	Infiltration Rate	Pit Depth	Screened Interval	Soil Substrate Tested
	(m/s)	(cm/s)	(m/s)	(mm/hr)	(m BGS)	(m BGS)	
In-situ Hydraul	ic Response Te	sting - 128	61 Dixie Roa	ad			
BH/MW04-23	5.5E-07	-	5.5E-08	22	-	6.1 - 9.1	SANDY LEAN CLAY
BH/MW13-23	1.5E-07	-	1.5E-08	15	-	6.1 - 9.1	SANDY LEAN CLAY
BH/MW15-23	4.4E-08	-	4.4E-09	11	-	6.1 - 9.1	SANDY LEAN CLAY
BH/MW19-23	4.2E-09	-	4.2E-10	6	-	6.1 - 9.1	LEAN CLAY WITH SAND TO SANDY LEAN CLAY
BH/MW31-23	1.9E-08	-	1.9E-09	8	-	6.2 - 9.6	SANDY LEAN CLAY
BH/MW33-23	7.1E-08	-	7.1E-09	13	-	6.2 - 9.6	SANDY LEAN CLAY
In-situ Hydraul	ic Response Te	sting - 1248	89 Dixie Roa	ad			
BH/MW46-23	1.9E-08	-	1.9E-09	8	-	6.1 - 9.1	SANDY LEAN CLAY
BH/MW48-23	4.3E-08	-	4.3E-09	6	-	6.1 - 9.1	SANDY LEAN CLAY
BH/MW51-23	8.5E-09	-	8.5E-10	7	-	6.1 - 9.1	SANDY LEAN CLAY
BH/MW55-23	1.1E-07	-	1.1E-08	14	-	6.1 - 9.1	LEAN CLAY
BH/MW64-23	2.0E-07	-	2.0E-08	17	-	6.1 - 9.1	SANDY LEAN CLAY
GEOMEAN =	5E-08	_	5E-09	10			

Notes:

(1) Infiltration rate calculated based on established relationship between vertical hydraulic conductivity and infiltration rate presented in *Credit Valley Conservation and Toronto and Region Conservation (2010) Low Impact Stormwater Management Planning and Design Guideline - Version 1.0.*

(2) Vertical hydraulic conductivities for deeper overburden deposits assumed to be one order of magnitude lower than in-situ measured horizontal hydraulic conductivities.

Table 4 Summary of Groundwater Analytical Results Dixie Road Development QuadReal Properties Group

Sample Location					12861 Dixie Raod			12489 Di	via Raad	
Sample Location							B404/			
				MW15-23	MW31-23	MW33-23		46-23		55-23
Sample Date				23-Feb-23	22-Mar-23	22-Mar-23	22-Mar-23	22-Mar-23 MW9-23	22-Mar-23	22-Mar-23 MW18-23
Sample ID				MW15-23	MW31-23	MW33-23	MW9-23	Lab-Dup	MW18-23	Lab-Dup
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				BV	BV	BV	BV	BV	BV	BV
Laboratory Work Order				C353332	C382753	C382753	C382753	C382753	C382753	C382753
Laboratory Sample ID				VDE257	VJG667	VJG666	VJG668	VJG668	VJG669	VJG669
Sample Type	Units	PWQO	O. Reg. 169/03					Lab Replicate		Lab Replicate
General Chemistry										
Alkalinity, Carbonate (as CaCO3)	mg/L	n/v	n/v	2.6	2.0	<1.0	<1.0	-	1.2	-
Alkalinity, Total (as CaCO3)	mg/L	A s16	30-500 ^G	300	340	330	120	110	290	-
Ammonia (as N)	mg/L	n/v	n/v	0.10	0.30	0.39	0.51	-	<0.050	<0.050
Anion Sum	me/L	n/v	n/v	7.97	10.6	24.3	7.51	-	16.8	-
Bicarbonate(as CaCO3, Calculated)	mg/L	n/v	n/v	300	330	320	110	-	290	-
Cation Sum	me/L	n/v	n/v	7.80	11.3	27.1	7.82	-	17.9	-
Chloride	mg/L	n/v	250 ^E	41	35	580 ^E	14	14	120	-
Dissolved Organic Carbon (DOC)	mg/L	n/v	5 ^E	2.1	2.5	1.5	7.8 ^E	-	2.4	-
Electrical Conductivity, Lab	µmhos/cm	n/v	n/v	740	950	2,600	740	740	1,600	-
Hardness (as CaCO3)	mg/L	n/v	80-100 ^G	330 ^G	500 ^G	800 ^G	300 ^G	_	840 ^G	-
Ion Balance	%	n/v	n/v	1.07	3.28	5.54	2.02	_	3.38	_
Langelier Index (at 20 C)	none	n/v	n/v	0.633	0.857	0.833	0.0440	_	0.856	-
Langelier Index (at 4 C)	none	n/v	n/v	0.385	0.609	0.589	-0.203	_	0.611	-
Nitrate (as N)	mg/L	n/v	10.0 _d ^D	<0.10	6.34	5.70	37.7 ^D	_	78.3 ^D	_
Nitrate + Nitrite (as N)	-	n/v	10.0 _d ^D	<0.10	6.49	6.08	38.0 ^D		78.4 ^D	
	mg/L		10.0 _d					-		-
Nitrite (as N)	mg/L	n/v	1.0 _d ^D	< 0.010	0.156	0.383	0.362	-	0.034	-
Orthophosphate (as P)	mg/L	n/v	n/v	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	-
pH, lab	S.U.	6.5-8.5 ^A	6.5-8.5 ^G	7.96	7.80	7.50	7.53	7.60	7.63	-
Saturation pH (at 20 C)	none	n/v	n/v n/v	7.33	6.94 7.19	6.67	7.49 7.74	-	6.78 7.02	-
Saturation pH (at 4 C) Sulfate	none	n/v n/v	500 _h ^E	7.58 37	120	6.91 44	100	100	85	-
	mg/L mg/L	n/v	500 ^E	410	590 ^E	1,400 ^E	510 ^E	-	1.100 ^E	-
Total Dissolved Solids (Calculated) Metals	IIIg/L	11/V	500	410	590	1,400	510	-	1,100	-
			â							1
Aluminum	mg/L	n/v	0.1 ^G	0.0079	0.0067	< 0.0049	0.0064	-	<0.0049	-
Antimony	mg/L	0.020 ^C	0.006 ^D	< 0.00050	0.00058	< 0.00050	< 0.00050	-	< 0.00050	-
Arsenic	mg/L	0.10 ^A 0.0050 ^C	0.01 ^D	0.0026	<0.0010	< 0.0010	< 0.0010	-	< 0.0010	-
Barium	mg/L	n/v	1 ^D	0.094	0.099	0.12	0.038	-	0.075	-
Beryllium	mg/L	1.1 _{s3} ^A 0.20a ^C	n/v	< 0.00040	< 0.00040	< 0.00040	< 0.00040	-	< 0.00040	-
Boron	mg/L	$0.20a^{-1}$ $0.00020^{A} 0.00050s12^{C}$	5 ^D	0.070	0.074	0.020	0.039	-	0.013	-
Cadmium	mg/L		0.005 ^D	<0.000090	<0.000090	<0.000090 260	<0.000090 83	-	<0.000090 200	-
Calcium	mg/L	n/v n/v	n/v 0.05 ^D	43 <0.0050	100 <0.0050	<0.0050		-	<0.0050	-
Chromium	mg/L			<0.0050	0.00053		0.0051			-
Cobalt	mg/L	0.00090 ^C	n/v			< 0.00050	0.00079	-	0.0014 ^C	-
Copper	mg/L	0.0050 ^A 0.0050 _{s13} ^C	1 ^E	<0.00090	0.0057 ^{AC}	0.0010	0.0057 ^{AC}	-	<0.00090	-
Iron	mg/L	0.30 ^A	0.3 ^E	<0.10	<0.10	<0.10	<0.10	-	<0.10	-
Lead	mg/L	$0.025_{s14}^{A} 0.0050_{s15}^{C}$	0.01 ^D	<0.00050	<0.00050	< 0.00050	< 0.00050	-	<0.00050	-
Magnesium	mg/L	n/v	n/v	55	60	35	21	-	79	-
Manganese	mg/L	n/v	0.05 ^E	0.044	0.11 ^E	0.11 ^Ĕ	0.10 ^E	-	0.12 ^Ĕ	-
Molybdenum	mg/L	0.040 ^C	n/v	0.017	0.0072	0.0017	0.019	-	0.0011	-
Nickel	mg/L	0.025 ^A	n/v	<0.0010	0.0027	0.0019	0.0026	-	0.0072	-
Phosphorus	mg/L	0.030 _{s4} ^C	n/v	<0.10	<0.10	<0.10	<0.10	-	<0.10	-
Potassium	mg/L	n/v	n/v	8.8	18	2.1	9.8	-	3.2	-
Selenium	mg/L	0.10 ^A	0.05 ^D	<0.0020	0.0039	<0.0020	<0.0020	-	<0.0020	-
Silicon	mg/L	n/v	n/v	8.4	6.1	8.4	4.0	-	6.0	-
Silver	mg/L	0.00010 ^A	n/v	<0.000090	<0.000090	<0.000090	<0.000090	-	<0.000090	-
Sodium	mg/L	n/v	200 _g ^E 20 _g ^F	21 ^F	17	250 ^{EF}	38 ^F	-	25 ^F	-
Strontium	mg/L	n/v	n/v	0.57	0.43	0.58	0.17	-	0.62	-
Thallium	mg/L	0.00030 _b ^C	n/v	<0.000050	<0.000050	<0.000050	<0.000050	-	<0.000050	-
Titanium	mg/L	n/v	n/v	<0.0050	< 0.0050	<0.0050	<0.0050	-	<0.0050	-
Uranium	mg/L	0.0050 _a ^C	0.02 ^D	0.00049	0.0068 ^C	0.0036	0.0044	-	0.0034	-
Vanadium	mg/L	0.0060 ^C	n/v	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
Zinc	mg/L	0.030 ^A 0.020 ^C	5 ^E	0.17 ^{AC}	0.31 ^{AC}	1.2 ^{AC}	0.40 ^{AC}	_	<0.0050	· .

Notes:

b

PWQO Provincial Water Quality Objectives of the Ministry of Environment and Energy (MOEE, 1999)

A PWQO Table 2
 B PWQO Table 2 Calculator

PWQO Table 2 - Calculated

c PWQO Table 2 - Interim

O. Reg. 169/03 Ontario Drinking Water Quality Standards (January 1, 2018)

^D Schedule 2 - Chemical Standards (expressed as a maximum acceptable concentration)

^E ODWS Table 4 - Chemical/Physical Objectives and Guidelines, Aesthetic Objectives

F ODWS Table 4 - Medical Officer of Health Reporting Limit

G ODWS Table 4 - Chemical/Physical Objectives and Guidelines, Operational Guidelines

6.5^A Concentration exceeds the indicated standard.

15.2 Measured concentration did not exceed the indicated standard.

<0.50 Laboratory reporting limit was greater than the applicable standard.

<0.03 Analyte was not detected at a concentration greater than the laboratory reporting limit.

n/v No standard/guideline value.

- Parameter not analyzed / not available.

a This Interim PWQO was set for emergency purposes based on the best information readily available. Employ due caution when applying this value.

This Interim PWQO is currently under development. The value is subject to change upon publication by MOE.

- d Where both nitrate and nitrite are present, the total of the two should not exceed 10 mg/L (as nitrogen).
- ^{EF} The aesthetic objective for sodium in drinking water is 200 mg/L. The local Medical Officer of Health should be notified when the sodium concentration exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets.
- h When sulfate levels exceed 500 mg/L, water may have a laxative effect on some people.
- s3 The PWQO for beryllium is hardness dependent. If hardness <75 mg/L than PWQO is 0.011 mg/L. For hardness > 75 mg/L, PWQO is 1.1 mg/L.
- s4 Applies to Phosphorus, total. PWQO is 0.03 mg/L for rivers and streams, 0.02 mg/L for lakes, and 0.01 mg/L for lakes naturally below this value.
- s12 The interim PWQO for cadmium is hardness dependent. If hardness <100 mg/L than PWQO is 0.0001 mg/L. For hardness >100 mg/L, PWQO is 0.0005 mg/L.
- s13 The interim PWQO for copper is hardness dependent. If hardness <20 mg/L than PWQO is 0.001 mg/L. For hardness >20 mg/L, PWQO is 0.005 mg/L.
- s14 PWQO for lead is alkalinity dependent. For alkalinity <20 mg/L, PWQO is 0.005 mg/L. For alkalinity between 20-40 mg/L, PWQO is 0.01 mg/L. For alkalinity between 40-80 mg/L, PWQO is 0.02 mg/L. For alkalinity >80 mg/L, PWQO is 0.025 mg/L.
- s15 Interim PWQO for lead is hardness dependent. For hardness <30 mg/L, interim PWQO is 0.001 mg/L. For hardness between 30-80 mg/L, interim PWQO is 0.003 mg/L. For hardness >80 mg/L, interim PWQO is 0.005 mg/L.
- s16 Alkalinity should not be decreased by more than 25% of the natural concentration.

\\cd1004-f01\01216\active\121624777\0_121624777 and 121624778 combined reports\8_deliverable\0_Hydrogeology_Report\App_B_Tables\Table_4_12489-12861_Dixie_121624777_12164778-WG Analytical-CP_NS.xlsx Page 1 of 1

Table 5.1Pre-Development Monthly Water Balance - 12489 Dixie Road

Monthly Water Balance Analysis - Thornthwaite and Mather model PRE-DEVELOPMENT

12489 Dixie Road, Caledon - QuadReal Properties Group

Land Description Factors	Existing Site Conditions				
Topography Soils	0.10 0.10				
Cover	0.15			 	
Sum (Infiltration Factor) Soil Moisture Capacity (mm)	0.35 250			 	
Site area (ha)	58.10				
Impervious Coefficient	0.00				
Impervious Area (ha)	0.00				0.00
Remaining Pervious Area (ha)	58.10				
Total Pervious Site Area (ha) Percentage of Total Site Area	58.10 100%				58.10 100%

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Climate Data (Toronto Lester B. Pearson Int'l A C	limate Station	n - 6158733, O	ntario via Env	rironment Can	ada Website	- Climate Nori	nals from 198	31-2010)					-
Average Daily Temperature (°C)	-7.8	-6.0	-1.0	6.7	13.1	18.2	21.2	20.3	16.0	9.4	3.4	-3.4	7.5
Precipitation (mm)	78	64	63	77	84	93	86	82	98	89	92	80	987
Evapotranspiration Analysis (Sub-Area A)													•
Heat Index	0.0	0.0	0.0	1.6	4.3	7.1	8.9	8.3	5.8	2.6	0.6	0.0	39
Unadjusted Potential Evapotranspiration (mm)	0.0	0.0	0.0	29.1	61.3	88.5	104.8	99.9	76.6	42.4	13.7	0.0	516
Potential Evapotranspiration Adjusting Factor for Latitude	0.81	0.92	1.06	1.18	1.27	1.29	1.22	1.11	0.98	0.86	0.76	0.74	
Adjusted Potential Evapotranspiration (mm)	0	0	0	34	78	114	128	111	75	36	10	0	587
PET (Malstrom, 1969) (mm/month)	0	0	0	34	78	114	128	111	75	36	10	0	587
Precipitation - PET (mm)	78	64	63	43	6	-21	-42	-29	23	53	82	80	400
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-21	-63	-91	-61	-1	0	0	
Storage (S)	250	250	250	250	250	230	194	173	196	249	250	250	
Change in Storage	0	0	0	0	0	-20	-35	-21	23	53	1	0	
Actual Evapotranspiration (mm)	0	0	0	34	78	113	121	103	75	36	10	0	572
Recharge/Runoff Analysis													
Water Surplus (mm)	78	64	63	43	6	0	0	0	0	0	80	80	415
Potential Infiltration (I)	27	22	22	15	2	0	0	0	0	0	28	28	145
Potential Direct Surface Water Runoff (R)	51	42	41	28	4	0	0	0	0	0	52	52	269
Infiltration (mm)	0	0	0	115	2	0	0	0	0	0	28	0	145
Pervious Evapotranspiration (m ³)	0	0	0	19943	45268	65789	70578	60015	43638	21187	6038	0	332456
Pervious Runoff (m ³)	29608	24245	23792	16154	2336	0	0	0	0	0	30297	30136	156569
Pervious Infiltration (m ³)	0	0	0	66734	1258	0	0	0	0	0	16314	0	84306
Impervious Evapotranspiration (mm)	8	6	6	8	8	9	9	8	10	9	9	8	99
Impervious Runoff (mm)	71	58	57	69	76	84	78	74	88	80	83	72	888
Volumetric Impervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0

Pre-Development Infiltration	84,306	(m³/yr)	145	mm/yr	2.7	L/s
Pre-Development Runoff	156,569	(m³/yr)	269	mm/yr	5.0	L/s

Table 5.2Post-Development Monthly Water Balance - 12489 Dixie Road

Monthly Water Balance Analysis - Thornthwaite and Mather model POST-DEVELOPMENT

12489 Dixie Road, Caledon - QuadReal Properties Group

Land Description Factors	Site				
Topography	0.10				
Soils	0.10				
Cover	0.15				
Sum (Infiltration Factor)	0.35				
Soil Moisture Capacity (mm)	250				
Site area (ha)	58.10				
Impervious Coefficient	1.00				
Impervious Area (ha)	29.60				29.60
Remaining Pervious Area (ha)	28.50				
Total Pervious Site Area (ha)	28.50				28.50
Percentage of Total Site Area	49%				49%

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Climate Data (Toronto Lester B. Pearson Int'l A	A Climate Stat	ion - 6158733,	Ontario via E	nvironment C	anada Websit	e - Climate N	ormals from 1	981-2010)					
Average Daily Temperature (°C)	-7.8	-6.0	-1.0	6.7	13.1	18.2	21.2	20.3	16.0	9.4	3.4	-3.4	7.5
Precipitation (mm)	78	64	63	77	84	93	86	82	98	89	92	80	987
Evapotranspiration Analysis (Sub-Area A)													-
Heat Index	0.0	0.0	0.0	1.6	4.3	7.1	8.9	8.3	5.8	2.6	0.6	0.0	39
Unadjusted Potential Evapotranspiration (mm)	0.0	0.0	0.0	29.1	61.3	88.5	104.8	99.9	76.6	42.4	13.7	0.0	516
Potential Evapotranspiration Adjusting Factor for Latitude	0.81	0.92	1.06	1.18	1.27	1.29	1.22	1.11	0.98	0.86	0.76	0.74	
Adjusted Potential Evapotranspiration (mm)	0	0	0	34	78	114	128	111	75	36	10	0	587
PET (Malstrom, 1969) (mm/month)	0	0	0	34	78	114	128	111	75	36	10	0	587
Precipitation - PET (mm)	78	64	63	43	6	-21	-42	-29	23	53	82	80	400
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-21	-63	-91	-61	-1	0	0	
Storage (S)	250	250	250	250	250	230	194	173	196	249	250	250	
Change in Storage	0	0	0	0	0	-20	-35	-21	23	53	1	0	
Actual Evapotranspiration (mm)	0	0	0	34	78	113	121	103	75	36	10	0	572
Recharge/Runoff Analysis													
Water Surplus (mm)	78	64	63	43	6	0	0	0	0	0	80	80	415
Potential Infiltration (I)	27	22	22	15	2	0	0	0	0	0	28	28	145
Potential Direct Surface Water Runoff (R)	51	42	41	28	4	0	0	0	0	0	52	52	269
Infiltration (mm)	0	0	0	115	2	0	0	0	0	0	28	0	145
Pervious Evapotranspiration (m ³)	0	0	0	9783	22205	32272	34621	29439	21406	10393	2962	0	163081
Pervious Runoff (m ³)	14524	11893	11671	7924	1146	0	0	0	0	0	14862	14783	76802
Pervious Infiltration (m ³)	0	0	0	32735	617	0	0	0	0	0	8003	0	41355
Impervious Evapotranspiration (mm)	8	6	6	8	8	9	9	8	10	9	9	8	99
Impervious Runoff (mm)	71	58	57	69	76	84	78	74	88	80	83	72	888
Volumetric Impervious Runoff (m ³)	20886	17103	16783	20539	22404	24749	22964	21925	26027	23710	24535	21259	262884

Pre-Development Infiltration	84,306	(m³/yr)	145	mm/yr	231	m³/day
Post-Development Infiltration	41,355	(m³/yr)	71	mm/yr	113	m³/day
Infiltration Deficit	42,951	(m³/yr)	74	mm/yr	118	m³/day

Table 6.1Pre-Development Monthly Water Balance - 12861 Dixie Road

Monthly Water Balance Analysis - Thornthwaite and Mather model PRE-DEVELOPMENT

12861 Dixie Road, Caledon - QuadReal Properties Group

Land Description Factors	Existing Site Conditions				
Topography	0.10				
Soils	0.10				
Cover	0.15				
Sum (Infiltration Factor)	0.35				
Soil Moisture Capacity (mm)	250				
Site area (ha)	58.20				
Impervious Coefficient	0.00				
Impervious Area (ha)	0.00				0.00
Remaining Pervious Area (ha)	58.20				
Total Pervious Site Area (ha)	58.20				58.20
Percentage of Total Site Area	100%				100%

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Climate Data (Toronto Lester B. Pearson Int'l A C	limate Statio	n - 6158733, Oi	ntario via Env	ironment Can	ada Website -	Climate Norn	nals from 198	1-2010)					
Average Daily Temperature (°C)	-7.8	-6.0	-1.0	6.7	13.1	18.2	21.2	20.3	16.0	9.4	3.4	-3.4	7.5
Precipitation (mm)	78	64	63	77	84	93	86	82	98	89	92	80	987
Evapotranspiration Analysis (Sub-Area A)													•
Heat Index	0.0	0.0	0.0	1.6	4.3	7.1	8.9	8.3	5.8	2.6	0.6	0.0	39
Unadjusted Potential Evapotranspiration (mm)	0.0	0.0	0.0	29.1	61.3	88.5	104.8	99.9	76.6	42.4	13.7	0.0	516
Potential Evapotranspiration Adjusting Factor for Latitude	0.81	0.92	1.06	1.18	1.27	1.29	1.22	1.11	0.98	0.86	0.76	0.74	
Adjusted Potential Evapotranspiration (mm)	0	0	0	34	78	114	128	111	75	36	10	0	587
PET (Malstrom, 1969) (mm/month)	0	0	0	34	78	114	128	111	75	36	10	0	587
Precipitation - PET (mm)	78	64	63	43	6	-21	-42	-29	23	53	82	80	400
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-21	-63	-91	-61	-1	0	0	
Storage (S)	250	250	250	250	250	230	194	173	196	249	250	250	
Change in Storage	0	0	0	0	0	-20	-35	-21	23	53	1	0	
Actual Evapotranspiration (mm)	0	0	0	34	78	113	121	103	75	36	10	0	572
Recharge/Runoff Analysis													•
Water Surplus (mm)	78	64	63	43	6	0	0	0	0	0	80	80	415
Potential Infiltration (I)	27	22	22	15	2	0	0	0	0	0	28	28	145
Potential Direct Surface Water Runoff (R)	51	42	41	28	4	0	0	0	0	0	52	52	269
Infiltration (mm)	0	0	0	115	2	0	0	0	0	0	28	0	145
Pervious Evapotranspiration (m ³)	0	0	0	19978	45346	65903	70699	60118	43713	21223	6048	0	333028
Pervious Runoff (m ³)	29659	24287	23833	16182	2340	0	0	0	0	0	30350	30188	156838
Pervious Infiltration (m ³)	0	0	0	66849	1260	0	0	0	0	0	16342	0	84451
Impervious Evapotranspiration (mm)	8	6	6	8	8	9	9	8	10	9	9	8	99
Impervious Runoff (mm)	71	58	57	69	76	84	78	74	88	80	83	72	888
Volumetric Impervious Runoff (m ³)	0	0	0	0	0	0	0	0	0	0	0	0	0
							1						
Pre-Development Infiltration	84 451	(m^3/vr)	145	mm/vr	2.7	L/s							

Pre-Development Infiltration	84,451	(m³/yr)	145	mm/yr	2.7	L/s
Pre-Development Runoff	156,838	(m³/yr)	269	mm/yr	5.0	L/s

Table 6.2Post-Development Monthly Water Balance - 12861 Dixie Road

Monthly Water Balance Analysis - Thornthwaite and Mather model POST-DEVELOPMENT

12861 Dixie Road, Caledon - QuadReal Properties Group

Land Description Factors	Site				
Topography	0.10				
Soils	0.10				
Cover	0.15				
Sum (Infiltration Factor)	0.35				
Soil Moisture Capacity (mm)	250				
Site area (ha)	58.20				
Impervious Coefficient	1.00				
Impervious Area (ha)	42.50				42.50
Remaining Pervious Area (ha)	15.70				
Total Pervious Site Area (ha)	15.70				15.70
Percentage of Total Site Area	27%				27%

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Climate Data (Toronto Lester B. Pearson Int'l A	Climate Stat	ion - 6158733	, Ontario via E	nvironment C	anada Websit	e - Climate N	ormals from 1	981-2010)					
Average Daily Temperature (°C)	-7.8	-6.0	-1.0	6.7	13.1	18.2	21.2	20.3	16.0	9.4	3.4	-3.4	7.5
Precipitation (mm)	78	64	63	77	84	93	86	82	98	89	92	80	987
Evapotranspiration Analysis (Sub-Area A)													•
Heat Index	0.0	0.0	0.0	1.6	4.3	7.1	8.9	8.3	5.8	2.6	0.6	0.0	39
Unadjusted Potential Evapotranspiration (mm)	0.0	0.0	0.0	29.1	61.3	88.5	104.8	99.9	76.6	42.4	13.7	0.0	516
Potential Evapotranspiration Adjusting Factor for Latitude	0.81	0.92	1.06	1.18	1.27	1.29	1.22	1.11	0.98	0.86	0.76	0.74	
Adjusted Potential Evapotranspiration (mm)	0	0	0	34	78	114	128	111	75	36	10	0	587
PET (Malstrom, 1969) (mm/month)	0	0	0	34	78	114	128	111	75	36	10	0	587
Precipitation - PET (mm)	78	64	63	43	6	-21	-42	-29	23	53	82	80	400
Accumulated Potential Water Loss (APWL)	0	0	0	0	0	-21	-63	-91	-61	-1	0	0	
Storage (S)	250	250	250	250	250	230	194	173	196	249	250	250	
Change in Storage	0	0	0	0	0	-20	-35	-21	23	53	1	0	
Actual Evapotranspiration (mm)	0	0	0	34	78	113	121	103	75	36	10	0	572
Recharge/Runoff Analysis													
Water Surplus (mm)	78	64	63	43	6	0	0	0	0	0	80	80	415
Potential Infiltration (I)	27	22	22	15	2	0	0	0	0	0	28	28	145
Potential Direct Surface Water Runoff (R)	51	42	41	28	4	0	0	0	0	0	52	52	269
Infiltration (mm)	0	0	0	115	2	0	0	0	0	0	28	0	145
Pervious Evapotranspiration (m ³)	0	0	0	5389	12232	17778	19072	16217	11792	5725	1632	0	89837
Pervious Runoff (m ³)	8001	6552	6429	4365	631	0	0	0	0	0	8187	8144	42309
Pervious Infiltration (m ³)	0	0	0	18033	340	0	0	0	0	0	4408	0	22782
Impervious Evapotranspiration (mm)	8	6	6	8	8	9	9	8	10	9	9	8	99
Impervious Runoff (mm)	71	58	57	69	76	84	78	74	88	80	83	72	888
Volumetric Impervious Runoff (m ³)	29988	24557	24098	29491	32168	35534	32972	31480	37370	34043	35228	30524	377451

Pre-Development Infiltration	84,451	(m³/yr)	145	mm/yr	231	m³/day
Post-Development Infiltration	22,782	(m³/yr)	39	mm/yr	62	m³/day
Infiltration Deficit	61,670	(m³/yr)	106	mm/yr	169	m³/day

Table 7Summary of MECP Water Well Record DataDixie Road DevelopmentQuadReal Properties Group

MECP Well ID	Easting	Northing	Date Completed	Approx. Distance to Site (m)	Well Depth (m BGS)	Well Type	Depth to Bedrock (m BGS)	Static Water Level (m BGS)	Well Use
4901348	596054	4847242	11-Jul-59	85	18.3	Overburden	-	12.2	Domestic
4901349	596271	4847023	15-Sep-60	164	17.7	Overburden	-	13.1	Domestic
4901353	595088	4847973	1-Oct-55	244	68.9	Bedrock	20.7	18.3	Livestock / Domestic
4901354	594759	4848537	14-Mar-66	318	19.5	Overburden	-	9.1	Domestic
4901355	594961	4848333	14-Oct-67	80	25.0	Overburden	-	9.1	Domestic
4901396	596517	4846984	19-Nov-62	214	21.3	Overburden	-	9.4	Livestock / Domestic
4901397	596602	4846915	9-Oct-64	321	34.1	Bedrock	29.6	14.6	Domestic
4901406	595247	4848265	29-Sep-55	0	36.3	Bedrock	27.1	15.2	Domestic
4901407	595778	4849059	10-Jan-59	353	14.3	Overburden	-	11.3	Domestic
4901408	595288	4848145	8-Jul-67	18	11.0	Overburden	-	6.1	Domestic
4901409	594915	4848513	25-Jun-54	178	33.5	Bedrock	27.4	9.1	Domestic
4901410	594968	4848739	23-Mar-64	274	34.1	Bedrock	29.3	15.2	Livestock / Domestic
4903209	596285	4846993	21-Apr-69	196	43.3	Bedrock	32.9	16.5	Livestock / Domestic
4903372	596065	4847233	8-Dec-69	83	37.2	Overburden	-	17.1	Domestic
4903798	596215	4847003	18-Jul-71	181	18.3	Overburden	-	14.6	Industrial
4903799	595245	4847973	30-Sep-71	133	20.7	Overburden	-	1.5	Livestock / Domestic
4903976	594965	4848273	29-Jun-72	117	28.3	Bedrock	21.3	15.2	Domestic
4903980	594865	4848123	31-Aug-72	293	19.8	Bedrock	17.7	7.6	Domestic
4904249	595730	4847787	18-Aug-73	5	39.0	Bedrock	29.9	15.2	Domestic
4904366	596197	4846996	18-Jun-74	191	26.2	Overburden	-	15.2	Livestock / Domestic
4904995	595215	4848873	17-Jul-76	160	22.3	Bedrock	20.7	15.2	Domestic
4907459	595319	4848769	28-Sep-90	14	20.4	Overburden	-	9.4	Domestic
4907460	596583	4848459	5-Oct-90	491	47.2	Bedrock	46.6	10.1	Water Supply
4907591	595319	4848769	14-Mar-91	14	18.9	Overburden	-	12.8	Domestic
4908188	595428	4848822	19-Nov-96	55	21.6	Overburden	-	10.7	Domestic
4908417	595384	4848981	14-Jul-98	179	20.7	Overburden	-	13.4	Domestic
4908549	595478	4849116	19-Jan-00	287	22.9	Overburden	-	15.5	Domestic
4909808	596254	4848672	1-Jun-05	411	43.9	Overburden	-	14.3	Domestic
7210172	595739	4849120	13-Sep-13	371	32.9	Overburden	-	15.5	Domestic

Notes:

m AMSL = meters above mean sea level

m BGS = meters below ground surface

- = data not available

Appendix C

Borehole Record

C	S	tantec	B	OR	REF N: 4	IOI 847 9	LE 81 I	RE(E: 595	C OR 653	D					В	HC)1-2	23		Sheet 1 of 1
	LIENT _ DCATIO	QuadReal Properties) JEC TUM	T No	э.	1	21624778 NAD83
		ORING <u>03/02/2023</u>				WA7	TER I	LEVEL										ΓΙΟΝ	I	
(z		ОТ	ĒL	_		SAI	MPLES		ι	INDF	RAIN 50	IED \$	SHE/	AR 5	STRE	NGT 15(-		00
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC		IE PEI			I TEST	IITS , BLO	Wj ⊢ WS/0	+ > W - O	WL WL REMARKS GRAIN SIZ DISTRIBUTIO
0 -	266.2				0	ļ		TC	0	1	0 2	20	30	40	50	60	70	80	90 1	00 GR SA SI
	265.8	Chayey shit, Thate gravels		•	1 - 2 -	ss	1	<u>300</u> 460	5	•										
1 -		Brown, loose, moist SANDY LEAN CLAY (CL)	•/•		2 3 - 4 -	ss	2	<u>460</u> 460	25			•								
		Silty sand seams, traces of gravel Brown, hard, moist			5 -	∦ss	3	$\frac{460}{460}$	32				•							
2 -	263.8		./.		7 - 8 -	n X ss	4	460	20											
3		Hard to very stiff, brown, moist	•		9 - 10-	W SS	4	460	29											
					10 11 - 12 -	ss	5	$\frac{460}{460}$	34				•							
4					13 - 14 -															
	261.4		//		15- 16-	X ss	6	$\frac{460}{460}$	24			•								
5 -		Traces of gravel, some silt seams Very stiff to stiff, grey, moist	•/•		10 17- 18-			400												
6 -					19- 20-															
					21 - 22 -	<u> ss</u>	7	$\frac{180}{460}$	15		•									Hard Augering
7 -			×		23 - 24 -											· · · · · · · · · · · · · · · · · · ·				
8 -	258.3				25- 26-	X ss	8	$\frac{380}{460}$	14		•									
		Stiff to very stiff, grey, moist	•/•		27 - 28 -															
9			./.	•	29 - 30 -															
	256.6	Borehole terminated at 9.60m BGS		•	31 - 32 -	∦ss	9	<u>460</u> 460	25			•								
0-					33 - 34 -															
1-					35- 36-															
					37 - 38 -															
2-					39-						Fie	ld Va	ane T	est, k	 Pa					<u>+</u> -
											Re	moul	ded V	/ane ′	Test,					
										Δ	Poo	cket l	Penet	rome	ter T	est, k	Pa			

	S	tantec	B	OR	REH N: 43	IOI 848 0	LE 58 I	RE(E: 595	C OR 705	D					Е	BHC)2-2	23		SI	neet 1 of 1
	LIENT _	QuadReal Properties														OJEC TUM		0.	-	12	1624778 NAD83
		ORING $03/02/2023$				WAT	FER I	LEVEL										ΓΙΟ	N		
			F				SAI	MPLES		ι	IND	RAIN	IED	SHE		STRE					
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	WA DYI			ENT &	ATTE NETR		RG LIN N TEST	150 	0 W I WS/	VP 0.3m	200 W) W _L I REMARKS & GRAIN SIZ DISTRIBUTI
0 -	265.5				0			TCF	0	1	0 2	20	30	40	50	60	70	80	90	100	(0/)
U -	265.1	TOPSOIL Clayey silt, Trace gravels			0 1 - 2 -	ss	1	$\frac{280}{460}$	7	•											_
1 -		Brown, loose, moist SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel	./.	•	2 3 - 4 -	ss	2	$\frac{460}{460}$	22			•									-
-		Brown, very stiff, moist			5 - 6 -	ss	3	$\frac{460}{460}$	24			•									-
2 -					7 - 8 -	ss	4	_460_	22			•									-
3 -	262.2				9 - 10-	x ss		460	30												-
-		Hard, brown, moist		•	11 - 12 -	1 22	3	<u>460</u> 460	30												_
4 -					13- 14-																
5 -	260.7	Traces of gravel, some silt seams			15- 16- 17-	ss	6	$\frac{460}{460}$	34				٠								-
-		Very stiff to stiff, grey, wet		•	17 18- 19-																-
6 -					20 - 21 -	ss	7	$\frac{410}{460}$	39					•							Hard Augering
7 -				•	22 - 23 -																-
-	257.9	very stiff, grey, moist	•		24 - 25 -	Mag	8	430													-
8 -					26 - 27 - 28 -	X SS	8	<u>430</u> 460	27												-
9 -					20- 29- 30-																-
-	255.9	Borehole terminated at 9.60m BGS	•/_		31 - 32 -	ss	9	<u>460</u> 460	18												
0					33 - 34 -																
1-					35- 36-																-
					37- 38- 20																-
2-					39-	1	<u> </u>							est, l		<u>::::</u>	<u>: : : :</u>	<u>: :</u>	<u>;;</u>]	:::: : F	<u> </u>
														Vane			n				
											Po	cket	Pene	trome	ter T	`est, k	Pa				

\overline{C}	S	tantec	B		REH N: 43	IOI 848 0	LE 06 B	RE(E: 595	C OR 769	D						B	H0:	3-2	23		S	heet 1 of 1
	LIENT _ DCATIO	QuadReal Properties															JEC.		0.	-	12	21624778 NAD83
D	ATES: B	ORING <u>03/02/2023</u>				WA7	FER I	LEVEL]	ГРС	ELE	VA	ГЮ	Ν_		
n)	N		LOT	VEL	(ft)		SAI	MPLES		ι	INDI	RAII 50		SHE	EAF 10		TRE	NG1 15((kP	a) 20	0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	AMI	cco	NE PE	ENETI	RAT	ION	G LIMI TEST, T, BLO	BLO	l WS/			W _L REMARKS & GRAIN SIZI DISTRIBUTIO
0 -	265.0				0-			TC TC TC)	1	0	20	30	40	50) (50 7	70	80	9() 10	0 GR SA SI
	264.5	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist		•	1 - 2 -	ss	1	<u>380</u> 460	6													-
1 -		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel			3 - 4 -	ss	2	$\frac{460}{460}$	28				•									
2		Brown, very stiff to hard, moist			5 - 6 -	ss	3	$\frac{460}{460}$	33				•									_
					7 - 8 - 9 -	ss	4	$\frac{460}{460}$	35													
3	261.6				9 - 10 - 11 -	ss	5	$\frac{430}{460}$	45							· · · · · · · · · · · · · · · · · · ·						-
4		Hard, brown, moist			12 - 13 -			100														-
	260.1				14- 15-	Mag		460														_
5	200.1	Traces of gravel, some silt seams Very stiff to hard , grey, moist			16- 17-	X ss	6	460	31													_
6					18- 19- 20-					· · · · · · · · · · · · · · · · · · ·												
					20 21 - 22 -	ss	7	$\frac{460}{460}$	25			•										Hard Augering
7 -	257.4			•	23 - 24 -																	
8	257.4	Hard, grey, moist			25- 26-	ss	8	<u>300</u> 460	31				•									_
					27 - 28 - 29 -																	-
9	255.4				29 - 30 - 31 -	ss	9	$\frac{410}{460}$	50						•							
10	<u> </u>	Borehole terminated at 9.60m BGS			32 - 33 -																	
					34- 35-																	
1-					36- 37- 39-																	
12-					38- 39-						Fie	l	ane '	Test	kP	 я						
											Re	mou	lded	Vane	e Te	est, l	kPa st, kH	Do				

C	S	tantec	B	OR	REH N: 4	IOI 847 9	LE 52 B	RE(E: 595	C OR 725	D					В	H/]	MV	V0	4-2	sı 23	neet 1 of 1
	LIENT _	QuadReal Properties) JEC TUM					2 <u>1624778</u> NAD83
		ORING $03/02/2023$				WAT	TER I	LEVEL													INADOS
	_		Ц				SAI	MPLES		ι	INDF	RAIN	ED S			STRE			(Pa)		
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC	CON	IE PEN	ATTE	TION	G LIN I TEST	, BLO	Wj ► ws/0		20 → w ⇒ •	U W _L I REMARKS & GRAIN SIZE DISTRIBUTION
0 -	265.7		<u><u> </u></u>		-0-			REC TCI	0	1	0 2	20 3	30 4	10 5	50	60	70	80	90	10	⁰ GR SA SI CI
	265.2	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist			1 - 2 -	ss	1	<u>330</u> 460	5	•											_
1-		SANDY LEAN CLAY (CL) sand seams, Brown, Very stiff,	• • •		3 - 4 -	ss	2	<u>460</u> 460	25			•									-
2		moist			5 - 6 - 7 -	ss	3	$\frac{460}{460}$	29												-
	262.9	Hard, brown, moist			, 8 - 9 -	ss	4	$\frac{410}{460}$	25			•									
3	262.0	riard, orown, moist			10- 11-	ss	5	$\frac{460}{460}$	33				•								
4		Traces of gravel Hard, grey, moist			12 - 13 - 14 -																-
5					15- 16-	ss	6	$\frac{410}{460}$	35				•								-
-			2/2		17- 18- 19-																_
6	259.1		2		20- 21-	ss	7	$\frac{460}{460}$	31				•								Hard Augering
7	20001	Very stiff, grey, moist	•		22 - 23 -																-
-					24 - 25 - 26 -	ss	8	$\frac{460}{460}$	21			•									-
8 -	257.1			Ţ	20 - 27 - 28 -			460													
9		Very stiff, wet, moist		•	29 - 30 -	Mag	9	410													-
- - 10-	256.1	Borehole terminated at 9.60m BGS. Monitoring well installed to 9.6 m	/•/		31 - 32 - 33 -	∦ss	9	<u>410</u> 460	25												-
 - - - -		BGS.			33 - 34 - 35 -																-
11					36- 37-																
12					38- 39-						E :-	14 V	ane T	act 1-	 Dc						
											Re	moul	ded V	ane]	Гest,	kPa est, k	Pa				

C	S	tantec MO	NĽ	ГO ^	RI N: 48	NG 847 9	F 952	NF E:	EL 59	L 95 72	RF 25	EC	C O	RI)		BH	/MW04-2	Sheet 1 of 1
LO		QuadReal Properties N 12861 Dixie Road, Caledon ORING 03/02/2023															DATU		121624778 NAD83
			F	<u>ب</u>											S	AMPL	ES		
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)		9 20	ON 6LE	CEI L 40	f	ATI	рр 8(m)	-	ТҮРЕ	NUMBER	N-VALUE	CONSTR	
_ 0 _	265.7	TOPSOIL	<u></u>		0		10	0 1	200	3	00	40	0	:	./				
	265.2				1 - 2 -										X SS	1	5		
1 -		SANDY LEAN CLAY (CL)	1		3 -			<u></u>		<u> </u>			· · · ·		ss	2	25		
		sand seams, Brown, Very stiff, moist			4 - 5 - 6 -										ss	3	29		
2 -	262.9				7 - 8 -										ss	4	25		
3	202.9	Hard, brown, moist			9 - 10-			· · · ·		<u> </u>					ss	5	33		
	262.0				11 - 12 -										1 33	5	55		
4 -		Traces of gravel Hard, grey, moist			13-			· · ·		· · · ·			· · · ·						
					14- 15-														
					15- 16-										ss	6	35		
5 -					17-														
					18- 19-														
6 -					20 -														
F -	259.1		[21-										ss	7	31		
- 7 -		Very stiff, grey, moist			22 - 23 -														
					<u>-</u> 24 -														
- 9 -			./.		25-										ss	8	21		
8-				T	26 - 27 -												21		
Ē	257.1	Very stiff, wet, moist	<u>//</u>	-	28-														
<u> </u>					29 - 30 -			<u> </u>		<u> </u>									
	256.1		//		30 - 31 -									Ē	ss	9	25		
Г -		Borehole terminated at 9.60m BGS.			32-														
		Monitoring well installed to 9.6 m BGS.			33 - 34 -														
+ =					34- 35-														
-11-					36-			<u> </u>		<u> </u>			<u> </u>						
È -					37- 38-														
12-					30- 39-														
	LABOR	ATORY ANALYSES:																	
L																			

C	s	tantec	B	OR	XEH N: 48	IOI 348 1	LE 82 F	RE(E: 595	C OR 664	D BH05-23 Sheet 1 of 1
L		N <u>12861 Dixie Road, Caledon</u>								PROJECT No121624778 DATUM NAD83
D	ATES: E	BORING <u>03/01/2023</u>				WAT	'ER I	LEVEL		TPC ELEVATION
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) T TCR(%) / SCR(%) D	N-VALUE OR RQD(%)	UNDRAINED SHEAR STRENGTH (kPa) 50 100 150 200 + + + + + + + + + + + + + + + + + + +
0 -	266.2	TOPSOIL	<u>*\''4</u>		0					10 20 30 40 50 60 70 80 90 100 GR SA SI CI
	265.8	Clayey silt, Trace gravels Brown, loose, moist			1 - 2 -	X SS		<u>330</u> 460	6	
1-		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, very stiff to hard, moist	-		3 - 4 - 5 -	X ss	2	<u>460</u> 460	18	
2 -					6 - 7 -	X ss		<u>460</u> 460	29	
3 -	263.5	Hard, brown, moist			8 - 9 - 10-	∦ss	4	<u>460</u> 460	24	
					11 - 12 -	x ss	5	<u>460</u> 460	50	
4 -					13- 14- 15-				_	
5	261.4	Traces of gravel, some silt seams Very stiff , grey, moist			16- 17- 18-	X ss	6	<u>460</u> 460	35	
6 -					19- 20- 21-	ss	7	$\frac{460}{460}$	47	Hard Augering
7 -					22 - 23 - 24 -					
8 -	258.2				25- 26-	ss	8	$\frac{460}{460}$	48	
		Hard to very stiff, grey, moist			27 - 28 - 29 -	·				
9-	256.6				30- 31-	ss	9	<u>460</u> 460	26	
10-		Borehole terminated at 9.60m BGS			32 - 33 - 34 - 35 -					
11-					36- 37-					
12-					38- 39-					□ Field Vane Test, kPa
										 Remoulded Vane Test, kPa △ Pocket Penetrometer Test, kPa

C	s	tantec	B	OR	REH N: 43	IOI 848 2	LE 24 B	RE(E: 595	C OR 781	D					E	BH0	6-2	23		Sł	neet 1 of 1		
	LIENT _	· ·										PROJECT №. 121624778 DATUM NAD83											
		N <u>12861 Dixie Road, Caledon</u> ORING <u>03/01/2023</u>				WATER LEVEL									DATUMNAD83 TPC ELEVATION								
			F				SAI	MPLES			NED SHEAR STRENGTH (kPa)												
(m) H	LION		PLO	LEVE	H (ft)			(%)			-1	50		1	00		150) 		200)		
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (Щ	BER	RY (n SCR	LUE D(%)	WA	TER	CONTI	ENT &	ATTE	RBE	RG LIN	IITS	₩ _P	V 	N Ə—			
Ω			STF	MA		ТҮРЕ	NUMBER	OVEI (%)/	N-VALUE OR RQD(%)							N TEST ST, BLC			m	•	REMARKS & GRAIN SIZE		
0 -	265.8				0		-	RECOVERY (mm) TCR(%) / SCR(%)	-0										90	100	DISTRIBUTION (%) GR SA SI CL		
-		TOPSOIL Clayey silt, Trace gravels	<u>,</u> 1/	;	Ŭ	ss	1	$\frac{230}{460}$	5	•													
-	265.4	Brown, loose, moist		•	1 -	/\		460												Ē	-		
-		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel	./.		2 -	<u> </u>			_														
1 -		Brown, very stiff to hard, moist	/./		3 -	ss	2	$\frac{460}{460}$	25			•								::[-		
-	264.3				4 -																		
-		Hard, brown, moist			5 -	ss	3	$\frac{460}{460}$	37														
2 -					6 -	Λ^{\sim}	-	460												<u> </u>	-		
-					7 -	ļ			_														
-					8 -	ss	4	$\frac{460}{460}$	50						•						-		
					9 -		-																
3 -					10-	N _{SS}	5	460	39														
					11-	ss	5	$\frac{460}{460}$	39												-		
-					12-																		
4 -					13-															· · · -	-		
-					14-																		
-	261.3	Traces of gravel, some silt seams	/./		15-	M		460	_												-		
5 -		Hard, grey, moist			16-	ss	6	$\frac{460}{460}$	41					•							-		
-				•	17-																		
-					18-																-		
-			•		19-	$\left \right $																	
6 -				•	20 -				_												Hard Augering		
-	259.4	Borehole terminated at 6.55 m BGS			21-	ss	7	$\frac{460}{460}$	50						•								
		Defensive terminated at 0.55 III DOS	-		22 -																		
7 -					23 -																-		
-					24-																		
-					25-																-		
0					26-																		
8-	8												 Field Vane Test, kPa Remoulded Vane Test, kPa 										
																, kPa Test, k	Pa						
	I									L						K							

C	S	tantec	B	OR I	XEH N: 48	IOI 848 2	LE 95 I	RE(E: 595	C OR 825	D					BH07-23						Sheet 1 of 1		
	LIENT _ OCATIO	QuadReal Properties													PROJECT No. DATUM						<u> 121624778</u> <u> NAD83</u>		
		ORING <u>03/01/2023</u>				WAT	ER I	LEVEL										TIC	DN .				
	7		от	ΈL			SAI	MPLES		L	INDF	RAIN 50		SHEAR STRENGTH (kF 100 150						°a) 200			
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC		ENT 8 NE PE	ATTE NETR. RATIO	ERBEI	N TES	иітs г, blc	v ows	ı	w ↔	W _L REMARKS & GRAIN SIZ DISTRIBUTIO		
0 -	266.7 266.4	TOPSOIL	<u> 11/4</u>	-	0-	Maa	1	표 <u>연</u> 250	4	1	0 2	20	30	40	50	60	70	80	9	0 10	0 GR SA SI		
	200.4	Clayey silt, Trace gravels Brown, loose, moist			1 - 2 -	X SS		<u>250</u> 460	-												: - -		
1 -	265.2	SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, very stiff to hard, moist			3 - 4 - 5 -	X SS	2	<u>460</u> 460	22			•									- - - - -		
2 -		Hard, brown, moist			6 - 7 -	∦ss	3	<u>460</u> 460	33				•								- - - - -		
3 -					8 - 9 -	ss	4	<u>460</u> 460	50						•						- - - - -		
J			• •		10- 11- 12-	ss	5	$\frac{280}{460}$	48												-		
4 -			2		13- 14-																-		
5 -	261.8	Traces of gravel, some silt seams		•	15- 16-	ss	6	<u>460</u> 460	50						•						Hard Augering		
		Hard, grey, moist			17- 18- 19-																-		
6 -					20 - 21 -	ss	7	$\frac{380}{460}$	42					•							- - - - - -		
7 -					22 - 23 -																- - - -		
-	258.6				24 - 25 - 26 -	x ss	8	$\frac{410}{460}$	44					•							- - - - - -		
8 -		Hard to very stiff, grey, moist			27 - 28 -			400													-		
9 -					29- 30-	x ss	9	<u>460</u> 460	42					•							-		
10-	257.1	Borehole terminated at 9.60m BGS			31 - 32 - 33 -			460	12					· · · · · · · · · · · · · · · · · · ·									
-					34 - 35 -																-		
1-					36- 37-																- - - - -		
2-					38- 39-						E				-Do						-		
											Re	moul	ded V	Test, k Vane	Test								
										Δ	Po	cket	Penet	trome	ter T	'est, k	Pa						

C	S	tantec	B		REH N: 43	IOI 848 1	E 91 I	RE(E: 595	C OR 969	D					В	H0	8-2	3	SI	neet 1 of 1		
	LIENT _	· •													_ PROJECT No. _ DATUM					<u>121624778</u>		
		N <u>12861 Dixie Road, Caledon</u>				WAT		LEVEL												<u>NAD83</u>		
D	ATES: E	ORING <u>03/01/2023</u>				WAI				1												
(د	z		010	Ē	E		SA	MPLES		UNDRAINED SH					AR S 00	IRE	ча) 20	0				
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMIC	CONTI CONTI CON	IE PEN		RBER ATION	RG LIMI TEST, T, BLO	BLOV	Wp I VS/0.3 3m	om ▼ ●	WL REMARKS & GRAIN SIZE DISTRIBUTIO		
0 -	266.1		<u></u>		0-	ļ		R R R R		1	10 2	20 3	30 4	40	50	60	70 8	30 9	$\frac{90}{100}$	0 (%) GR SA SI (
	265.6	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist			1 -	ss	1	$\frac{280}{460}$	5	٠										_		
1 -		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, very stiff to hard, moist			2 3 - 4 -	ss	2	$\frac{410}{460}$	17		•									-		
					5 -	ss	3	460	30				•							-		
2		263.0 Hard, brown, moist			6 - 7 -			460												-		
	262.0				8 - 9 -	ss	4	<u>460</u> 460	24			•								-		
3	203.0				10- 11-	ss	5	$\frac{460}{460}$	39													
4 -					12 - 13 -															-		
					14- 15-	M		460												Hard Augering		
5 -	261.2	Traces of gravel, some silt seams Hard, grey, wet	•		16- 17-	ss	6	460	49											-		
					18- 19-															-		
5 -	259.5				20 - 21 -	ss	7	$\frac{460}{460}$	47											-		
7 -		Borehole terminated at 6.55 m BGS			22 - 23 -															-		
					24 - 25 -															-		
8 -					26-						Fie	ld Va	ane T	est, k	 Pa							
											Re	moul	ded V	/ane /	Test,	kPa est, kI	Pa					

C	s	tantec	B	OR	REH N: 43	IOI 848 2	E 71 F	RE(E: 596		D					В	H/I	MW	V09	9-2	sh 23	eet 1 of 1
	LIENT _ DCATIO	QuadReal Properties														DJEC TUM	T No				1 <u>624778</u> NAD83
		ORING <u>03/01/2023</u>				WAT	TER I	LEVEL										ION			
n)	N		LOT	VEL	(ft)		SAI	MPLES		L	INDF	RAIN 50	ED S		AR S 00	TRE	NGT 150			200	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC	CON		ATTE	TION	TEST	ITS , BLOV)WS/0.		—ö	▼ [W _L -I REMARKS & GRAIN SIZE DISTRIBUTION
0 -	265.3				0-			TCI RE	0	1	0 2	20 3	30 4	10 <u>5</u>	50	60	70 8	30	90	100	(%) GR SA SI CI
	264.8	TOPSOIL Clayey silt, Trace gravels		•	0 1 - 2 -	ss	1	<u>360</u> 460	5	•											
1 -		Brown, loose, moist SANDY LEAN CLAY (CL)			2 3 - 4 -	ss	2	$\frac{460}{460}$	24			•									
		sand seams, Brown, Very stiff, moist			5 -	(ss	3	$\frac{460}{460}$	24			•									
2					7 - 8 -	ss	4	460	28												
3	262.5	Hard, brown, moist			9 - 10-	Maa	4	460	28												
					11 - 12 -	∦ss	5	$\frac{460}{460}$	43					•							
4					13- 14-																
	260.7	Traces of gravel	•/• •/		15- 16-	ss	6	$\frac{460}{460}$	35				•								
5		Hard, grey, moist			17- 18-																
6					19 - 20 -					· · · · · · · · · · · · · · · · · · ·											Hard Augering
	258.7	Silt seams	•/•	•	21 - 22 -	∬ss	7	$\frac{460}{460}$	36				•								Hard Augering
7 -		Hard, grey, moist	•		23 - 24 -																
					25- 26-	ss	8	$\frac{460}{460}$	43					•							
8	256.7		·/>		20 27 - 28 -			400													
9		Traces of gravel Hard, wet, moist			20 29- 30-				_												
	255.7	Borehole terminated at 9.60m BGS.	/./		31 - 32 -	ss	9	<u>460</u> 460	39												
10		Monitoring well installed to 9.6 m BGS.			33 - 34 -																
11-					35- 36-																
* * - - -					37- 38-																
12-					39-						Fie	ld V:	ine Ta	est. k	 Pa						
											Field Vane Test, kPaRemoulded Vane Test, kPa										
										Δ	Poo	cket l	Peneti	omet	er To	est, kl	Pa				

C	S	tantec MO	NĽ	ΓO	RI N: 48	NG V 848 271	WE E:	LL 596 0	RE 40	CC	ORI)		BH	Sheet 1 of 1 /MW09-23
LO		N <u>12861 Dixie Road, Caledon</u>												PROJE DATU	CT No. <u>121624778</u> M <u>NAD83</u>
D.	ATES: E	ORING <u>03/01/2023</u>	1	1		WATE	R LEV	'EL						TPC EI	LEVATION
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)		ONC %LEL		ATIO	NS opm 80		SA TYPE	NUMBER	N-VALUE	WELL
- 0 -	265.3	TOPSOIL	<u></u>		-0	▲ <u>10</u>	0 20	003	<u>00 </u>	400	:::-\	/			
	264.8		1, <u>1</u>		1 - 2 -							SS	1	5	
1-		SANDY LEAN CLAY (CL) sand seams, Brown, Very stiff,			3 - 4 -							SS	2	24	
		moist			5 - 6 -							SS	3	24	
2 -	262.5				7 - 8 -							SS	4	28	
3		Hard, brown, moist			9 - 10- 11-							ss	5	43	
4					11 12 - 13 -										
	260.7	Traces of gravel			14- 15-							SS	6	35	
- 5 -		Hard, grey, moist			16- 17- 18- 19-										
- 6 - 	258.7	Silt seams	•		20 - 21 - 22 -							SS	7	36	
t -		Hard, grey, moist			23 - 24 - 25 -										
8 - 8 - 9					23 26- 27-							SS	8	43	
- 9 -	256.7	Traces of gravel Hard, wet, moist		Ţ	28- 29-										
	255.7			<u> </u>	30 - 31 -							ss	9	39	
10		Borehole terminated at 9.60m BGS. Monitoring well installed to 9.6 m			32 - 33 -										
- 11-		BGS.			34- 35- 36-										
					37- 38-										
12-		ATORY ANALYSES:			39-						:: =				

C	S	tantec	B	OR I	N: 4	IOI 848 2	DE 70 1	RE(E: 595	C OR 944	D						B	H1	0-2	23	:	Sheet 1 of 1
	LIENT _	QuadReal Properties <u>12861 Dixie Road, Caledon</u>															JEC).	1	21624778 NAD83
		ORING $03/01/2023$				WA1	ER I	LEVEL									TUM		TON		NAD65
	TILS. D	03/01/2025	1					MPLES		i							TRE				
Ē	NO			EVEL	(Ħ)		SAI					50			10		-+	150			00
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC	CON	IE PE	NETI RATIO	RAT ON ⁻	ION TEST	G LIM TEST F, BLC	, BLO\)WS/0	.3m	3m T	W _L REMARKS & GRAIN SIZE DISTRIBUTIO
0 -	265.9				0-			ЩЦ Ц Ц Ц Ц		1	0 2	20	30	40	50) (50	70	80	90 1	00 GR SA SI C
-	265.4	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist	1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1		1 -	ss	1	$\frac{330}{460}$	6	•											
-	203.4	SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, very stiff to hard, moist			2 -																
- 1 -					3 -	ss	2	$\frac{460}{460}$	29				•								
-					4 -																
-					6 -	ss	3	$\frac{460}{460}$	38					•							
2 -					7 -																
-					8 -	ss	4	$\frac{460}{460}$	46						•						
3 -					9 -																
-	2(2.4				10 - 11 -	ss	5	$\frac{460}{460}$	50						•						
-	262.4	Borehole terminated at 3.55 m BGS	-/•/	1	12 -																
4 -					13-																
-					14-																
-					15- 16-																
5 -						<u> </u>	<u> </u>					noul	ded	Vane	e Te	est, I	kPa st, kl	Da			

C	S	tantec	B		REH N: 48	[O] 848 3	LE 80 I	RE(E: 595	C OR 879	D					E	BH	11	-2	3		Sh	eet 1 of 1
LO		N 12861 Dixie Road, Caledon														OJE ATUI		No			12	<u>1624778</u> NAD83
D	ATES: B	oring <u>03/03/2023</u>				WAT	FER I	LEVEL							TP	C EI	LEV	/AT	ION			
(m)	NOI		РГОТ	EVEL	(ft)		SAI	MPLES			JNDI	RAIN 50	IED		AR :	STR		IGTI 150	H (k		200	I
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIO	000	ENT 8 NE PE ENETF	NETR	ATIOI	N TES	ST, E	BLOW		—с	▼ ●	W _L REMARKS & GRAIN SIZE DISTRIBUTION
0 -	267.1				0			ЩЧЦ		1	0	20	30	40	50	60	70) 8	30 · · · ·	90 	100	
-	266.6	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist		•	1 - 2 -	ss	1	<u>380</u> 460	5													
- - 1 -		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, very stiff to hard, moist			3 -	ss	2	$\frac{430}{460}$	30				•					· · · · · · · · · · · · · · · · · · ·				
-					4 - 5 -		2	460	20												<u></u>	
2 -					6 - 7 -	∦ss	3	460	29													
	264.3			•	8 - 9 -	ss	4	$\frac{410}{460}$	24													
3 -				•	10- 11-	ss	5	$\frac{460}{460}$	40					•								
4 -					12 - 13 -	· ·																
4 - - -			2		14-																	
5 -	262.2	Traces of gravel, some silt seams	· / ·		15- 16-	ss	6	$\frac{430}{460}$	50						•							
-		Very stiff, grey, moist		•	17- 18-																	
6 -				•	19- 20-																	Hard Augering
-	260.5	Borehole terminated at 6.55 m BGS			21 -	ss	7	<u>460</u> 460	50						•							
7 -					23 -																	
-					24 - 25 -																	
8 -					26-						F :-		ana T	liii Cect 1	· · · ·		<u></u>				: -	
													ane T ded V			, kPa	ı					
													Penet					ı				

C	S	tantec	B	OR	XEH N: 48	[O] 848 4	E 00 b	RE(E: 595	C OR 762	D						B	H1	2-2	23		S	heet 1 of 1
LO		N 12861 Dixie Road, Caledon														DAT)JEC TUM					21624778 NAD83
D.	ATES: B	ORING <u>03/03/2023</u>	1			WAI	ERI	LEVEL		r												
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)			MPLES			JNDI +	50		SH +	EA 10		TRE	NG 15	0	(kP ⊢ ₩ _P	a) 	0 <i>W</i> L
DEP1	(L ELEV		STRAT	WATEF	DEP'	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIO	C COI	NE PE	ENET	RAT	ΓΙΟΝ	G LIM TEST F, BLC	, BLO	WS/	0.3n	-0-	REMARKS & GRAIN SIZE DISTRIBUTIOI
0 -	266.7				0-			TC RE)	1	0	20	30	40	5	0 0	50 ´	70	80	9	0 10	0 GR SA SI C
-	266.3	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist	<u>,</u> <u>1,</u> ,	•	1 -	ss	1	<u>230</u> 460	4	•												
-		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel	•		2 - 3 -	ss	2	410	25													
1 -		Brown, very stiff to hard, moist			4 -	133	2	460	23													
2 -	264.9	Hard, brown, moist			5 - 6 -	ss	3	$\frac{460}{460}$	25			•										
2 - - -					7 - 8 -	Maa		460														- - - -
- - - -					9 -	∦ss	4	<u>460</u> 460	38													
3				•	10- 11-	ss	5	$\frac{430}{460}$	43					e								
- - - 4 -					12 - 13 -																	
-	262.2				14-																	
5 -		Traces of gravel, some silt seams Hard, grey, moist			15- 16-	ss	6	<u>380</u> 460	50													50 For 4" Refuse
-					17- 18-																	
- 6					19-																	
-	260.2				20 - 21 -	ss	7	$\frac{360}{460}$	50													
- - 7 -		Borehole terminated at 6.55 m BGS			22 - 23 -																	· · · ·
-					24 -																	· · ·
8 -					25 - 26 -																	
													ane ' Ided				k₽∞					
																	kra st, kl	D _a				

C	S	tantec	B	OR	REF N: 4	IOI 848 2	LE 99 I	RE(E: 595	C OR 665	D					В	H/I	MV	V1.	3-2	She 3	et 1 of 1
CI	LIENT _														PRO	DJEC	T No).			<u>524778</u>
	DCATIO	*													DA	TUM	-]	<u>NAD83</u>
DA	ATES: B	ORING <u>03/03/2023</u>				WAT	FER I	LEVEL													
Ê	N		LOT	VEL	(ft)		SAI			ι	INDF	RAIN 50	IED		AR S 00	TRE	NGT 150			200	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMIC	coi	NE PE	NETR/	ATION	RG LIM TEST T, BLC	, BLOV		—Ö		W _L REMARKS & GRAIN SIZE
0 -	266.8				0			REC	0	1	0 2	20	30	40	50	60	70	80	90	100 _G	(%) R SA SI
	266.3	TOPSOIL Clayey silt, Trace gravels	<u></u>	•	1 -	ss	1	$\frac{200}{460}$	4	•											
1 -		Brown, loose, moist SANDY LEAN CLAY (CL)			2 - 3 -	X ss	2	$\frac{430}{460}$	24			•									
-		Sand seams, traces of gravel Brown, Very stiff to hard, moist			4 - 5 -																
2					6 - 7 -	X ss	3	<u>460</u> 460	41					•							
					8 - 9 -	ss	4	$\frac{150}{460}$	23			•									
3	263.7	Hard, brown, moist			10- 11-	X ss	5	$\frac{460}{460}$	50						•						
-					12 -			460													
4 -					13 - 14 -																
5 -	261.9	Traces of gravel		•	15- 16-	ss	6	$\frac{410}{460}$	50						•						
		Hard, grey, moist			17- 18-																
6					19- 20-																
	260.2	Silty sand seams			21 - 22 -	X ss	7	$\frac{430}{460}$	49												
7		Hard, grey, moist			23 -																
				¥	24 - 25 -	Mss	8	130	50												
8	250.2				26 - 27 -	1 33	0	$\frac{130}{460}$	50												
9	258.2	Traces of gravel Hard, wet, moist			28 - 29 -																
י ד ו ו ו	257.2		/./		30 - 31 -	ss	9	$\frac{\underline{230}}{460}$	50						•						
10-		Borehole terminated at 9.60m BGS. Monitoring well installed to 9.6 m			32 - 33 -																
-		BGS.			34- 35-																
1-					36-																
					37 - 38 -																
12-					39-	1					Eic	::: 14 V		°est, k	::: Do			1:::		: - -	
														est, k Vane		kPa					
										_						est, kl	Pa				

C	S	tantec ^{MO}	NĽ	ГO N	RI N: 48	[N 84	NG 48 29	W 9 E	E]	LL 595 (R 665	E	CC)R	RD)		BH	/MV	V13	Shee -23	t 1 of 1	
LC	LIENT _ DCATIOI ATES: B																	DATU				24778 AD83	
			F	<u>ب</u>		Т										SA	MPL	ES					
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)		•	COI %LI 20	NC		RAT	rion P				ТҮРЕ	NUMBER	N-VALUE	c		WELL TRUCT	ION	
- 0 -	266.8		N 7/*		-0-	_	▲ <u>1</u>	00	20	0	<u>300</u>	4	$\frac{00}{1}$::1									
	266.3	TOPSOIL Clayey silt, Trace gravels	<u></u> 		1 -	4									EX	SS	1	4	ŇŇ				
Ē		Brown, loose, moist			2 -	+									-								
1		SANDY LEAN CLAY (CL)			3 -	╞	<u></u>			<u></u>		<u> </u>		<u>.</u>	-IX	SS	2	24					
		Sand seams, traces of gravel	/./		4 -	1									-								
Ē		Brown, Very stiff to hard, moist	./.		5 - 6 -]									Ţ	SS	3	41					
2					0 - 7 -	$\left[\right]$	<u></u>					:::: ::::		:::		~~	-						
			//		8 -	_									T	SS	4	23					
Ē	a (a 7				9 -	4									ĘΔ	22	-	23					
3	263.7	Hard, brown, moist			10-										Ī		-	50					
			./.		11-										A	SS	5	50					
F,]			//		12-										-								
E 4 -					13 - 14 -										-								
					14																		
	261.9		//		16-										EX	SS	6	50					
5		Traces of gravel Hard, grey, moist			17-																		
Ē		naru, grey, moist			18-	+																	
			<i>\.</i>		19-	+									-								
6 -					20-										T	SS	7	49	†. .				
- 7	260.2		4		21-										-Δ	22	/	49	╏				
		Silty sand seams Hard, grey, moist	//		22 - 23 -										-				[.目				
+		Thata, grey, moist	/.	-	23 - 24 -																		
				*	25-														∎.				
8					26-		<u></u>							::	XE	SS	8	50					
	259.2		./,		27-	+													[:]:				
	258.2	Traces of gravel	/./		28-										-								
= 9 =		Hard, wet, moist	./.		29-		<u></u>					:::: ::::			-								
			//		30 - 31 -										Ę	SS	9	50	Ī∄;				
Ęŧ	257.2	Borehole terminated at 9.60m BGS.	<u>/·/</u> .		31 -	_	<u></u>										-		<u> ··⊟··</u> .				
10		Monitoring well installed to 9.6 m			32 33 -		<u></u>							::: :::									
† 1		BGS.			34-																		
Ē					35-	+									-								
E 11					36-		<u></u>					<u></u>											
					37-																		
					38- 20																		
12		ATORY ANALYSES:	1		39-	1	::::	1::	::	:::	: :	:::	::	:::	-1								_

C	s	tantec	B	OR I	EH N: 43	IOI 848 2	LE 05 H	RE(E: 595	C OR 570	D					B	H14	4-2	3	S	heet 1 of 1
LO		N <u>12861 Dixie Road, Caledon</u>														DJEC. FUM	Г No		12	2 <u>1624778</u> NAD83
D.	ATES: E	ORING <u>03/02/2023</u>				WAT	ER I	LEVEL						_						
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)			(mm) (K(%)				50		1	00		150		Pa) 	0 <i>W</i> L
DEF			STRA	WATE	DEI	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI ST/	NAMIC ANDAF	CON RD PE	E PEN	IETRA ATION	ATION N TEST	G LIMI TEST, T, BLO	BLOV WS/0.	3m	•	REMARKS & GRAIN SIZE DISTRIBUTION (%)
0 -	266.1	TOPSOIL	<u></u>	-	0	/			_		0 2	20 2	30 4 ::::	0	50 6 ::::	60 7	/0 8	50 9 ::::		⁰ GR SA SI CL
-	265.6	Clayey silt, Trace gravels Brown, loose, moist	<u>1, , , , , , , , , , , , , , , , , , , </u>		1 -	ss	1	<u>380</u> 460	7											
-		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel	•/•		2 -	<u> </u>														
1 -	264.9	Brown, very stiff to hard, moist			3 -	ss	2	$\frac{460}{460}$	28			•								
-		Hard, brown, moist	//		4 - 5 -															
-					- 5 -	ss	3	$\frac{460}{460}$	42					•						
2 -					7 -	<u> </u>		400												
-			.,,		8 -			160	_											
-			//		0 9 -	ss	4	$\frac{460}{460}$	36				•							
3 -					9 - 10 -															
-					10	ss	5	$\frac{330}{460}$	50						•					
					11	<u>//</u>		400												
					12															
4 -			•/•		13															
-				•	14															-
-	261.2				15-	ss	6	$\frac{460}{460}$	37											
5 -		Traces of gravel, some silt seams Very stiff, grey, moist	//		10	ή		400												
-		very start, groy, moist	/.		17-															
-					10-															- - -
6 -			. ,		19 - 20 -															-
-			//			ss	7	$\frac{460}{460}$	50						•					50 For 5" Refusal
-	259.6	Borehole terminated at 6.55 m BGS	//	-	21-	//		400												-
7 -					22-															
					23-															
-					24-															
-					25-															
8 -					26-	<u>t </u>					Fie	liiii ld Va	ine Te	est. k	liii Pa	1::::	1::::	1::::	1::::[1
										0	Rei	noule	ded V	ane '	Test,					
										Δ	Poo	eket I	Penetr	ome	ter Te	est, kF	Pa			

C	S	tantec	B	OR	REF N: 4	IOI 848 2	LE 02 B	RE(E: 595	C OR 429	D						В	H/]	М	W	/1:	5-2	sh 23	eet 1 of 1
LC	LIENT _ DCATIOI														_	DA	DJEC TUM CELF			ON			<u>1624778</u> NAD83
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)		SAI	MPLES		-		5	0		HEA	AR S	TRE	NG 15	πŀ		Pa)	200	
DEP			STRA'	WATE	DEF	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI ST/	NAMI(ANDA	C CC RD F	ONE F PENE	PENE	TRA TION	TION TES	G LIN TEST T, BLC	, BLO DWS	/0.3	m		▼ ●	I REMARKS & GRAIN SIZE DISTRIBUTION (%)
0	267.7 267.3	TOPSOIL Clayey silt, Trace gravels	<u></u>	•	0 1 -	ss	1	$\frac{460}{460}$	3	•	0	20	30	40			60	/0	80)	90		(%) GR SA SI CI
1		Brown, loose, moist SANDY LEAN CLAY (CL)			2 - 3 - 4 -	ss	2	$\frac{360}{460}$	23			•										· · · · · · · · · · · · · · · · · · ·	
2		Sand seams, traces of gravel Brown, Very stiff to hard, moist		Ţ	- 5 - 6 -	ss	3	<u>460</u> 460	26				•										5 32 27 30
	265.0		·/·		7 - 8 - 9 -	ss	4	<u>460</u> 460	29				•										
3		Hard to very stiff, brown, moist		•	10- 11-	ss	5	$\frac{460}{460}$	38					•									
4					12 - 13 - 14 -																		
5	263.1	Traces of gravel very stiff, grey, moist	•/•	•	15- 16-	ss	6	<u>460</u> 460	25			¢											
					17 - 18 - 19 -																		
6	261.2		•		20 - 21 -	ss	7	$\frac{410}{460}$	28				•										
7		Silty sand seams Hard, grey, moist		•	22 - 23 - 24 -																		
8					25 - 26 -	ss	8	<u>330</u> 460	50						•	•							
					27 - 28 - 29 -																		
9	258.1	Borehole terminated at 9.6 m BGS.		,	30 - 31 - 32 -	ss	9	<u>460</u> 460	50						•								-
10		Monitoring well installed to 9.6 m BGS.			33 - 34 -																		
11					35- 36- 37-																	·····	
12					37- 38- 39-																		
-											Re	mou	√ane uldec t Pen	i Va	ne T	ſest,	kPa est, k	Pa					

$\left(\begin{array}{c} \\ \end{array} \right)$	S	tantec MO	Nľ	ΓΟ	RI N: 4	NG 848 2	F W 202	VE E:	LL 595	7 F 429	RE	CC)R	D			BH	[/MW15	Sheet 1 of 1 -23
	LIENT _	· · ·															PROJE	ECT No.	121624778
		N <u>12861 Dixie Road, Caledon</u>															DATU	М	NAD83
D	ATES: E	ORING <u>02/14/2023</u>				WA	TER	LEV	/EL					_			TPC El	LEVATION _	
	_		F								_				SA	MPL	ES		
DEPTH (m)	ELEVATION (m)		STRATA PLOT	WATER LEVEL	(ff				/AP(~		- ,	WELL
TH	(LAT	STRATA DESCRIPTION	TA	L L	DEPTH (ft)		CC	DNC	ENT	RA	TIOI	٧S			ТҮРЕ	NUMBER	N-VALUE		
DEI			TR	ATE	DE		%	LEL			▲ p	pm			≽	MU	d∨-I	CONS	TRUCTION
			S	5												2	2		
- 0 -	267.7				0		20 100	4	10 00	60 <u>30(</u>) <u>4</u>	80 <u>00</u>			-			×4 ×7	
	267.3	TOPSOIL	<u></u>	;	1 -									EX.	SS	1	3		
	207.5	Clayey silt, Trace gravels Brown, loose, moist	$\overline{\sqrt{7}}$		2 -														
ŧ.		SANDY LEAN CLAY (CL)	' ! . / .		3 -									₩	SS	2	23		
E		Sand seams, traces of gravel			4 -									14		-			
		Brown, Very stiff to hard, moist		!	5 -									₩		-	26		
2				▼	6 -									Щ	SS	3	26		
F =					7 -														
E	265.0				8 - 9 -										SS	4	29		
3 -		Hard to very stiff, brown, moist	//		10-			<u></u>						1					
					11-									IXE	SS	5	38		
1 3					12-														
4			./.		13-			<u></u>											
E	262.1]	14-														
	263.1	Traces of gravel	\swarrow	•	15-	1 : : :								╈	CC.	(25		
5 -		very stiff, grey, moist	./.	1	16-									Щ	SS	6	25		
Ē			//		17- 18-														
E					18- 19-														
<u> </u>					1) 20-			:::: ::::		: :			::: :::	╢					
	261.2		•		21 -									IXE	SS	7	28		
- 7 -		Silty sand seams	1.		22 -									Ĩ					
- 7 -		Hard, grey, moist	•//		23-			<u> </u>		: :									
1 -			//]	24 -														
-			./.		25-									₩	SS	8	50		
8-			/		26 - 27 -		· ·	· · · ·							55		50	₩	
					28-														
				1	29 -														
- 9 -					30-					:				₩					
E -	258.1				31-									ME	SS	9	50		
+ 10 [±]		Borehole terminated at 9.6 m BGS.			32-									1	_				
10-		Monitoring well installed to 9.6 m BGS.			33-														
F -					34-	1:::													
-11-					35- 36-					<u>:</u>									
± ¹¹ :					30- 37-														
‡ ÷					38-														
12-					39-					:				$\left \right $					
14	LABOF	ATORY ANALYSES:																	
1																			
																		ļ	

C	S	tantec	B	OR	EH N: 43	IOI 848 3	LE 37 I	RE(E: 595	C OR 552	D					B	H10	6-2	3	s	heet 1 of 1
CI	LIENT _	QuadReal Properties													PRC	JECI	Г No		12	21624778
		N 12861 Dixie Road, Caledon													DAT	UM	_			NAD83
D	ATES: B	oring <u>02/16/2023</u>				WAT	TER I	LEVEL							TPC	ELE	VAT	ION		
I)	Ν		от	ΪL	(SAI	MPLES	;	L	INDF	RAIN 50	ED S		AR S 00	TRE	NGT 150		Pa) 20	0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC		ENT & I IE PEN	ATTE	H RBER TION	TEST,	TS BLOV	W _P I VS/0.3		WL I REMARKS & GRAIN SIZE DISTRIBUTIO
0 -	267.9				0-			Ч Ц Ц Ц Ц)	1	0 2	20 3	30 4	0 5	50 6	50 7	0 8	30 9	90 10	OGR SA SI C
	267.5	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist		•	1 - 2 -	ss	1	<u>460</u> 460	3	•										-
1 -		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, very stiff to hard, moist			2 3 - 4 -	ss	2	$\frac{410}{460}$	24			•								-
					5 -	ss	3	$\frac{460}{460}$	28											-
2 -	265.6				6 - 7 -			460												-
		Hard, brown, moist			8 - 9 -	ss	4	<u>460</u> 460	33				•							-
3 -					10- 11-	ss	5	$\frac{410}{460}$	50						•					-
4 -					12 - 13 -															-
	263.4	Traces of gravel, some silt seams			14- 15-															-
5 -		Very stiff, grey, moist			16- 17-	ss	6	<u>460</u> 460	50						•					- - - - -
					18-															-
6 -					19- 20-	ss	7	$\frac{410}{460}$	50											-
	261.4	Borehole terminated at 6.55 m BGS			21 - 22 -			460	50						T					- - - -
7 -					23 - 24 -															-
8					25- 26-															-
0 -											Rei	moul	ane Te ded V Penetr	ane]	Fest , 1					

C	S	tantec	B	OR	REF N: 4	IOI 848 4	LE 38 I	RE(E: 595	C OR 643	D					В	H1	7-2	23	SI	neet 1 of 1
	LIENT _ DCATIO	QuadReal Properties) JEC TUM	T No).	12	1624778 NAD83
D	ATES: B	ORING <u>03/03/2023</u>				WAT	TER I	LEVEL							TPO	CELE	EVAT	ION		
<u>(</u>	z		OT	ΈL	£		SAI	MPLES		ι	INDF	RAIN 50	IED \$		AR S	STRE	NGT 150		Pa) 20)
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC		IE PEI				ITS	W _P I	W O Bm ▼	W _L
0 -	267.0				0			TGF	0	1	0 2	20	30	40	50	60	70 8	80	90 10	GR SA SI C
-	266.4	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist	<u>\\/</u> <u>\/</u> \ <u>\\/</u>		1 -	ss	1	$\frac{380}{460}$	5	•										_
- - 1 -		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, hard, moist			2 -	ss	2	$\frac{430}{460}$	45					•						-
-					4 - 5 -	ss	3	$\frac{460}{460}$	41											-
2 -	264.7				6 - 7 -			460	71											-
-		Hard, brown, moist			8 - 9 -	ss	4	<u>460</u> 460	37				•							-
3 -					10- 11-	ss	5	$\frac{\underline{230}}{460}$	50						•					50 For 3" Refusa (Rock in Way)
4 -					12 - 13 -															_
-	262.5	Traces of gravel, some silt seams			14- 15-															50 For 4" Refus
5 -		Hard, grey, moist			16- 17-	ss	6	$\frac{360}{460}$	50						•					(Hard Augering
-					18- 19-															-
6 -					20 - 21 -	ss	7	$\frac{410}{460}$	48											-
	260.5	Borehole terminated at 6.55 m BGS			21 22 - 23 -															
, , , , , , ,					24-															-
8 -					25- 26-						F ield		ane T	oct 1-	Do					
											Rei	noul	ded V	/ane /	Test,	kPa est, ki	Pa			

\overline{C}	S	tantec	B	OR I	REH N: 43	IOI 848 5	LE 26 1	RE(E: 595	C OR 783	D					В	H1	8-2	23		She	et 1 of 1
	LIENT _ DCATIO	QuadReal Properties)JEC TUM).]		<u>624778</u> NAD83
		ORING <u>02/28/2023</u>				WAT	FER I	LEVEL										ION			
			F				SA	MPLES	;	ι	INDF	RAIN	IED S	SHEA	AR S	TRE	NGT	H (k	Pa)		
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)					ATTE				W _F	⊢ > W → O	Г	
	-		ο Ο	3		Ѓ—] N	R(%)	N-N N-N							T, BLC			(& GRAIN SIZE DISTRIBUTIO
0 -	266.7				0			ЩЦ Ц Ц Ц Ц Ц		1	0 2	20	30 4	40 <u></u>	50	60	70	80	90 1	100	(%) GR SA SI C
- - -	266.1	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist	<u></u> <u>//</u>		1 -	ss	1	<u>460</u> 460	3												
1 -		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, hard, moist			2 -	ss	2	$\frac{360}{460}$	29											· · · - · · · · · · · · · · · · · ·	
-		, , ,			4 - 5 -																Rock in the way
2 -			• •		6 - 7 -	ss	3	<u>76</u> 460	30				•								of auger
-	264.5	Hard, brown, moist			8 -	ss	4	$\frac{460}{460}$	39												
3 -					9 - 10-															· -	
-			2		11 - 12 -	ss	5	$\frac{460}{460}$	38				•								6 27 34 3
4 -					13-	-															
-	262.2	Traces of gravel, some silt seams		-	14- 15-			1.50	_												
5 -		Hard, grey, moist		•	16- 17-	ss	6	<u>460</u> 460	46					•							
-					18-																
6 -					19- 20-			160													
-	260.2	Borehole terminated at 6.55 m BGS			21 - 22 -	ss	7	$\frac{460}{460}$	50						•						
7 -					23-																
-					24 - 25 -																
8 -					26-	$\left \right $::: D					:+	
											Rei	moul	ane To ded V	ane 7	Гest,	kPa est, kl) _				

C	s	tantec	B	OR	REF N: 4	IOI 848 5	LE 55 b	RE(E: 595	C OR 662	D					B	H/N	MW	V19	-23	heet 1 of 1
	LIENT _	· · ·														JEC	Г No		12	<u>21624778</u>
		N <u>12861 Dixie Road, Caledon</u> ORING <u>02/28/2023</u>					TER I										- 1/1/1	ION		NAD83
	AILS. L	OKING <u>02/20/2025</u>						MPLES		í –			ED S							
(m)	NO			EVEI	(Ħ							50			0		150		20	0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	ATA F	L L	DEPTH (ft)		۲. ۲	CR(m	JE (%)	WA	TER		ENT &			GLIMI	' ITS	Wp	w	WL
DEI	Ш		STRATA PLOT	WATER LEVEL	В	TYPE	NUMBER	VER' 6) / S	N-VALUE OR RQD(%)				IE PEN					• VS/0.3	m ▼	REMARKS &
				-		'	ž	RECOVERY (mm) TCR(%) / SCR(%)	Ч В В				NETR/						•	& GRAIN SIZE DISTRIBUTION
0 -	267.7	TOPSOIL	<u></u>	-	0	Mag	1	330	7		0 2	20 .	30 4	05	0 6	50 7	70 8	30 9		0 GR SA SI CL
-	267.3	Clayey silt, Trace gravels	$\frac{1}{\sqrt{2}}$		1 - 2 -	X SS	1	<u>330</u> 460	7											
1 -		Brown, loose, moist LEAN CLAY WITH SAND TO			2 3 -	ss	2	460	33											-
		SANDY LEAN CLAY (CL)	//		4 -		-	460												-
-		Silty sand seams, traces of gravel Brown, hard, moist			5 - 6 -	ss	3	$\frac{460}{460}$	37				•							-
2 -		Drowin, nara, moloc			7 -			400												-
-	265.0				8 - 9 -	∬ss	4	$\frac{460}{460}$	47					•						
3 -		Hard, brown, moist	<u> </u>		9 - 10 -	<u>[] </u>		160	_											- Hard Augering
-					11-	ss	5	$\frac{460}{460}$	50) I	1								5 22 36 37
4	263.8			Ţ	12 - 13 -															-
		Hard, grey, wet			14-															-
-					15-	ss	6	$\frac{460}{460}$	50											-
5 -					16- 17-			460	50											-
					18-	$\left\{ \left \right\rangle \right\}$														-
6 -					19- 20-															-
-					20	ss	7	$\frac{460}{460}$	50											-
					22-															-
7 -					23 - 24 -	1														-
-					25-	Mag	8	250	50											
8 -					26 - 27 -	X SS	8	<u>250</u> 460	50											-
-	259.2	Traces of gravel			28-															-
9 -		Hard, grey, wet			29-	$\left\{ \right\}$														-
	258.1				30- 31-	ss	9	$\frac{460}{460}$	50											-
	230.1	Borehole terminated at 9.60m BGS		-	32-	$\left\{ \right\}$		-100												-
10-		Monitoring well installed to 9.6 m BGS.			33 - 34 -	<u> </u>														-
					34- 35-															-
11-					36-	$\left\{ \right\}$														
					37 - 38 -	1														-
12					<u>39</u> -															-
													ane Te ded V			kP2				
													enetr				Pa			

$\left(\begin{array}{c} \\ \end{array} \right)$	S	tantec MO	Nľ	ГO г	RI N: 48	ING WELL RECORD 4 848 555 E: 595 662 BH/MW19-23	1
L	OCATIO	QuadReal Properties N 12861 Dixie Road, Caledon ORING 02/28/2023				PROJECT No. 121624773 DATUM NAD83 WATER LEVEL TPC ELEVATION	
						SAMPLES	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
- 0 -	267.7	TOPSOIL	<u></u>		0		
	267.3	Clayey silt, Trace gravels Brown, loose, moist LEAN CLAY WITH SAND TO		-	1 - 2 - 3 - 4 -	SS 2 33	
2 -		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, hard, moist			4 5 - 6 - 7 -	$\frac{1}{1}$ SS 3 37	
3	265.0	Hard, brown, moist			8 - 9 - 10-	8	
 	263.8			Ţ	11 - 12 - 13 -		
		Hard, grey, wet			14 - 15 - 16 -		
- 5 -					17 - 18 - 19 -	8 - 1	
6 -					20 - 21 - 22 -	1- SS 7 50	
7-					23 - 24 - 25 -	4	
8-	259.2				26 - 27 - 28 -	6	
-9-	050.1	Traces of gravel Hard, grey, wet			29 - 30 -		
10	258.1	Borehole terminated at 9.60m BGS Monitoring well installed to 9.6 m BGS.			31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	LABOR	ATORY ANALYSES:					

C	S	tantec	B	OR	REF N: 4	IOI 848 5	LE 09 1	RE(E: 595	C OR 559	D					В	H2	0-2	23	SI	neet 1 of 1
	LIENT _	QuadReal Properties)JEC).	12	1624778 NAD83
		ORING $02/28/2023$				WAT	ER I	LEVEL								ΓUM		ION		NAD85
	AILS. D	OKING <u>02/20/2023</u>				 		MPLES		L		RAIN				TRE				
DEPTH (m)	EVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ш		RECOVERY (mm) TCR(%) / SCR(%)			-	50		1	00		150		20	0 <i>W</i> L
ä	ELE		STR	WAT	ä	ТҮРЕ	NUMBER	COVER (%)/3	N-VALUE OR RQD(%)							TEST T, BLC		3m	٠	REMARKS & GRAIN SIZE DISTRIBUTIO
0 -	268.0	TOROU	<u></u>		0					1	0 2	20 2	30	40 :	50	50 ´	70 8	30	90 10	0 GR SA SI C
-	267.4	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist	<u>''</u> <u>''</u> <u>''''''</u>		1 -	ss	1	<u>300</u> 460	7	٠										_
1 -		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, hard, moist			2 - 3 -	ss	2	$\frac{460}{460}$	31				•							_
		DIOWII, HAIG, HIOISI			4 - 5 -			400												_
2 -			· / •		6 -	ss	3	$\frac{460}{460}$	36				•							_
	265.8	Hard, brown, moist		•	7 - 8 -	ss	4	$\frac{460}{460}$	40					•						_
3 -					9 - 10-	Ν		460												_
-					11-	ss	5	$\frac{460}{460}$	50						•					10 28 37 2
4 -					12 - 13 -															_
-	263.5				14- 15-															_
5 -		Traces of gravel, some silt seams Hard, grey, moist			16-	ss	6	$\frac{300}{460}$	50						•					50 For 4" Refuse
-					17- 18-															_
6 -			· / •		19- 20-															-
-	261.5				20 -	ss	7	<u>360</u> 460	50						•					50 For 4" Refusa
7 -		Borehole terminated at 6.55 m BGS			22 - 23 -															_
-					24 - 25 -															_
8 -					25- 26-]										
											Rei	noul	ane T ded V Penet	/ane]	Гest,	kPa :st, kl	Da			

C	s	tantec	B		REH N: 43	IOI 848 3	LE 63 E	RE(2: 595	C OR 438	D					E	BH2	21-2	23	S	heet 1 of 1
LO		QuadReal Properties QuadReal Properties N12861 Dixie Road, Caledon ORING 02/16/2023						EVEL							DA	OJEC ATUM	[2 <u>1624778</u> NAD83
D.	ATES: E	ORING <u>02/10/2023</u>				WAI								200		STRE				
(n	N		STRATA PLOT	WATER LEVEL	(Ħ)		SAN	MPLES				50			100	SIRE	150		-a) 20	0
ТН (m) ATIC	STRATA DESCRIPTION	Ρ	LE N	TH (~	(mm R(%									1	Wp	W	WL
DEPTH (m)	ELEVATION (m)		R	ATEI	DEPTH (ТҮРЕ	1BEI	ERY /SC	ALUI QD(RG LIN			 	
	ш		S.	Ň		F	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)							ST, BL			•	& GRAIN SIZE DISTRIBUTION
0 -	269.5				0-			REC TCF	0	1	0 2	0 3	30	40	50	60	70	80 9	0 10	0 GR SA SI CL
		TOPSOIL			1 -															
-	268.9	Clayey silt, Trace gravels Brown, loose, moist			2 -															-
1 -		SANDY LEAN CLAY (CL)			3 -	ss	1	$\frac{360}{460}$	21			•								
-		Silty sand seams, traces of gravel	/		4 - 5 -		_	100												
-		Brown, very stiff, moist			- 5 6 -	ss	2	$\frac{460}{460}$	22			•								
2 -	267.2				7 -			100												
-		Hard, brown, moist			8 -	ss	3	$\frac{460}{460}$	37				•							
3 -					9 - 10-			100												
-					11-	ss	4	$\frac{460}{460}$	33				۲							
-					12-															-
4 -					13-															
-	264.9				14- 15-				_											_
5		Traces of gravel, some silt seams Hard, grey, moist			16-	ss	5	$\frac{460}{460}$	42					•						
5 -		Hard, grey, moist			17-															
-					18-															_
6 -					19 - 20 -				_											_
-					20	ss	6	$\frac{460}{460}$	50						•					5 38 35 22
-					22 -			100												
7 -			6		23-															-
				1	24 - 25 -				_											
8 -					23 26-	ss	7	$\frac{460}{460}$	50						•					50 For 3" Refusal
					27-															
-					28-															
9 -					29- 30-				_											
-	259.9				31-	ss	8	$\frac{360}{460}$	50						•					50 For 2" Refusal
10		Borehole terminated at 9.6 m BGS			32-															
10-					33-															
					34- 35-															<u> </u>
11					36-															╡ ┃
					37-															:
					38-															
12-					39-						Fiel	d Va	ne T	 'est 1	: :: kPa	<u> </u>			1::::	
																t, kPa				
										Δ	Poc	ket F	Penet	rome	eter 7	Гest, k	Pa			

C	s	tantec	B		REF N: 4	IOI 848 2	LE 59 1	RE(E: 595	C OR 331	D					В	H2	2-2	23	S	heet 1 of 1
	LIENT _ DCATIO	QuadReal Properties) JEC TUM	T No).	12	21624778 NAD83
		ORING <u>02/15/2023</u>				WAT	FER I	LEVEL										ION		
Ē	z		ОT	ΈL			SA	MPLES		ι	INDF	RAIN 50			AR S .00	STRE	NGT		Pa) 20	0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMIC		ENT 8		RBEF	I TEST	IITS	W _P •		W _L
0 -	268.2				0			REC	0	1	0 2	20	30	40	50	60	70	80	90 10	0 GR SA SI CI
-	267.5	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist	<u></u> <u></u>		1 -	ss	1	<u>460</u> 460	4	•										
1 -		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, very stiff, moist			2 - 3 -	ss	2	<u>380</u> 460	24			•								· · ·
-					4 - 5 -															
2 -	265.9				6 - 7 -	ss	3	$\frac{460}{460}$	31				•							
-	200.9	Hard, brown, moist			8 - 9 -	ss	4	<u>360</u> 460	48											· · · · · · · · · · · · · · · · · · ·
3 -					10-	ss	5	$\frac{460}{460}$	47					C						7 40 17 3
-			• •		11 - 12 -			460												
4 -					13- 14-															·
-	263.6	Traces of gravel, some silt seams Hard, grey, moist			15- 16-	ss	6	<u>360</u> 460	47											Hard Augering
5 -					17 - 18 -															
- - 6 -			· · · · ·		19-															
-	261.6	Borehole terminated at 6.55 m BGS	•		20 - 21 -	ss	7	<u>300</u> 460	50						•					
7 -		Borenoie terminated at 0.55 m BGS			22 - 23 -															
-					24 - 25 -															
8 -					26-						Fie	ld V	ane T	est, k	Pa					
											Re	moul	ded V	/ane / rome	Test,		Pa			

C	S	tantec	B	OR	EH N: 48	IOI 848 1	LE 88 1	RE(E: 595	C OR 247	D						B	H2	3-	23	3	ę	Sheet 1 of 1
	LIENT _	- ·													-	PRO	DJEC	ΤN	Jo.		1	21624778
		N <u>12861 Dixie Road, Caledon</u>				117.4.7		LEVEL									ГUМ		_			NAD83
	ATES: B	ORING <u>02/15/2023</u>				WAI								011								
Ê	z		01	VEL	ft)		SAI		;		INDI	≺Ali 5(NED	SH	EA 1(IRE	:NG 15		(KF		00
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC	CON ⁻ C CO RD P	TENT NE PE ENET	ENET RAT	TEF TRAT	RBER TION TES	TEST T, BLC	, BLO	OWS /0.3r	n	o m ▼	W _L REMARKS & GRAIN SIZE DISTRIBUTIOI
0 -	268.5				-0-			ЩЦ Ц Ц Ц Ц Ц		1	0 2	20	30	40	5	0	50	70	80	9	0 1	00 GR SA SI C
-		TOPSOIL Clayey silt, Trace gravels Brown, loose, moist			1 -	ss	1	<u>460</u> 460	5	•												
-	267.9	SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel	•••••••		2 -																	
- 1 - -		Brown, very stiff, moist			3 -	ss	2	$\frac{410}{460}$	23			•										
-	266.9				4 - 5 -																	
-		Brown, very stiff to hard, moist			6 -	ss	3	$\frac{460}{460}$	27													
2 -					7 -																	
-					8 -	ss	4	$\frac{460}{460}$	36													
3 -					9 - 10-																	
-					11 -	ss	5	$\frac{460}{460}$	41					•								
-	265.0	Borehole terminated at 3.55 m BGS			12 -																	
4 - -					13-																	
-					14-																	
-					15-																	
5 -					16-																	+
5-											Re	mou	'ane ' lded Pene	Var	ne T	'est,		Pa				

C	s	tantec	B	OR	EH N: 48	IOI 848 2	СЕ 74 в	RE(E: 595	C OR 210	D					E	BH2	4-2	23	5	Sheet 1 of 1
LO		N 12861 Dixie Road, Caledon													DA	OJEC ATUM	[21624778 NAD83
D.	ATES: B	ORING <u>02/15/2023</u>		1		WAT	TER I	LEVEL								C ELI				
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) T TCR(%) / SCR(%) D D	N-VALUE OR RQD(%)	WA	TER (50 	ENT &	1 ATTE	RBE	STRE RG LIN N TEST ST, BLC	150 	W _P I VS/0.3	20 W	00 W _L REMARKS GRAIN SIZE DISTRIBUTION
0 -	268.1				0			REC	0	1	0 2	20 3	0 4	0	50	60	70	30 9	0 10	00 GR SA SI CL
	267.8	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist SANDY LEAN CLAY (CL)		•	1 - 2 -															
1 -		Silty sand seams, traces of gravel Brown, very stiff to hard, moist			3 - 4 -	ss	1	$\frac{360}{460}$	22			•								
	266.6	Hard, brown, moist	•/• •/•		5 - 6 -	ss	2	$\frac{410}{460}$	36				•							
2 -					7 - 8 -			460												
3 -					9 -	ss	3	460	41					•						
					10- 11-	ss	4	$\frac{460}{460}$	50						•					
4 -					12 - 13 -															
					14- 15-															- - - Hard Augering
5 -	263.3	Traces of gravel, some silt seams Hard , grey, moist			16- 17-	ss	5	<u>410</u> 460	50						•					
					18- 19-															
6	261.6				20 - 21 -	ss	6	$\frac{410}{460}$	50						•					50 For 1" (Hard ground)
7 -		Borehole terminated at 6.55 m BGS			22 - 23 -															
-					24 - 25 -															
8 -					26-						Fie	ld Va	ne Te	est, k	Pa					
											Re	nould	led V	ane	Test	, kPa Fest, k	Pa			

C	S	tantec	B	OR	REF N: 4	IOI 848 4	E 00 I	RE(E: 595		D					E	BH/	M	W2	25-	-23	heet 1 of 1
	LIENT _ CATIO															OJEO TUN	CTN 1	ю.	_	12	21624778 NAD83
		ORING <u>02/15/2023</u>				WAT	TER I	LEVEL							TP	C EL	EVA	TIO	N _		
(F	N		LOT	VEL	(ft)		SAI			ι	JND	RAIN 50	IED		AR \$	STRI	ENG 15		kPa	ı) 20	0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	ДЕРТН (ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMI		NE PE	ENETF	ERBE ATION	N TES	T, BLC	l //ws	0.3m	٠	W _L I REMARKS & GRAIN SIZE DISTRIBUTION
0 -	269.9				0			Я Ц Ц Ц Ц		1	0	20	30	40	50	60	70	80	90	10	^(%) GR SA SI C
· · · · · · · · · · · · · · · · · · ·	269.5	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist	<u></u>		1 - 2 -	ss	1	<u>460</u> 460	6	•											· · · ·
1-		SANDY LEAN CLAY (CL) Sand seams, traces of gravel			3 - 4 -	ss	2	$\frac{360}{460}$	26			•									· - - - -
2		Brown, Very stiff hard, moist			5 - 6 -	ss	3	$\frac{460}{460}$	36												· - - - -
	267.2				7 - 8 - 9 -	ss	4	$\frac{460}{460}$	50						•						- - -
3		Hard, brown, moist		•	9 - 10 - 11 -	∦ss	5	$\frac{460}{460}$	50						•						
4					12 - 13 -			400													-
	265.1				14- 15-			460													Hard Augering
5	265.1	Traces to some of gravel Hard, grey, moist			16- 17-	∦ss 	6	$\frac{460}{460}$	50						•						·
6 -				-	18- 19- 20-																-
	263.4				20	ss	7	<u>360</u> 460	50						•						50 For 3" Refusal, Bad
7 -		Borehole terminated at 6.5 m BGS due to Auger Refusal			22 - 23 -																-
		Monitoring well installed to 6.5 m BGS			24 - 25 -																
8 -					26 - 27 - 28 -																-
9					20 29 - 30 -																· · · · · · · · · · · · · · · · · · ·
					31 - 32 -																
10-					33 - 34 -																- - - -
11					35- 36- 27																· · · · · · · · · · · · · · · · · · ·
					37 - 38 - 39 -																·
12-						• '					Re	moul	ded		kPa Test eter T				· · · I ·	1	

C	S	tantec ^{MO}	Nľ	ГО	RI N: 4	NG 848 4(W 00 E:	EL] 595	[_] 5 08	RE 3	C	0]	RD)		BH	Sheet 1 of 1 //MW25-23
	LIENT _	-														PROJE	ECT No. <u>121624778</u>
		N <u>12861 Dixie Road, Caledon</u>														DATU	
D.	ATES: E	ORING <u>02/15/2023</u>				WA'I	ER LI	EVEL	_								LEVATION
(ш	NO		LOT		(£			VAF	POL	IR			+	54	AMPL	.ES	WELL
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	TAF	R LI	DEPTH (ft)		CON	CEN	TR/	ATIC)NS	3		ТҮРЕ	NUMBER	TUE	
DEI	ELE		STRATA PLOT	WATER LEVEL	DE	•	%LE	L			ppr	n		Ł	NUM	N-VALUE	CONSTRUCTION
	269.9			_			20 100	40 200	6 30		80 400						
- 0 -		TOPSOIL	<u></u>	•	0 1-			200	50		400)		SS	1	6	
	269.5	Clayey silt, Trace gravels Brown, loose, moist	1/. \		2 -								H		-		-
1 -		SANDY LEAN CLAY (CL)			3 -					<u></u>				SS	2	26	
		Sand seams, traces of gravel	/./		4 - 5 -									\			-
		Brown, Very stiff hard, moist	1		6 -									SS	3	36	
2 -					7 -												
	267.2		//		8 - 9 -								H	SS	4	50	
3 -		Hard, brown, moist			10-									/			-
					11-								<u>ال</u>	SS	5	50	
					12 - 13 -												
- 4 -					13												
	265.1		·//		15-								H	66	6	50	
5 -	203.1	Traces to some of gravel	1		16 · 17 ·					<u> </u>			1	SS	6	50	
		Hard, grey, moist		₹	17												
6 -					19-	1 : : : :							-				
	263.4				20 - 21 -								1	SS	7	50	
	_203.4	Borehole terminated at 6.5 m BGS	<u> </u>		22-									\			
7 -		due to Auger Refusal Monitoring well installed to 6.5 m			23-			<u>: : :</u> : : :		<u> </u>	: :						
		BGS			24 - 25 -								H				
8 -					26-												
					27-												
					28 - 29 -												
- 9 -					30-												
					31-								H				
10					32 - 33 -					<u> </u>							
					34-												
					35- 36-												
- 11 -					30- 37-												
					38-												
12-		ATORY ANALYSES:			39-	<u> </u>		: : :		:::	: :		-				

C	S	tantec	B		REH N: 4	IOI 848 4	LE 21 I	RE (E: 595	C OR 194	D							BI	H2	6-2	23			Sh	eet 1 of 1
	LIENT _ OCATIO	QuadReal Properties																JEC UM		0.			12	<u>1624778</u> NAD83
D	ATES: E	oring <u>02/16/2023</u>				WAT	FER I	LEVEL								Т	PC	ELE	VA	ГІС	N			
٦ آ	NO		LOT	VEL	ft)		SAI	MPLES		ι	JNE		AIN 50	ED S		EAF 100		TRE	NG 15		(kF		200	1
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAN			E PEN	IETR	RATI	ON -	J LIMI TEST, , BLC	BLO	WS		-0	- ✓ ●	W _L
0 -	269.1				0					1	0	20	3	0 4	40 1 · · ·	50	6	0	70	80	9	0	100	(%) GR SA SI CL
-	268.5	TOPSOIL Clayey silt, Trace gravels \Brown, loose, moist	<u></u>	•	1 - 2 -	ss	1	<u>460</u> 460	3	•														
1 -	267.6	SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel			3 - 4 -	ss	2	$\frac{460}{460}$	28				•											
2	207.0	Brown, very stiff, moist Hard, grey, moist			5 - 6 - 7 -	ss	3	$\frac{460}{460}$	34					•							· · · · · · · · · · · · · · · · · · ·			
					7 - 8 - 9 -	ss	4	<u>460</u> 460	40						•									6 21 36 37
3 -					10- 11-	ss	5	$\frac{100}{460}$	50							•								50 For 2" Refusal
4 -					12 - 13 - 14 -																			
5 -	264.5	Traces of gravel, some silt seams Hard, grey, moist		•	14 15- 16-	ss	6	<u>330</u> 460	50							•								Hard Augering
					17- 18-																			
6					19 - 20 - 21 -	ss	7	$\frac{250}{460}$	50							•								50 For 3" Refusal
7 -				•	22 - 23 -			400																
-					24 - 25 - 26 -	ss	8	$\frac{460}{460}$	50							•								50 For 5" Refusal
8 -					20 - 27 - 28 -			460																
9 -					29 - 30 -	ss	9	410	50	· · · · · · · · · · · · · · · · · · ·														50 For 4" Refusal
10	259.5	Borehole terminated at 9.6 m BGS			31 - 32 - 33 -	100	7	<u>410</u> 460	50							•								
-					34- 35-																			
11					36- 37-																			
12-					38- 39-						F		V-	ne T										
														ne To led V				(Pa						
																		st, kI	Pa					

C	S	tantec	B		REH N: 43	IOI 848 5	LE 15 I	RE E: 595	C OR 181	D						B	H2	27-	23)	ę	Sheet 1 of 1
CI	LIENT _	QuadReal Properties														PRC	DJEC	T N	lo.	-	1	21624778
		N <u>12861 Dixie Road, Caledon</u>															ΓUM					NAD83
	ATES: B	ORING <u>02/27/2023</u>		1	<u> </u>	WAI		LEVEL		<u> </u>												
Ê	Z		L01	VEL	lf)		SAI				JNDI	≺AII 5(SF	1EA 10		IRE	-NG 15		(KP		00
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)				ΓΕΝΊ		TTER	RBER				₩p ₩p	W	W _L
	ш		ST	Ň	-	∣≿	NUN	(%)	Z Z Z Z Z Z		NAMI(ANDA										n •	& GRAIN SIZE
0 -	269.6				0			TCF	0	1	10	20	30	40	5	0 0	60	70	80	90	0 10	DISTRIBUTION (%) GR SA SI CL
-	269.2	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist	<u>, 17</u>	•	1 -	ss	1	$\frac{200}{460}$	3	•												2
-	209.2	SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel			2 -																	
		Brown, very stiff to hard, moist			3 -	ss	2	$\frac{410}{460}$	37					•								
-					4 -	<u> </u>		+00														
-	268.1	Hard, grey, moist			5 -																	
-					6 -	ss	3	$\frac{460}{460}$	42					¢								
2 -					7 -	-																
_					8 -	ss	4	$\frac{300}{460}$	50													50 For 5" Refusal (Hard ground)
-					9 -																	
3 -					10-			280														50 For 4" Refusal
-	266.1	Borehole terminated at 3.55 m BGS	•		11-	ss	5	$\frac{280}{460}$	50													
-		Borenoie terminated at 5.55 in BOS			12-																	
4 -					13-																	
-					14-																	
-					15-																	
5 -					16-						Fie	ld V	/ane	Tes	t, kP	Pa						
												mou	ldec	l Vai	ne T	'est,		Pa				

C	s	tantec	B		EH N: 48	IOI 848 4	E 01 F	RE(E: 595	C OR 329	D						F	ЗH	28	3-2	3	;	Sheet 1 of	1
LO		N <u>12861 Dixie Road, Caledon</u>														DA	ATU	М	No.			21624778 NAD8.	
D.	ATES: E	ORING <u>02/16/2023</u>	1			WAT		LEVEL		<u> </u>													
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	түре	NUMBER	RECOVERY (mm) TO TCR(%) / SCR(%) D 00	N-VALUE OR RQD(%)	w v		ER CO		+ ENT & E PEN	ATTI		RG L	.IMIT ST, E	150 	H (kF →+ ₩ _P ► /S/0.3	2 W	$\begin{array}{c} 00 \\ H \\ \hline \\ H \\ H$	KS
	260 5			-		-	Ī	rcr(Ϋ́										VS/0.3		• •0 1	GRAIN S DISTRIBUT 00 GR SA SI	ize Tion
0 -	269.5	TOPSOIL	<u></u>	-	0	M						20			•0		60					GR SÀ SI	I CL
-	269.2	Brown, loose, moist	1/· <u>\</u>	/ • •	1 - 2 -	ss	1	<u>460</u> 460	3														
1-		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, very stiff to hard, moist			3 -	ss	2	$\frac{460}{460}$	21														
	267.9	Hard, brown, moist		-	4 - 5 -	M		4.60															
2 -					6 - 7 -	ss	3	<u>460</u> 460	27				•										
-					, 8 -	ss	4	$\frac{460}{460}$	29				•										
3 -					9 - 10-																		
-					11-	ss	5	$\frac{460}{460}$	43						•								
4 -					12 - 13 -																		
-					14- 15-																		
5 -	264.6	Traces of gravel, some silt seams Hard, grey, moist			16-	ss	6	<u>330</u> 460	50							•							
-		filaid, grey, moist			17- 18-																		
6 -					19- 20-																		
-	262.9	Death is the state of the DCO	/ /		21 -	ss	7	$\frac{410}{460}$	50							•							
7 -		Borehole terminated at 6.55 m BGS			22 - 23 -																		
-					24 - 25 -																		
8 -					23 26-																		
											l	Rem	ould	ne T led V 'eneti	ane	Test			a				

C	s	tantec	B		EH N: 48	IOI 848 5	LE 37 F	RE(E: 595	C OR 317	D					E	BH2	9-2	23		Sh	eet 1 of 1
LO		N <u>12861 Dixie Road, Caledon</u>														OJEC TUM).			1 <u>624778</u> NAD83
D.	ATES: E	ORING <u>02/27/2023</u>				WAT	TER L	LEVEL		i						C ELI					
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	ГН (ft)			VPLES (%) (wm)		ι 	JNDF 	50	ED S		AR : .00	STRE	NGT 150			200 	WL
DEP1	L ELEV/		STRAT	WATEF	DEPTH (ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY ST/	NAMIC ANDAI	CON	E PEN	IETRA ATIOI	ATIOI N TE	RG LIN N TEST ST, BLC	, BLO\ DWS/0	.3m	— 0 m	▼ ●	REMARKS & GRAIN SIZE DISTRIBUTION
0 -	270.3		N ¹ /·		-0-			RE TC		1	0 2	20 3	30 4	10	50	60	70	80 9	0	100	(%) GR SA SI CL
-	270.0	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist			1 -	ss	1	<u>300</u> 460	3	•											
1-		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, very stiff to hard, moist	-		2 - 3 -	ss	2	$\frac{460}{460}$	22			•									
-	268.8	Hard, brown, moist			4 - 5 -																
2 -		Hard, brown, moist			6 -	ss	3	<u>180</u> 460	36				•							· · · · · · · · · · · · · · · · · · ·	
-					7 - 8 -	ss	4	$\frac{460}{460}$	50						•					· · ·	
3 -					9 - 10-				_											· · · · · · · · · · · · · · · · · · ·	
-					11-	ss	5	$\frac{460}{460}$	50						•						
4 -					12- 13-															· · ·	
-					14- 15-																50 For 5" (Hard
5 -	265.5	Traces of gravel, some silt seams Very stiff , grey, moist			16- 17	ss	6	<u>460</u> 460	50						•					·	Augering)
-		very suir, grey, moist			17- 18-																
6 -					19- 20-				_												50 For 5" Refusal
-	263.8	Borehole terminated at 6.55 m BGS			21-	ss	7	$\frac{410}{460}$	50						•					·	
7 -					22 - 23 -																
-					24 - 25 -																
8 -					26-						Fie		ine Te	est k	Pa						
											Re	noule	ied V	'ane '	Test	, kPa Fest, k	Pa				

C	S	tantec	B	OR	REH N: 43	IOI 848 6	LE 46 I	RE(E: 595	COR 342	D						B	H	30-	-2	3	:	Sheet 1 of 1
	LIENT _	QuadReal Properties															DJEO TUN		No.		1	<u>21624778</u> NAD83
D	ATES: B	oring <u>02/27/2023</u>				WAT	TER I	LEVEL							-	TPC	CEL	EV	ATI	ON		
(m	N		LOT	VEL	ft)		SAI	MPLES	;	ι	INDF	RAII 5(NED)	SH	EA 1(STRI		GTF 50	H (kl		00
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC		TENT NE PE ENET	ENET	TEF	RBER TION	TES	T, BL	OW		-0	T WL REMARKS & GRAIN SIZE DISTRIBUTION
0 -	269.9				0			ШЧЧЧ)	1	0 2	20	30	40	5	0	60	70	8	0 9	0 1	(0()
-	269.5	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist	<u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	4	1 -	ss	1	$\frac{300}{460}$	6	•												
-	203.0	SANDY LEAN CLAY (CL) sand seams, Brown, Very stiff, moist			2 -																	
1 -	268.7				3 -	ss	2	<u>460</u> 460	29													
-		Crushed gravels with sand , hard, brown			5 -																	
2 -					6 -	ss	3	<u>460</u> 460	50													-
-					7 -																	- 50 For 5" Refusal
-					8 - 9 -	ss	4	$\frac{460}{460}$	50													
3 -					10-																	50 For 5" Refusal
-	266.4	Borehole terminated at 3.55 m BDS			11 -	ss	5	$\frac{150}{460}$	50													
-		Borehole is open and dry			12-																	
4 -					13 - 14 -																	
-					15-																	
5 -					16-						F.	147		T • '	1-7) 						
											Re	mou	'ane ' lded Pene	Var	ne T	'est,						

C	S	tantec	B	OR I	REH N: 43	IOI 848 5	LE 35 f	RE(E: 595	C OR 466	D					B	H/N	MW	V 3 1	-2	sh 23	eet 1 of 1
	LIENT _	· ·														DJEC				12	<u>1624778</u>
		N <u>12861 Dixie Road, Caledon</u> ORING <u>02/27/2023</u>					TER I	LEVEL								TUM		ION			NAD83
								MPLES		i											
(m)	ELEVATION (m)		STRATA PLOT	WATER LEVEL	(ŧ		0/ 1					50			00		150			200)
DEPTH (m)	EVAT (m)	STRATA DESCRIPTION	ATA	ERL	DEPTH (К	Y (m) SCR(UE)(%)	WA	TER (ENT &	ATTER	RBER	rg limi	ITS	₩p	V	√ >	$W_{\rm L}$
DE	ELE		STR	WAT	В	ТҮРЕ	NUMBER	VER %)/\$	N-VALUE OR RQD(%)							TEST,			m	▼	REMARKS
	2(0.4						Ī	RECOVERY (mm) TCR(%) / SCR(%)	żК							T, BLO			0	•	& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
0 -	269.4	TOPSOIL	<u></u>	-	0	ss	1	<u>360</u> 460	3												GR SA SI CL
-	269.0	Ciayey sint, Trace gravers			1 - 2 -	N 33	1	460	5												
1 -		Brown, loose, moist SANDY LEAN CLAY (CL)	./.		3 -	ss	2	460	29												
		Silty sand seams, traces of gravel	//		4 -	N SS	-	460													
		Brown, very stiff to hard, moist			5 - 6 -	ss	3	460	42					•							
2 -			./,		7 -			460													
-	266.7				8 -	(ss	4	$\frac{460}{460}$	38				•								
3 -	200.7	Hard, brown, moist	1.		9 - 10-		_	400												:: -	
					10-	ss	5	$\frac{460}{460}$	50) 1	 									5 26 31 38
	265.5				12-			100													
4 -	203.3	Hard, grey, wet	/./		13-															::: <u>-</u>	
-					14- 15-	ļ			_												
5 -					16-	ss	6	$\frac{200}{460}$	50					•							
5			1		17-																
-					18- 19-															E	
6 -					20-			100	_												
-			5	•	21-	∦ ss	7	$\frac{180}{460}$	50						•					Ē	
7 -					22 - 23 -																
			[/·		23 -															Ē	
				Ţ	25-	Maa		180												Ē	
8 -					26-	SS	8	$\frac{180}{460}$	50												
-	260.9		1/2		27 - 28 -															Ë	
9-		Traces of gravel Hard, grey, wet	//]	29-																
					30-	ss	9	$\frac{250}{460}$	50												
	259.8	Borehole terminated at 9.60m BGS.	/·/		31 - 32 -	N 33		460	50												
10		Monitoring well installed to 9.6 m			33-	$\left \right $::E :E	
-		BGS.			34-															Ē	
11					35- 36-																
11-					30-																
					38-															F	
12-					39-	<u> </u>					E:		:::: nc T		:::: De					::F	
													ne Te led V			kPa					
										Δ						est, kF	Pa				

C	S	tantec MO	NĽ	ГO ^	RI N: 48	NG 348 53	WE 5 E:	CLL 595 4	RE	CO	RD)		BH	Sheet 1 of 1 //MW31-23
LO	LIENT _ OCATIOI ATES: B													DATU	ECT No. 121624778 M NAD83 LEVATION
			F									SA	MPL	ES	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	•	CONC %LEL	- 40	RATIO ▲ p 60	opm 80		ТҮРЕ	NUMBER	N-VALUE	WELL
<u> </u>	269.4	TOPSOIL	<u></u>		0	▲ 1	00 2	200 :	300 4	400 ::::	Iv		1		
	269.0				1 - 2 -							SS	1	3	
		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel			3 - 4 -							SS	2	29	-
2		Brown, very stiff to hard, moist			5 - 6 -							SS	3	42	
	266.7				7 - 8 - 9 -							SS	4	38	
3 -		Hard, brown, moist	•		10- 11-							SS	5	50	
	265.5				12 - 13 -										
4 -		Hard, grey, wet	•		13 - 14 - 15 -										
- 5 -					16-							SS	6	50	
					17 - 18 - 19 -										
6 -					20 - 21 -							SS	7	50	
- 7 -					21 - 22 - 23 -										
				_	23 24 - 25 -										
8-				Ţ	26 - 27 -							SS	8	50	
	260.9	Traces of gravel			27 28- 29-										
9-		Hard, grey, wet			30-							SS	9	50	
	259.8	Borehole terminated at 9.60m BGS.	/•/,		31 - 32 -							00	,		<u> ·</u> ⊟ ·
		Monitoring well installed to 9.6 m BGS.			33 - 34 -										
					35- 36-										
					37-										
12-					38- 39-										
14	LABOR	ATORY ANALYSES:													

C	s	tantec	B	OR	EH N: 48	IOI 848 6	LE 81 B	RE(E: 595	C OR 453	D BH32-23 Sheet 1 of 1
LO		N12861 Dixie Road, Caledon								PROJECT No. 121624778 DATUM NAD83
D.	ATES: E	ORING <u>02/27/2023</u>				WAI		LEVEL		
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) 14 TCR(%) / SCR(%) 15		UNDRAINED SHEAR STRENGTH (kPa) 50 100 150 200 WP W WL WATER CONTENT & ATTERBERG LIMITS WP W WL DYNAMIC CONE PENETRATION TEST, BLOWS/0.3m CRAIN SIZE DISTRIBUTION STANDARD PENETRATION TEST, BLOWS/0.3m CRAIN SIZE DISTRIBUTION
0 -	269.6	TOPSOIL	<u></u>		0	И				10 20 30 40 50 60 70 80 90 100 GR SA SI C
1 -	269.3	Clayey silt, Trace gravels Brown, loose, moist SANDY LEAN CLAY (CL)			1 - 2 - 3 -	x ss x ss	1	<u>410</u> 460	6	
	268.1	Silty sand seams, traces of gravel Brown, very stiff to hard, moist			4 - 5 -	x ss		460	41	
2		Hard, brown, moist		•	6 - 7 - 8 -			<u>460</u> 460 <u>460</u>	_	
3					9 - 10-	∦ss	4	460	50	50 For 4" Refusa
-				•	11 - 12 -	x ss	5	<u>460</u> 460	50	
4			•		13- 14-					
5 -	264.7	Traces of gravel, some silt seams			15- 16- 17-	ss	6	<u>460</u> 460	50	Hard Augering
		Hard, grey, moist			17 18- 19-					
6 -	263.0				20 - 21 -	ss	7	<u>430</u> 460	50	50 For 5" Refusa
7 -		Borehole terminated at 6.55 m BGS			22 - 23 - 24 -					
8 -					25- 26-					
					27 - 28 -					
9					29- 30- 21					
10			-		31 - 32 - 33 -					
					34 - 35 -					
11					36- 37-					
12-					38- 39-					Eight Vone Tast 125
										 □ Field Vane Test, kPa □ Remoulded Vane Test, kPa △ Pocket Penetrometer Test, kPa

C	S	tantec	B	OR	REF N: 4	IOI 848 7	LE 49 B	RE(E: 595	COR 344	BH/MW33-23
LC	JENT _ DCATIO							LEVEL		PROJECT No. 121624778 DATUM NAD83 TPC ELEVATION
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	SAI	RECOVERY (mm) H TCR(%) / SCR(%) H		UNDRAINED SHEAR STRENGTH (kPa) 50 100 150 200 WATER CONTENT & ATTERBERG LIMITS WP W WL UNDRAINC CONE PENETRATION TEST, BLOWS/0.3m REMARKS STANDARD PENETRATION TEST, BLOWS/0.3m SIZE DISTRIBUTION
0	268.3 267.5	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist	<u></u>		0 1 - 2 -	ss	1	460 460	9	10 20 30 40 50 60 70 80 90 100 GR SA SI CI
1-		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, stiff to hard, moist		Ţ	3 - 4 - 5 -	ss ss		<u>460</u> 460 <u>460</u>	11 50	
2	265.5				6 - 7 - 8 - 9 -	ss		<u>460</u> <u>460</u> <u>460</u>	40	I = = I = = F - = = = = = = = = = = = = = = = = = = =
3		Hard, brown, moist			12-	ss	5	$\frac{460}{460}$	50	Wet Spoon
4 -	263.4				13 - 14 - 15 - 16 -	x ss	6	$\frac{460}{460}$	50	
5		Traces of gravel Hard, grey, wet			10 - 17 - 18 - 19 -	()		460		
6					20 - 21 - 22 -	ss	7	<u>460</u> 460	50	
7					23 - 24 - 25 - 26 -	ss	8	$\frac{460}{460}$	50	
9 -	259.7	Hard, grey, wet		•	27 - 28 - 29 -					
10 10	258.7	Borehole terminated at 9.60m BGS. Monitoring well installed to 9.6 m			30 - 31 - 32 - 33 -	ss	9	<u>460</u> 460	36	Water In Spoon
- - - - - - - - - - - - - - - - - - -		BGS.			34 - 35 - 36 -					
12					37 - 38 - 39 -					
										 □ Field Vane Test, kPa □ Remoulded Vane Test, kPa △ Pocket Penetrometer Test, kPa

\cup	y 3	tantec ^{MO}	NI.		RI 1:48	NG 848 7	49	VE E:	LI 595	_] 34	RE 4	C	0	RI)		BH	/M	W3	3-2	Sheet 1 3	of 1
LOG	IENT _ CATION .TES: B																PROJE DATU TPC E	М				<u>D83</u>
			F	<u>ب</u>											S	AMPL	ES					
	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)		% 20	DNC LEL		60 FR		ppr 80	n	-	ТҮРЕ	NUMBER	N-VALUE		CON	WE	LL UCTIC	DN
<u>+</u> 0+	268.3	TOPSOIL	<u></u>		0		100	20	00 : : :	30	0	400)	:] -	1	-			<u> </u>			
	267.5	Clayey silt, Trace gravels Brown, loose, moist	1/ <u>1/</u>		1 - 2 -											1	9	-	<u></u>			
		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, stiff to hard, moist			3 - 4 - 5 -										SS	2	11					
2		brown, sun to nard, moist		Ţ	6 - 7 -										SS	3	50					
Гſ	265.5	Hard, brown, moist	•/•		8 - 9 -										SS	4	40					
					10- 11-										ss	5	50					
4					12 - 13 - 14 -																	
	263.4		•/•		15- 16-										SS	6	50					
- 5 -		Traces of gravel Hard, grey, wet			17- 18-																	
6					19- 20- 21-										ss	7	50					
- 7 -					21 22 - 23 -										\							
					24 - 25 -										ss	8	50					
- 8 - - 8 - - 9 - - 9 -	259.7				26 - 27 - 28 -										0.55	0	30					
- 9 -		Hard, grey, wet			20 29- 30-																	
	258.7		/./.		31 -										(SS	9	36					
		Borehole terminated at 9.60m BGS. Monitoring well installed to 9.6 m			32-																	
		BGS.			33 - 34 -																	
					35- 26																	
					36- 37-																	
					38- 39-																	
	ABOR	ATORY ANALYSES:	<u> </u>		39-	<u>1.::</u>	:1:		1:::	. :	. : :	: [:	:	. -	1		I					

C	s	tantec	B	OR	EH N: 48	IOI 848 6	LE 80 F	RE(E: 595	C OR 597	D					В	BH3	4-2	3	s	beet 1 of 1
LO		N 12861 Dixie Road, Caledon													DA	OJEC TUM	_			21624778 NAD83
D.	ATES: E	oring <u>02/27/2023</u>				WA'I	ERI	LEVEL								C ELE				
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	SAN	RECOVERY (mm) T TCR(%) / SCR(%) M	N-VALUE OR RQD(%)	WA	TER (50 + CONTE	ENT &	1 ATTE	00 	STRE 	150 TS 7, BLOV	W _P I	20 W)0
0 -	268.7				0			TCF	0	1	0 2	20 3	3 0 4	10	50	60	70 8	80 9	0 10	00 GR SA SI CL
U	268.4	Brown, loose, moist			1 - 2 -	ss	1	<u>410</u> 460	4	•										- - - -
1 -		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, very stiff to hard, moist			- 3 - 4 -	ss	2	<u>460</u> 460	19											- - - -
	267.2	Hard, brown, moist	·/·	•	5 - 6 -	ss	3	<u>460</u> 460	41					•						- - - -
2					7 - 8 -	ss	4	$\frac{460}{460}$	41					•						-
3 -					9 - 10-	ss	5		47											- - - -
-					11 - 12 -	1 22	3	<u>460</u> 460	4/											- - - -
4					13- 14-															- - - -
5 -	263.8	Traces of gravel, some silt seams Hard , grey, moist			15- 16- 17-	ss	6	<u>460</u> 460	48											Hard Augering
-					17- 18- 19-															- - - -
6 -					20 - 21 -	ss	7	$\frac{410}{460}$	50						•					50 For 5" Refusal
	_262.2	Borehole terminated at 6.55 m BGS			21 22 - 23 -	/ \														
-					24 -															- - - -
8 -	25-26-													est, k	Pa					-
																, kPa				
										Δ	Po	ket I	Penetr	ome	ter T	'est, kl	Pa			

C	S	tantec	B	OR	EH N: 48	IOI 848 7	LE 85 1	RE E: 595	C OR 533	RD BH35-23 Sheet 1 of 1
LC		N12861 Dixie Road, Caledon								PROJECT No121624778 DATUM NAD83
D	ATES: B	ORING <u>02/27/2023</u>				WAT	'ER I	LEVEL		TPC ELEVATION
2	z		01	/EL	()		SA	MPLES	;	UNDRAINED SHEAR STRENGTH (kPa) - 50 100 150 200
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	+ + + + + + + WP W WL WATER CONTENT & ATTERBERG LIMITS I O - I I O I DYNAMIC CONE PENETRATION TEST, BLOWS/0.3m ▼ REMARK & GRAIN SIZ DISTRIBUT STANDARD PENETRATION TEST, BLOWS/0.3m ● IIII SIZE
0 -	266.8				0	_		ЦЦ ЦЦ ЦЦ		10 20 30 40 50 60 70 80 90 100 _{GR SA SI}
-		TOPSOIL Clayey silt, Trace gravels Brown, loose, moist		•	1 -	ss	1	<u>460</u> 460	8	
-	266.0	SANDY LEAN CLAY (CL)			2 -					
1 -		Silty sand seams, traces of gravel Brown, firm , moist			3 -	SS	2	<u>460</u> 460	7	
-	265.2				5 -				_	
-		very stiff to hard, grey, moist			6 -	SS	3	$\frac{410}{460}$	23	
2 -					7 -					
-					8 - 9 -	ss	4	$\frac{460}{460}$	49	
3 -					10-					
-	263.3	Borehole terminated at 3.55 m BGS			11-	ss	5	$\frac{460}{460}$	44	•
-		Borenoie terminated at 3.55 m BGS			12 -					
4 -					13- 14-					
-					15-					
5 -					16-					
-										 □ Field Vane Test, kPa □ Remoulded Vane Test, kPa △ Pocket Penetrometer Test, kPa

C	s	tantec	B		XEH N: 48	IOI 848 0	LE 56 I	RE(E: 595	C OR 569	BH36-23 Sheet 1 of 1
LO		N12861 Dixie Road, Caledon								PROJECT No. 121624778 DATUM NAD83
D.	ATES: E	ORING <u>03/02/2023</u>				WAT	TER I	LEVEL		TPC ELEVATION
(m) H			PLOT	LEVEL	H (ft)			MPLES		UNDRAINED SHEAR STRENGTH (kPa) - 50 100 150 200 - + + + + + + + +
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	WP W WL WATER CONTENT & ATTERBERG LIMITS → → DYNAMIC CONE PENETRATION TEST, BLOWS/0.3m ▼ REMARKS & & & & & & & & & & & & & & & & & & &
0 -	265.7	TODOOH	<u></u>	_	0-	ļ, —		Ш Ш С		10 20 30 40 50 60 70 80 90 100 _{GR SA SI C}
-	265.4	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist			1 -	ss	1	<u>360</u> 460	4	
1 -		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, very stiff to hard, moist			2 - 3 -	ss	2	$\frac{460}{460}$	24	
-		blown, very still to hard, moist			4 - 5 -	/\		460		
2 -				•	6 -	ss	3	<u>460</u> 460	32	
-					7 - 8 -	ss	4	460	26	
3 -	262.6				9 - 10-			460	20	
-		Traces of gravel, some silt seams Very stiff, brown, moist			11-	ss	5	$\frac{460}{460}$	50	
4 -					12 - 13 -					
-					14- 15-					
5 -	260.8	Hard, grey, moist	•		16-	ss	6	$\frac{460}{460}$	34	↓ Hard Augering
-					17- 18-					
6 -					19- 20-					
-	259.1	Borehole terminated at 6.55 m	× ×	•	21-	ss	7	$\frac{460}{460}$	50	
7 -		Borenoie terminated at 6.55 m BGS.			22 - 23 -					
-					24 - 25 -					
8 -					25 26-					☐ Field Vane Test. kPa
										 □ Field Vane Test, kPa □ Remoulded Vane Test, kPa △ Pocket Penetrometer Test, kPa

C	S	tantec	B	OR N	EH N: 48	[O] 348 1	LE 27 1	RE(E: 595	C OR 368	D					E	BE	ł3′	7-2	23		Sheet 1 of 1
	LIENT _	-																T No).		<u>121624778</u>
		N <u>12861 Dixie Road, Caledon</u> ORING <u>02/17/2023</u>				WAT	TERI	LEVEL									Л	-		r	NAD83
	ATES: B	ORING <u>02/17/2023</u>				WAI															
Ê	z		L01	VEL	ft)		SAI				INDI	۲АП 50	IED :		AR 100	51	REI	150			200
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC		ENT 8 NE PEI	NETR	ATIO	N TI	EST,	BLO\	.3m	3m	▼ REMARK & GRAIN SIZ DISTRIBUT
0 -	264.4				-0-	_		8 2 2 2 2 2		1	0 2	20	30	40	50	60) 7	0	80	90	100 GR SA SI
-	263.9	TOPSOIL Clayey silt, Trace gravels Brown, loose, moist		•	1 -	SS	1	$\frac{460}{460}$	6	•											-
-		SANDY LEAN CLAY (CL) Silty sand seams, traces of gravel Brown, stiff, moist			2 -																-
1 -					3 -	SS	2	$\frac{130}{460}$	9												
-	262.9	very stiff to hard, grey, moist			5 -																-
2 -					6 -	ss	3	<u>250</u> 460	8	•											
-					7 -																
-					8 -	ss	4	$\frac{410}{460}$	26			•									
3 -					9 - 10-																-
-	260.9				11 -	ss	5	$\frac{460}{460}$	37												
-	200.9	Borehole terminated at 3.55 m BGS			12-	,															
4 - -					13-																
-					14-																· · · - ·
-					15-																
5 -					16-																-
5 -											Re	mou	ane T lded V Penet	Vane	Test						

C	S	tantec	B		REH N: 43	IOI 847 3	LE 89 B	RE(E: 596	C OR 080	D						B	H/N	٨V	V3	8-2	sh 23	eet 1 of 1
Cl	LIENT _	QuadReal Properties														PRC	JEC	Г Nc).		12	1624777
	DCATIO															DAT	ГUM	_				NAD83
D.	ATES: B	oring <u>01/23/2023</u>				WAT	FER I	LEVEL	03/10)/20	23				-	TPC	ELE	VAT	ION			
(u	Z		01	Ē	t)		SAI	MPLES		ι	INDF	RAII 50	NED	SH	EA 10		TRE	NGT 150	•		200	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC	co	NE PI	ENET	RAT	TION	G LIM TEST, F, BLC	BLOV		-0	- ▼ ●	W _L -1 REMARKS & GRAIN SIZE
	264.9					1		TCF	0	1	0 2	20	30	40	5	0 6	50 ⁻	70	30	90	100	DISTRIBUTIO (%) GR SA SI C
0 -		TOPSOIL silty clay, trace of gravel, organics		•	0 1 -	ss	01	<u>410</u> 610	7	•												<u>or sa si c</u>
1 -	a (a 7	Brown, loose, moist SANDY SILTY CLAY (CL-ML)			2 - 3 -		02	200	22													
	263.7	sandy silty clay Very stiff, brown, DTPL			4 - 5 -	1 22	02	610														4 26 34 36
2		SANDY LEAN CLAY (CL) trace of gravel			6 - 7 -	ss	03	<u>610</u> 610	16		•											
	262.0	brown, very stiff, moist			8 - 9 -	ss	04	$\frac{610}{610}$	17		•											
3 -	202.0	Some gravel, smooth gravel within sample			10 - 11 -	ss	05	$\frac{610}{610}$	21			•										
4		brown, very stiff, moist			12 - 13 -		06		17		1		-									10 26 33 31
	260.4	grey, stiff, very moist			14- 15-	133		<u>510</u> 610	17													
5 -		grey, suit, very moist			16- 17-	∦ss	07	<u>610</u> 610	12		•											
6 -					18- 19-																	
			2		20 - 21 -	ss	08	$\frac{300}{610}$	27													
7 -					22 - 23 -																	
	257.3	LEAN CLAY (CL)			24- 25-	Mag	00	610	17													0 4 45 51
8		Trace of sand grey, very stiff, very moist			26- 27- 28-	88	09	<u>610</u> 610	17													
9 -	255.8			⊥	28 - 29 - 30 -																·	
	255.2	Shale fragaments grey, hard, very moist			30- 31- <u>32</u> -	ss	10	$\frac{610}{610}$	50						e						·	
0-		Borehole terminated at 9.75 m BGS Borehole dry and open			32 33- 34-																	
1-					35- 36-																	
• • • •					37- 38-																	
12-					39-						Fie	ld V	ane	Test	, kF	Pa					: F : F	
																est,	kPa					
										Δ	Po	cket	Pen	etror	nete	er Te	st, kl	Pa				

C	s	tantec ^{MO}	Nľ	ГO	RI N: 4	NG 847 3	F V 389	VE E:	LL 596	7 F 08(RE	C	OF	RD)		BH	/M	W38	Sheet 3-23	1 of 1
C	LIENT _	QuadReal Properties															PROJE	CT N	o .	12162	<u>24777</u>
		N <u>12489 Dixie Road</u>															DATU	М		N	AD83
D.	ATES: E	BORING <u>01/23/2023</u>				WA	TEI	R LEV	VEL	<u>0</u> 2	3/10)/2(023				TPC E	LEVA	TION		
$\widehat{}$	7		01	Щ	_			,	VAP	וו ור	D				SA	MPL	ES				
DEPTH (m)	ELEVATION (m)		STRATA PLOT	WATER LEVEL	H (ft)		c	ONC								Я	ш			WELL	
I L d	EVA (m	STRATA DESCRIPTION	ATA	ШШ	DEPTH (ГЛA		113	•		ТҮРЕ	NUMBER	N-VALUE		CONS	STRUCT	ON
ä	EL		STR	MA			%	6LEL			▲ p	opn	n		ŕ	NN	>-N		0010	511001	
				-		•	20	2	40	60)	80									
_ 0 _	264.9 264.6	TOPSOIL	<u></u>		0		20 100) 2	00	300	0 4	400	:::	1-17							
	204.0	silty clay, trace of gravel, organics	İti	1	1 -									EX	SS	01	7				
Ē		Brown, loose, moist	I H]	2 - 3 -					-											
	263.7	SANDY SILTY CLAY (CL-ML) sandy silty clay			3 - 4 -									ŧΪ	SS	02	22				
		Very stiff, brown, DTPL			5					-											
2		SANDY LEAN CLAY (CL)		1	6 -									EX	SS	03	16				
		trace of gravel	//		7 -																
ĒĒ	262.0	brown, very stiff, moist			8 - 9 -									HX	SS	04	17				
3 -	202.0	Some gravel, smooth gravel within	1.		10-					-			<u> </u>								
Ē		sample	•	1	11-									EX	SS	05	21				
		brown, very stiff, moist	//	1	12-																
4 -					13 - 14 -									ŧ∃X	SS	06	17				
Ē	260.4				14									H							
5		grey, stiff, very moist			16-									I	SS	07	12				
				1	17-					:				ľ							
					18-									H							
Ē 6 -					19 - 20 -								<u>.</u>								
			•/•		20-									I	SS	08	27		? •		
			/	1	22 -									1		00	27				
7 -					23-								<u> </u>								
	257.3				24-									E							
Ē		LEAN CLAY (CL)			25 - 26 -									I	SS	09	17	[:目:			
8-		Trace of sand grey, very stiff, very moist			20					-				14	55	0)	17	¦₿	• •		
F -		grey, very still, very moist		T	28-									H				ŀ₿.			
F 9 -	255.8			1 -	29-									-					• •		
	233.0	Shale fragaments	\forall		30-									1	00	10	50				
ĒĒ	255.2	grey, hard, very moist			31 - <u>32</u>					-			<u>.</u>	ΗΛ	SS	10	50		:		
10		Borehole terminated at 9.75 m BGS Borehole dry and open			33 -								<u> </u>								
Ē		borenoie ary and open			34-																
					35-	:::															
11-					36-								<u> </u>								
E					37 - 38 -																
12-					30 39-					:			<u> </u>								
12-	LABOR	ATORY ANALYSES:																			
																		L			

C	S	tantec	B	OF	REF N: 4	IOI 847 4	LE 79 I	RE(E: 595	C OR 968	D					В	H3	9-2	23	S	heet 1 of 1
	LIENT _															OJEC		э.	1	21624777
		N <u>12489 Dixie Road</u>				117.4.7										TUM				NAD83
D.	ATES: B	ORING <u>01/23/2023</u>			<u> </u>	WAT		LEVEL												
<u>ر</u>	z		0 T	Ē	a		SAI	MPLES	5	l	IND	RAIN 50	IED \$		AR 8 .00	STRE	NGT 15((Pa) 20	0
DEPTH (m)	(I	STRATA DESCRIPTION	A PL	Ш	(II) H			mm) 3(%)			+		+		-		+			
ЕРТ	EVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (щ	BER	SCF (-VALUE RQD(%)	WA	TER (CONT	ENT &	ATTE	RBE	rg lim	ITS	W _I	> W	
	EL		STF	MA.		ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	RC-VA							I TEST			.3m 🔻	REMARKS & GRAIN SIZE
			+				Z	U U U U U U U U U U U U U U	ч Ч Ч							T, BLC			•	DISTRIBUTION
0 -	265.6	TOPSOIL	<u><u> </u></u>		0-	М					0 2			40	50				90 10	0 (%) GR SA SI C
_	265.0	silty clay, trace of gravel, organics	<u>// \</u>	4	1 -	∦ss	01	$\frac{410}{610}$	3	•										-
-	20010	Brown, loose, moist	/H		2 - 3 -	\square			_											16 32 29 23
1 -	264.4	SANDY SILTY CLAY (CL-ML)			3 4 -	∬ss	02	$\frac{610}{610}$	13		•									-
_		stiff, brown, moist			5 -															-
2 -		SANDY SILTY CLAY WITH	'M		6 -	∦ss	03	$\frac{610}{610}$	20			•								-
-		GRAVEL			7 -															
-		sandy silty clay with gravel brown, very stiff, moist			8 - 9 -	∬ss	04	$\frac{610}{610}$	23			•								-
3 -		brown, very still, moist			10-	1	-	010											· · · · · ·	-
-	262.3		<u>الإل</u>		11-	ss	05	$\frac{610}{610}$	36											-
-		SANDY LEAN CLAY (CL) sandy lean clay			12-	η	-	610												-
4 -		hard, brown to grey, moist	/.		13-					::::									: : : : : : : : : : : :	-
_	261.1				14-															-
-		grey, stiff, moist			15- 16-	Ass	06	$\frac{610}{610}$	20											
5 -	260.4				17-	<u> </u>		610	20											-
-		very stiff to hard, grey, moist	//		18-															-
6 -			/.]	19-															-
-					20-		07	610												-
-	258.9				21 - 22 -	N ₂₂	07	$\frac{610}{610}$	32				•							-
7 -		Very stiff, grey, moist			23 -														<u>.</u>	-
-				1	24-															-
-					25-	<u></u>		(10												-
8 -					26-	∦ss	08	$\frac{610}{610}$	26			•								-
_					27 - 28 -															-
-			//	1	20 29 -															
9 -			[//		30 -	\downarrow														
-	255.9		1.		31 -	∦ss	09	$\frac{610}{610}$	21			•								-
10-	9	Borehole terminated at 9.7 m BGS			32		<u> </u>													-
-		Borehole dry and open			33 - 34 -]														
-					34-															-
11-					36-	$\left \right $: :::: : :::::	-
-					37-	$\left \right $														
-					38-	 														
12-					39-	<u>† </u>					<u> </u>	14 17	<u> :::</u>		D-	:::::			: ::::	-
													ane T ded V			kPa				
										Δ						est, kl	Pa			

C	S	tantec	B	OR	N: 4	IOI 847 5	LE 22 F	RE(E: 596	C OR 036	D					B	H4	0-2	23	S	heet 1 of 1
CI	LIENT _	QuadReal Properties													PRC	JEC	Г No).	12	21624777
LC	OCATION	N 12489 Dixie Road													DAT	ΓUM	_			NAD83
DA	ATES: B	oring <u>01/24/2023</u>				WAT	TER I	LEVEL							TPC	ELE	VAT	ION		
	_		υT	E			SAI	MPLES	;	l	JND		ED :		AR S	TRE				
<u></u>	NOL		PLO		H (ft)			(n) (n)				50]	.00		150		20	0
DEPTH (m)	EVATION (m)	STRATA DESCRIPTION	TA	L L	DEPTH (۲. ۲	CR(T)	ы (%)	WA		CONT	ENT 8		RBER	GUM	TS	Wp	W	W _L
8			STRATA PLOT	WATER LEVEL	В	ТҮРЕ	NUMBER	/ER/)/S	-VALUE RQD(%)						ATION			• VS/0.3	Bm ▼	REMARKS
			0	>			Z	RECOVERY (mm) TCR(%) / SCR(%)	N-N N-N	ST	ANDA	RD PE	NETF	RATIO	N TES	Γ, BLO	WS/0.		•	& GRAIN SIZE DISTRIBUTIO
0 -	265.8				0			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			10	20	30	40	50 6	50 7	70 8	80	90 10	0 GR SA SI C
		TOPSOIL silty clay, trace of gravel, organics	<u>, , , , , , , , , , , , , , , , , , , </u>		1 -	ss	01	$\frac{610}{610}$	6	•										
	265.2	Brown, loose, moist			2 -	Λ		010												-
1 -		SANDY SILTY CLAY (CL-ML)	$\left \right\rangle \right\rangle$,	3 -	M ss	02	<u>610</u> 610	22			•								
-		sandy silty clay			4 -	η		610												
-		Very stiff, brown, DTPL			5 - 6 -	Nee	03	$\frac{610}{610}$	20											6 35 32 27
2	263.7				7 -	133		610	20											
-		SANDY SILTY CLAY WITH GRAVEL (CL-ML)			8 -		0.4	610	21											
-		sandy silty clay with gravel			9 -	82	04	610	21			-								
3 -		Very stiff, brown, DTPL			10-	M		(10	_											
-			\mathbb{N}			∦ss	05	$\frac{610}{610}$	23			•								
					12 - 13 -															
4 -					13-]														
-	261.2		<u> </u> N]		15-															18 30 25 27
5		SANDY LEAN CLAY (CL) Very stiff, Brown to grey, some	//		16-	ss	06	$\frac{610}{610}$	18											10 50 25 27
		rusty vanes	1	1	17-	η		010												
-					18-															<u>.</u>
6	259.7				19-															-
-		Shale fragaments, hard			20 - 21 -	ss	07	<u>610</u> 610	26											
-					21 - 22 -	N ₂₂		610	20											-
7			1.		23-															
-			•		24-	$\left \right $														
-			[/ ,	1	25-	M		610												
8 -	257.6		/		26- 27-	\mathbb{N}^{SS}	08	$\frac{610}{610}$	36											-
-	-	Borehole terminated at 8.22 m BGS]	27-]										
		Borehole dry and open			20 29-															
9 -					30-	\square														
-					31 -	∬ss	09	$\frac{250}{610}$	50						•					
10-			-		32	\square	-													·
10-					33-	1														
-					34 - 35 -]														
11-					- 36 -															
•• -					37-	$\left \right $														
					38-	$\left \right $														-
12					39-															
-												eld Va								
											Re	moul	ded V	Vane	Test,	kPa				

C	s	tantec	B		REH N: 48	IOI 847 4	LE 02 H	RE(E: 596	C OR 117	Sheet 1 of 1 BH41-23
	LIENT _ DCATIO	QuadReal Properties N 12489 Dixie Road								PROJECT No. <u>121624777</u> DATUM <u>NAD83</u>
D.	ATES: E	ORING <u>02/01/2023</u>				WAT	FER I	LEVEL		TPC ELEVATION
(m	NC		LOT	EVEL	(ft)		SAI	MPLES	; 	UNDRAINED SHEAR STRENGTH (kPa) 50 100 150 200
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH	Щ	BER	RY (mn ' SCR(%	LUE 2D(%)	WATER CONTENT & ATTERBERG LIMITS $H \to H$
			STI	WA		ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	STANDARD PENETRATION TEST, BLOWS/0.3m
0 -	264.6	FILL			0-	Maa	0.1			10 20 30 40 50 60 70 80 90 100 _{GR SA SI (} (%)
	263.8	Sandy silt, with gravel Brown, moist	×		1 - 2 -	∦ss 	01	<u>300</u> 460	3	
1-	263.4	SANDY SILTY CLAY (CL-ML) sandy silty clay		ł	3 - 4 -	∦ss	02	<u>200</u> 460	19	
2		Very stiff, brown, DTPL SANDY SILTY CLAY WITH			5 - 6 -	ss	03	$\frac{300}{460}$	32	•
-		GRAVEL sandy silty clay with gravel Hard, brown, moist		•	7 - 8 - 9 -	ss	04	$\frac{360}{460}$	33	
3 -		riard, brown, moist			9 - 10 - 11 -	X ss	05	$\frac{460}{460}$	34	
4					11 12- 13-			460		
4	260.0				13 14- 15-					
5 -		grey, hard, moist			15 16- 17-	ss	06	<u>430</u> 460	33	
-					17 18- 19-					
6 -	258.5	LEAN CLAY (CL)			20 -	ss	07	410	50	
-		Hard, grey, moist			21 - 22 -	N 22		<u>410</u> 460	30	
7 -					23 - 24 -					
8 -					25- 26-	ss	08	$\frac{460}{460}$	47	
					27 - 28 -					
9 -					29 - 30 -	M		460		
-	255.0	Borehole terminated at 9.6 m BGS		1	31 - 32 -	∦ss ∣	09	<u>460</u> 460	52	
10		Borehole dry and open			33 - 34 -					
11-					35- 36-					
					37- 38-					
12-					39-	<u> </u>				□ Field Vane Test, kPa
										 Remoulded Vane Test, kPa Pocket Penetrometer Test, kPa

C	s	tantec	B		REH N: 43	IOI 847 4	LE 15 I	RE(E: 596	C OR 196	D					B	H42	2-2	3	;	Sheet 1 of 1
	LIENT _	· •													PRO	DJEC	Г No		1	21624777
		N <u>12489 Dixie Road</u> BORING <u>02/06/2023</u>				WAT	TER I	LEVEL								ΓUM ΓΕΙ Ε	- VAT	ION		NAD83
								MPLES		U	INDF	RAIN	ED S	HEA		TRE				
(u)	NOL		PLO		H (#)							50		1	00		150	+	2	00
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (щ	BER	SCR SCR	-UE D(%)	WA	TER C	ONTE	NT &	ATTE	RBER	G LIMI	TS	₩ _P	W	W _L
			STF	WA ⁻		ТҮРЕ	NUMBER	OVEF (%)/	N-VALUE OR RQD(%)							TEST, T, BLO			im 🕻	REMARKS & GRAIN SIZE DISTRIBUTION
0 -	262.5				0			RECOVERY (mm) TCR(%) / SCR(%)	20										90 1	DISTRIBUTION (%) GR SA SI CL
0 -		FILL Sandy silt, with gravel	<u>,</u>		1 -	ss	01	$\frac{460}{460}$	4	•										
	261.9	Brown, moist			2 -															
1 -		SANDY SILTY CLAY WITH GRAVEL (CL-ML)			3 - 4 -	X SS	02	$\frac{250}{460}$	17		•									
-		sandy silty clay with gravel		•	5 -	N SS	03	<u>360</u> 460	21											
2 -	260.5	very stiff, brown, moist SANDY LEAN CLAY (CL)			6 - 7 -		05	460	21											
-		sandy lean clay very stiff, brown, moist			8 - 9 -	ss	04	$\frac{360}{460}$	25											
3 -		very stiri, brown, moist		•	9 - 10 -			200												
-					11-	∦ss	05	$\frac{380}{460}$	28			•								
4 -					12 - 13 -															
-	257.9				14-															
_	20119	grey, very stiff, moist			15- 16-	ss	06	$\frac{460}{460}$	21											
5 -					17-															
					18- 19-															
6 -		grey, hard, moist	1		20-	M ss	07	$\frac{130}{460}$	50											
-	255.9	Very stiff to Hard			21 - 22 -		0,	460												
7 -					23-															- -
-				•	24 - 25 -	ļ		100	_											
8 -					26-	∦ss	08	$\frac{100}{460}$	19		•									
-			·//		27 - 28 -															
9 -			/		29-															
	252.9				30- 31-	ss	09	$\frac{200}{460}$	50						•					
10		Borehole terminated at 9.6 m BGS			32 -			100												
10-		Borehole dry and open			33- 34-															
-					35-															
11-					36- 37-															
					38-															+ - -
12-					39-	<u> </u>					Fiel	d Va	ne Te	st F	:::: Pa				::::	<u>F </u>
											Rer	nould	led V	ane	Гest,					
										Δ	Poc	ket P	enetr	omet	er Te	est, kF	Pa			

C	S	tantec	B		REH N: 4	IOI 847 4	LE 73 1	RE(E: 596	COR 304	D					В	BH4	43·	-2.	3		She	eet 1 of 1
	LIENT _ DCATIO	QuadReal Properties														OJEC TUN		No.]		. <u>624777</u> NAD83
D.	ATES: B	oring <u>01/27/2023</u>				WAT	FER I	LEVEL							TP	C EL	EV	ATI	ON			
n)	z		LOT	VEL	ff)		SA	MPLES		l	INDF	RAIN 50	IED (AR 8 00	STRI		GT⊦ .50	ł (kl		200	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMIC		ENT 8 NE PEI ENETF	NETRA		N TES	T, BL	LOW		-0	• [W _L -I REMARKS GRAIN SIZI DISTRIBUTIO
0 -	263.6				0			REC	0	1	0 2	20	30	40	50	60	70	80	0	90 1	100	(%) GR SA SI (
-	263.1	TOPSOIL Silty Clay, some sand, some gravel with rootlets	<u>, , , , , , , , , , , , , , , , , , , </u>		1 -	ss	01	$\frac{460}{460}$	3	•												
-		Brown, moist SANDY SILTY CLAY WITH		•	2 -			2.00														
1 -		GRAVEL (CL-ML) sandy silty clay with gravel			4 -	ss	02	<u>360</u> 460	18		•											
-	262.0	very stiff, brown, moist SANDY LEAN CLAY (CL) sandy lean clay			5 -	ss	03	$\frac{410}{460}$	23			•										
2 -		brown, stiff, moist			7 -																	
	260.8				8 - 9 -	ss	04	$\frac{460}{460}$	25			•										
3 -		brown, hard, moist			10-	8	05	$\frac{460}{460}$	39												· · · - · · · · · · · · · · · · · ·	
					11 - 12 -			460	57													
4 -					13-																	
					14- 15-			100													· · ·	
5 -	258.7	grey, hard, moist			16- 17-	ss	06	$\frac{460}{460}$	33				•								· · - · - · - · - · · - · · · · · ·	
-					18-																	
6 -			•		19- 20-																	
	257.0	Borehole terminated at 6.55 m BGS	//		21-	ss	07	$\frac{460}{460}$	58							•						
7 -		Borehole dry and open			22 - 23 -																	
-					24-																	
- - 8 -					25- 26-																	
													ane T			եր						
													ded V	/ane								

C	S	tantec	B	OR	REH N: 43	IOI 847 6	СЕ 95 н	RE(E: 596	C OR 068	D					В	H44	4-2	3		Sh	eet 1 of 1
	LIENT _	- -													PRO	DJECT	Г No.				<u>1624777</u>
		N <u>12489 Dixie Road</u>				11/ 4 7		EVEL								TUM	_				NAD83
D.	ATES: E	ORING <u>02/13/2023</u>	1		<u> </u>	WAI		LEVEL													
Ê	NO		STRATA PLOT	WATER LEVEL	(#)		SAI	MPLES			וטאונ	50	ED 3		00 00	TRE	150	п (Кн		200	
DEPTH (m)	/ATI(m)	STRATA DESCRIPTION	TAP	R LE	TH (ß	(mm CR(%	ы%		-				1	-		Wp	W	v	WL
DEP	ELEVATION (m)		TRA.	ATE	DEPTH	TYPE	NUMBER	ERY)/S('ALU (QD							RG LIMI I TEST,			—€ m	•	REMARKS
			ο Ο	3		⊢ ⊢	٦ N	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)							T, BLO				•	& GRAIN SIZE DISTRIBUTION
0 -	266.5	TODGOU			0			ЩЧЦ			0 2	20	30 4	0 5	50	60 7	70 8	0 9	90 1:::	100	(%) GR SA SI CL
-		TOPSOIL silty clay, some sand, some gravel	<u>''''</u>		1 -	ss	01	$\frac{300}{460}$	3	•										· · · · ·	
-	265.9	with rootlets	<u>\'/</u>			<u></u>	-	100													
-		Brown, loose, moist SANDY SILTY CLAY WITH		•	2 -	<u> </u>			_												
1 -		GRAVEL (CL-ML)			3 -	ss	02	$\frac{410}{460}$	25			•									
-		Brown, Very stiff, moist			4 -		-													· · · · ·	
-					5 -	M		460	_												
					6 -	SS	03	$\frac{460}{460}$	24			•									
2 -					7 -																
-					8 -	0.00	04	360	21												
-	263.8				9 -	1 22	04	<u>360</u> 460	21											· · ·	
3 -		SANDY LEAN CLAY (CL) Very stiff to Hard, brown to grey,			10-																
-		moist		1		SS	05	$\frac{460}{460}$	27												
-					11-	_		460	_,												
-					12-																
4 -					13-																
-			/		14-																
-					15-	<u> </u>														· · · -	
-					16-	ss	06	$\frac{330}{460}$	34												
5 -					17-	η															
-																					
-					18-																
6 -	200.4		//		19-															· · · -	
	260.4	Grey, very stiff, moist	1		20-	M		460												· · · -	
-	260.0				21 -	ss	07	$\frac{460}{460}$	26			•									
		Borehole terminated at 6.55 m BGS			22 -				-												
7 -		Borehole dry and open			23-																
-					24-																
-					25-																
-																					
8 -				1	26-	<u>t </u>					Fie	li V:	ine Te	est. k	Liii Pa		1::::			:: - [
											Re	moul	ded V	ane]	ſest,						
										Δ	Ро	cket l	Peneti	omet	er Te	est, kF	Pa				

C	s	tantec	B	OR	EH N: 48	IOI 847 74	LE 45 b	RE(E: 596	C OR 154	D					B	H4:	5-2	3	ę	Sheet 1 of 1
	LIENT _	· ·													PRO	DJECT	'No.		1	21624777
		N <u>12489 Dixie Road</u>				337.4.77		EVEL								TUM	_			NAD83
D.	ATES: B	ORING <u>02/13/2023</u>				WAI		LEVEL												
(m	NO		LOT	VEL	ft)		SAN	MPLES			וטאנ	30	ED S		4R 5 00	TREN	150	1 (KF		00
DEPTH (m)	(ATIC	STRATA DESCRIPTION	TAP	RLE	DEPTH (ft)		£	(mr CR(%	ы(%		1	I			1			Wp	W	1 <i>W</i> L
DEP	ELEVATION (m)		STRATA PLOT	WATER LEVEL	DEF	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)							RG LIMI [™] TEST,		₽ S/0.3i	−⊖ n ¶	REMARKS
			S	5		F	Ŋ	COV R(%	N-N R F							T, BLO\			•	& GRAIN SIZE DISTRIBUTION
0 -	266.2	TOPSOIL	<u>x\''</u>		0			A T D		: ::::	10 2 	20 3	80 4	0 5	50 ::::	60 7	0 8) 9	0 1	⁰⁰ GR SA SI CL
-	265.9	silty clay, some sand, some gravel			1 -	ss	01	$\frac{230}{460}$	4	٠										
-		with rootlets			2 -															
-		Brown, loose, moist SANDY SILTY CLAY WITH			2 - 3 -	/		41.0	_											
1 -		GRAVEL (CL-ML)	\mathbb{N}			ss	02	$\frac{410}{460}$	18									<u></u>		-
-	264.7	brown, very stiff, moist			4 -															
-	204.7	SANDY LEAN CLAY (CL)			5 -	ss	03	430	28											-
2 -		brown, very stiff, moist			6 -	1 22	03	$\frac{430}{460}$	28									<u></u>		- -
-				•	7 -															-
-					8 -	ss	04	$\frac{460}{460}$	25			•								
-			1		9 -	Λ		460												
3 -					10-	<u> </u>												<u></u>		
-					11-	ss	05	$\frac{460}{460}$	27			•								-
-					12-															
-					12															
4 -			•																	
-					14-															
-	261.4				15-		06	330	20											
5 -	261.4	grey, hard, moist	/./		16-	A SS	06	<u>330</u> 460	30											
-					17-															
-					18-															
-					19-															-
6 -	260.2				20-	<u> </u>												<u></u>		-
-		grey, very stiff, moist			21 -	ss	07	$\frac{460}{460}$	19											
	259.7	Borehole terminated at 6.55 m BGS	<u> </u>		21															
7 -		Borehole dry and open																		-
-					23-															-
					24-															
					25 -															
8 -					26-					-	:	:::: 	<u> </u>							+
													ine Te led V			kPa				
										Δ						est, kP	a			

C	s	tantec	B	OR	REH N: 43	IOI 847 4	LE 44 I	RE(E: 596	C OR 432	D					В	H/I	MW	V4(5-23	Sheet 1 of 1
	LIENT _ DCATIO														PRO		T No			21624777 NAD83
		oring <u>02/06/2023</u>				WAT	FER I	LEVEL	03/10	0/20	23							ION		NAD05
			OT	Ē			SAI	MPLES		ι	INDF		IED	SHE/				H (k	Pa))0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMIC	000	NE PE			TEST	ITS , BLOV	W _P I	W	WL I REMARKS & GRAIN SIZE DISTRIBUTION
0 -	260.7				0			TCI TCI	0	1	0 2	20	30	40	50	60	70 8	30	90 10	00 GR SA SI CI
	260.2	TOPSOIL Silty clay, trace of gravel			1 - 2 -	ss	01	<u>250</u> 460	4	•										
1 -	259.8	Brown, firm, DTPL SANDY SILTY CLAY (CL-ML)			2 3 - 4 -	ss	02	<u>300</u> 460	7	•										
		Trace of gravel, some rootlets Brown, stiff, moist			- 5 - 6 -	X ss	03	<u>360</u> 460	21			•								
2		SANDY LEAN CLAY (CL) trace of gravel Brown, very stiff, DTPL			0 7 - 8 -			460												7 29 32 32
3	257.8	brown to grey, hard, moist	•/•		9 - 10-	X SS	04	460	24											-
		brown to grey, nard, moist		•	10 11- 12-	ss	05	<u>460</u> 460	38		I	•		•						7 29 32 3
4					13- 14-															
				•	15- 16-	x ss	06	$\frac{460}{460}$	37											
5					17- 18-															
6	254.6			Ţ	19- 20-				_											- - -
		grey, stiff, moist			21 - 22 -	∦ss	07	<u>360</u> 460	10											
7					23 - 24 -															
8	253.1	grey, hard, moist			25 - 26 -	ss	08	$\frac{460}{460}$	32				•							
,					27 - 28 -															
9					29 - 30 -	 _		410												
	251.1	Borehole terminated at 9.6 m BGS			31 - 32 -	∦ss	09	$\frac{410}{460}$	31											
10		Borehole dry and open			33 - 34 -															-
11-					35- 36-															-
					37- 38-															
12-					39-	1					Fie	li V	ane T	`est, k	:::: Pa		1::::	1::::		+
										0	Re	moul	lded '	Vane '	Test,					
										Δ	Po	cket	Pene	trome	ter Te	est, kl	Pa			

C	s	tantec ^{MO}	Nľ	ГO	RI N: 4	NG 847 4	+ V 44	VE E:	LI 596	J F 432	Ŗ Ε	C	0]	RD)		BH	/MW	46-2	Sheet 1 23	l of 1
C	LIENT _	QuadReal Properties															PROJE	ECT No.		121624	<u>4777</u>
		N <u>12489 Dixie Road</u>															DATU				<u>.D83</u>
D	ATES: E	BORING <u>02/06/2023</u>				WA	TER	LEV	VEL	<u>0</u> ;	3/10)/2	023	3				LEVATI(ON _		
(L	Z		01	VEL	(f)			١	VAP	οu	R				SA		ES				
TH (r	ATIC ")	STRATA DESCRIPTION	API	S LE	DEPTH (ft)		С	ONC	EN-	(RA		NS	;		ш	НЦ	Щ		W	ELL	
DEPTH (m)	ELEVATION (m)		STRATA PLOT	WATER LEVEL	DEP		%	LEL			▲ p	onn	n		ТҮРЕ	NUMBER	N-VALUE	C	ONST	RUCTIC	ON
	Ш		S	Ň			,,,				— r					z	Ż				
- 0 -	260.7				0		20 100	2	40 00	60 30) 0	80 <u>400</u>			,						
	260.2	TOPSOIL Silty clay, trace of gravel	× · · / ·	;	1 -										SS	01	4				
Ē	259.8	Brown, firm, DTPL			2 -																
1 -	239.0	SANDY SILTY CLAY (CL-ML)			3 -										SS	02	7				
		Trace of gravel, some rootlets Brown, stiff, moist			4 - 5 -																
2		SANDY LEAN CLAY (CL)			6 -										SS	03	21				
		trace of gravel			7 -										/						
	257.8	Brown, very stiff, DTPL	.,		8 - 9 -										SS	04	24				
3 -	237.0	brown to grey, hard, moist	//		10-			<u> </u>						: - : -\			• •				
					11-										SS	05	38				
4					12 - 13 -																
†					14-																
			• •		15-										SS	06	37				
5 -			//		16- 17-										66	00	57				
					18-																
	254.6			Ţ	19-																
- 6 -		grey, stiff, moist	1.1		20 - 21 -										SS	07	10				
					21 - 22 -																
7 -					23-			· · · ·					:: ::								
	253.1				24-																
8-		grey, hard, moist			25- 26-										SS	08	32				
					27-																
				•	28-																
= 9 =					29 - 30 -																
	251.1		•/>		31 -									E (SS	09	31				
		Borehole terminated at 9.6 m BGS			32-																
		Borehole dry and open			33 - 34 -																
					35-																
-11-					36-			<u> </u>					::								
Ē					37- 38-									H							
12-					- 38 - 39																
12	LABOF	ATORY ANALYSES:																			
L	1																	+			

C	S	tantec	B		N: 4	IOI 847 4	LE 74 I	RE(E: 596	C OR 531	D					В	H4	7-2	23	SI	neet 1 of 1
	LIENT _	· •													PRO	OJEC	T No	э.	12	1624777
		N <u>12489 Dixie Road</u>													DA	TUM	_			NAD83
D	ATES: B	ORING <u>02/06/2023</u>				WAT	FER I	LEVEL							TPO	CELE	EVAT	TION		
Ē	z		от	ĒL			SAI	MPLES	;	ι	INDF	RAIN 50	IED S		AR S .00	STRE	NGT 15(Pa) 20)
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC		IE PEN	ATTE	RBEF	RG LIM I TEST T, BLC	ITS , BLO	₩ _P ►	W O	W _L
0 -	258.8				0			ЩЧ		1	0 2	20	30 4	40	50	60	70	80	90 10	GR SA SI C
	258.5	TOPSOIL Silty clay, trace of gravel Brown, firm, moist		•	1 -	ss	01	$\frac{\underline{250}}{460}$	4	•										
-		SANDY SILTY CLAY (CL-ML) Trace of gravel, some rootlets			2 - 3 -			200												
1 -	257.6	Brown, hard, moist SANDY LEAN CLAY (CL)				ss	02	<u>300</u> 460	43					•						-
-		trace of gravel brown, very stiff, moist			5 -	ss	03	$\frac{410}{460}$	22			•								-
2 -	256.5				0 - 7 -			400												-
-		brown to grey, hard, moist			8 - 9 -	ss	04	$\frac{460}{460}$	39					•						-
3 -					9 - 10 -															-
-					11-	ss	05	<u>460</u> 460	38											-
- 4 -			2		12 - 13 -															_
-	254.2				14-															
5 -		grey, stiff to very stiff, moist			15- 16-	ss	06	$\frac{460}{460}$	12		•									
					17-															
-					18- 19-															
6 -			2		20 - 21 -	ss	07	$\frac{460}{460}$	15		•									-
-	252.2	Borehole terminated at 6.55 m BGS Borehole dry and open	<u> '/</u>		21-			400												-
7 -		2.5. onote all and open			23-															-
-					24 - 25 -															-
8 -					26-															
0 -													ane T			1,0.				
													ded V			kPa est, kl	_			

C	s	tantec	B	OR I	REH N: 43	IOI 847 8	LE 42 F	RE(E: 596	C OR 181	D					B	H/N	MW	/48	3-2	sh 23	eet 1 of 1
	LIENT _	· ·													PRC	DJECT	Г No				1624777
		N <u>12489 Dixie Road</u>				117.47		EVEL	02/10		22					ГUМ	_				NAD83
D.	ATES: E	ORING <u>02/13/2023</u>				WAI			<u>03/10</u>							ELE					
ш	NO		LOT	NEL	(#)		SAI	MPLES				50	ED 3		4r 3 00		150	п (кг		200	
DEPTH (m)	ATIC m)	STRATA DESCRIPTION	TAP	RLE	DEPTH (ß	RY (mm) SCR(%)	ы(%		-	I			1	-1	1	Wp	W	7	WL
DEP	ELEVATION (m)		STRATA PLOT	WATER LEVEL	DEP	ТҮРЕ	NUMBER	ERY) / S('ALU (QD							G LIMI TEST,		∣S/0.3	—С m	, ▼	-I REMARKS
			ο Ο	3		- i	٦ N	RECOVERY (TCR(%) / SC	N-VALUE OR RQD(%)							T, BLO				•	& GRAIN SIZE DISTRIBUTION
0 -	265.4	TODGON	<u></u>		0				_	1	0 2	20 3	0 4	0 5	50 0	50 7	70 8	0 9	0	100	(%) GR SA SI CL
	265.1	TOPSOIL Silty clay, trace of gravel	і÷ ИХ		1 -	∦ss	01	$\frac{250}{460}$	4	•										Ē	
-		Brown, soft, DTPL			2 -			260	_											Ē	
1 -	264.2	SANDY SILTY CLAY (CL-ML) Trace of gravel, some rootlets	<u> </u>		3 - 4 -	X ss	02	$\frac{360}{460}$	19											: F : F	
-		Brown, very stiff, moist			5 -	Maa		/30												Ē	
2 -		SANDY LEAN CLAY (CL)			6 -	∦ss	03	$\frac{430}{460}$	23			•								: -	
-	263.1	trace of gravel brown, very stiff, moist	///	Ţ	7 - 8 -	Mag	04	460	31												
-		hard to very stiff, brown, moist			9 -	Nss	04	460	51												
3 -					10-	M ss	05	460	28											: -	
-					11 - 12 -			460													
4 -					13-																
-	260.9				14-																
		very stiff, grey, moist			15- 16-	ss	06	$\frac{460}{460}$	16		•										
5 -					17-			-100													
-					18-																
6 -					19- 20-				_											:-	
			•		21 -	∦ss	07	$\frac{410}{460}$	27			•								: [
7 -					22 - 23 -															· · · · · · · · · · · · · · · · · · ·	
			2		23 - 24 -																
	257.8	Trace to some gravel	/./		25-	Maa	00	460													
8 -		6			26 - 27 -	122	08	$\frac{460}{460}$	21											:	
-			/./		27																
9 -					29-																
	255.0				30- 31-	ss	09	$\frac{430}{460}$	26			•									
	255.8	Borehole terminated at 9.6 m BGS			32-			460												: F : F	
10-		Borehole dry and open			33 -																
					34- 35-																
11-					36-															: [
-					37-																
					38- 39-	1															
12-			1			1		1					ne Te			1.:::					
													led V)-				
										Δ	Poo	cket P	enetr	omet	er Te	est, kF	'a				

$\left(\begin{array}{c} \\ \end{array} \right)$	S	tantec MO	NĽ	ΓO	RI N: 48	NG 847 8	F V 842	VE E:	LI 596	」 18	RE	C	CO	R	D			BH	/N	Л	N4	-8-2	Shee 23	et 1 c	of 1
	LIENT _ DCATIO	QuadReal Properties N																PROJE DATU		N	о.		1216 N	5247 JAC	
D	ATES: E	ORING <u>02/13/2023</u>				WA	TEF	R LEV	VEL	<u>0</u>	3/1	0/2	202	3				TPC E	LEV	VA	FION	۱ <u> </u>			
	_		T													SA	MPL	ES							
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)			ONC 6LEL					m			ТҮРЕ	NUMBER	N-VALUE			COI		ELL RUCT	TION	1
- 0 -	265.4	TOPSOIL	<u></u>		0		100) 2		30		<u>40</u>		:1-					M	N					
	265.1	TOPSOIL Silty clay, trace of gravel Brown, soft, DTPL			1 - 2 -										X	SS	01	4							
1-	264.2	Trace of gravel, some rootlets			3 - 4 -										X	SS	02	19							
2	262.1	Brown, very stiff, moist SANDY LEAN CLAY (CL)		-	5 - 6 - 7 -										X	SS	03	23							
	_203.1	trace of gravel brown, very stiff, moist/ hard to very stiff, brown, moist		Ţ	8 - 9 -										X	SS	04	31							
3 -		nara to very still, orown, moist			10- 11-										\mathbf{X}	SS	05	28							
4					12 - 13 -																				
	260.9	very stiff, grey, moist			14- 15-											SS	06	16							
5-				•	16- 17- 18-												00	10							
6					10 19- 20-																				
					21 - 22 -											SS	07	27							
7-7-	257.8		•		23 - 24 -																				
8-		Trace to some gravel			25 - 26 - 27 -										X	SS	08	21							
					28 - 29 -																				
	255.8				30- 31-											SS	09	26		-	•				
10-		Borehole terminated at 9.6 m BGS Borehole dry and open			32 - 33 -						<u> </u>		<u>.</u>												
		F.			34- 35-																				
11					36- 37-																				
12-					38- 39-																				
	LABOF	ATORY ANALYSES:																							

C	s	tantec	B	OR	EH N: 43	IOI 847 5	LE 13 F	RE(E: 596	C OR 626	D					Bł	H/N	ЛW	/49	-23	heet 1 of 1
	LIENT _	· ·												1	PROJ	IECI	Г No		12	21624777
		N <u>12489 Dixie Road</u>				117.4.7		EVEL	02/1/		<u></u>				DAT		-			NAD83
D.	ATES: E	ORING <u>02/06/2023</u>				WAI			<u>03/10</u>	-							VAT			
μ)	N		5	VEL	(#)		SAN				INDF	50	ED S	HEAI 10		REI	150	⊣ (кн	′a) 2()0
IH (I	ATIC ")	STRATA DESCRIPTION	API	LE Z	TH (~	RY (mm) SCR(%)	(%		-	-						Wp	w	WL
DEPTH (m)	ELEVATION (m)		STRATA PLOT	WATER LEVEL	DEPTH	ТҮРЕ	NUMBER	/SC	ALUE QD("					ATTER ETRAT				۔ دوروں	0	REMARKS
	ш		ی	Š		È	NUN	30VE	N-VALUE OR RQD(%)										•	& GRAIN SIZE DISTRIBUTION
0 -	260.6				0			RECOVERY (TCR(%) / SC	0	1	0 2	0 3	0 4	0 50) 6(0 7	70 8	0 9	0 10	00 GR SA SI CL
		TOPSOIL			1 -	ss	01	$\frac{250}{460}$	4	•										-
	260.0	Silty clay, trace of gravel Brown, firm, DTPL			2 -			100												-
1 -	259.4	SANDY SILTY CLAY (CL-ML)			3 -	ss	02	$\frac{410}{460}$	19		•					<u></u>				-
-		Trace of gravel, some rootlets Brown, very stiff, moist			4 - 5 -															-
		SANDY LEAN CLAY (CL)			6 -	ss	03	$\frac{460}{460}$	26			٠								
2 -	258.3	trace of gravel			7 -				_											
-		light brown, very stiff, moist			8 - 9 -	∦ss	04	$\frac{360}{460}$	36				٠							-
3 -		brown, hard, moist) 10-			410								<u></u>				-
-					11-	∦ss	05	$\frac{410}{460}$	45					•						-
-					12-															-
4 -			//		13- 14-	ļ														
-	256.0	very stiff, grey, moist	/		15-			280												-
5 -		very still, grey, moist			16-	X SS	06	<u>380</u> 460	19		•									-
-					17- 18-	Ì														-
-					10 19-															-
6 -	254.5	hard, trace to some gravel, moist	//		20 -	Mag	07	430	40											-
-		, 6,	•/•		21 - 22 -	∦ss	0/	$\frac{430}{460}$	40											-
7 -			//		22 -														· · · · · ·	-
-					24 -															
-			,		25-) SS	08	$\frac{300}{460}$	50											
8 -			/		26- 27-		00	460												-
-				Ţ	28-															-
9 -					29-															-
-	251.0				30- 31-	ss	09	$\frac{100}{460}$	50											-
-	251.0	Borehole terminated at 9.6 m BGS	<u> </u>		32-			460								<u></u>				-
10-		Borehole dry and open			33-															-
-					34 -															-
11-					35- 36-	[-
					37-															
					38-															
12-			1		39-	<u>t </u>					Fiel	d Vo	ne Te	st, kP	:::: a					-
														ane To		Pa				
										Δ	Poc	ket F	enetr	omete	r Tes	t, kP	Pa			

C	s	tantec MO	NĽ	ΓO	RI 1: 48	N(847	J 513	WE 3 E:	2L] 59	L] 6 62	RE	C	OF	RD)		BH	/MW	/49-2	Sheet 23	1 of 1
LC		N 12489 Dixie Road															DATU				AD83
D.	ATES: B	ORING <u>02/06/2023</u>				₩.	ATE	ER LE	VEL	<u> </u>	<u>13/10</u>)/20)23					LEVATI I	ON _		
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)		• •	CON(%LEI	-	TR	ATIO A f	opm			SA TYPE	NUMBER	N-VALUE	C		ELL	N
- 0 -	260.6	TODOUL	<u><u>x</u>\'''</u>		-0-		20 10	0)0 _ 2	40 200	6 3(0)0	80 <u>400</u>			1						
	260.0	TOPSOIL Silty clay, trace of gravel Brown, firm, DTPL			1 - 2 -										SS	01	4				
1	259.4	SANDY SILTY CLAY (CL-ML)			3 -			<u> </u>						H	SS	02	19				
		Trace of gravel, some rootlets Brown, very stiff, moist			4 - 5 - 6 -										SS	03	26				
2	258.3	SANDY LEAN CLAY (CL) trace of gravel light brown, very stiff, moist			7 - 8 -																
3		brown, hard, moist			9 -										SS	04	36				
					10- 11-										SS	05	45				
4					12- 13-																
	256.0	very stiff, grey, moist			14- 15-										66	0(10				
5		,, g,,		•	16- 17-										SS	06	19				
	254.5				18- 19-																
6-	254.5	hard, trace to some gravel, moist			20 - 21 -								· · · ·		SS	07	40				
- 7 -					22 - 23 -																
					24 - 25 -										ļ						
8					26 - 27 -								· · · ·		SS	08	50				
			2	Ţ	28 - 29 -																
-9-	251.0				30- 31-										SS	09	50				
	251.0	Borehole terminated at 9.6 m BGS			32-													<u>, , , , , , , , , , , , , , , , , , , </u>			
		Borehole dry and open			33 - 34 -																
					35-																
-11-					36- 37-																
					38- 39-																
12-	LABOR	ATORY ANALYSES:	1	1	37	<u>1 · ·</u>	· ·		1::				<u></u>	<u>1 1</u>	I	I	1				

C	s	tantec	B		REH N: 43	[0] 847 8	LE 44 B	RE(E: 596	COR 333	D BH50-23 Sheet 1 of 7	1
LO		N 12489 Dixie Road								PROJECT No121624777 DATUM NAD83	
D.	ATES: E	ORING <u>02/10/2023</u>		1		WAT	FER I	LEVEL		TPC ELEVATION	
l (m)	NOI		PLOT	-EVEL	H (ft)		SAI	MPLES		UNDRAINED SHEAR STRENGTH (kPa) 50 100 150 200	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	WP W WL WATER CONTENT & ATTERBERG LIMITS H O H DYNAMIC CONE PENETRATION TEST, BLOWS/0.3m V REMARK	
0	265.8		S S	5			NN	RECOV TCR(%	N-N N-N N-N	STANDARD PENETRATION TEST, BLOWS/0.3m & GRAIN SI DISTRIBUT 10 20 30 40 50 60 70 80 90 100 GR SA SI	TION
0 -	265.4	TOPSOIL	<u></u>		0 1-	ss	01	$\frac{200}{460}$	3	• I I I I I I I I I I I I I I I I I I I	
		Silty clay, trace of gravel Brown, firm, DTPL			2 -						
1-	264.2	SANDY SILTY CLAY (CL-ML) Trace of gravel, some rootlets			3 - 4 -	∦ss	02	$\frac{300}{460}$	20		
2	_204.2	Brown, very stiff, moist			5 - 6 -	ss	03	$\frac{410}{460}$	19		
		trace of gravel brown, very stiff, moist	/./		7 - 8 -	Miss	04	360	25		
3 -					9 - 10-			460			
-					11 - 12 -	ss	05	$\frac{410}{460}$	27		
4 -					13-						
	261.2	very stiff, grey, moist			14- 15-	Maa	0.0	380	1		
5 -		, , , , , , , , , , , , , , , , , , ,			16- 17-	1 22	06	<u>380</u> 460	21		
					18- 19-						
6 -					20 - 21 -	ss	07	$\frac{460}{460}$	15	•	
7 -					22 - 23 -			100			
-	258.1				24 - 25 -						
8 -		hard, grey, moist			26-	ss	08	$\frac{460}{460}$	32		
				•	27 - 28 -						
9					29 - 30 -	Maa		460			
	256.1	Borehole terminated at 9.6 m			31 - 32 -	∦ss ∣	09	<u>460</u> 460	40		
10-		Borehole dry and open			33 - 34 -						
11					35-						
11-					36- 37-						
12-					38- 39-						
										Field Vane Test, kPa	
										 Remoulded Vane Test, kPa Pocket Penetrometer Test, kPa 	

C	s	tantec	B	OF	REF N: 4	IOI 847 6	LE 20 H	RE(E: 595	C OR 838	D					В	H/]	MV	V5	1-2	sr 23	neet 1 of 1
C	LIENT _	QuadReal Properties													PR	OJEC	T No).		12	1624777
		N <u>12489 Dixie Road</u>												_	DA	TUM	[NAD83
D	ATES: E	ORING <u>01/25/2023</u>				WAT	FER I	LEVEL	<u>03/10</u>	0/202	3				TPO	CELI	EVAT	TON			
	7		01	Ш			SAI	MPLES		UN	NDR		ED S		AR 8 00	STRE	NGT 150		Pa) 200)
DEPTH (m)	(m) (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYN/	AMIC	CON	E PEN	ATTE ETRA	RBEF			W _P I-			W _L -I REMARKS & GRAIN SIZE DISTRIBUTION
0 -	266.6				0			TCF	0	10	2	0 3	0 4	0 5	50	60	70	80	90	100	
	266.1	TOPSOIL Silty clay, trace of gravel Brown, firm, DTPL			0 1 - 2 -	ss	01	<u>200</u> 610	3	•											-
1 -	265.4	SANDY SILTY CLAY (CL-ML) Trace of gravel, some rootlets		• ⊻	3 - 4 -	ss	02	$\frac{150}{610}$	9	•											6 24 33 37
2		Brown, stiff, moist SANDY LEAN CLAY (CL) some silt seams, some gravel			5 - 6 - 7 -	ss	03	$\frac{300}{610}$	17		٠										
-	2(2.5	Very stiff, brown, moist			8 - 9 -	ss	04	<u>460</u> 610	28			•									
3 -	263.5	some to trace silt, brown to grey, very stiff moist	•		10 - 11 - 12 -	ss	05	<u>460</u> 610	22			•									-
4					12 13- 14-	+															
5	261.4				15- 16-	ss	06	<u>460</u> 610	28			•									-
		some gravel very stiff, grey, moist			17- 18- 19-																
6 -					20 - 21 - 22 -	ss	07	$\frac{51}{610}$	17		•										-
7 -			• •		22 - 23 - 24 -																
8					25 - 26 -	ss	08	$\frac{410}{610}$	16		٠										-
					27 - 28 - 29 -																
9-	<u>257.4</u> 256.8	Some silt pockets hard, grey, moist			30 - 31 -	ss	09	$\frac{150}{610}$	50						•						-
10-	230.8	Borehole terminated at 9.75 m		-	32 33 -																
		Borehole dry and open			33 - 34 -	$\left \right $															
					35-	$\left \right $															
11					36-	$\left \right $:: =	
					37 - 38 - 39 -																
12-				I	_ 37 _	II	I	1			Ren	nould	ne Te led V enetr	ane	Гest,	kPa est, k	<u>Pa</u>	<u></u>		<u>::</u> Г	L

C	S	tantec MO	NĽ	ΓO	RI N: 48	NG 847 6	- W 20 E	[E]	LL 595 8.	RE (38	C	OR	D		BH	Sheet 1 of 1 /MW51-23
	LIENT _	QuadReal Properties N 12489 Dixie Road													PROJE DATU	ECT No. <u>121624777</u> M <u>NAD83</u>
		ORING $01/25/2023$				WA	ΓER I	LEV	EL (03/10	/20)23				MNAD05
				_					_				S	AMPL		
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	•	%L	NCI EL	/APOI	ATIOI ▲ p	pm		ТҮРЕ	NUMBER	N-VALUE	WELL
- 0 -	266.6				0		20 100	40 20	0ϵ	0 004	80 <u>400</u>					NA NZ
	266.1	TOPSOIL Silty clay, trace of gravel Brown, firm, DTPL			0 1 - 2 -								ss	01	3	
	265.4	SANDY SILTY CLAY (CL-ML) Trace of gravel, some rootlets		Ţ	3 - 4 - 5 -								ss	02	9	
2		Brown, stiff, moist SANDY LEAN CLAY (CL) some silt seams, some gravel			5 - 6 - 7 -								ss	03	17	
	263.5	Very stiff, brown, moist			8 - 9 -								ss	04	28	
	203.5	some to trace silt, brown to grey, very stiff moist			10 - 11 - 12 -								ss	05	22	
4					13 - 14 -											
- 5	261.4			•	15- 16- 17-								ss	06	28	
		some gravel very stiff, grey, moist			17 18- 19-											
					20 - 21 - 22 -								ss	07	17	
					23 - 24 -											
8					25 - 26 - 27 -								ss	08	16	
- 9 -	257.4				28- 29-											
		Some silt pockets hard, grey, moist			30- 31-								ss	09	50	
- 10	256.8	Borehole terminated at 9.75 m Borehole dry and open			- 32 - 33 - - 34 -											<u>. 1 .</u> :
-11-					35- 36- 37-											
12-					38- 39-											
12	LABOR	ATORY ANALYSES:														

C	s	tantec	B	OR	EH N: 48	IOI 847 5	LE 24 F	RE(2: 596	C OR 099	D					В	BH5	2-2	23		She	et 1 of 1
	LIENT _ DCATIO	QuadReal Properties N 12489 Dixie Road														OJEC TUM).]		<u>624777</u> NAD83
D.	ATES: E	ORING <u>01/24/2023</u>				WAT	TER L	EVEL							TP	C ELF	EVAT	ION			
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)			VPLES (%)XC			+	50		1	00	STRE	150			200 	WL
DEP			STRA	WATE	DEF	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYN/ STAN	AMIC NDAF	CON D PE	E PEN NETR	IETRA ATION		RG LIM N TEST ST, BLC	, BLOV DWS/0.	.3m	(•	H REMARKS & GRAIN SIZE DISTRIBUTION (%)
0 -	265.6	TOPSOIL	<u></u>		0			ЧЧ) 2		0 4	0 2	50 :::	60	/0 8	1		100	(%) GR SA SI CL
-	265.1	Clayey silt, organics, loose, moist SANDY SILTY CLAY (CL-ML)	<u>יי א</u> אוור			ss	S-01	<u>610</u> 610	5	•											
1 -		Trace of gravel, some rootlets Brown, stiff, moist			2 - 3 -	V		610												· -	
-	264.0				4 -		SS-02	<u>610</u> 610	13												
2 -	201.0	SANDY LEAN CLAY (CL) Very stiff, brown, moist			5 - 6 - 7 -	SS	SS-03	<u>610</u> 610	23			•									3 36 34 27
					, 8 - 9 -	ss	S-04	$\frac{410}{610}$	25			•									
3 -					10-	V		. 410													7 30 32 31
					12-		\$8-03	5 <u>410</u> 610	26												
4 -	261.0				13- 14-																
5 -	260.4	Brown to grey, stiff to very stiff, moist				ss	\$S-06	5 <u>410</u> 610	13		•										
-	200.4	grey, very stiff, moist			17- 18-																
6 -					19 - 20 -	M															
-	258.9	D. 1.1.4. 1.4.7			21 - 22 -	SS	S-07	7 <u>410</u> 610	16		•										
7 -		Borehole terminated at 6.7 m Borehole dry and open			23 -																
					24 - 25 -																
8 -					26-																
													ne Te			1.0					
																, kPa 'est, kl	Pa				
											ruc	ксі Р	cnetr	omet	ICI I	cə l, K	ıa				

C	S	tantec	B	OR	REF N: 4	IOI 847 7	LE 27 I	RE(E: 595	C OR 974	D					В	H5	3-2	23		Sh	eet 1 of 1
	LIENT _ DCATIOI	QuadReal Properties														DJEC TUM).		12	1624777 NAD83
D	ATES: B	oring <u>01/24/2023</u>				WAT	FER I	LEVEL							TPO	CELE	EVAT	ION	1		
			F				SAI	MPLES		ι	INDF		IED S			TRE					
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC	CON	IE PEN	ATTE NETRA		G LIM I TEST	, BLO\	₩ <u>/</u> ► ₩S/0.	+ > W - C	200 	W _L
0 -	265.8				0			REC	0	1	0 2	20 3	30 4	40 5	50	60	70	80	90	100	(0/)
	265.2	TOPSOIL Clay, some to trace of silt Brown, loose, moist			ľ	ss	01	$\frac{180}{610}$	3	•											
1 -		SANDY SILTY CLAY (CL-ML) Trace of gravel, some rootlets Brown, very stiff, moist			3 - 4 -	ss	02	$\frac{460}{610}$	17		•										
2 -	264.2	SANDY LEAN CLAY (CL) Trace of silt, some gravel brown, firm, moist				ss	03	<u>460</u> 610	19												
	263.0	Hard, brown			7 - 8 - 9 -	ss	04	<u>460</u> 610	7	•											
3						ss	05	<u>460</u> 610	36				•								
4 -					12 - 13 - 14 -																
5	261.2	Very stiff			15-	ss	06	$\frac{460}{610}$	33				•								
,					17- 18-	-															
6 -					19 - 20 -			460													
7 -	259.1	Borehole terminated at 6.7 m Borehole dry and open			21 - 22 -	SS	07	<u>460</u> 610	25			•									
/					23 - 24 - 25 -																
8 -					25-						Fie	ld Va	ane T	est, k	Pa						
											Re	moul	ded V	ane	Гest,	kPa est, kl	Pa				

C	S	tantec	B		REH N: 43	[O] 847 5	LE 48 1	RE(E: 596	C OR 261	D					ł	Зŀ	<u>15</u>	4-2	23		Sł	neet 1 of 1
	lent _	-													PI	ROJ	IEC.	ΓΝ	э.		12	1624777
		N 12489 Dixie Road															UM	-				NAD83
D	ATES: B	oring <u>01/27/2023</u>				WA]	fer i	LEVEL							TI	PC I	ELE	VA	FION	1 _		
_	z		ot	Ē			SA	MPLES	;	ι	JND	RAIN 50	IED		AR 100		RE	NGT 15((Pa)	200)
UEP I H (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)			CONT	ENT &	L ATT	ERBI	ERG		тs	Wj ►		⊣ w ə–	
	_		S	3		F	D	COV R(%	N-Z-RO				ENETI	RATIC	ON TE	ST,	BLO	WS/0	.3m		•	& GRAIN SIZ DISTRIBUTI
0 -	264.8				0			ЧЩ Ц		1	0	20	30	40	50	60	0 7	70	80	90	100	GR SA SI
-		TOPSOIL Silty Clay, brown, moist	<u></u>		1 -	ss	01	<u>300</u> 460	4	•												
-	264.2				2 -																	-
-		SANDY SILTY CLAY (CL-ML) Trace of gravel, some rootlets Brown, hard , moist			3 -	V		260														
-					4 -	SS	02	$\frac{360}{460}$	33													-
	263.3				5 -																	
-		SANDY LEAN CLAY (CL) Some gravel Hard, brown, moist			6 -	ss	03	$\frac{460}{460}$	34				•									
- ;	262.7	very stiff, brown, moisr			7 -																	-
-					8 -	ss	04	$\frac{460}{460}$	27			•										_
-	262.1	Hard, brown, moist			9 -	/\																
					10-		05	460	20													-
-	261.3	Borehole terminated at 3.6 m			11-	55	05	<u>460</u> 460	38													
		Borehole dry and open			12-																	
-					13-																	-
-					14-																	
					15-																	
; -					16-								ane T									
													lded ' Pene					Pa				

C	S	tantec	B	OR	REH N: 4	IOI 847 5	LE 66 B	RE E: 596	C OR 186	D						В	H/I	M	W	55	5-2	sh 3	eet 1 of 1
	LIENT _															PRO	DJEC	ΤN	lo.				<u>1624777</u>
		N <u>12489 Dixie Road</u>							02/14						_		TUM						NAD83
D.	ATES: B	oring <u>01/24/2023</u>			<u> </u>	WAI			<u>03/10</u>	-													
(L	z		0 I	VEL	(f)		SAI		;		JND	RA 5	JINE 50	ED S		AR S 00	TRE	NG 15		(kł		200	J
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)		~	R(%			+		+			+		-		+ Wp	w	7	W _L
DEP1	LEV.		RAT	TEF	Ц	ТҮРЕ	BEF	/SC	ALUE 2D(%								RG LIM			É	-0	_	-I REMARKS
	ш		ST	M		∣≿	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)								TEST T, BLC				m	•	& GRAIN SIZE DISTRIBUTION
•	265.8					1		TCF	_0												90	100	GR SA SI CI
0 -		TOPSOIL	<u></u>		-0- 1-		01	$\frac{250}{610}$	3														
-	265.2	Silty clay Brown, loose, moist	14. <u>*</u> ;	_	2 -	133		610	5														
1 -		SANDY SILTY CLAY (CL-ML)		┸	3 -	0	02	300	26														
-	264.3	Trace of gravel, some rootlets			4 -	133		$\frac{300}{610}$	20														
	20113	Brown, very stiff, moist			5 - 6 -	Mss	03	$\frac{410}{610}$	22													1	
2 -	263.6	SANDY LEAN CLAY (CL) with silty sand	Į.		7 -	133		610	22														
-		Very stiff, brown, DTPL			8 -	1	04	_460_	29														9 29 33 29
3 -	262.7	some gravel			9 -	133		$\frac{460}{610}$	29) <u>2</u>) <u>35</u> <u>2</u> .
3 -	202.7	very stiff, DTPL	1		10- 11-	Mss	05	$\frac{460}{610}$	38														
		Hard	·/;		11 12 -	133		610	50														
4 -					13-	$\left \right $								<u></u>									
	261.2				14-																		
-	201.2	Brown to grey, Very stiff to hard	1.		15- 16-		06	$\frac{460}{610}$	29														
5 -			·//		17-	133		610	29													·	
-					18-	$\left \right $																	
6 -	259.7				19-	$\left \right $								<u></u>									
		LEAN CLAY (CL)			20 - 21 -	Ass	07	$\frac{460}{610}$	28														
-		Some to trace of silt, some gravel Very stiff, grey, DTPL			21 - 22 -	η		610	20													1	
7 -		· • · · · · · · · · · · · · · · · · · ·			23-	$\left \right $: : :		<u></u>									
-	258.2				24-	1																	
0		hard, grey, moist			25- 26-	Iss	08	$\frac{460}{610}$	31														
8 -					27-	Λ~~		610															
-					28-	$\left\{ \right\}$																	
9 -					29 - 30 -									<u></u>									
					31 -	ss	09	$\frac{460}{610}$	39														
-	256.0	Borehole terminated at 9.75 m	μ2		32-	η	-	610						<u></u>									
10-		Borehole dry and open			33-	$\left \right $																	
-		-			34- 35-	1																	
11-					- 35 - 36																		
					37-	$\left \right $																	
					38-	$\left \right $																	
12-					39-	<u>+</u>						-1-1			:::: 	::: Dc						F	
														ne Te ed V		Ра Гest,	kPa						
										_							est, kl	Pa					

C	S	tantec MO	NĽ	ΓO	RI N: 48	N 84	G 7 56	W 6 1	/ E E:	LI 596	[_] 5 18	RF 86	EC	C O	R	D			BH	/M	W5	5-2	Shee 23	t 1 of	f 1
LO		QuadReal Properties N 12489 Dixie Road ORING 01/24/2023					VAT												PROJE DATU TPC E	М				AD	<u>83</u>
			⊢			Т											SA	MPL	FS						
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)		•	%L	DNC		TR/		рр	m			TYPE	NUMBER	N-VALUE		COI		ELL RUCT	ION	
- 0 -	265.8				0		1	20 <u>00</u>	2	40 00	6 3(0)0	80 40	0)0											
		TOPSOIL Silty clay			1 -	-										IXE	SS	01	3	Ŭ	ž				
	265.2	Brown, loose, moist	/ TIT	T	2 -	-										∄									
	264.3	SANDY SILTY CLAY (CL-ML) Trace of gravel, some rootlets		_	3 - 4 -												SS	02	26						
2	263.6	Brown, very stiff, moist SANDY LEAN CLAY (CL) with silty sand			5 - 6 - 7 -												SS	03	22						
		Very stiff, brown, DTPL		•	8 - 9 -												SS	04	29						
3	262.7	very stiff, DTPL Hard			10- 11-												SS	05	38						
4					12 - 13 - 14 -																				
	261.2	Brown to grey, Very stiff to hard	$\left \right\rangle$		15-	-									-										
5		8,9,9	•	•	16- 17-	-											SS	06	29						
6	259.7				18- 19-																				
		LEAN CLAY (CL) Some to trace of silt, some gravel			20 - 21 -										-		SS	07	28						
- 7 - - 7 - 		Very stiff, grey, DTPL		•	22 - 23 -		· · · ·																		
=	258.2				24 - 25 -	11									-					目					
8		hard, grey, moist			26 - 27 -	÷											SS	08	31						
					28 - 29 -																				
-9-					2) 30- 31-	-											SS	09	39						
	256.0	D 1 1 4 1 4075			32		<u> </u>									<u>Т</u>		0)							
10-		Borehole terminated at 9.75 m Borehole dry and open			33 -																				
					34- 35-	· · ·									-										
11-					36-		<u> </u>																		
					37- 38-										-										
12-					39-	-						: :													
	LABOR	ATORY ANALYSES:																							

C	S	tantec	B		REH N: 43	IO 847 5	LE 52 I	RE(E: 595	C OR 894	D						B	H5	6-	-23	3	5	Sheet 1 of 1
	LIENT _	-															DJEC		No.		1	<u>21624777</u>
		N <u>12489 Dixie Road</u>				WAT	FED I	LEVEL									TUM					NAD83
DA	ATES: B	oring <u>01/24/2023</u>		1		WA																
Ê.	NO		LOT	EVEL	(£		SAI	MPLES ଜିନ୍ତି				80 50				\R S)0 			50	(kP		00
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI ST/	NAMI ANDA	C CO RD P	NE P	PENE	ETRA TION	TION TES	G LIN TEST T, BLC	, BLO DWS	OWS 5/0.3r	n	•	GRAIN SIZE
0 -	267.0				0			ЩЧЦ)	1	0	20	30	4() 5	0	60	70	80	9	0 1	00 GR SA SI (
-	266.6			•	1 -	ss	01	<u>460</u> 460	7	•												
-		SANDY SILTY CLAY (CL-ML) Trace of gravel, some rootlets brown, very stiff, moist			2 -			1.00														
1 -					4 -	SS	02	<u>460</u> 460	22			•										
-	265.5	SANDY LEAN CLAY (CL) very stiff, brown, moist			5 -	SS	03	<u>460</u> 460	22			•										
2 -	2(47				6 - 7 -	-/\ 		400														
-	264.7	some gravel Very stiff to hard, brown, moist			8 -	ss	04	$\frac{460}{460}$	22			•										
- - 3 -					9 -																	
-	263.5		2/ 2/		11-	ss	05	<u>460</u> 460	30				•									
-		Borehole terminated at 3.6 m below ground surface Borehole dry and open			12-																	
- - -					13-																	
-					15-																	
5 -					16-																	F F
											Re	eld V mou cket	lded	l Va	nne T	est,	kPa est, k	Ра				

C	s	tantec	B		REF N: 4	IOI 847 6	LE 23 F	RE(E: 595	C OR 968	D					B	H5′	7-2	23	s	beet 1 of 1
CI	LIENT _	QuadReal Properties													PRO	JECI	Г Nc).		21624777
		N <u>12489 Dixie Road</u>				337.4.7		EVEL							DAT		-			NAD83
D.	ATES: E	ORING <u>01/25/2023</u>			<u> </u>	WAI		LEVEL		<u> </u>										
(m	NO		LOT	VEL	ft)		SAN	MPLES	;		UNDF	50	ED S		4R 5 00	I REI	NG I 150	H (ki	2q 2q	00
DEPTH (m)	(ATIC	STRATA DESCRIPTION	TAP	R L	DEPTH (ft)		۲	CR(%	ш%		-	I	1		1	-	1	Wp	W	WL
DEP	ELEVATION (m)		STRATA PLOT	WATER LEVEL	БЕ	ТҮРЕ	NUMBER	ERY)/S('ALU RQD(RBER(⊖ m ▼	REMARKS
			ίΩ.	3		- i	I N N	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)						I TEST				•	& GRAIN SIZE DISTRIBUTION
0 -	266.8	TOROU	<u>1.1/</u>		0					1	0 2	0 3	0 4	0 5	50ϵ	50 7	70 8	80 9	$\frac{90}{1}$	00 _{GR SA SI CL}
-	266.3	TOPSOIL silty clay, with rootlets			1 -	∦ss	01	$\frac{460}{460}$	3	•										-
-		brown, soft, moist			2 - 3 -	<u> </u>		460												-
1 -		SANDY SILTY CLAY (CL-ML) brown, very stiff, moist	N		3 4 -	∦ss	02	$\frac{460}{460}$	20											-
-	265.2	SANDY LEAN CLAY (CL)			5 -	Mee	03	460	23			•								3 22 38 37
2		some gravel	•/•		6 - 7 -	N 33	05	<u>460</u> 460	23											-
-		brown, very stiff, moist	/./		8 -	X ss	04	$\frac{460}{460}$	24			•								-
3 -					9 -	<u></u>	-	460												-
			•/•		10- 11-	ss	05	$\frac{460}{460}$	28			•								-
			/_/		12-			400												
4 -			•		13-															
-	262.2				14- 15-				_											-
5 -		brown to grey, stiff, moist			16-	ss	06	$\frac{460}{460}$	15											-
-					17- 18-															-
-					10-															-
6 -	260.7	very stiff to hard, grey, moist	/./		20 -	Mag	07	460												-
			•/•		21 - 22 -	122	07	<u>460</u> 460	24											
7 -			/./		22 -															-
			•		24-															-
					25- 26-	ss	08	$\frac{460}{460}$	29			•								-
8	258.5	with smooth gravel			27-	<u></u>		400												-
		hard, grey, DTPL	./		28-															-
9					29 - 30 -	[]														-
-	257.2				31 -	∬ss	09	$\frac{460}{460}$	50											- -
10-		Borehole terminated at 9.6 m below ground surface			32-															-
10		Borehole dry and open			33 - 34 -]														-
					35-															-
11-					36- 37-															-
					37- 38-															-
12-					39-															-
													ne Te led V		Pa Fest, l	kPa				
															er Te		Pa			

5: BO (E) 4.8 4.2 5 b 3.2 5	QuadReal Properties 12489 Dixie Road RING 02/13/2023 STRATA DESCRIPTION TOPSOIL Silty Clay, with rootlets Brown, very stiff, DTPL SANDY SILTY CLAY (CL-ML) prown, firm, moist	STRATA PLOT	·]	(₽) HLd∃O 0 1 - 2 -	ТҮРЕ		000 100 100 100 100 100 100 100	N-VALUE OR RQD(%)	WA DYI STA	TER (50 CONTI CONTI CON	ED S ED S ENT & E PEN NETR 30 2	ATTE	DAT TPC AR S 00 RBER TION	G LIM TEST	EVAT	TION H (k) WS/0.: .3m	Pa) W 3m	2000 ⊣ 7 ●	W _L -I REMARKS & GRAIN SIZE DISTRIBUTION
5: BO (E) 4.8 4.2 5 b 3.2 5	ORING 02/13/2023 STRATA DESCRIPTION FOPSOIL Silty Clay, with rootlets Brown, very stiff, DTPL SANDY SILTY CLAY (CL-ML)			0 1 -	ТҮРЕ	NUMBER	RECOVERY (mm) T TCR(%) / SCR(%) G	N-VALUE OR RQD(%)	WA DYI STA		50 CONTI CONTI CON	ENT & E PEN NETR	SHEA 1 ATTE IETRA ATION	TPC AR S 00 RBER TION	C ELE TRE I G LIM TEST	EVAT	"H (k) ₩p I WS/0.: .3m	Pa) W 3m	200 ⊣ ✓	WL →I REMARKS & GRAIN SIZE DISTRIBUTION
E 4.8 4.2 5 6 3.2 5	STRATA DESCRIPTION FOPSOIL Silty Clay, with rootlets Brown, very stiff, DTPL SANDY SILTY CLAY (CL-ML)			0 1 -	ТҮРЕ	NUMBER	RECOVERY (mm) T TCR(%) / SCR(%) G	N-VALUE OR RQD(%)	WA DYI STA		50 CONTI CONTI CON RD PE	ENT & E PEN NETR	SHEA 1 ATTE IETRA ATION	AR S 00 RBER TION	G LIM TEST	ITS	"H (k) ₩p I WS/0.: .3m	Pa) W 3m	200 ⊣ ∕	WL REMARKS & GRAIN SIZE DISTRIBUTION
4.8 1 4.2 5 b 3.2 5	TOPSOIL Silty Clay, with rootlets Brown, very stiff, DTPL SANDY SILTY CLAY (CL-ML)			0 1 -		NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	WA DYI STA		50 CONTI CONTI CON RD PE	ENT & E PEN NETR	1 ATTE IETRA ATION	00 	G LIM TEST T, BLC	150 IITS 7, BLOV) ₩p ► WS/0.: .3m	W C 3m	- ∕ ●	W _L -I REMARKS & GRAIN SIZE DISTRIBUTION
4.8 1 4.2 5 b 3.2 5	TOPSOIL Silty Clay, with rootlets Brown, very stiff, DTPL SANDY SILTY CLAY (CL-ML)			0 1 -					DYN STA	NAMIC NDAI	CONTI CONTI CON	E PEN	ATTE IETRA ATION	H RBER TION	TEST T, BLC	IITS , BLOV DWS/0	₩ <u>P</u> ┣─ ₩S/0.: .3m	— C 3m	▼ ●	REMARKS & GRAIN SIZE DISTRIBUTION
4.2 5 5 8 3.2 5	Silty Clay, with rootlets Brown, very stiff, DTPL SANDY SILTY CLAY (CL-ML)			1 -														90	• 100	DISTRIBUTIO
4.2 5 5 8 3.2 5	Silty Clay, with rootlets Brown, very stiff, DTPL SANDY SILTY CLAY (CL-ML)	· <u>··</u> ·	·]	1 -	ss	01			1	0 2	20 3	30 4	40 <u></u>	50	60	70	80	90	100	(70)
4.2 5 5 5 5 5	Silty Clay, with rootlets Brown, very stiff, DTPL SANDY SILTY CLAY (CL-ML)	· <u>··</u> ·	·]		ss	01	$\frac{200}{460}$				1::::	1::::	1::::	1	: : : :	11111	1111			(%) GR SA SI C
3.2 S				2 -			100	3	•											
3.2 S																				
S																				
S		\mathbb{N}	•	3 -	ss	02	$\frac{250}{460}$	9	•											
S		INI:		4 -																
				5 -																
	SANDY LEAN CLAY (CL) Some gravel			5	80	03	<u>360</u> 460	16												
b	prown, very stiff, moist			6 -			460	10												
				7 -															· · · · · · · · · · · · · · · · · · ·	
2.3				8 -															· ·	
1	Very stiff to hard, brown, moist			Ū	ss	04	$\frac{460}{460}$	28												
				9 -																
				10-				_												
		····		11-	ss	05	<u>460</u> 460	30				•								
1.3 E	Borehole terminated at 3.6 m below																			
				12 -																
				13-																
				14-																
				15-																
				16-																
		1																		
									•											
	1.3 I	Very stiff to hard, brown, moist	Very stiff to hard, brown, moist • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • <td>Very stiff to hard, brown, moist</td> <td>Very stiff to hard, brown, moist 9 - 10 - 11 - 11 - Borehole terminated at 3.6 m below ground surface Borehole dry and open 13 - 14 - 15 -</td> <td>Very stiff to hard, brown, moist </td> <td>Very stiff to hard, brown, moist </td> <td>Very stiff to hard, brown, moist3SS$04$$\frac{460}{460}$9$10$$10$$10$$10$$11$1.3$10$$11$$SS$$05$$\frac{460}{460}$1.3Borehole terminated at 3.6 m below ground surface Borehole dry and open$12$$13$$13$$14$$13$$14$$15$$15$$15$$15$</td> <td>Very stiff to hard, brown, moist 3 SS 04 $\frac{460}{460}$ 28 9 10 10 11 SS 05 $\frac{460}{460}$ 30 1.3 Borehole terminated at 3.6 m below ground surface Borehole dry and open 13 14 15 15 15 $-$</td> <td>Very stiff to hard, brown, moist i i i i i g i g i g i g i i g i i g i i g i i g i i g i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i</td> <td>Very stiff to hard, brown, moist 3 3 3 4 460 28 9 3 3 9 3 10 10 11 58 05 460 30 11 1.3 Borehole terminated at 3.6 m below ground surface 12 13 13 14 14 14 14 15 16 /td> <td>Very stiff to hard, brown, moist i i SS 04 460 460 28 9 i i 9 i i 10 1.3 Borehole terminated at 3.6 m below ground surface Borehole dry and open ii ii iii <t< td=""><td>Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i</td><td>Very stiff to hard, brown, moist • • •</td><td>Very stiff to hard, brown, moist i i SS 04 460 460 28 i i 1.3 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i <td< td=""><td>Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i</td><td>Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i</td><td>Very stiff to hard, brown, moist i i SS 04 460 460 28 9 10 10 10 10 10 10 1.3 11 SS 05 460 460 30 • • Borehole terminated at 3.6 m below ground surface Borehole dry and open 12- 13- 14- 14- 14- 15- 16- 16- 16- 16- 16- 16- Description Field Vane Test, kPa Remoulded Vane Test, kPa 16- 16- 16- 16- 16-</td><td>Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i</td><td>Very stiff to hard, brown, moist SS 04 460 460 28 9 9 10 10 11 SS 05 460 30 9 12 13 13 14 14 15 16 16 16 9 Field Vanc Test, kPa</td></td<></td></t<></td>	Very stiff to hard, brown, moist	Very stiff to hard, brown, moist 9 - 10 - 11 - 11 - Borehole terminated at 3.6 m below ground surface Borehole dry and open 13 - 14 - 15 -	Very stiff to hard, brown, moist 	Very stiff to hard, brown, moist 	Very stiff to hard, brown, moist 3 SS 04 $\frac{460}{460}$ 9 10 10 10 10 11 1.3 10 11 SS 05 $\frac{460}{460}$ 1.3Borehole terminated at 3.6 m below ground surface Borehole dry and open 12 13 13 14 13 14 15 15 15 15	Very stiff to hard, brown, moist 3 SS 04 $\frac{460}{460}$ 28 9 10 10 11 SS 05 $\frac{460}{460}$ 30 1.3 Borehole terminated at 3.6 m below ground surface Borehole dry and open 13 $ 14$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ 15$ $ -$	Very stiff to hard, brown, moist i i i i i g i g i g i g i i g i i g i i g i i g i i g i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i	Very stiff to hard, brown, moist 3 3 3 4 460 28 9 3 3 9 3 10 10 11 58 05 460 30 11 1.3 Borehole terminated at 3.6 m below ground surface 12 13 13 14 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16	Very stiff to hard, brown, moist i i SS 04 460 460 28 9 i i 9 i i 10 1.3 Borehole terminated at 3.6 m below ground surface Borehole dry and open ii ii iii iii <t< td=""><td>Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i</td><td>Very stiff to hard, brown, moist • • •</td><td>Very stiff to hard, brown, moist i i SS 04 460 460 28 i i 1.3 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i <td< td=""><td>Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i</td><td>Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i</td><td>Very stiff to hard, brown, moist i i SS 04 460 460 28 9 10 10 10 10 10 10 1.3 11 SS 05 460 460 30 • • Borehole terminated at 3.6 m below ground surface Borehole dry and open 12- 13- 14- 14- 14- 15- 16- 16- 16- 16- 16- 16- Description Field Vane Test, kPa Remoulded Vane Test, kPa 16- 16- 16- 16- 16-</td><td>Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i</td><td>Very stiff to hard, brown, moist SS 04 460 460 28 9 9 10 10 11 SS 05 460 30 9 12 13 13 14 14 15 16 16 16 9 Field Vanc Test, kPa</td></td<></td></t<>	Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i	Very stiff to hard, brown, moist • • •	Very stiff to hard, brown, moist i i SS 04 460 460 28 i i 1.3 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i <td< td=""><td>Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i</td><td>Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i</td><td>Very stiff to hard, brown, moist i i SS 04 460 460 28 9 10 10 10 10 10 10 1.3 11 SS 05 460 460 30 • • Borehole terminated at 3.6 m below ground surface Borehole dry and open 12- 13- 14- 14- 14- 15- 16- 16- 16- 16- 16- 16- Description Field Vane Test, kPa Remoulded Vane Test, kPa 16- 16- 16- 16- 16-</td><td>Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i</td><td>Very stiff to hard, brown, moist SS 04 460 460 28 9 9 10 10 11 SS 05 460 30 9 12 13 13 14 14 15 16 16 16 9 Field Vanc Test, kPa</td></td<>	Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i	Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i	Very stiff to hard, brown, moist i i SS 04 460 460 28 9 10 10 10 10 10 10 1.3 11 SS 05 460 460 30 • • Borehole terminated at 3.6 m below ground surface Borehole dry and open 12- 13- 14- 14- 14- 15- 16- 16- 16- 16- 16- 16- Description Field Vane Test, kPa Remoulded Vane Test, kPa 16- 16- 16- 16- 16-	Very stiff to hard, brown, moist i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i	Very stiff to hard, brown, moist SS 04 460 460 28 9 9 10 10 11 SS 05 460 30 9 12 13 13 14 14 15 16 16 16 9 Field Vanc Test, kPa

C	S	tantec	B		REF N: 4	IOI 847 6	LE 33 I	RE (E: 596	C OR 251	D					E	BH:	59	-2	3		Sh	eet 1 of 1
	LIENT _	QuadReal Properties														OJE ATUI		No.			12	1624777 NAD83
		ORING <u>02/01/2023</u>				WAT	FER I	LEVEL										ATI	ON			
			F				SAI	MPLES						SHE.								
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)					ENT 8				IMITS		W _P I-	W	200 ⊣ ✓	
-				–			ž	CR(%	2 R					RATIO							•	& GRAIN SIZE DISTRIBUTIC (%)
0 -	265.5	TOPSOIL	<u></u>		0	h		2 2 2 2 2 2		1	0 2	20 ::::	30	40	50	60	70	8	0	90 TEE	100	(%) GR SA SI (
-	264.9	Silty Clay Brown, moist	<u>1/ 1/</u>		1 - 2 -	ss	01	$\frac{250}{610}$	5	•												
1 -		LEAN CLAY WITH SAND(CL) trace of gravel brown, very stiff, moist			3 -	ss	02	$\frac{200}{610}$	20			•										
	264.0	SANDY LEAN CLAY (CL)			4 - 5 -			010														
2 -		Brown, very stiff, DTPL			6 - 7 -	ss	03	<u>300</u> 610	26			•										2 20 35 4
-	2(2.8				8 -	ss	04	$\frac{460}{610}$	29													
3 -	262.8	Hard	•		9 - 10-			010														
-	262.0	Very stiff			11 - 12 -	ss	05	<u>300</u> 610	53						•							
4 -					13-																	
	261.0	Some silt, some sand			14- 15-				_													
5 -		Brown to grey			16- 17-	ss	06	<u>460</u> 610	25			•										
-					18-																	
6 -					19 - 20 -																	
- - - -	259.0	Borehole terminated at 6.7 m			21 -	ss	07	<u>460</u> 610	22			•									<u></u>	
7 -		Borehole dry and open			23 - 24 -																	
					25-																	
8 -				<u> </u>	26-	<u>+ </u>								°est, k Vane		, kPa	:: : 1				<u>}</u>	

C	S	tantec	B	OR	REF N: 4	IOI 847 7	LE 74 I	RE(E: 596	C OR 288	D]	Bŀ	1 60	0-2	23		Sh	eet 1 of 1
	LIENT _ DCATIO	QuadReal Properties															EC] UM	ГNc).		12	1624777 NAD83
		ORING <u>02/10/2023</u>				WAT	FER I	LEVEL										- VAT	ION	۰.		
							511	MPLES		ι	JNDI	RAIN	IED	SHE								
UEPIH (m)	.EVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	TH (ft)						-+	50			100		1	150		+	200 —–––––––––––––––––––––––––––––––––––) WL
	(i ELEV		STRAT	WATEF	DEPTH (ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMIO ANDA		NE PE	NETF	RATIO	DN T	EST,	BLOV	NS/0		0—	
•	266.2							TCF	0	1	10 2	20	30	40	50	60) 7	0	80	90	100	GR SA SI
0 - - - -		TOPSOIL Silty Clay Brown, moist			0 1 -	ss	01	$\frac{230}{610}$	4	•												
-		SANDY SILTY CLAY (CL-ML) brown, , very stiff moist			2 -																	
- - -					4 -	ss	02	<u>360</u> 610	23													
	264.7	SANDY LEAN CLAY (CL) brown, very stiff to hard, moist			5 - 6 -	ss	03	<u>460</u> 610	25			•										
					7 -			010														
-					8 - 9 -	ss	04	$\frac{250}{610}$	24			•										
; 				•	10-			100														
-	262.7	brown to grey, very stiff, moist			11 - 12 -	ss	05	<u>460</u> 610	39					•								
- - - -					13-																	
-		transition to grey at 4.5 m			14- 15-																	
;					16- 17-	ss	06	<u>360</u> 610	16							· · · · ·						
-					18-																	
- - 5 -	260.1				19 - 20 -																	
-	259.7	stiff, grey, moist Borehole terminated at 6.7 m	•••		21 -	ss	07	<u>460</u> 610	11		•											
- 1		Borehole dry and open			22 - 23 -																	
-					24 - 25 -																	
- - 3 -					25- 26-																· · · F · · · F	
											Re	moul	ane 7 ded ` Pene	Vane	Tes	st, k		09				

C	s	tantec	B	OR	REF N: 4	IOI 847 6	LE 39 b	RE(E: 596	C OR 359	D						В	H/	ΊM	IW	/61	-2	sh 23	eet 1 of 1
Cl	LIENT _	QuadReal Properties														PR	OJEC	СТ	No.			12	1 <u>624777</u>
	OCATIO															DA	TUN	Л	_				NAD83
D.	ATES: E	ORING <u>02/10/2023</u>				WA1	TER I	LEVEL	<u>03/10</u>)/20	23					TPO	CEL	EV	ATI	ON			
(m)	NO		LOT	NEL	(ft)		SAN	MPLES ୮ ଚିଡ଼ି		l	JNE		INE 0	D S		AR 8 00	STRI		GTF	1 (kF		200	1
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAN		ONE	PEN	ETRA		' RG LII I TES ST, BL	Т, В	LOW	₽́- S/0.3	V m	▼ ●	W _L –I REMARKS & GRAIN SIZE DISTRIBUTION
0 -	263.9				0			REC	0	1	0	20	30) 4	0 5	50	60	70	8	0 9	90	100	(%) GR SA SI CL
	263.3	TOPSOIL Silty clay, trace of gravel Brown, firm, DTPL			0 - 1 - 2 -	ss	01	$\frac{150}{460}$	3	•													
1 -		SANDY SILTY CLAY (CL-ML) brown, very stiff, moist			3 -	ss	02	$\frac{360}{460}$	28				•										
-	262.4	SANDY LEAN CLAY (CL)	NN !		5 - 6 -	x ss	03	$\frac{460}{460}$	22			•											
2		trace of gravel brown, very stiff, moist			7 - 8 -	Mss	04	$\frac{460}{460}$	25														
3 -	260.9				9 - 10-	M SS																	
-		Some gravel Hard, brown to grey, moist			11 - 12 -	∦ss	05	$\frac{430}{460}$	33					•									
4					13 - 14 -																		
	259.3	With silty sand seams			15-	Mss	06	$\frac{380}{460}$	20														
5 -		Very stiff to stiff, grey, moist			16- 17-	100		460	20														
					18- 19-																		
6 -				▼	20 - 21 -	ss	07	$\frac{430}{460}$	13		•												
7 -					22 - 23 -																		
-	256.3				24 - 25 -				_														
8 -		Hard to very stiff, grey, moist	•		26 - 27 -	∦ss	08	$\frac{460}{460}$	35					•									
					28 - 29 -																		
9	254.3				30 - 31 -	(ss	09	$\frac{460}{460}$	27				•									-	
10		Borehole terminated at 9.6 m Borehole dry and open			32 - 33 -			400															
					34- 35-																		
11					36 - 37 - 38 -																		
12-					39-						F	ield '	Var	e Te	st, k	::: :::: Pa							
										•	R	emo	ulde	ed V	ane	Гest,	kPa est, l						

C	S	tantec MO	NĽ	ΓO	RI N: 48	NG 847 6	W 39	/E E:	LI 596	۲ 359	RE(C	J	RD)		BH	/MV	V61	Sheet -23	1 of 1
LO		QuadReal Properties N 12489 Dixie Road ORING 02/10/2023				WAT											PROJE DATU TPC EI	м.			<u>24777</u> AD83
							ILK		LL	<u>.</u>	10	20			SI	AMPL					
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	•		DNC		RA	TIOI ▲ p	pm			ТУРЕ	NUMBER	N-VALUE				ON
- 0 -	263.9	TOPSOIL	<u><u>x</u>\''/4".</u>		0		100	20	00	300) 4	80 -00		1-1	1			<u>א</u> א			
	263.3	Silty clay, trace of gravel Brown, firm, DTPL			1 - 2 -										SS	01	3				
	262.4	SANDY SILTY CLAY (CL-ML) brown, very stiff, moist			3 - 4 - 5										SS	02	28				
2		SANDY LEAN CLAY (CL) trace of gravel brown, very stiff, moist			5 - 6 - 7 -										SS	03	22				
	a .co.o	brown, very stiff, moist			8 - 9 -										SS	04	25				
3-	260.9	Some gravel Hard, brown to grey, moist			10- 11-			· · · · · · · · · · · · · · · · · · ·							SS	05	33				
4					12 - 13 - 14 -																
	259.3	With silty sand seams			14 15- 16-			· · · · · · · · · · · · · · · · · · ·							SS	06	20				
5		Very stiff to stiff, grey, moist			10 17- 18-																
6				Ţ	19- 20-			· · · ·								0.7	10	··			
					21 - 22 -										SS	07	13				
7 -	256.3		•		23 - 24 - 25 -																
8		Hard to very stiff, grey, moist			26 - 27 -										SS	08	35				
					28 - 29 -																
	254.3		./,		30- 31-										SS	09	27				
10		Borehole terminated at 9.6 m			32-														•		
		Borehole dry and open			33 - 34 -																
					35-																
					36- 37-																
					38- 39-																
12-	LABOR	ATORY ANALYSES:			/	•				1_		<u></u>		<u></u>							

C	S	tantec	B	OR	XEH N: 48	IOI 847 5	СЕ 74 н	RE(E: 596	C OR 518	RD BH62-23 Sheet 1 of 1
	LIENT _	-								PROJECT No. <u>121624777</u>
		N <u>12489 Dixie Road</u> ORING <u>02/07/2023</u>				WAT	FR I	LEVEL		DATUMNAD83
		OKING <u>02/07/2025</u>						MPLES		UNDRAINED SHEAR STRENGTH (kPa)
(m)	ELEVATION (m)		STRATA PLOT	WATER LEVEL	H (ft)					
DEPTH (m)	EVA1 (m)	STRATA DESCRIPTION	MTA	LER L	DEPTH (ft)	ш	ER	SCR SCR	-UE D(%)	
B	Е		STR	MA		ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYNAMIC CONE PENETRATION TEST, BLOWS/0.3m V STANDARD PENETRATION TEST, BLOWS/0.3m GRAIN SIZE DISTRIBUTION
0 -	261.2				0		2	TCR	2 ð	10 20 30 40 50 60 70 80 90 100 GR SA SI CL
0 -		TOPSOIL Silty clay, trace of gravel	<u>,</u> 1/		0-		0.1	250	2	
-	260.8	Brown, firm, DTPL		•		ss	01	$\frac{250}{610}$	3	
-		SANDY SILTY CLAY (CL-ML) brown, very stiff, moist			2 -					
1 -		biown, very still, moist			3 -	ss	02	$\frac{360}{610}$	19	■ ====================================
-	259.7				4 -	1				-
-		SANDY LEAN CLAY (CL)			5 -	V		460		1
2 -		trace of gravel brown, very stiff, DTPL				SS	03	$\frac{460}{610}$	23	
-	258.9	brown to grey, hard, moist			7 -					
-		brown to grey, nard, moist			8 -	ss	04	<u>460</u> 610	31	
			/./		9 -	Λ		010		
3 -					10-					
-					11-	SS	05	$\frac{460}{610}$	32	
-					12 -					
4 -					13-					
-					14-					
-	256.6	Hard augering	//		15-					
5 -		grey, hard, moist			16-	SS	06	$\frac{410}{610}$	50	••••••••••••••••••••••••••••••••••••••
-				•	17-					
-					18-					
-					19-					
6 -			/	•	20 -					
-	254.7				21 -	ss	07	$\frac{410}{610}$	45	•
-		Borehole terminated at 6.55 m Borehole dry and open			22 -	1				
7 -		Borenoie ary and open			23-					
-					24-					
-					25-					
8 -					26-					
										 Field Vane Test, kPa Remoulded Vane Test, kPa
										 △ Pocket Penetrometer Test, kPa

C	S	tantec	B	OR N	EH N: 48	[O] 847 6	E 13 I	RE(E: 596	C OR 708	D						B	H6	3-	-23	3	ę	Sheet 1 of 1
	LIENT _ DCATIO	QuadReal Properties N 12489 Dixie Road)JEC FUM		No.		1	21624777 NAD83
D	ATES: B	ORING <u>02/07/2023</u>				WAT	ER I	LEVEL							_	TPC	ELI	EVA	ATIC	DN .		
(m	NO		LOT	VEL	(ft)		SAI	MPLES		ι	JND	RAII 5(D SI		R S	TRE		50	(kF		20
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAM	CON C CO	TENT NE F	PENE		TION	G LIN TEST T, BLC	, BLO DWS	OWS ;/0.3n	n	O n ▼	W _L REMARKS & GRAIN SIZE DISTRIBUTIO
0 -	262.1				-0-	_		ЩЧ		1	0	20	30	4(0 5	0	60	70	80	9	0 1	00 GR SA SI C
-	261.8	TOPSOIL Silty Clay Brown, moist SANDY SILTY CLAY (CL-ML) brown, very stiff, moist			1 -	SS	01	<u>76</u> 610	4	•												
					3 -	SS	02	<u>200</u> 610	21													
-	260.6	SANDY LEAN CLAY (CL)			4 - 5 -																	
2 -		Some to trace gravel Hard, brown, moist			6 -	SS	03	<u>200</u> 610	34													
-	259.9	With silty sand seams hard, brown, moist			7 - 8 -	ss	04	<u>360</u> 610	30				•									
- - 3 -					9 - 10-																	
-	258.6	Borehole terminated at 3.6 m below				SS	05	<u>380</u> 610	41													
4 -		ground surface Borehole dry and open			12- 13-																	
-					14-																	-
-					15- 16-																	
5 -	I		<u> </u>	1		<u> </u>		1			R	eld V emou ocket	ldec	l Va	ane]	ſest,	kPa est, k	Pa			<u></u>	1

C	S	tantec	B	OR	REH N: 43	[O] 847 8	LE 68 H	RE(E: 596	C OR 467	D					B	H/N	MW	/64	-2	She 3	et 1 of 1
	LIENT _	QuadReal Properties													PRC	DJEC	Γ Νο	•			<u>624777</u>
	OCATIO					WAT		EVEL	02/10	n/20	<u></u>					ГUМ					NAD83
D.	ATES: E	ORING <u>02/06/2023</u>			<u> </u>	WAI			<u>03/10</u>								VAT				
Ê	z		5	VEL	lf)		SAI				INDF	50	ED S		ак 5 20	IRE	150			200	
TH (m) ATIC	STRATA DESCRIPTION	ΑP	S LE	TH ((mm :R(%	(%									Wp	W	7	W _L
DEPTH (m)	ELEVATION (m)		STRATA PLOT	WATER LEVEL	DEPTH (ft)	TYPE	NUMBER	SC/	ALUI QD("				ENT & A						— ,	• [H REMARKS
	ш		S	Ň		F	NN	30VE	N-VALUE OR RQD(%)				NETR/							•	& GRAIN SIZE DISTRIBUTION
0 -	265.2				0			RECOVERY (mm) TCR(%) / SCR(%)	0	1	0 2	0 3	0 4	0 5	0 0	50 7	70 8	30 9	0		(%) GR SA SI CL
		TOPSOIL Silty clay, some gravel			1 -	ss	01	$\frac{250}{460}$	3	•											
-	264.6	Brown /			2 -															Ē	
1 -	264.0	SANDY SILTY CLAY (CL-ML)	\mathbb{R}	Ţ	3 - 4 -	∬ss	02	$\frac{360}{460}$	21			•								: <u>-</u> : <u>-</u>	
-		brown, very stiff, moist			4 -																
2 -	263.2	SANDY LEAN CLAY (CL) Some silty sand			6 -	∦ss	03	$\frac{380}{460}$	21			•									
2		very stiff, brown, moist	//		7 -	ļ		220													
		silt seams, some gravel Very stiff, brown, moist			8 - 9 -	∦ ss	04	$\frac{\underline{330}}{460}$	24			•									
3 -	262.2	Silty Sand Seams	[·/		10-			410												: <u>-</u> : -	
		very stiff, brown to grey, moist			11-	∦ss	05	$\frac{410}{460}$	26			•									
			//		12 - 13 -																
4 -					14-																
	260.7	Some gravel			15-	Mag	06	460													
5 -		grey, very stiff, moist	./.		16- 17-	122	06	$\frac{460}{460}$	22			•								-	
_			//		17-																
					19-																
6 -					20-) SS	07	$\frac{460}{460}$	21											Ē	
					21 - 22 -			460													
7 -					23 -															: <u>-</u> : -	
-	257.6				24-																
0		hard, grey, moist			25- 26-	ss	08	$\frac{250}{460}$	38				•								
8 -					27-			400													
-					28-																
9 -					29 - 30 -				_											-	
_	255.6		.//		31 -	ss	09	$\frac{460}{460}$	59												
10		Borehole terminated at 9.6 m			32-																
10-		Borehole dry and open			33 - 34 -	İ															
					34-																
11-					36-																
-					37-																
					38- 39-																
12-			1				1	1	L				ne Te			1	1:	1	L		
													led V) -				
										Δ	Poo	ket F	enetr	omet	er Te	est, kF	a				

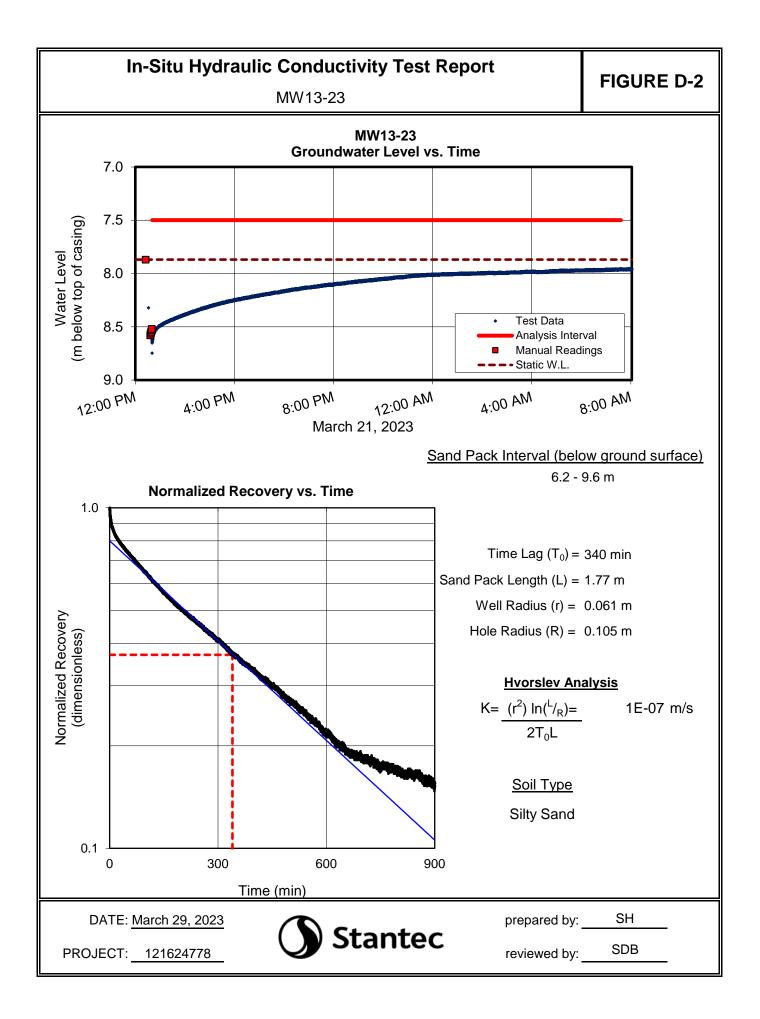
C	s	tantec MO	NĽ	ΓO	RI 1: 48	NG 847 8	- W 68 E	E]	LL 596 4	R] 467	EC	CC)R	D			BH	/M	W6	64-2	Sheet 23	1 of <i>1</i>	1
LO		QuadReal Properties N 12489 Dixie Road Dopple 02/06/2023															PROJE DATU	М			N	24777 AD83	
D.	ATES: E	ORING <u>02/06/2023</u>				WA	ΓER L	LEV.	EL	03/	10/.	202	23	Τ			TPC EI	LEVA	ATION	N			
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	•		NCE	APC ENT	RAT	ION . pr				SA EXPE	NUMBER 3	N-VALUE	-	COI		ELL RUCT	ION	
- 0 -	265.2	TODOON	<u></u>		-0-		20 100	4(0	60 300	8	0	::1					<u>м</u>	N /				
	264.6	TOPSOIL Silty clay, some gravel Brown			1 - 2 -									Ĭ	SS	01	3						
	264.0	SANDY SILTY CLAY (CL-ML) brown, very stiff, moist		Ţ	3 - 4 -									- M - M -	SS	02	21						
2	263.2	SANDY LEAN CLAY (CL) Some silty sand very stiff, brown, moist			5 - 6 - 7 -									X	SS	03	21						
	2(2.2	silt seams, some gravel Very stiff, brown, moist			8 - 9 -									X	SS	04	24						
3	262.2	Silty Sand Seams very stiff, brown to grey, moist			10- 11-									X	SS	05	26						
4					12 - 13 - 14 -							· · · · · · · · · · · · · · · · · · ·											
	260.7	Some gravel grey, very stiff, moist			15- 16-							· · · · · · · · · · · · · · · · · · ·			SS	06	22						
					17- 18-																		
6					19 - 20 - 21 -									= = = X	SS	07	21						
- 7 -					22 - 23 -																		
	257.6	hard, grey, moist			24 - 25 - 26 -									- N	SS	08	38						
					20 27 - 28 -																		
9					29 - 30 -										SS	09	59						
	255.6	Borehole terminated at 9.6 m			31 - 32 -			<u> </u>	· · · ·					1	22	09	39	.]	•				
10		Borehole dry and open			33-																		
					34 - 35 -																		
11					36- 37-																		
					37- 38- 39-																		
12-	LABOR	ATORY ANALYSES:			~~~																		

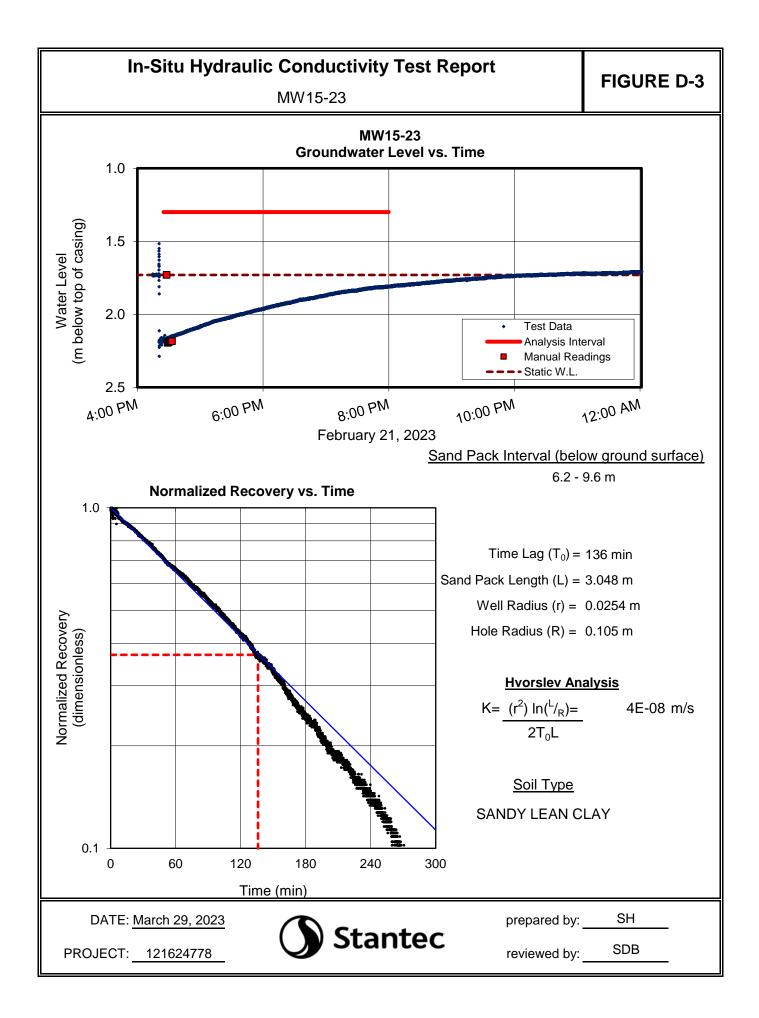
C	S	tantec	B	OR	REH N: 43	IO] 847 7	LE 43 1	RE E: 596	C OR 574	D						B	H6	5-2	23		S	heet 1 of 1
	JENT _														_	PRC	JEC	ΤN	0.	_	12	21624777
		N <u>12489 Dixie Road</u>															ГUМ					NAD83
DA	ATES: B	oring <u>02/06/2023</u>				WA]	fer i	LEVEL		-												
ء	z		01	Ē			SA	MPLES	;	ι	JNDI	RAIN 50) S⊦		R S	TRE	NG 15		kPa	a) 20	0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY		CONT C COI RD PI	ENT NE P	ENE TRAT	itef Tra ⁻	RBER TION TES ⁻	TEST F, BLC	IITS ; BLC DWS/0	W I WS/0).3m	₩ ♥ ●	W _L
0 -	264.3				0			R E E E E		1	10 2	20	30	40	5	0 0	50	70	80	90	10	0 GR SA SI (
-	263.8	TOPSOIL Silty clay, trace of gravel Brown, firm, DTPL	<u>, , , , , , , , , , , , , , , , , , , </u>	•	1 -	ss	01	$\frac{200}{460}$	3													
-		SANDY SILTY CLAY (CL-ML) brown, very stiff, moist			2 -																	
- 1 -	263.1				3 -	ss	02	$\frac{430}{460}$	19													
-		SANDY LEAN CLAY (CL) trace of gravel brown, very stiff, moist			5 -																	
2 -					6 -	ss	03	$\frac{460}{460}$	24			٠										
2 - - -					7 -																	
-	261.5				8 -	ss	04	$\frac{460}{460}$	24			٠										
3 -		brown, hard, moist			10-																	
-	260.8				11-	ss	05	$\frac{460}{460}$	34				•									
-		Borehole terminated at 3.5 m Borehole dry and open			12 -																	
1 - -					13-																	
-					15-																	
5 -					16-																	
												moul	lded	Va	ne T	est,		Pa				

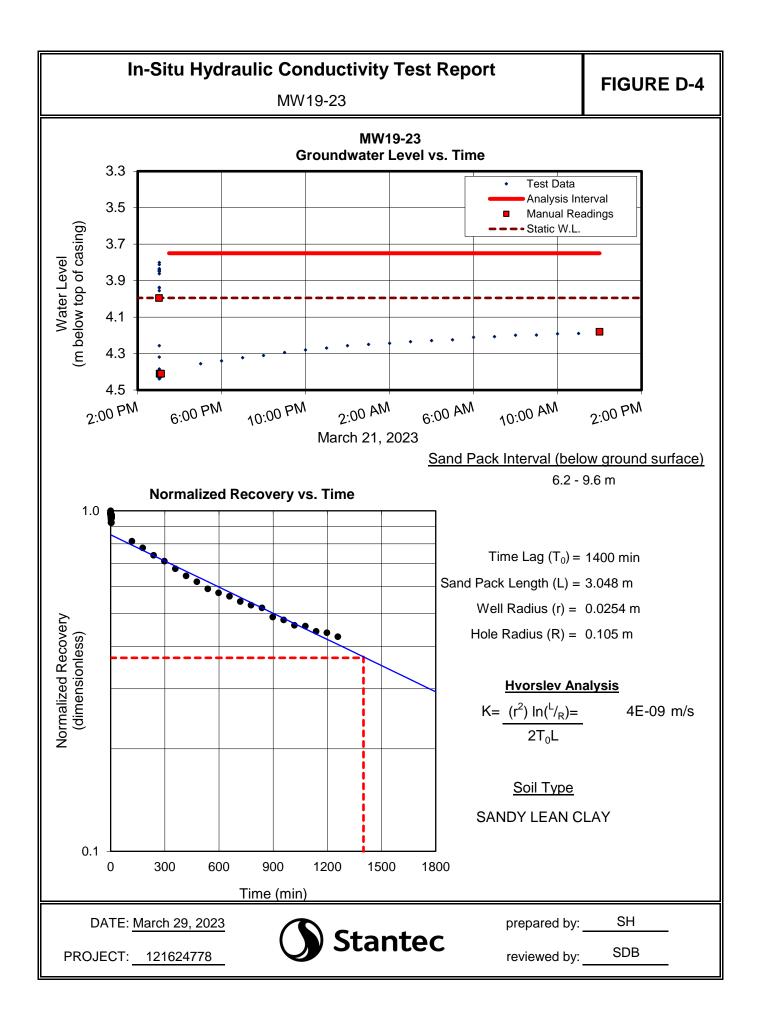
C	s	tantec	B	OR	EH N: 48	IOI 847 7	СЕ 62 в	RE(E: 596	C OR 496	D			I	3H6	6-2	3	S	heet 1 of 1
	LIENT _	· ·											_ PI	ROJEC	Г No		12	21624777
		N <u>12489 Dixie Road</u> BORING <u>02/07/2023</u>				WAT	TED I	EVEL					-	ATUM	-			NAD83
D.	ATES: E	BORING <u>02/07/2023</u>				WAI		MPLES			RAIN	ED SH		PC ELE				
(E)	NO		LOT	EVEL	(ft)		SAI				50		100		150		20	0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	VTA F	R L	DEPTH (ft)		۲. ۲	CR(°	ы (%)	WATER		NT & Δ		ERG LIMI	י דק	Wp	w	WL
DEI	ELE		STRATA PLOT	WATER LEVEL	DE	ТҮРЕ	NUMBER	VER 6) / S	N-VALUE OR RQD(%)					DN TEST,		• VS/0.3	m ▼	REMARKS &
				-			Ĩ	RECOVERY (mm) TCR(%) / SCR(%)	ЧЧЧ					EST, BLO			•	& GRAIN SIZE DISTRIBUTION
0 -	264.2 263.9	TOPSOIL	<u>/</u>	-	0	Mee	01	<u>∝⊢</u> 300	5	10	20 3		50	60	1			^(%) GR SA SI CL
-	_205.9	Silty clay, trace of gravel	M		1 - 2 -	N 22	01	<u>300</u> 460	3									-
1 -		Brown, firm, DTPL SANDY SILTY CLAY (CL-ML)			2 3 -	ss	02	410	18		•							-
-	262.7	brown, very stiff, moist		•	4 -			460										-
-		SANDY LEAN CLAY (CL) trace of gravel	//		5 - 6 -	ss	03	$\frac{360}{460}$	19		•							
2 -		brown, very stiff, DTPL	//		7 -													-
			//		8 - 9 -	ss	04	$\frac{460}{460}$	29		•							-
3 -	261.2	brown, hard, moist		•	10-	M		410										
-		brown, nard, moist	./.		11-	∦ SS	05	410 460	39									- -
4 -			//		12- 13-													-
	259.7				14-													-
-	239.1	Very stiff, grey, moist	//		15- 16-	ss	06	460	16									-
5 -					17-			460										-
-					18-													·
6 -					19- 20-													-
-			•		21 -	∦ss	07	$\frac{380}{460}$	26		•							
7 -					22 - 23 -													
			//		23 24 -													-
-	256.6	hard augering	/./		25-	V ss	08	$\frac{460}{460}$	38									-
8 -					26- 27-	M BB	00	460	50									-
-		hard, grey, moist		•	28-													·
9 -					29 - 30 -													-
-	254.6		./,		30 31 -	ss	09	$\frac{460}{460}$	52				•					-
10-		Borehole terminated at 9.6 m			32-													-
10		Borehole dry and open			33- 34-													-
					35-													-
11-					36- 37-													·
					37- 38-													
12-					39-													
											ield Va emould			st, kPa				
														Test, kI	Pa			

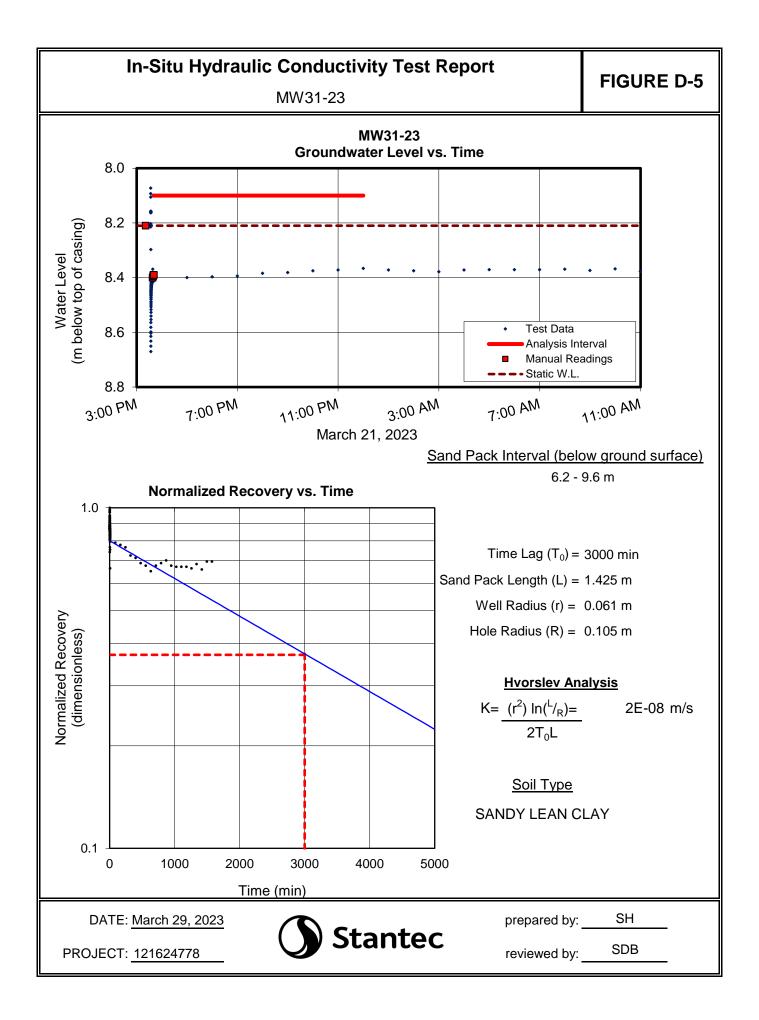
C	S	tantec	B		XEH N: 43	[O] 847 6	LE 53 F	RE(E: 596	C OR 595	D						B	H6'	7-2	23		Sł	neet 1 of 1
	LIENT _	QuadReal Properties															JEC	ΓNo).		12	<u>1624777</u> NAD83
		ORING <u>02/07/2023</u>				WAT	FER I	LEVEL										- VAT	ION	I		
							<u>م</u>	MPLES		ι	IND	RAII	NFD	SH			TRE					
Ê.	NO		5	N.	(Ħ				•			5(10			150		,	200)
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMI	co	NE PI	ENET	RA	TION	G LIMI TEST, T, BLO	BLOV			v ⊖ ▼	W _L REMARKS & GRAIN SIZE
•	262.8							TCF	0	1	0	20	30	40	5	0 6	50 7	0	80	90	100	DISTRIBUTIO (%) GR SA SI C
0 -	262.2	TOPSOIL Silty clay, trace of gravel Brown, loose, DTPL			-0 1 -	ss	01	$\frac{\underline{250}}{460}$	4	•												
- - 1 -		SANDY SILTY CLAY (CL-ML) brown, very stiff, moist			2 - 3 -	ss	02	$\frac{410}{460}$	18													-
	261.3				4 - 5 -																	-
2 -		SANDY LEAN CLAY (CL) trace of gravel brown, very stiff, DTPL			6 - 7 -	ss	03	$\frac{410}{460}$	27													-
					8 -	ss	04	$\frac{460}{460}$	20			•										5 27 36 3
3 -					9 - 10-			100														-
					11 - 12 -	SS	05	$\frac{460}{460}$	27													-
4 -					13-																	-
	258.2	Stiff, brown to grey, moist	•		14- 15-	N cc	06	360														-
5	257.8	Very stiff, grey, moist		•	16- 17-	1 22		<u>360</u> 460	14		•											-
					18- 19-																	-
6 -					20-	ss	07	$\frac{430}{460}$	25													-
	256.3	Borehole terminated at 6.5 m Borehole dry and open			21 - 22 -			460														-
7 -					23 - 24 -																	-
					25 - 26 -																	-
8 -			1	<u>.</u>			1				Re	mou	ane ' Ided	Van	le T	est,	kPa st, kI	1	1	:	I	1

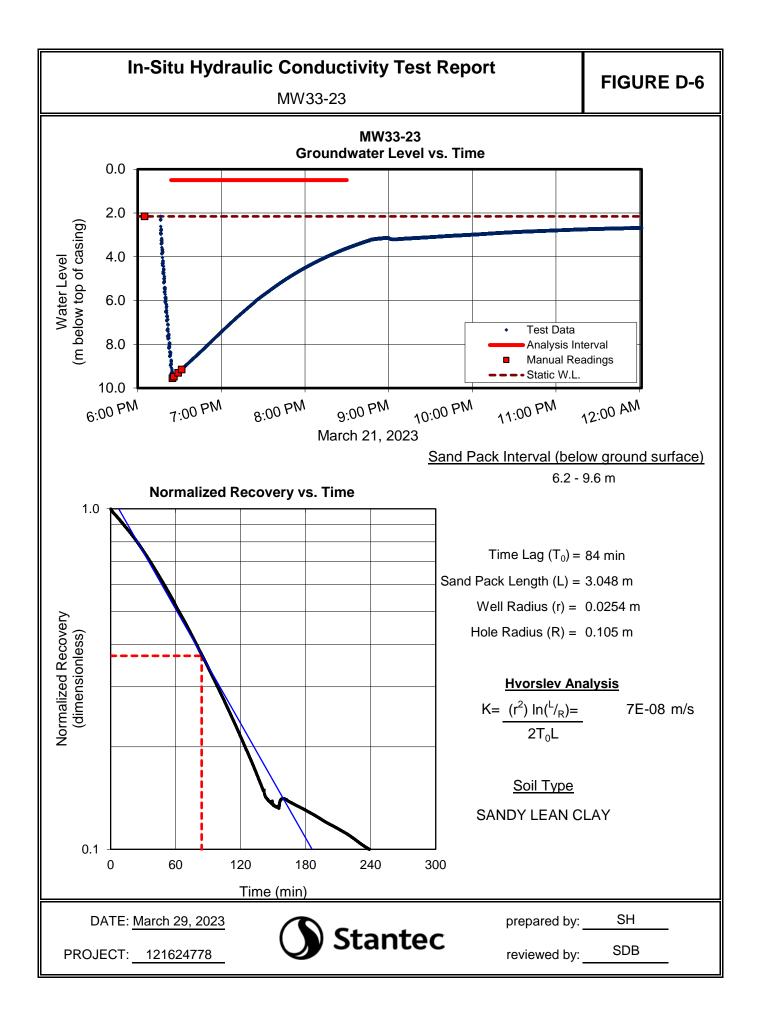
C	S	tantec	B		EH N: 48	IOI 847 7	LE 17 1	RE E: 596	C OR 386	D							B	H6	8-	23	3		Sh	eet 1 of 1
	LIENT _ DCATIO	QuadReal Properties)JEC TUM		lo.			12	1624777 NAD83
D	ATES: B	oring <u>02/10/2023</u>				WAT	FER I	LEVEL								_	TPC	ELE	EVA	TIC	ON			
(n	Z		-OT	VEL	f)		SA	MPLES		l	JNE		AIN 50	IED	SH	IEA 1(TRE	NG 15		(kl		200	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAM			IE PE	NE	[RA	ΓΙΟΝ	G LIN TEST T, BLC	, BLC	SWS		-0	- 7 	WL REMARKS GRAIN SIZE DISTRIBUTIC
0 -	264.3				0			ЩЦ Ц Ц Ц			10	20		30	40	5	0	60	70	80) 9	90	100	(%) GR SA SI (
-	263.9	TOPSOIL Silty clay, trace of gravel Brown, firm, DTPL			1 -	ss	01	$\frac{200}{460}$	4	٠														
-		SANDY SILTY CLAY (CL-ML) brown, very stiff, moist			2 - 3 -			410																
1 -					4 -	ss	02	$\frac{410}{460}$	19			•												
-	262.8	SANDY LEAN CLAY (CL) trace of gravel	N N		5 - 6 -	ss	03	$\frac{410}{460}$	29															
2 -		brown, very stiff, DTPL			7 -																			
-					8 - 9 -	ss	04	$\frac{460}{460}$	22															
3 -	261.3	brown to grey, hard, moist			10- 11-	ss	05	$\frac{410}{460}$	32					•										
-					12-			100																
4 -					13- 14-																		······	
-	259.8	grey, hard, moist			15-	N SS	06	460	34					•										
5 -					16- 17-			460																
-					18- 19-																			
6 -					20-			360																
-	257.8	Borehole terminated at 6.55			21 - 22 -	ss	07	<u>360</u> 460	50														<u></u>	
7 -					23 -																			
-					24 - 25 -																			
8 -					26-								117			. 1-7							· · · · · · · · · · · · · · · · · · ·	
														ane] ded]				kPa						
																		est, k	Pa					

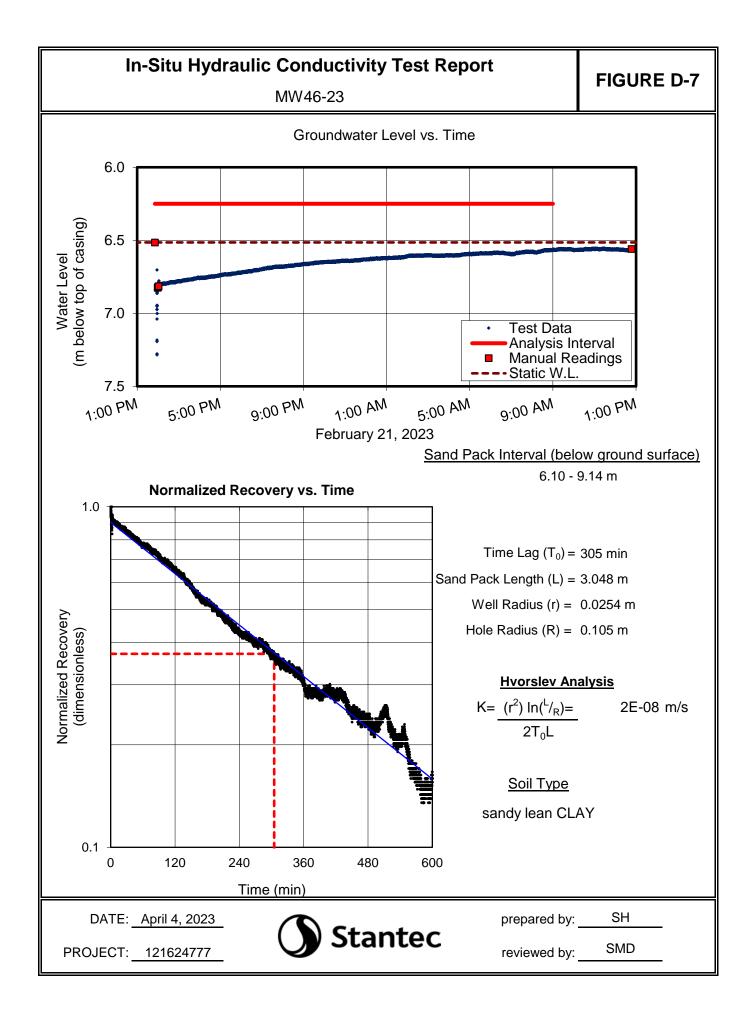

C	S	tantec	B	OR	REF N: 4	IO 847 5	LE 30 1	RE E: 596	C OR 343	D						E	3F	H69	9-2	23			Sh	eet 1 of 1
	LIENT _															PR	OJ	ECT	ΓNo	о.		1		624777
		N 12489 Dixie Road																UM	-					<u>NAD83</u>
D	ATES: B	oring <u>02/06/2023</u>				WAT	fer i	LEVEL								TP	CI	ELE	VAT	ΓΙΟ	N			
(m	N		LOT	VEL	ft)		SA			l	JND		NNE 50	ED S		AR .00	ST	RE	NGT 15((kF		200	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	TYPE	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	ATER NAMI ANDA	СC	ONE	E PEN	IETR/	ATIO	ΝT	EST,	BLO	WS/		w o m	- - ▼ ●	W _L - I REMARKS & GRAIN SIZE DISTRIBUTIC
0 -	263.5				0			ШЧЦ			10	20	3	0 4	10	50	60) 7	0	80	9	0 1	100	(%) <u>GR SA SI (</u>
	262.9	TOPSOIL Silty clay, trace of gravel brown, soft, moist		1	1 -	ss	01	<u>250</u> 460	3															
1 -	202.9	SANDY SILTY CLAY (CL-ML) brown, very stiff, moist			2 - 3 -	ss	02	$\frac{200}{460}$	20			•											· · · · · · · · · · · · · · · · · · ·	
	262.3	SANDY LEAN CLAY (CL) trace of gravel			4 - 5 -			460																
2 -		brown, very stiff, moist			6 -	ss	03	<u>300</u> 460	26				•											
					7 - 8 -	ss	04	$\frac{460}{460}$	29				•											
3 -	260.5	hard, brown to grey, moist			9 - 10-																			
	260.0	Hard to very stiff, grey, moist			11 - 12 -	ss	05	<u>300</u> 460	53							•							· · · · · · · · · · · · · · · · · · ·	
4 -					12-																			
					14- 15-																			
5 -					16- 17-	ss	06	<u>460</u> 460	25				•											
					18-	-																		
6 -					19- 20-			460																
	257.0	Borehole terminated at 6.55	·/·		21 - 22 -	ss	07	<u>460</u> 460	22			•												
7 -					23 -																			
					24 - 25 -																			
8 -			<u> </u>	<u> </u>	26-	<u> </u>	<u> </u>								est, k		· 1-1	 					: -	
															ane rome				a					

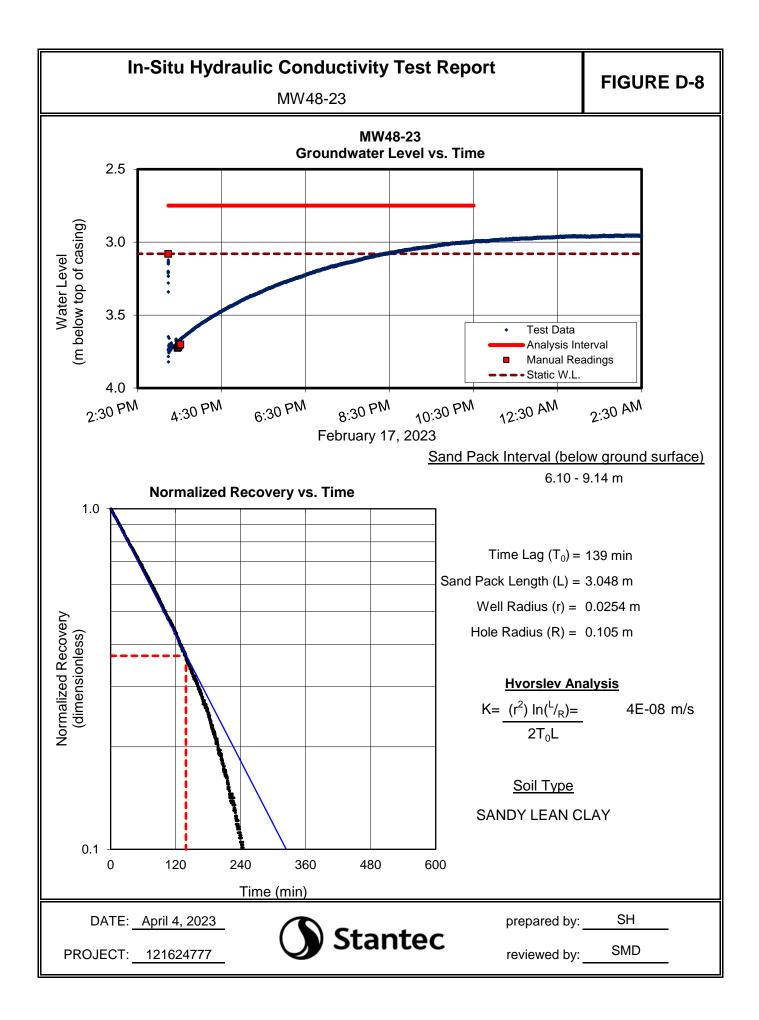

Hydrogeological Assessment Report, 12489 and 12861 Dixie Road, Caledon, Ontario Appendix D Hydraulic Conductivity Testing Analytical Solutions December 5, 2024

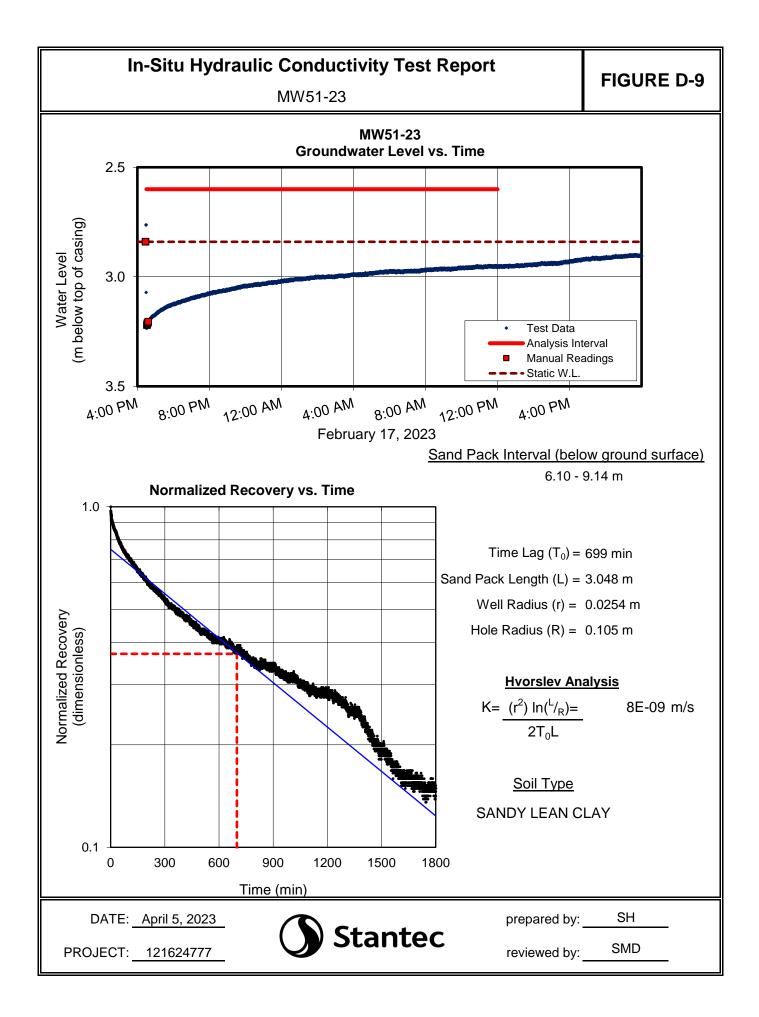

Appendix D

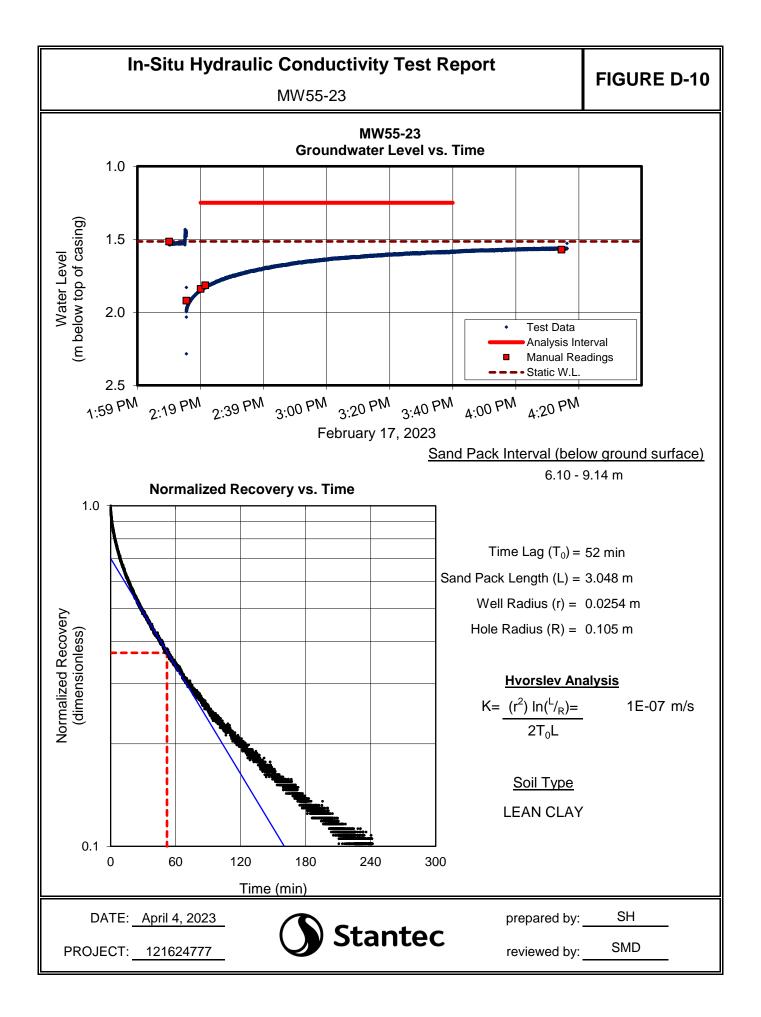

Hydraulic Conductivity Testing Analytical Solutions

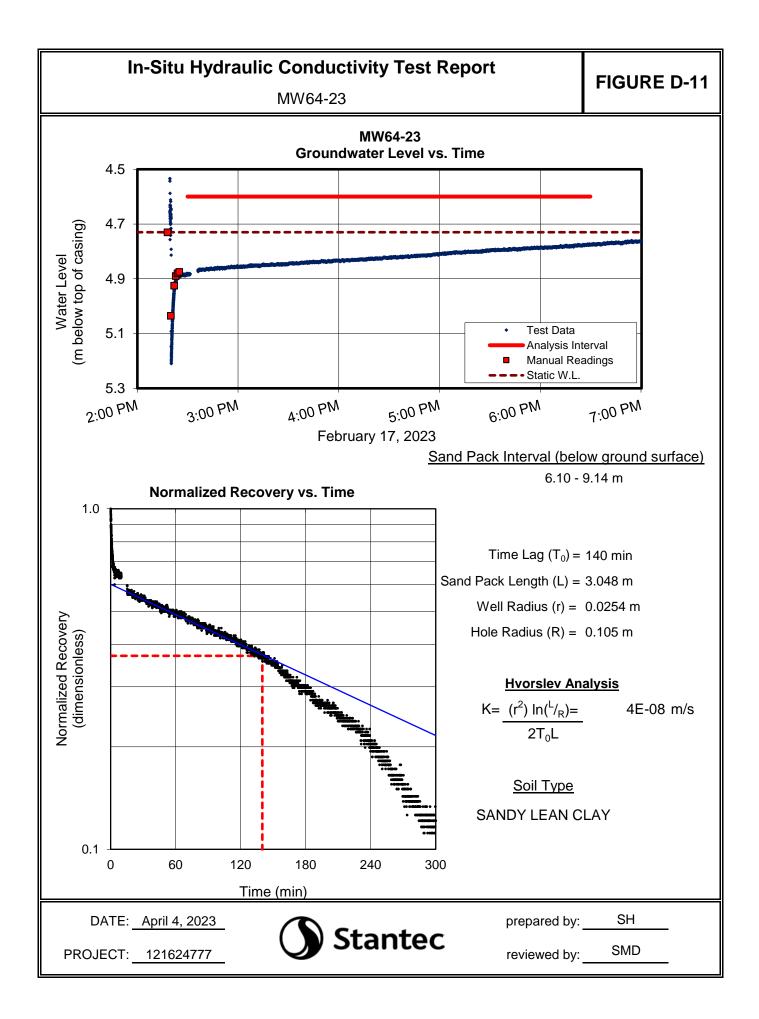












Hydrogeological Assessment Report, 12489 and 12861 Dixie Road, Caledon, Ontario Appendix E Laboratory Certificates of Analysis December 5, 2024

Appendix E

Laboratory Certificates of Analysis

Your Project #: 121624777.200.1 Your C.O.C. #: 922413-01-01

Attention: Stephen DiBiase

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

> Report Date: 2023/03/01 Report #: R7528355 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C353332

Received: 2023/02/23, 17:00

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2023/02/24	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2023/02/27	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	1	N/A	2023/02/27	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	1	N/A	2023/02/24	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2023/02/24	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	1	N/A	2023/02/27	CAM SOP 00102/00408/00447	SM 2340 B
Dissolved Metals by ICPMS	1	N/A	2023/02/24	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	1	N/A	2023/02/27		
Anion and Cation Sum	1	N/A	2023/02/27		
Total Ammonia-N	1	N/A	2023/02/27	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	1	N/A	2023/02/28	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2023/02/24	2023/02/24	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	1	N/A	2023/02/27	CAM SOP-00461	SM 23 4500-P E m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2023/02/27		Auto Calc
Sat. pH and Langelier Index (@ 4C)	1	N/A	2023/02/27		Auto Calc
Sulphate by Automated Turbidimetry	1	N/A	2023/02/27	CAM SOP-00464	SM 23 4500-SO42- E m
Total Dissolved Solids (TDS calc)	1	N/A	2023/02/27		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Page 1 of 10

Your Project #: 121624777.200.1 Your C.O.C. #: 922413-01-01

Attention: Stephen DiBiase

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

> Report Date: 2023/03/01 Report #: R7528355 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C353332

Received: 2023/02/23, 17:00

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Julie Clement, Technical Account Manager Email: Julie.CLEMENT@bureauveritas.com Phone# (613)868-6079

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 10

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID		VDE257	1	
Courseling Data		2023/02/23		
Sampling Date		14:00		
COC Number		922413-01-01		
	UNITS	MW15-23	RDL	QC Batch
Calculated Parameters				
Anion Sum	me/L	7.97	N/A	8518891
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	300	1.0	8518893
Calculated TDS	mg/L	410	1.0	8518897
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.6	1.0	8518893
Cation Sum	me/L	7.80	N/A	8518891
Hardness (CaCO3)	mg/L	330	1.0	8518180
Ion Balance (% Difference)	%	1.07	N/A	8518181
Langelier Index (@ 20C)	N/A	0.633		8518894
Langelier Index (@ 4C)	N/A	0.385		8518895
Saturation pH (@ 20C)	N/A	7.33		8518894
Saturation pH (@ 4C)	N/A	7.58		8518895
Inorganics			•	
Total Ammonia-N	mg/L	0.10	0.050	8520763
Conductivity	umho/cm	740	1.0	8520914
Dissolved Organic Carbon	mg/L	2.1	0.40	8520721
Orthophosphate (P)	mg/L	<0.010	0.010	8520923
рН	pН	7.96		8520915
Dissolved Sulphate (SO4)	mg/L	37	1.0	8520920
Alkalinity (Total as CaCO3)	mg/L	300	1.0	8520918
Dissolved Chloride (Cl-)	mg/L	41	1.0	8520926
Nitrite (N)	mg/L	<0.010	0.010	8521155
Nitrate (N)	mg/L	<0.10	0.10	8521155
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	8521155
Metals				
Dissolved Aluminum (Al)	mg/L	0.0079	0.0049	8520728
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	8520728
Dissolved Arsenic (As)	mg/L	0.0026	0.0010	8520728
Dissolved Barium (Ba)	mg/L	0.094	0.0020	8520728
Dissolved Beryllium (Be)	mg/L	<0.00040	0.00040	8520728
Dissolved Boron (B)	mg/L	0.070	0.010	8520728
Dissolved Cadmium (Cd)	mg/L	<0.000090	0.000090	8520728
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
N/A = Not Applicable				

Bureau Veritas ID		VDE257		
Sampling Date		2023/02/23 14:00		
COC Number		922413-01-01		
	UNITS	MW15-23	RDL	QC Batch
Dissolved Calcium (Ca)	mg/L	43	0.20	8520728
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	8520728
Dissolved Cobalt (Co)	mg/L	<0.00050	0.00050	8520728
Dissolved Copper (Cu)	mg/L	<0.00090	0.00090	8520728
Dissolved Iron (Fe)	mg/L	<0.10	0.10	8520728
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	8520728
Dissolved Magnesium (Mg)	mg/L	55	0.050	8520728
Dissolved Manganese (Mn)	mg/L	0.044	0.0020	8520728
Dissolved Molybdenum (Mo)	mg/L	0.017	0.00050	8520728
Dissolved Nickel (Ni)	mg/L	<0.0010	0.0010	8520728
Dissolved Phosphorus (P)	mg/L	<0.10	0.10	8520728
Dissolved Potassium (K)	mg/L	8.8	0.20	8520728
Dissolved Selenium (Se)	mg/L	<0.0020	0.0020	8520728
Dissolved Silicon (Si)	mg/L	8.4	0.050	8520728
Dissolved Silver (Ag)	mg/L	<0.000090	0.000090	8520728
Dissolved Sodium (Na)	mg/L	21	0.10	8520728
Dissolved Strontium (Sr)	mg/L	0.57	0.0010	8520728
Dissolved Thallium (Tl)	mg/L	<0.000050	0.000050	8520728
Dissolved Titanium (Ti)	mg/L	<0.0050	0.0050	8520728
Dissolved Uranium (U)	mg/L	0.00049	0.00010	8520728
Dissolved Vanadium (V)	mg/L	<0.00050	0.00050	8520728
Dissolved Zinc (Zn)	mg/L	0.17	0.0050	8520728
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

RCAP - COMPREHENSIVE (WATER)

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	-					Shipped:	2023/02/23 2023/02/23
Test Description	Water	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	2023/02/23

Alkalinity	AT	8520918	N/A	2023/02/24	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8518893	N/A	2023/02/27	Automated Statchk
Chloride by Automated Colourimetry	KONE	8520926	N/A	2023/02/27	Samuel Law
Conductivity	AT	8520914	N/A	2023/02/24	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8520721	N/A	2023/02/24	Nimarta Singh
Hardness (calculated as CaCO3)		8518180	N/A	2023/02/27	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8520728	N/A	2023/02/24	Prempal Bhatti
Ion Balance (% Difference)	CALC	8518181	N/A	2023/02/27	Automated Statchk
Anion and Cation Sum	CALC	8518891	N/A	2023/02/27	Automated Statchk
Total Ammonia-N	LACH/NH4	8520763	N/A	2023/02/27	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8521155	N/A	2023/02/28	Chandra Nandlal
рН	AT	8520915	2023/02/24	2023/02/24	Kien Tran
Orthophosphate	KONE	8520923	N/A	2023/02/27	Massarat Jan
Sat. pH and Langelier Index (@ 20C)	CALC	8518894	N/A	2023/02/27	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8518895	N/A	2023/02/27	Automated Statchk
Sulphate by Automated Turbidimetry	KONE	8520920	N/A	2023/02/27	Massarat Jan
Total Dissolved Solids (TDS calc)	CALC	8518897	N/A	2023/02/27	Automated Statchk

GENERAL COMMENTS

Each t	emperature is the av	erage of up to th	ree cooler temperatures taken at receipt
	Package 1	2.0°C	
	-		•
Result	ts relate only to the i	tems tested.	

QUALITY ASSURANCE REPORT

Stantec Consulting Ltd Client Project #: 121624777.200.1 Sampler Initials: SH

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8520721	Dissolved Organic Carbon	2023/02/24	95	80 - 120	98	80 - 120	<0.40	mg/L	2.3	20
8520728	Dissolved Aluminum (Al)	2023/02/24	109	80 - 120	104	80 - 120	<0.0049	mg/L		
8520728	Dissolved Antimony (Sb)	2023/02/24	113	80 - 120	105	80 - 120	<0.00050	mg/L	5.3	20
8520728	Dissolved Arsenic (As)	2023/02/24	104	80 - 120	99	80 - 120	<0.0010	mg/L	6.8	20
8520728	Dissolved Barium (Ba)	2023/02/24	106	80 - 120	99	80 - 120	<0.0020	mg/L	2.2	20
8520728	Dissolved Beryllium (Be)	2023/02/24	104	80 - 120	97	80 - 120	<0.00040	mg/L	NC	20
8520728	Dissolved Boron (B)	2023/02/24	102	80 - 120	97	80 - 120	<0.010	mg/L	0.64	20
8520728	Dissolved Cadmium (Cd)	2023/02/24	107	80 - 120	100	80 - 120	<0.000090	mg/L	NC	20
8520728	Dissolved Calcium (Ca)	2023/02/24	NC	80 - 120	103	80 - 120	<0.20	mg/L		
8520728	Dissolved Chromium (Cr)	2023/02/24	103	80 - 120	98	80 - 120	<0.0050	mg/L	NC	20
8520728	Dissolved Cobalt (Co)	2023/02/24	101	80 - 120	98	80 - 120	<0.00050	mg/L	NC	20
8520728	Dissolved Copper (Cu)	2023/02/24	105	80 - 120	100	80 - 120	<0.00090	mg/L	1.5	20
8520728	Dissolved Iron (Fe)	2023/02/24	106	80 - 120	101	80 - 120	<0.10	mg/L		
8520728	Dissolved Lead (Pb)	2023/02/24	103	80 - 120	98	80 - 120	<0.00050	mg/L	NC	20
8520728	Dissolved Magnesium (Mg)	2023/02/24	NC	80 - 120	103	80 - 120	<0.050	mg/L		
8520728	Dissolved Manganese (Mn)	2023/02/24	103	80 - 120	98	80 - 120	<0.0020	mg/L		
8520728	Dissolved Molybdenum (Mo)	2023/02/24	111	80 - 120	104	80 - 120	<0.00050	mg/L	1.4	20
8520728	Dissolved Nickel (Ni)	2023/02/24	100	80 - 120	97	80 - 120	<0.0010	mg/L	NC	20
8520728	Dissolved Phosphorus (P)	2023/02/24	109	80 - 120	110	80 - 120	<0.10	mg/L		
8520728	Dissolved Potassium (K)	2023/02/24	105	80 - 120	101	80 - 120	<0.20	mg/L		
8520728	Dissolved Selenium (Se)	2023/02/24	105	80 - 120	99	80 - 120	<0.0020	mg/L	NC	20
8520728	Dissolved Silicon (Si)	2023/02/24	108	80 - 120	104	80 - 120	<0.050	mg/L		
8520728	Dissolved Silver (Ag)	2023/02/24	104	80 - 120	101	80 - 120	<0.000090	mg/L	NC	20
8520728	Dissolved Sodium (Na)	2023/02/24	102	80 - 120	102	80 - 120	<0.10	mg/L	0.83	20
8520728	Dissolved Strontium (Sr)	2023/02/24	NC	80 - 120	98	80 - 120	<0.0010	mg/L		
8520728	Dissolved Thallium (TI)	2023/02/24	104	80 - 120	99	80 - 120	<0.000050	mg/L	NC	20
8520728	Dissolved Titanium (Ti)	2023/02/24	107	80 - 120	100	80 - 120	<0.0050	mg/L		
8520728	Dissolved Uranium (U)	2023/02/24	106	80 - 120	99	80 - 120	<0.00010	mg/L	3.4	20
8520728	Dissolved Vanadium (V)	2023/02/24	105	80 - 120	100	80 - 120	<0.00050	mg/L	7.5	20
8520728	Dissolved Zinc (Zn)	2023/02/24	103	80 - 120	98	80 - 120	<0.0050	mg/L	NC	20
8520763	Total Ammonia-N	2023/02/27	87	75 - 125	98	80 - 120	<0.050	mg/L	0.38	20

Page 7 of 10

QUALITY ASSURANCE REPORT(CONT'D)

Stantec Consulting Ltd Client Project #: 121624777.200.1 Sampler Initials: SH

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8520914	Conductivity	2023/02/24			100	85 - 115	<1.0	umho/cm	1.1	25
8520915	рН	2023/02/24			102	98 - 103			0.99	N/A
8520918	Alkalinity (Total as CaCO3)	2023/02/24			98	85 - 115	<1.0	mg/L	1.2	20
8520920	Dissolved Sulphate (SO4)	2023/02/27	NC	75 - 125	93	80 - 120	<1.0	mg/L	1.5	20
8520923	Orthophosphate (P)	2023/02/27	93	75 - 125	100	80 - 120	<0.010	mg/L	NC	20
8520926	Dissolved Chloride (Cl-)	2023/02/27	NC	80 - 120	105	80 - 120	<1.0	mg/L	1.7	20
8521155	Nitrate (N)	2023/02/28	89	80 - 120	104	80 - 120	<0.10	mg/L	1.5	20
8521155	Nitrite (N)	2023/02/28	NC	80 - 120	107	80 - 120	<0.010	mg/L	1.2	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

		Bureau Veritas 6740 Campobello Road, Miss	sissauga, Ontario) Canada L5N 2L	.8 Tel (905) 817-57	00 Toll-free 800-	563-6266 Fax (1	905) 817-57	77 www.1	bvna dom				STA	NTEC	CHAIN	OF CUSTO	DDY RECORD		P	age of	E.
		INFORMATION:			REPOR	T INFORMATION	(if differs from	invoice):	_			PROJECT	INFORMATION	N:				Labora	tory Use Or	ıly:		
Company Nam	e #9197 Stantec C	Consulting Ltd	and some t	Company	Name	1				Our	otation #	C15856	6	-	· /		B	lureau Veritas Job #		Bottle	Order #:	
Contact Name:	Accounts Payable	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l	dan terdak	Contact N		stephen	Dibic	.><			k#:	a Full de		11.0								
Address:	300 Hagey Blvd S	Suite 100	1.00	Address		a		100			ect #:	121624	777.200.1	TICC			1				413	11
	Waterloo ON N2L		10.00					d) in h		and the second se	fit Centre:	ALC: NO DECIMAL	N. Harris		10.11	H - D		COC #:		Project I	Manage	c
Phone:	(519) 579-4410	Fax: (519)	579-6733	Phone:			Fax		5.00	Site	#	- 21	1.16	500						Indie C	lement	
Email:	SAPinvoices@St	antec.com		Email	_St	ephen.D	BiaseGy	stantee	. Cov	San	npled By:	SI	Lo Million I	0,600	1325	(FIE)		C#922413-01-01		and a		
MOE RE	EGULATED DRINKING	WATER OR WATER IN	ITENDED FO	R HUMAN CO	ONSUMPTION	MUST BE		-		ANALYS	SIS REQUE	ESTED (PLEASE BE	SPECIFIC)		_				Time (TAT) Req			
2833533	SUBMITTED ON T	HE BUREAU VERITAS D	RINKING WA	TER CHAIN	OF CUSTODY		ä										Degulas (St	Please provide adv andard) TAT:	ance notice for r	ush projects		
Regul	ation 153 (2011)	Othe	r Regulations		Special In	structions	ircle											if Rush TAT is not spec	afied):			R
	Res/Park Medium		anitary Sewer By	/law	- AND - AND		seci										N 1997	= 5-7 Working days for				
	Ind/Comm Coarse		torm Sewer Byla	w	1.1		g / C	9.									Please note: S	tandard TAT for certain	lests such as BOU	and Dioxins/F	^z urans an	e > 5
Table 3	Agri/Other For RS		icipality) pe	sueu									The street will be	your Project Manager fo				
L		PWQ0	Reg 406 Table				d Filtered (please	ubrei						-			Job Specific Date Required	Rush TAT (if applies		sion) Required:		
	1.1.1.0.1.1						Field Filtered (please circle):	Cor									and the second sec	ition Number;	VICTOR'S C			
- Com	Include Criteria	on Certificate of Analysi	C. S. Constant Marches			Matrix	- E	RCAp -							- 1		# of Battles		(call Commen	lab for #)	100	
San	tple Barcode Label	Sample (Location) Identifi	11400000 (Date Sampled	Time Sampled	Matrix		ŭ											Common			
1		M415-23	1	13/102	1400	60	1.575	X									4					
		111417-45			1.000	<u>y</u> w											1					
2							1.1.1															
														+		_					_	
3																						
							Lange Co															
4							- Cineter								- 1							
											_			+	-							
5							2500								- 1							
							-Konardia/							-								
6																						
							In the second							-	-		I					
1							PER											23-Feb-23	17.00			
8																	1		17:00			
0																		e Clement				
9							ALC: NO										107 015001EC/0728	LA I DI I DI LA INCONTRA				
9																	(0353332				
10							of star										1720	EN TIT O	10			
10							X H AR LE							_			AKO	ENV-8	13			
the d	* RELINQUISHED BY: (S	ignature/Print)	Date: (YY/MM	0.000	me	RECEIVED	BY: (Signature/	Print)		Date: (YY/MM/	DD)	Time	# jars used not submit	and			Laborat	ory Use Only				
SALAS	20 Settikh	nso	23/02/1	23 170	x r		myc	MS	-150	LONK	MA	1)0			Time Se	ensitive	Temperatu	re (°C) on Recei	Custody Sea Present	I Ye	IS .	No
					F			10			ſ	, ,	- 1. Cont. 1				10	VIL	Intact			/
* UNLESS OTH ACKNOWLEDG	ERWISE AGREED TO IN WE	RITING, WORK SUBMITTED ON OF OUR TERMS WHICH ARE A	THIS CHAIN OF	CUSTODY IS SU	BJECT TO BUREA	U VERITAS'S STAN	ORATORIES/RF	AND CONDIT	OC-TER	SIGNING OF THIS	CHAIN OF	F CUSTODY DOCUM	ENT IS						White: Bu	ureau Veritas	Yellow	w: Client
		INQUISHER TO ENSURE THE A										YS.	SAM	IPLES I	MUST BE	KEPT CO	OL (< 10° C) F	ROM TIME OF SAMP	ING			
		HOLD TIME AND PACKAGE IN											12		Can		- IS STATE					
							- LABORATOR		- JE JIGH						Contraction of the	and the second	and the state	No. 12				

Bureau Veritas Canada (2019) Inc

Your Project #: 121624777.200.1 Your C.O.C. #: 922413-01-01

Attention: Stephen DiBiase

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

> Report Date: 2023/03/29 Report #: R7566214 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C382753

Received: 2023/03/23, 16:46

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	4	N/A	2023/03/27	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2023/03/27	CAM SOP-00102	APHA 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	3	N/A	2023/03/28	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	4	N/A	2023/03/27	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	4	N/A	2023/03/27	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	4	N/A	2023/03/24	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	4	N/A	2023/03/27	CAM SOP	SM 2340 B
				00102/00408/00447	
Dissolved Metals by ICPMS	4	N/A	2023/03/27	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	1	N/A	2023/03/27		
Ion Balance (% Difference)	3	N/A	2023/03/28		
Anion and Cation Sum	1	N/A	2023/03/27		
Anion and Cation Sum	3	N/A	2023/03/28		
Total Ammonia-N	4	N/A	2023/03/27	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	4	N/A	2023/03/28	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	4	2023/03/25	2023/03/27	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	4	N/A	2023/03/27	CAM SOP-00461	SM 23 4500-P E m
Sat. pH and Langelier Index (@ 20C)	1	N/A	2023/03/27		Auto Calc
Sat. pH and Langelier Index (@ 20C)	3	N/A	2023/03/28		Auto Calc
Sat. pH and Langelier Index (@ 4C)	1	N/A	2023/03/27		Auto Calc
Sat. pH and Langelier Index (@ 4C)	3	N/A	2023/03/28		Auto Calc
Sulphate by Automated Turbidimetry	4	N/A	2023/03/27	CAM SOP-00464	SM 23 4500-SO42- E m
Total Dissolved Solids (TDS calc)	1	N/A	2023/03/27		Auto Calc
Total Dissolved Solids (TDS calc)	3	N/A	2023/03/28		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in

Page 1 of 14

Your Project #: 121624777.200.1 Your C.O.C. #: 922413-01-01

Attention: Stephen DiBiase

Stantec Consulting Ltd 300 Hagey Blvd Suite 100 Waterloo, ON CANADA N2L 0A4

> Report Date: 2023/03/29 Report #: R7566214 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C382753

Received: 2023/03/23, 16:46

writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Julie Clement, Technical Account Manager Email: Julie.CLEMENT@bureauveritas.com Phone# (613)868-6079

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 14

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID		VJG666		VJG667		VJG668		
Sampling Date		2023/03/22 11:45		2023/03/22 13:30		2023/03/22 17:06		
COC Number		922413-01-01		922413-01-01		922413-01-01		
	UNITS	MW33-23	RDL	MW31-23	RDL	MW9-23	RDL	QC Batcl
Calculated Parameters								
Anion Sum	me/L	24.3	N/A	10.6	N/A	7.51	N/A	857012
Bicarb. Alkalinity (calc. as CaCO3	mg/L	320	1.0	330	1.0	110	1.0	8568614
Calculated TDS	mg/L	1400	1.0	590	1.0	510	1.0	8569733
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	2.0	1.0	<1.0	1.0	8568614
Cation Sum	me/L	27.1	N/A	11.3	N/A	7.82	N/A	8570125
Hardness (CaCO3)	mg/L	800	1.0	500	1.0	300	1.0	8570323
Ion Balance (% Difference)	%	5.54	N/A	3.28	N/A	2.02	N/A	8570124
Langelier Index (@ 20C)	N/A	0.833		0.857		0.0440		8570127
Langelier Index (@ 4C)	N/A	0.589		0.609		-0.203		8570128
Saturation pH (@ 20C)	N/A	6.67		6.94		7.49		857012
Saturation pH (@ 4C)	N/A	6.91		7.19		7.74		857012
Inorganics								
Total Ammonia-N	mg/L	0.39	0.050	0.30	0.050	0.51	0.050	8572745
Conductivity	umho/cm	2600	1.0	950	1.0	740	1.0	8573597
Dissolved Organic Carbon	mg/L	1.5	0.40	2.5	0.40	7.8	0.40	857202
Orthophosphate (P)	mg/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	8572739
рН	рН	7.50		7.80		7.53		8573593
Dissolved Sulphate (SO4)	mg/L	44	1.0	120	1.0	100	1.0	8572710
Alkalinity (Total as CaCO3)	mg/L	330	1.0	340	1.0	120	1.0	8573584
Dissolved Chloride (Cl-)	mg/L	580	5.0	35	1.0	14	1.0	8572729
Nitrite (N)	mg/L	0.383	0.010	0.156	0.010	0.362	0.010	857255
Nitrate (N)	mg/L	5.70	0.10	6.34	0.10	37.7	0.50	857255
Nitrate + Nitrite (N)	mg/L	6.08	0.10	6.49	0.10	38.0	0.50	857255
Metals								
Dissolved Aluminum (Al)	mg/L	<0.0049	0.0049	0.0067	0.0049	0.0064	0.0049	8574474
Dissolved Antimony (Sb)	mg/L	<0.00050	0.00050	0.00058	0.00050	<0.00050	0.00050	8574474
Dissolved Arsenic (As)	mg/L	<0.0010	0.0010	<0.0010	0.0010	<0.0010	0.0010	8574474
Dissolved Barium (Ba)	mg/L	0.12	0.0020	0.099	0.0020	0.038	0.0020	8574474
Dissolved Beryllium (Be)	mg/L	<0.00040	0.00040	<0.00040	0.00040	<0.00040	0.00040	8574474
Dissolved Boron (B)	mg/L	0.020	0.010	0.074	0.010	0.039	0.010	8574474
Dissolved Cadmium (Cd)	mg/L	<0.000090	0.000090	<0.000090	0.000090	<0.000090	0.000090	8574474
RDL = Reportable Detection Limit	t							
OC Batch - Quality Control Batch								

QC Batch = Quality Control Batch

N/A = Not Applicable

RCAP - COMPREHENSIVE (WATER)

		t	1		1	İ	1	i
Bureau Veritas ID		VJG666		VJG667		VJG668		
Sampling Date		2023/03/22		2023/03/22		2023/03/22		
		11:45		13:30		17:06		
COC Number		922413-01-01		922413-01-01		922413-01-01		
	UNITS	MW33-23	RDL	MW31-23	RDL	MW9-23	RDL	QC Batch
Dissolved Calcium (Ca)	mg/L	260	0.20	100	0.20	83	0.20	8574474
Dissolved Chromium (Cr)	mg/L	<0.0050	0.0050	<0.0050	0.0050	0.0051	0.0050	8574474
Dissolved Cobalt (Co)	mg/L	<0.00050	0.00050	0.00053	0.00050	0.00079	0.00050	8574474
Dissolved Copper (Cu)	mg/L	0.0010	0.00090	0.0057	0.00090	0.0057	0.00090	8574474
Dissolved Iron (Fe)	mg/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	8574474
Dissolved Lead (Pb)	mg/L	<0.00050	0.00050	<0.00050	0.00050	<0.00050	0.00050	8574474
Dissolved Magnesium (Mg)	mg/L	35	0.050	60	0.050	21	0.050	8574474
Dissolved Manganese (Mn)	mg/L	0.11	0.0020	0.11	0.0020	0.10	0.0020	8574474
Dissolved Molybdenum (Mo)	mg/L	0.0017	0.00050	0.0072	0.00050	0.019	0.00050	8574474
Dissolved Nickel (Ni)	mg/L	0.0019	0.0010	0.0027	0.0010	0.0026	0.0010	8574474
Dissolved Phosphorus (P)	mg/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	8574474
Dissolved Potassium (K)	mg/L	2.1	0.20	18	0.20	9.8	0.20	8574474
Dissolved Selenium (Se)	mg/L	<0.0020	0.0020	0.0039	0.0020	<0.0020	0.0020	8574474
Dissolved Silicon (Si)	mg/L	8.4	0.050	6.1	0.050	4.0	0.050	8574474
Dissolved Silver (Ag)	mg/L	<0.000090	0.000090	<0.000090	0.000090	<0.000090	0.000090	8574474
Dissolved Sodium (Na)	mg/L	250	0.10	17	0.10	38	0.10	8574474
Dissolved Strontium (Sr)	mg/L	0.58	0.0010	0.43	0.0010	0.17	0.0010	8574474
Dissolved Thallium (Tl)	mg/L	<0.000050	0.000050	<0.000050	0.000050	<0.000050	0.000050	8574474
Dissolved Titanium (Ti)	mg/L	<0.0050	0.0050	<0.0050	0.0050	<0.0050	0.0050	8574474
Dissolved Uranium (U)	mg/L	0.0036	0.00010	0.0068	0.00010	0.0044	0.00010	8574474
Dissolved Vanadium (V)	mg/L	<0.00050	0.00050	<0.00050	0.00050	<0.00050	0.00050	8574474
Dissolved Zinc (Zn)	mg/L	1.2	0.0050	0.31	0.0050	0.40	0.0050	8574474
RDL = Reportable Detection Limi	t							

QC Batch = Quality Control Batch

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID		VJG668			VJG669			VJG669		
Sampling Date		2023/03/22			2023/03/22			2023/03/22		
		17:06			18:15			18:15		
COC Number		922413-01-01			922413-01-01			922413-01-01		
	UNITS	MW9-23 Lab-Dup	RDL	QC Batch	MW18-23	RDL	QC Batch	MW18-23 Lab-Dup	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L				16.8	N/A	8570125			
Bicarb. Alkalinity (calc. as CaCO3	mg/L				290	1.0	8568614			
Calculated TDS	mg/L				1100	1.0	8569731			
Carb. Alkalinity (calc. as CaCO3)	mg/L				1.2	1.0	8568614			
Cation Sum	me/L				17.9	N/A	8570125			
Hardness (CaCO3)	mg/L				840	1.0	8570323			
Ion Balance (% Difference)	%				3.38	N/A	8570124			
Langelier Index (@ 20C)	N/A				0.856		8570127			
Langelier Index (@ 4C)	N/A				0.611		8570128			
Saturation pH (@ 20C)	N/A				6.78		8570127			
Saturation pH (@ 4C)	N/A				7.02		8570128			
Inorganics										
Total Ammonia-N	mg/L				<0.050	0.050	8572745	<0.050	0.050	8572745
Conductivity	umho/cm	740	1.0	8573597	1600	1.0	8573597			
Dissolved Organic Carbon	mg/L				2.4	0.40	8572021			
Orthophosphate (P)	mg/L	<0.010	0.010	8572739	<0.010	0.010	8572739			
pН	рН	7.60		8573593	7.63		8573593			
Dissolved Sulphate (SO4)	mg/L	100	1.0	8572710	85	1.0	8572710			
Alkalinity (Total as CaCO3)	mg/L	110	1.0	8573584	290	1.0	8573584			
Dissolved Chloride (Cl-)	mg/L	14	1.0	8572729	120	1.0	8572729			
Nitrite (N)	mg/L				0.034	0.010	8572555			
Nitrate (N)	mg/L				78.3	1.0	8572555			
Nitrate + Nitrite (N)	mg/L				78.4	1.0	8572555			
Metals	•					•	•			•
Dissolved Aluminum (Al)	mg/L				<0.0049	0.0049	8574474			
Dissolved Antimony (Sb)	mg/L				<0.00050	0.00050	8574474			
Dissolved Arsenic (As)	mg/L				<0.0010	0.0010	8574474			
Dissolved Barium (Ba)	mg/L				0.075	0.0020	8574474			
Dissolved Beryllium (Be)	mg/L				<0.00040	0.00040	8574474			
Dissolved Boron (B)	mg/L				0.013	0.010	8574474			l

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

RCAP - COMPREHENSIVE (WATER)

Bureau Veritas ID		VJG668			VJG669			VJG669		
		2023/03/22			2023/03/22			2023/03/22		
Sampling Date		17:06			18:15			18:15		
COC Number		922413-01-01			922413-01-01			922413-01-01		
	UNITS	MW9-23 Lab-Dup	RDL	QC Batch	MW18-23	RDL	QC Batch	MW18-23 Lab-Dup	RDL	QC Batch
Dissolved Cadmium (Cd)	mg/L				<0.000090	0.000090	8574474			
Dissolved Calcium (Ca)	mg/L				200	0.20	8574474			
Dissolved Chromium (Cr)	mg/L				<0.0050	0.0050	8574474			
Dissolved Cobalt (Co)	mg/L				0.0014	0.00050	8574474			
Dissolved Copper (Cu)	mg/L				<0.00090	0.00090	8574474			
Dissolved Iron (Fe)	mg/L				<0.10	0.10	8574474			
Dissolved Lead (Pb)	mg/L				<0.00050	0.00050	8574474			
Dissolved Magnesium (Mg)	mg/L				79	0.050	8574474			
Dissolved Manganese (Mn)	mg/L				0.12	0.0020	8574474			
Dissolved Molybdenum (Mo)	mg/L				0.0011	0.00050	8574474			
Dissolved Nickel (Ni)	mg/L				0.0072	0.0010	8574474			
Dissolved Phosphorus (P)	mg/L				<0.10	0.10	8574474			
Dissolved Potassium (K)	mg/L				3.2	0.20	8574474			
Dissolved Selenium (Se)	mg/L				<0.0020	0.0020	8574474			
Dissolved Silicon (Si)	mg/L				6.0	0.050	8574474			
Dissolved Silver (Ag)	mg/L				<0.000090	0.000090	8574474			
Dissolved Sodium (Na)	mg/L				25	0.10	8574474			
Dissolved Strontium (Sr)	mg/L				0.62	0.0010	8574474			
Dissolved Thallium (Tl)	mg/L				<0.000050	0.000050	8574474			
Dissolved Titanium (Ti)	mg/L				<0.0050	0.0050	8574474			
Dissolved Uranium (U)	mg/L				0.0034	0.00010	8574474			
Dissolved Vanadium (V)	mg/L				<0.00050	0.00050	8574474			
Dissolved Zinc (Zn)	mg/L				<0.0050	0.0050	8574474			
RDL = Reportable Detection Limit	t									
QC Batch = Quality Control Batch	n									
Lab-Dup = Laboratory Initiated D	uplicate									

TEST SUMMARY

Bureau Veritas ID:	VJG666	Collected:	2023/03/22
Sample ID: Matrix:	MW33-23 Water	Shipped: Received:	2023/03/23
		necenteur	2023/03/23

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8573584	N/A	2023/03/27	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8568614	N/A	2023/03/28	Automated Statchk
Chloride by Automated Colourimetry	KONE	8572729	N/A	2023/03/27	Massarat Jan
Conductivity	AT	8573597	N/A	2023/03/27	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8572021	N/A	2023/03/24	Gyulshen Idriz
Hardness (calculated as CaCO3)		8570323	N/A	2023/03/27	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8574474	N/A	2023/03/27	Nan Raykha
Ion Balance (% Difference)	CALC	8570124	N/A	2023/03/28	Automated Statchk
Anion and Cation Sum	CALC	8570125	N/A	2023/03/28	Automated Statchk
Total Ammonia-N	LACH/NH4	8572745	N/A	2023/03/27	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8572555	N/A	2023/03/28	Chandra Nandlal
рН	AT	8573593	2023/03/25	2023/03/27	Kien Tran
Orthophosphate	KONE	8572739	N/A	2023/03/27	Massarat Jan
Sat. pH and Langelier Index (@ 20C)	CALC	8570127	N/A	2023/03/28	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8570128	N/A	2023/03/28	Automated Statchk
Sulphate by Automated Turbidimetry	KONE	8572710	N/A	2023/03/27	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	8569731	N/A	2023/03/28	Automated Statchk

Bureau Veritas ID: VJG667 Sample ID: MW31-23 Matrix: Water

Collected:	2023/03/22
Shipped:	
Received:	2023/03/23

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8573584	N/A	2023/03/27	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8568614	N/A	2023/03/28	Automated Statchk
Chloride by Automated Colourimetry	KONE	8572729	N/A	2023/03/27	Massarat Jan
Conductivity	AT	8573597	N/A	2023/03/27	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8572021	N/A	2023/03/24	Gyulshen Idriz
Hardness (calculated as CaCO3)		8570323	N/A	2023/03/27	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8574474	N/A	2023/03/27	Nan Raykha
Ion Balance (% Difference)	CALC	8570124	N/A	2023/03/28	Automated Statchk
Anion and Cation Sum	CALC	8570125	N/A	2023/03/28	Automated Statchk
Total Ammonia-N	LACH/NH4	8572745	N/A	2023/03/27	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8572555	N/A	2023/03/28	Chandra Nandlal
рН	AT	8573593	2023/03/25	2023/03/27	Kien Tran
Orthophosphate	KONE	8572739	N/A	2023/03/27	Massarat Jan
Sat. pH and Langelier Index (@ 20C)	CALC	8570127	N/A	2023/03/28	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8570128	N/A	2023/03/28	Automated Statchk
Sulphate by Automated Turbidimetry	KONE	8572710	N/A	2023/03/27	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	8569731	N/A	2023/03/28	Automated Statchk

TEST SUMMARY

Bureau Veritas ID:	VJG668	Collected:	2023/03/22
Sample ID:	MW9-23	Shipped:	
Matrix:	Water	Received:	2023/03/23

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8573584	N/A	2023/03/27	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8568614	N/A	2023/03/27	Automated Statchk
Chloride by Automated Colourimetry	KONE	8572729	N/A	2023/03/27	Massarat Jan
Conductivity	AT	8573597	N/A	2023/03/27	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8572021	N/A	2023/03/24	Gyulshen Idriz
Hardness (calculated as CaCO3)		8570323	N/A	2023/03/27	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8574474	N/A	2023/03/27	Nan Raykha
Ion Balance (% Difference)	CALC	8570124	N/A	2023/03/27	Automated Statchk
Anion and Cation Sum	CALC	8570125	N/A	2023/03/27	Automated Statchk
Total Ammonia-N	LACH/NH4	8572745	N/A	2023/03/27	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8572555	N/A	2023/03/28	Chandra Nandlal
рН	AT	8573593	2023/03/25	2023/03/27	Kien Tran
Orthophosphate	KONE	8572739	N/A	2023/03/27	Massarat Jan
Sat. pH and Langelier Index (@ 20C)	CALC	8570127	N/A	2023/03/27	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8570128	N/A	2023/03/27	Automated Statchk
Sulphate by Automated Turbidimetry	KONE	8572710	N/A	2023/03/27	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	8569731	N/A	2023/03/27	Automated Statchk

Bureau Veritas ID: VJG668 Dup Sample ID: MW9-23 Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8573584	N/A	2023/03/27	Kien Tran
Chloride by Automated Colourimetry	KONE	8572729	N/A	2023/03/27	Massarat Jan
Conductivity	AT	8573597	N/A	2023/03/27	Kien Tran
рН	AT	8573593	2023/03/25	2023/03/27	Kien Tran
Orthophosphate	KONE	8572739	N/A	2023/03/27	Massarat Jan
Sulphate by Automated Turbidimetry	KONE	8572710	N/A	2023/03/27	Alina Dobreanu

Bureau Veritas ID: VJG669 Sample ID: MW18-23 Matrix: Water

Collected: 2023/03/22 Shipped: **Received:** 2023/03/23

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8573584	N/A	2023/03/27	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8568614	N/A	2023/03/28	Automated Statchk
Chloride by Automated Colourimetry	KONE	8572729	N/A	2023/03/27	Massarat Jan
Conductivity	AT	8573597	N/A	2023/03/27	Kien Tran
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8572021	N/A	2023/03/24	Gyulshen Idriz
Hardness (calculated as CaCO3)		8570323	N/A	2023/03/27	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8574474	N/A	2023/03/27	Nan Raykha
Ion Balance (% Difference)	CALC	8570124	N/A	2023/03/28	Automated Statchk
Anion and Cation Sum	CALC	8570125	N/A	2023/03/28	Automated Statchk
Total Ammonia-N	LACH/NH4	8572745	N/A	2023/03/27	Shivani Shivani

Page 8 of 14

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Collected: 2023/03/22 Shipped:

Received: 2023/03/23

TEST SUMMARY

Bureau Veritas ID: VJG669 Sample ID: MW18-23 Matrix: Water					Collected: 2023/03/22 Shipped: Received: 2023/03/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrate & Nitrite as Nitrogen in Water	LACH	8572555	N/A	2023/03/28	Chandra Nandlal
рН	AT	8573593	2023/03/25	2023/03/27	Kien Tran
Orthophosphate	KONE	8572739	N/A	2023/03/27	Massarat Jan
Sat. pH and Langelier Index (@ 20C)	CALC	8570127	N/A	2023/03/28	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	8570128	N/A	2023/03/28	Automated Statchk
Sulphate by Automated Turbidimetry	KONE	8572710	N/A	2023/03/27	Alina Dobreanu
Total Dissolved Solids (TDS calc)	CALC	8569731	N/A	2023/03/28	Automated Statchk
Bureau Veritas ID: VJG669 Dup Sample ID: MW18-23 Matrix: Water					Collected: 2023/03/22 Shipped: Received: 2023/03/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Ammonia-N	LACH/NH4	8572745	N/A	2023/03/27	Shivani Shivani

GENERAL COMMENTS

Each te	emperature is the ave	rage of up to th	ree cooler temperatures taken at receipt
	Package 1	4.3°C	
Result	s relate only to the ite	ems tested.	

QUALITY ASSURANCE REPORT

Stantec Consulting Ltd Client Project #: 121624777.200.1 Sampler Initials: SH

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8572021	Dissolved Organic Carbon	2023/03/24	95	80 - 120	97	80 - 120	<0.40	mg/L	9.8	20
8572555	Nitrate (N)	2023/03/28	96	80 - 120	100	80 - 120	<0.10	mg/L	NC	20
8572555	Nitrite (N)	2023/03/28	102	80 - 120	107	80 - 120	<0.010	mg/L	NC	20
8572710	Dissolved Sulphate (SO4)	2023/03/27	NC	75 - 125	93	80 - 120	<1.0	mg/L	0.52	20
8572729	Dissolved Chloride (Cl-)	2023/03/27	95	80 - 120	95	80 - 120	<1.0	mg/L	0.33	20
8572739	Orthophosphate (P)	2023/03/27	97	75 - 125	96	80 - 120	<0.010	mg/L	NC	20
8572745	Total Ammonia-N	2023/03/27	99	75 - 125	102	80 - 120	<0.050	mg/L	NC	20
8573584	Alkalinity (Total as CaCO3)	2023/03/27			98	85 - 115	<1.0	mg/L	3.4	20
8573593	рН	2023/03/27			102	98 - 103			0.92	N/A
8573597	Conductivity	2023/03/27			101	85 - 115	<1.0	umho/cm	0.67	25
8574474	Dissolved Aluminum (Al)	2023/03/27	111	80 - 120	99	80 - 120	<0.0049	mg/L	3.2	20
8574474	Dissolved Antimony (Sb)	2023/03/27	113	80 - 120	105	80 - 120	<0.00050	mg/L	NC	20
8574474	Dissolved Arsenic (As)	2023/03/27	109	80 - 120	101	80 - 120	<0.0010	mg/L	NC	20
8574474	Dissolved Barium (Ba)	2023/03/27	109	80 - 120	101	80 - 120	<0.0020	mg/L	3.3	20
8574474	Dissolved Beryllium (Be)	2023/03/27	106	80 - 120	103	80 - 120	<0.00040	mg/L	NC	20
8574474	Dissolved Boron (B)	2023/03/27	105	80 - 120	99	80 - 120	<0.010	mg/L	NC	20
8574474	Dissolved Cadmium (Cd)	2023/03/27	108	80 - 120	101	80 - 120	<0.000090	mg/L	NC	20
8574474	Dissolved Calcium (Ca)	2023/03/27	108	80 - 120	100	80 - 120	<0.20	mg/L	0.74	20
8574474	Dissolved Chromium (Cr)	2023/03/27	104	80 - 120	96	80 - 120	<0.0050	mg/L	NC	20
8574474	Dissolved Cobalt (Co)	2023/03/27	106	80 - 120	98	80 - 120	<0.00050	mg/L	0.97	20
8574474	Dissolved Copper (Cu)	2023/03/27	111	80 - 120	103	80 - 120	<0.00090	mg/L	3.6	20
8574474	Dissolved Iron (Fe)	2023/03/27	109	80 - 120	100	80 - 120	<0.10	mg/L	2.5	20
8574474	Dissolved Lead (Pb)	2023/03/27	106	80 - 120	100	80 - 120	<0.00050	mg/L	NC	20
8574474	Dissolved Magnesium (Mg)	2023/03/27	107	80 - 120	98	80 - 120	<0.050	mg/L	0.76	20
8574474	Dissolved Manganese (Mn)	2023/03/27	105	80 - 120	98	80 - 120	<0.0020	mg/L	2.8	20
8574474	Dissolved Molybdenum (Mo)	2023/03/27	114	80 - 120	105	80 - 120	<0.00050	mg/L	1.2	20
8574474	Dissolved Nickel (Ni)	2023/03/27	105	80 - 120	97	80 - 120	<0.0010	mg/L	0.46	20
8574474	Dissolved Phosphorus (P)	2023/03/27	113	80 - 120	108	80 - 120	<0.10	mg/L	NC	20
8574474	Dissolved Potassium (K)	2023/03/27	111	80 - 120	102	80 - 120	<0.20	mg/L	2.5	20
8574474	Dissolved Selenium (Se)	2023/03/27	112	80 - 120	101	80 - 120	<0.0020	mg/L	NC	20
8574474	Dissolved Silicon (Si)	2023/03/27	109	80 - 120	99	80 - 120	<0.050	mg/L	0.28	20

Page 11 of 14

QUALITY ASSURANCE REPORT(CONT'D)

Stantec Consulting Ltd Client Project #: 121624777.200.1 Sampler Initials: SH

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8574474	Dissolved Silver (Ag)	2023/03/27	111	80 - 120	105	80 - 120	<0.000090	mg/L	NC	20
8574474	Dissolved Sodium (Na)	2023/03/27	107	80 - 120	99	80 - 120	<0.10	mg/L	0.28	20
8574474	Dissolved Strontium (Sr)	2023/03/27	105	80 - 120	99	80 - 120	<0.0010	mg/L	1.8	20
8574474	Dissolved Thallium (TI)	2023/03/27	109	80 - 120	103	80 - 120	<0.000050	mg/L	NC	20
8574474	Dissolved Titanium (Ti)	2023/03/27	108	80 - 120	101	80 - 120	<0.0050	mg/L	NC	20
8574474	Dissolved Uranium (U)	2023/03/27	106	80 - 120	100	80 - 120	<0.00010	mg/L	2.1	20
8574474	Dissolved Vanadium (V)	2023/03/27	106	80 - 120	98	80 - 120	<0.00050	mg/L	NC	20
8574474	Dissolved Zinc (Zn)	2023/03/27	107	80 - 120	99	80 - 120	<0.0050	mg/L	5.2	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

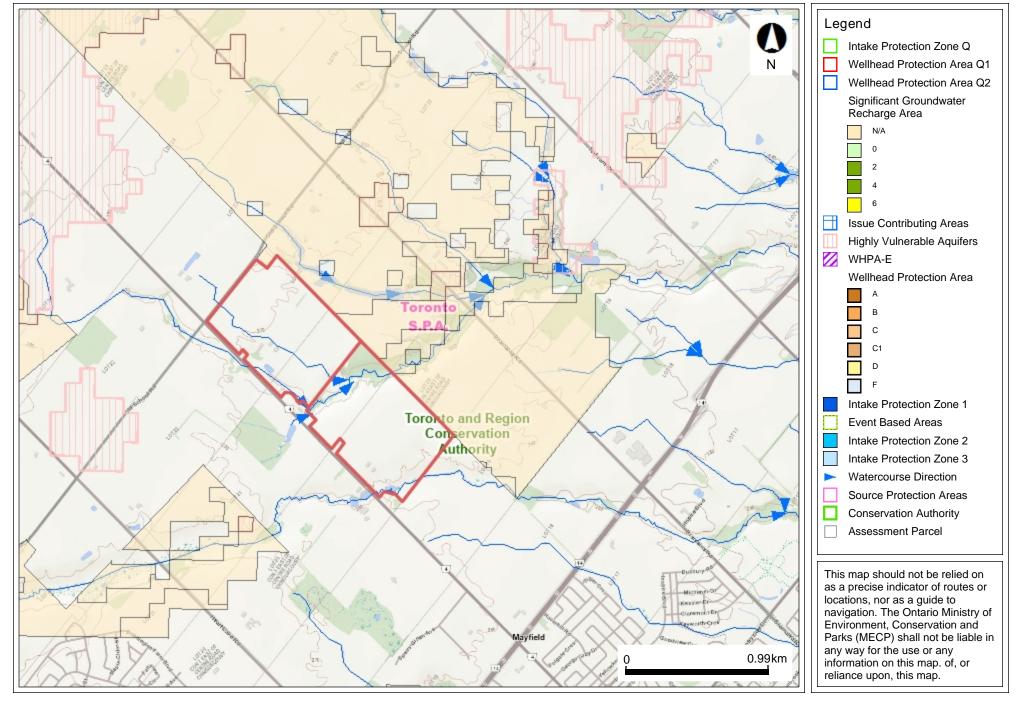
NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

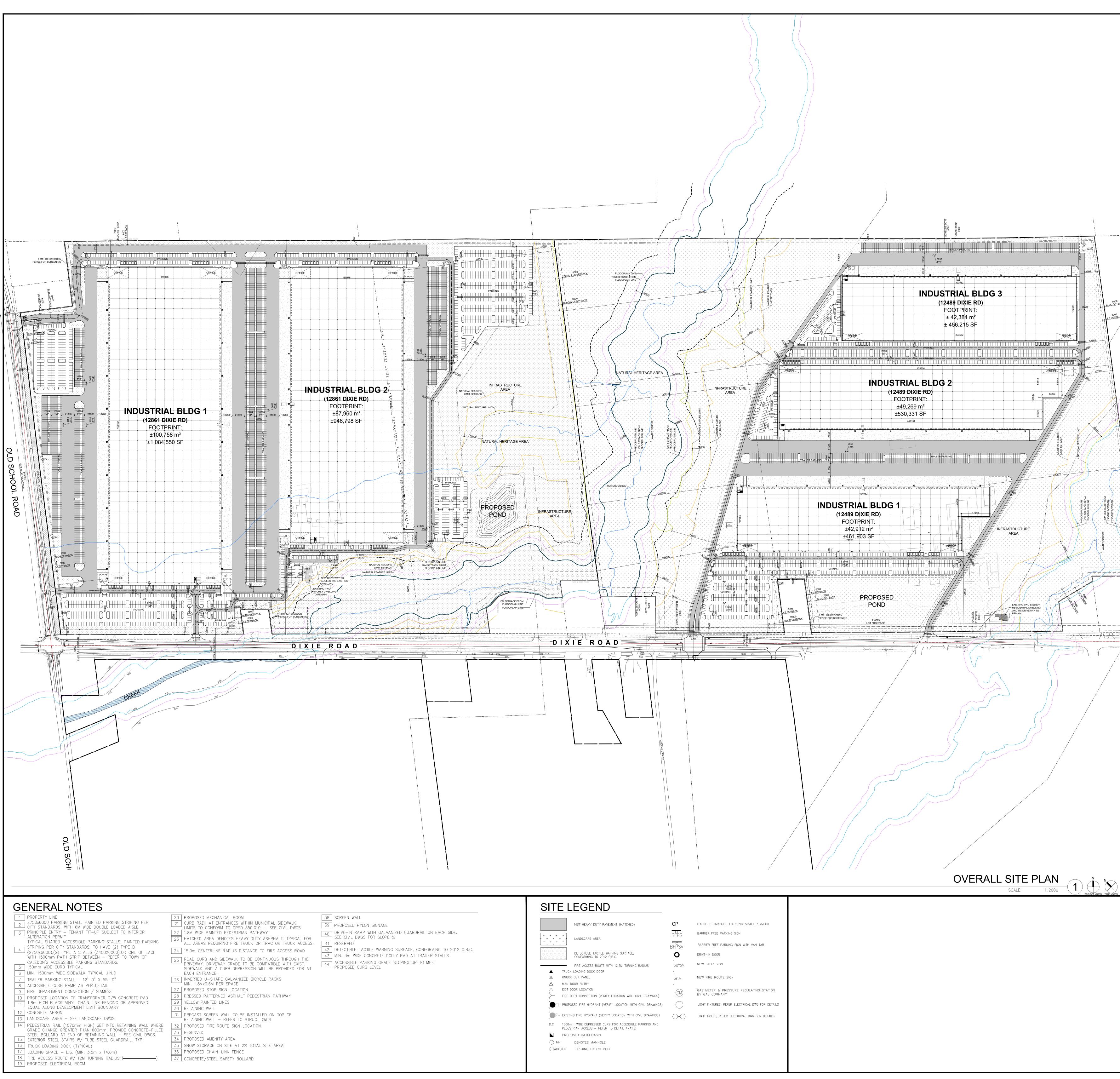
Anastassia Hamanov, Scientific Specialist


Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

		Bureau Veritas 6740 Campobelio Road, Mississauga, (Ontario Canada L5N	2L8 Tel: (905) 817-5	700 Toll-free 800	563-6266 Fax (905) 817-5777	www.bvna.com				e.	STA			-Mar-23 ement	16:46	Page of
	INVOI	CE INFORMATION:		REPO	RT INFORMATIO	(if differs from	invoice):				PROJECT	INFORMAT	ION:					Only:
Company Na			Compa	ny Name:	ي ال قام	14		1.1.1	Quotation #	ŧ;	C15856	3			C38	82753		Bottle Order #:
Contact Nan			Contact	Name: Ster	phen Dil	Siase	5 12		Task #:		_	-	1.1	TOP			0	
Address:	300 Hagey Blvo Waterloo ON N		Addres			語			Project #:		121624	777.200.	1	ΠK	-	FNV_74		922413
Phone:	(519) 579-4410	TDPS-CREDEN.	33	10 Julie					Profit Centr	re:	-	100	-		-		COC #:	Project Manager:
Email:	SAPinvoices@		33 Phone: Email:	Jenhen	dibiase 6	Fax	. Com		Site #: Sampled B		SH		-	-			C#922413-01-01	Julie Clement
The Part of the Part	the set of the set of	NG WATER OR WATER INTENDE	LOW DO NOT THE OWNER.	Statement of the local division in the local	CONTRACTOR OF THE OWNER OF THE OWNER	smn/ec	-1 com	AN			(PLEASE BE				_		Turnaround Time (TA	D Required:
NOE	SUBMITTED ON	THE BUREAU VERITAS DRINKIN	G WATER CHAI	OF CUSTODY	MUSTBE					000100		01 201 101	1			an selected of the	Please provide advance noti	
Rec	gulation 153 (2011)	Other Regulat	ions	Special k	nstructions	circle): VI											tandard) TAT:	IS.
Table 1	Res/Park Medi		125.36	opecial in	natiocitons	Z S			1.1							the second constant	d if Rush TAT is not specified):	2
Table 2				196720		eas										Merch Environ	= 5-7 Working days for most tests. Standard TAT for certain tests such	as 800 and Disvins/Europe are a
Table 3	Agri/Other For F	RSC MISA Municipality				Id) p	visue									days - contact	your Project Manager for details.	
Table		PWQO Reg 406 T	able			Field Filtered (please c	orehe										Rush TAT (if applies to entire s	
		Other				Metta	Com									Date Required	t: ation Number:	Time Required:
	Construction of the second second	ria on Certificate of Analysis (Y/N)?				Liefo	RCAp - I									Lawrence .	adon Number.	(call lab for #)
S	ample Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix		RC									# of Bottles	Co	mments
1		MW33-23	22/23	1145	GU		×								-	4		
2		MW31-23	N.	1330	GW		Y								1	4		
3		Mu9-23	1	1700	GW	- N	X									4		
4		MU9-23 MU18-23	11	1815	Gu		X									4		
5		In the second se	Contraction of the			Vet i	-										A. 9	
6						1					1						. 8	
7			¢.						-									
8					2	2167		~		Ť				1				
9						1.0			Y.					×		~		1
10					1.	1			1									
-	* RELINQUISHED BY:	(Signature/Print) Date: //	YY/MM/DD)	Time	RECEIVED	BY: (Signature	Print)	Date: (YY	(MM/DD)		Time	# jars use	ed and			Labora	tory Use Only	
ALL	-alcult			45	> 11	TRIA	inte	2023			16.40	not subr		Time S	Sensitive		Custor	v Seal Yes No
UNLESS O	THERWISE AGREED TO IN	WRITING, WORK SUBMITTED ON THIS CHA	-		AU VERITAS'S STA	NDARD TERMS			24/20	- (VIII OKSIN	Mit lac	iempérati	14/4 Pres	act
ACKNOWLE	DGMENT AND ACCEPTANC	E OF OUR TERMS WHICH ARE AVAILABLE ELINQUISHER TO ENSURE THE ACCURAC	FOR VIEWING AT W	WW.BVNA.COM/ENV	IRONMENTAL-LA	IORATORIES/RE	SOURCES/CO	C-TERMS-AND-C	ONDITIONS.				AMPLES	MUST BE		DOL (< 10º C) I ERY TO BUREA	FROM TIME OF SAMPLING	te: Bureau Veritas Yellow: C

Appendix F

Source Protection Mapping


Hydrogeological Assessment - 12489 & 12861 Dixie Road

Ontario (© King's Printer for Ontario and its licensors, 2024

May Not be Reproduced without Permission. THIS IS NOT A PLAN OF SURVEY. Map Created: 11/27/2024 Map Center: 43.78066 N, -79.80174 W Appendix G

Site Design Plan

L	G	IN	U

		ed Zoning Category J Classification VELOPABLE AREA SITE AREA rmitted Use (Town of Caledon Zoning By-law2006-50)	Group F2 (O.B.C. / 4,899,303 SF 6,271,978 SF	455,160.62m ² 582,686.42m ²		y 7, Suite 300 0R1, Canada 905.760.1221
			Indu	istrial		ay 7, S H 0R1,
	BUILDIN	IG 1 (12861 DIXIE RD)				Highwwhite
	Office	Area	25,901 SF	2,406.27 m²		6220 han, O
	Wareh	nouse Area	920,229 SF	85,492.13 m²		Vaugh
			1.083.400 SF	100.651.28 m ²		
	Floor	Area	1,084,549 SF	100,757.96 m²		
	BUILDIN	IG 2 (12861 DIXIE RD)	945,731 SF	87,861.36 m²		
		-				ERING
	Net Floor	r Area	188,512.63m ²	925.00m² -		
	Building /	Area	32.39%			
	Min. From	nt Yard Building Setback (m)	86.00	9.00		CTURE G ds
	<u>Min. Int.S</u> Min. Int. S	ide Yard Building Set back (m) Side Yard Building Set back (m) - Abutting Residential	54.99	15.00	Y	
	Lot Cove	erage	32.39%	50.00%		AR IN
	Maximum	n Building Height (m) - BUILDING 2 (12861 DIXIE RD)	16.01	18.00		
	Min. Lan	dscape Area (SM)	178,257.16m²	58,268.64m²		
	Min. Ext. Min. Int. S	Side Landscape Buffer (m) Side Landscape Buffer (m)	6.00	6.00 6.00	CEMEN	
				6.00 -	1MENC	
			Proposed	Required	_	
	@139 +	1/170m ² of Net Floor Area over 10,000 m ²	910	672		
	@139 +	1/170m ² of Net Floor Area over 10,000 m ²				
BUILDING LIVENE DOLE ROU 121 10111011000000000000000000000000000	, (Includin	g Accessible Parking Spaces)	1972	1269		
	/ @201 to	1000 parking spaces is 2 plus 2% of total spaces	3		LCOMI	
				15		
The number of Accessible Parking Spaces 20 10 20 10 <t< td=""><td>BUILDIN</td><td>IG 2 (12861 DIXIE RD)</td><td></td><td></td><td>WARE</td><td></td></t<>	BUILDIN	IG 2 (12861 DIXIE RD)			WARE	
Display Display Display Display Display Display Proving Janco Characom Proving Janco Ch	Total no	. of Accessible Parking Spaces	44 22 Type - A	29 14 Type - A	40 L	
		<u> </u>	22 Type - B 24		NOTIC	
	Parking	Stall Dimensions	ACCESSIBLE: TYP			
Building of the set to be the point of the set of the			w/ 1.5m access ais	le on either side	TO	
Image: Contractions in the contract of	BUILDIN	NG 1 (12861 DIXIE RD)	300		.H9NC	
Building 1 (reset place RD) 10	Total no	of Trailer Parking Spaces	541	-		
Production 2 in control 2 in the 2 interval Production 2	BUILDIN	IG 1 (12861 DIXIE RD)	211	13		
Buldeng Cleanification Buldeng Cleanification Orange FA (DA C, 4.3.12.11(3) APA (D) (S A) APA (D) (D) (D) (D) (D) (D) (D) (D) (D) (D)	@3 + 1 p	per 9300 m ² in excess of 7441 m ² of Net Floor Area				
Bit Link Charaffer allow Comp # VALUE (S & A + 27 + 70 mm) All (S & A + 27 + 70 mm) Print Pit Pit Pit Charaffer All Pit All Pit All (S & A + 27 + 70 mm) All (S & A + 27 + 70 mm) All (S & A + 27 + 70 mm) Print Pit Pit Pit Charaffer All Pit All Pit All (S & A + 27 + 70 mm) All (S & A + 27 + 70 mm) All (S & A + 27 + 70 mm) All (S & A + 27 + 70 mm) Print Pit Pit Pit Charaffer All Pit All (S & A + 27 + 70 mm) All (S & A + 27 + 70 mm) All (S & A + 27 + 70 mm) All (S & A + 27 + 70 mm) Pit Dist Charaffer All (S & A + 27 + 70 mm) All (S & A + 20 + 20 mm) All (S & A + 20 + 20 mm) All (S & A + 20 + 20 mm) All (S & A + 20 + 20 + 20 mm) All (S & A + 20 + 20 + 20 + 20 + 20 + 20 + 20 +					ANC	
Buldeng Cleanification Buldeng Cleanification Orange FA (DA C, 4.3.12.11(3) APA (D) (S A) APA (D) (D) (D) (D) (D) (D) (D) (D) (D) (D)		SITE STATISTICS - 12489 DIXI	E ROAD		SCREF	
Buldeng Cleanification Buldeng Cleanification Orange FA (DA C, 4.3.12.11(3) APA (D) (S A) APA (D) (D) (D) (D) (D) (D) (D) (D) (D) (D)		Zoning Category	A			O
	NET DE	VELOPABLE AREA	3,445,017 SF	320,052.83m ²		M
Sector 22 - 0.0079 Sector 407 2009 41,903 5F 42,913 6F	Zone Pe	rmitted Use (Town of Caledon Zoning By-law 2006-50)	\mathcal{Y}	·		
Building Cardination Building			Indu	istrial	ш	$\mathbf{U}_{\mathbf{O}}$
Bull DWG 21/1248 DUIE RD) 453.31 SF 47.493.83 NF 47.493.83 NF 47.493.83 NF BULDONG 31/1248 DUIE RD) 454.21 SF 42.253.74 m² 47.775.751 17.775 BULDONG 31/1248 DUIE RD) 454.21 SF 42.253.74 m² 17.755.751 17.75 BULDONG 31/1248 DUIE RD) 464.247 SF 87.78 Ar.m² 17.856.83 m² 17.75 More Area 9.444 SF 87.78 Ar.m² 17.856.85 m² 17.856.85 m² 17.856.85 m² MCTA ELUONG AREA 1.444.447 cm N1 152.652.57 42.2757.17 m² 17.856.85 m² <			464.002.85	42 042 49 m ²		\checkmark
Bull DNR 21/2485 Dot/E RD) 503.33 is produced 44.248.38 is produced Advector Figure Control of C	Wareh	nouse Area	452,438 SF	42,032.94 m²		
Process Process <t< td=""><td>BUILDIN</td><td>IG 2 (12489 DIXIE RD)</td><td>530,331 SF</td><td>49,269.39 m²</td><td>VERIF</td><td></td></t<>	BUILDIN	IG 2 (12489 DIXIE RD)	530,331 SF	49,269.39 m ²	VERIF	
Procession Process	Office	Area	9,339 SF	867.64 m²		
Procession Process	Wareh	nouse Area	446,750 SF	41,504.50 m²	SHALI	
Process Process <t< td=""><td>TOTAL E</td><td>3UILDING AREA</td><td>1,448,447.62 m²</td><td>134,565.32 m²</td><td>AND</td><td></td></t<>	TOTAL E	3UILDING AREA	1,448,447.62 m ²	134,565.32 m ²	AND	
Processe Proposed Required	BUILDIN	IG 1 (12489 DIXIE RD)			SNOI	
11 Books (Mathematic Response) 530.337 (3F) 42.208.9 m² TOTAL TOTAL <td>Buildir</td> <td>ng Area under services, M&E rooms etc.</td> <td>1,050 SF</td> <td>97.55 m²</td> <td>MENS</td> <td></td>	Buildir	ng Area under services, M&E rooms etc.	1,050 SF	97.55 m²	MENS	
Intel Franchism 1034 (272) 6777 002/001	Floor	Area	530,331 SF	49,269.39 m²		
Inst Price Ase 103/272.07 m 202.0001 Cross Floor Area 104/958.30m 200.001 Butting Area 104/958.30m 104/958.30m Min Lit Fordage (m) 113.55 9.000% Min Lit Stoke (S) Yare Butting Suback (m) 238.30 6.00 Min Lit Stoke (S) Yare Butting Suback (m) 238.30 6.00 Min Lit Stoke (S) Yare Butting Suback (m) 238.30 6.00 Min Lit Stoke (S) Yare Butting Suback (m) 238.30 6.00 Min Lit Stoke (S) Yare Butting Suback (m) 238.77 6.00 Min Lit Stoke (S) Yare Butting Suback (m) 248.77.67 1000% Min Excit Carabage Dutting Heapt (m) 124.89 180.00% Min Excit Carabage Dutting Heapt (m) 201.2489 17.244.49m 180.00% Min Excit Carabage Dutting (m) 203.33 3.00 16.6 - Parking Calculations Proposed Reguined 17.4 16.6 - Parking Calculations Proposed 14.13 370 - - ButLDING 1(12489 DXIR RD) 10 27 -<	BUILDIN	NG 3 (12489 DIXIE RD)	455,164 SF	42,286.19 m ²	SCAL	
min Encode Area 1034 272 60 Tmil Document Discontinue Discontinue <th< td=""><td>Buildir</td><td>ng Area under services, M&E rooms etc.</td><td>1,050 SF</td><td>97.55 m²</td><td>OVER</td><td></td></th<>	Buildir	ng Area under services, M&E rooms etc.	1,050 SF	97.55 m²	OVER	
Inst From Asia 104 (272 0 Free) 000000000000000000000000000000000000						0
Building Area 23 12% 50 00% Min. Lef Fordrige (m) 10 58 59 000 10 59 59 000 Min. It Stee (N) Yand Building Set back (m) 23 59 000 000 Min. It Stee (N) Yand Building Set back (m) 38 77 61 000 10 00 Min. It Stee (N) Yand Building Set back (m) 38 77 61 000 10 00 Min. It Stee (N) Yand Building Set back (m) 38 77 61 000 10 00 Min. It Stee (N) Yand Building Heldy (m) 11 2490 DKE PD) 14 50 18 00 Min. Landscape Ana (% of LA Area) 23 13 % 50 00% 10 00% 10 00% Min. Landscape Buffer (m) 23 43 % 50 00% 10 00% 10 00% 10 00% Min. Link (Side Landscape Buffer (m) 23 43 % 50 00% 10 00% 10 00% 10 00% 10 00% Min. Link (Side Landscape Buffer (m) 23 43 % 50 00% 10 00% <	Min. Lot A	Area	581,316.71m ²		CEDEN	
Min. Dir Minge Schook (m) 13/02-33 5/00 5/00 Min. Inst. School Ward Building Schook (m) 13/02-33 5/00 17/0 6/0 Min. Inst. School Ward Building Schook (m) 13/02-33 5/00 17/0 6/0 Min. Inst. School Ward Building Schook (m) 13/02-33 5/00 17/0 6/0 Min. Inst. School Ward Building Schook (m) 13/02-33 5/00 17/0 6/0 Min. Inst. School Ward Building Schook (m) 13/02-33 5/00 14/0 18/00 Min. Inst. School Ward Building Schook (m) 13/00-1 14/50 18/00 18/00 Min. Landscape Area (Xd) 17/2/24/5m/ 16/00-0 16/00-1 16/00-1 Min. Inst. (S) Side Landscape Builer (m) 6/1-55 - 10/00-0 10/0 Min. Inst. (S) Side Landscape Builer (m) 2/1-3 3/0 11/0	Gross Flo Building /	oor Area Area	134,565.32m ² 23.15%			luj ≽ U
Min. H. Side (S) Yard Building Set back (m). Abiting Residential 47.23 B.0.0 HT HT State	Min. Lot F	Frontage (m) nt Yard Building Setback (m)	910.58 135.55	30.00 9.00		K
Min. Rear Yard Bulking Setback (m) 63.36 7.50 Ldt Coverage 23.15% 50.00% Maximum Building Height (m)- BULDING 1 (12489 DIXE RD) 14.50 18.00 Maximum Building Height (m)- BULDING 2 (12489 DIXE RD) 14.50 18.00 Min. Landscape Area (SM) 37.7244 (3m ²) 56.131 (6m ²) Min. Landscape Buffer (m) 20.33 3.00 Min. Tr. (S) Side Landscape Buffer (m) 20.33 3.00 Min. Rear Yand Scape Buffer (m) 20.00 10 9 BULDING 2 (12489 DIXE RD) 10.00 7 13.370 100 BulLDING 3 (12489 DIXE RD) 10 9 100 9 100 BulLDING 3 (12489 DIXE RD) 10 <td< td=""><td>/Min. Int.S</td><td>ide (N) Yard Building Set back (m) ide (S) Yard Building Set back (m)</td><td>238.30 38.77</td><td>6.00 6.00</td><td></td><td></td></td<>	/Min. Int.S	ide (N) Yard Building Set back (m) ide (S) Yard Building Set back (m)	238.30 38.77	6.00 6.00		
Min. Reari. Landscape Buffer (m) 7.49 6.00 Min. Landscape Buffer (m) -Abuting EPA > 6m width 61.45 - Parking Calculations Proposed Required BUILDING 1 (12489 DIXIE RD) 0 333 @139 + 1/170m ² of Net Floor Area over 10,000 m ² 795 333 BUILDING 3 (12489 DIXIE RD) - - @139 + 1/170m ² of Net Floor Area over 10,000 m ² 398 329 Total no. of Parking Spaces 1606 1032 (Including Accessible Parking Spaces) - - Accessible Parking Spaces 20 Type - A 17 Type - A BUILDING 3 (12489 DIXIE RD) 10 9 BUILDING 2 (12489 DIXIE RD) 10 9 BUILDING 3 (12489 DIXIE RD) 10 9 BUILDING 3 (12489 DIXIE RD) 10 9 BUILDING 2 (12489 DIXIE RD) 10 9 Fortal no. of Accessible Parking Spaces 20 Type - A 13 Type - A Proposed Trailer Parking Proposed Required - BUILDING 3 (12489 DIXIE RD) 60 -	Min. Rea	r Yard Building Setback (m)	63.96	7.50		\square
Min Rear Landscape Buffer (m) 7.49 6.00 Min Landscape Buffer (m) - Abuting EPA > 6m width 61.45 - Parking Calculations Proposed Required Required BUILDING 1 (12489 DIKE RD) 0 333 - - @139 + 1/170m ² of Net Floor Area over 10,000 m ² 413 370 - - BUILDING 3 (12489 DIKE RD) - - - - - @139 + 1/170m ² of Net Floor Area over 10,000 m ² 399 329 - - - BUILDING 3 (12489 DIKE RD) - - - - - - @2016 1000 parking spaces is 2 plus 2% of total spaces - - - - - BUILDING 3 (12489 DIKE RD) 10 9 - - - - - BUILDING 2 (12469 DIKE RD) 10 9 - - - - - - - - - - - - - - - - <t< td=""><td>Maximum</td><td>n Building Height (m) - BUILDING 1 (12489 DIXIE RD)</td><td>14.50</td><td>18.00</td><td>ENSIC</td><td>\checkmark</td></t<>	Maximum	n Building Height (m) - BUILDING 1 (12489 DIXIE RD)	14.50	18.00	ENSIC	\checkmark
Min. Reari. Landscape Buffer (m). 7.49 6.00 Min. Landscape Buffer (m). 7.49 6.00 Min. Landscape Buffer (m). Abuting EPA > 6m width 61.45 - Parking Calculations Proposed Required - BUILDING 1 (12489 DIXIE RD) 0 - - @139 + 1/170m ² of Net Floor Area over 10,000 m ² 413 370 BUILDING 3 (12489 DIXIE RD) - - - @139 + 1/170m ² of Net Floor Area over 10,000 m ² 398 329 - Total no. of Parking Spaces 1606 1032 - - BUILDING 2 (12489 DIXIE RD) 12 9 - - BUILDING 2 (12489 DIXIE RD) 10 9 - - BUILDING 2 (12489 DIXIE RD) 10 9 - - BUILDING 2 (12489 DIXIE RD) 10 9 - - BUILDING 2 (12489 DIXIE RD) 10 9 - - BUILDING 2 (12489 DIXIE RD) 10 9 - - BUILDING 2 (1248	Min. Land <i>Min. Lan</i> d	dscape Area (% of Lot Area) dscape Area (SM)	54.57% 317,244.45m ²	10.00% 58,131.67m²		
Min. Reari. Landscape Buffer (m). 7.49 6.00 Min. Landscape Buffer (m). 7.49 6.00 Min. Landscape Buffer (m). Abuting EPA > 6m width 61.45 - Parking Calculations Proposed Required - BUILDING 1 (12489 DIXIE RD) 0 - - @139 + 1/170m ² of Net Floor Area over 10,000 m ² 413 370 BUILDING 3 (12489 DIXIE RD) - - - @139 + 1/170m ² of Net Floor Area over 10,000 m ² 398 329 - Total no. of Parking Spaces 1606 1032 - - BUILDING 2 (12489 DIXIE RD) 12 9 - - BUILDING 2 (12489 DIXIE RD) 10 9 - - BUILDING 2 (12489 DIXIE RD) 10 9 - - BUILDING 2 (12489 DIXIE RD) 10 9 - - BUILDING 2 (12489 DIXIE RD) 10 9 - - BUILDING 2 (12489 DIXIE RD) 10 9 - - BUILDING 2 (1248	Min. Fron Min. Int. (nt Landscape Buffer (m) N) Side Landscape Buffer (m)	23.43 64.55	9.00 6.00	RITTEN	
BUILDING 1 (12489 DIXIE RD) 1<	Min. Int. (Min. Rea	S) Side Landscape Buffer (m) r Landscape Buffer (m)	20.33 7.49	3.00		Q
BullLDING 1 (12489 DIXIE RD) 1					COM	
@ 139 + 1/170m ² of Net Floor Area over 10,000 m ² 413 370 BUILDING 3 (12489 DIXIE RD) 9 @ 139 + 1/170m ² of Net Floor Area over 10,000 m ² 398 329 Total no. of Parking Spaces 1606 1032 (Including Accessible Parking Spaces) Accessible Parking Spaces is 11 plus 1% of total spaces Accessible Parking Spaces is 11 plus 1% of total spaces @/Dot in 1000 parking spaces is 2 plus 2% of total spaces @/Dot in 1000 parking spaces is 11 plus 1% of total spaces @/Dot in 1000 parking spaces is 11 plus 1% of total spaces @/Dot In 1000 parking spaces 11 9 9 BUILDING 3 (12489 DIXIE RD) 18 9 BUILDING 3 (12489 DIXIE RD) 10 9 dot arr 20 Type - A 13 Type - A ACCESSIBLE TYPE A - 3 4m X 5 4m TYPE B = 2.75m X 5 4m Wr 15m access aisle on either side Proposed Proposed Trailer Parking Spaces 219 Total no. of Trailer Parking Spaces 219 Total no. of Trailer Parking Spaces 219 BUILDING 3 (12489 DIXIE RD) 85 BUILDING 3 (12489 DIXIE RD) 87 BUILDING 3 (12489 DIXIE RD) 87 BUILDING 3 (12489 DIXIE RD	BUILDIN	NG 1 (12489 DIXIE RD)			\geq	
BUILDING 3 (12489 DIXIE RD) Image: Constraint of the floor Area over 10,000 m² 398 329 Total no. of Parking Spaces 1606 1032 1000 parking spaces is 2 plus 2% of total spaces 0001 for 1000 parking spaces is 2 plus 2% of total spaces 0001 for 1000 parking spaces is 2 plus 2% of total spaces 0001 for 1000 parking spaces is 2 plus 2% of total spaces 0001 for 1000 parking spaces is 2 plus 2% of total spaces 0001 for 1000 parking spaces is 2 plus 2% of total spaces 0001 for 1000 parking spaces is 11 plus 1% of total spaces 0001 for 1000 parking spaces is 2 plus 2% of total spaces 0001 for 100 parking spaces is 2 plus 2% of total spaces 0001 for 100 parking spaces is 2 plus 2% of total spaces 0001 for 100 parking spaces is 2 plus 2% of total spaces 0001 for 100 parking spaces is 2 plus 2% of total spaces 0001 for 100 parking spaces is 2 plus 2% of total spaces 0001 for 100 parking spaces is 2 plus 2% of total spaces 0001 for 100 parking space is 2 plus 2% of total spaces 0001 for 100 parking space is 2 plus 2% of total spaces 0001 for 100 parking space is 2 plus 2% of total spaces 0001 for 100 parking space is 2 plus 2% of total spaces 0001 for 100 parking space 2 plus 2% of total spaces 0001 for 100 parking space 2 plus 2% of total spaces 0001 for 100 parking space 2 plus 2% of total spaces 0001 for 100 parking space 2 plus 2% of total space 2 plus 2% of 100 for 100 plus 2% of 100 plus 2% of 100 plus 2% of 100 plus 2% of 100 plus 2% of 100 plus 2% of 100 plus 2% of 100 plus 2% of 100 plus 2% of 100 plus 2% of	<u> </u>	NG 2 (12489 DIXIE RD)				
Total no. of Parking Spaces 1606 1032 NTM (Including Accessible Parking Spaces) Accessible Parking Spaces 0201 to 1000 parking spaces is 2 plus 2% of total spaces 0201 to 1000 parking spaces is 2 plus 2% of total spaces 0201 to 1000 parking spaces is 2 plus 2% of total spaces 0201 to 1000 parking spaces is 2 plus 2% of total spaces 0201 to 1000 parking spaces is 2 plus 2% of total spaces 0201 to 1000 parking spaces is 2 plus 2% of total spaces 0201 to 1000 parking spaces is 2 plus 2% of total spaces 0201 to 1000 parking spaces is 2 plus 2% of total spaces 0201 to 1000 parking spaces is 2 plus 2% of total spaces 0201 to 1000 parking spaces 0201 to 1000 parking spaces 0201 to 1000 parking spaces 0201 to 1000 parking spaces 0201 to 1000 parking spaces 0201 to 1000 parking spaces 0201 to 1000 parking spaces 0201 to 100 parking space parking spaces 0201 to 100 parking space parking spaces 0201 to 100 parking space parking space parking space parking spaces 0201 to 100 parking space parking space parking space parking spaces 0201 to 100 parking space		NG 3 (12489 DIXIE RD)			WITH	
@ 201 to 1000 parking spaces is 2 plus 2% of total spaces @ More than 1000 parking spaces is 11 plus 1% of total spaces BUILDING 1 (12489 DIXIE RD) 12 9 BUILDING 2 (12489 DIXIE RD) 10 9 40 27 Total no. of Accessible Parking Spaces 20 Type - A 13 Type - A 20 Type - A 13 Type - A 20 Type - B EV Parking Spaces 24 - Aisle A - Parking Stall Dimensions Proposed Trailer Parking Proposed Required BUILDING 3 (12489 DIXIE RD) 61 - BUILDING 1 (12489 DIXIE RD) 61 - BUILDING 3 (12489 DIXIE RD) 61 - BUILDING 3 (12489 DIXIE RD) 61 - BUILDING 3 (12489 DIXIE RD) 61 - BUILDING 3 (12489 DIXIE RD) 85 7 BUILDING 2 (12489 DIXIE RD) 85 7 BUILDING 3 (12489 DIXIE RD) 85 7 BUILDING 3 (12489 DIXIE RD) 85 7 BUILDING 3 (12489 DIXIE RD) 87 7 BUILDING 3 (12489 DIXIE RD) 87 7	@139 + BUILDIN	o of Parking Spaces			MENT	
Owner than 1000 parking spaces is 11 plus 1% of total spaces BUILDING 1 (12489 DIXIE RD) 18 9 BUILDING 2 (12489 DIXIE RD) 12 9 BUILDING 3 (12489 DIXIE RD) 10 9 40 27 Total no. of Accessible Parking Spaces 24 - Aisle ACCESSIBLE: TYPE A - 34m X 54m Parking Stall Dimensions W1.5m access aisle on either side Proposed Trailer Parking Proposed Required BUILDING 1 (12489 DIXIE RD) 60 BUILDING 2 (12489 DIXIE RD) 61 BUILDING 3 (12489 DIXIE RD) 98 BUILDING 1 (12489 DIXIE RD) 98 BUILDING 2 (12489 DIXIE RD) 87 BUILDING 3 (12489 DIXIE RD) 87 BUILDING 1 (12489 DIXIE RD) 87 BUILDING 3 (12489 DIXIE RD) 87 BUILDING 3 (12489 DIXIE RD) 87 BUILDING 3 (12489 DIXIE RD) 77 BUILDING 3 (12489 DIXIE RD) 77 BUILDING 3 (12489 DIXIE RD) 87 BUILDING 3 (12489 DIXIE RD) 77 BUILDING 3 (12489 DIXIE RD) 77	@139 + BUILDIN @139 + Total no	y AUUESSINIE FAIKIIIY SPACES)				
Dilizing 1 (12400 Diric II) 18 9 BUILDING 2 (12489 DIXIE RD) 12 9 BUILDING 3 (12489 DIXIE RD) 10 9 Total no. of Accessible Parking Spaces 20 Type - A 13 Type - A 20 Type - A 13 Type - B 14 Type - B Parking Stall Dimensions Acide - Aisle Acide - Parking Stall Dimensions Acide Sile On either side - Proposed Trailer Parking Proposed Required - BUILDING 1 (12489 DIXIE RD) 60 - BUILDING 2 (12489 DIXIE RD) 61 - BUILDING 3 (12489 DIXIE RD) 98 - Total no. of Trailer Parking Spaces 219 - Total no. of Trailer Parking Spaces 219 - BUILDING 3 (12489 DIXIE RD) 85 7 BUILDING 3 (12489 DIXIE RD) 87 7 BUILDING 3	@139 + BUILDIN @139 + Total no (Includin) Accessil	* ·			\succ	
BUILDING 3 (12489 DIXIE RD) 10 9 40 27 Total no. of Accessible Parking Spaces 20 Type - A 13 Type - A 20 Type - B 14 Type - B 14 Type - B 20 Type - B 14 Type - B 14 Type - B 20 Type - B 14 Type - B 14 Type - B 20 Type - B 14 Type - B 14 Type - B 20 Type - B 14 Type - B 14 Type - B EV Parking Spaces 24 - Aisle Access/BLE: TYPE A - 3.4m X 5.4m NV TYPE B - 2.75m X 5.4m W 1.5m access aisle on either side NU Proposed Trailer Parking Proposed Required BUILDING 1 (12489 DIXIE RD) 61 - BUILDING 2 (12489 DIXIE RD) 98 - Total no. of Trailer Parking Spaces 219 - Ubuild 1 (12489 DIXIE RD) 87 7 BUILDING 3 (12489 DIXIE RD) 87 7 BUILDING 3 (12489 DIXIE RD) 77 7 @3 + 1 per 9300 m ² in excess of 7441 m ² of Net Floor Area 7 Total no	@139 + BUILDIN @139 + Total no (Including Accessil @201 to @More to	1000 parking spaces is 2 plus 2% of total spaces han 1000 parking spaces is 11 plus 1% of total spaces	; 		- m	
10 9 40 27 20 Type - A 13 Type - A 20 Type - B 14 Type - B 20 Type - A 13 Type - A 20 Type - B 14 Type - B 20 Type - B 14 Type - B 20 Type - A 13 Type - A 20 Type - B 14 Type - B 24 - Aisle ACCESS/BLE: TYPE A - 3.4m X 5.4m YTPE B - 3.4m X 5.4m Y1.5m access aisle on either side Proposed Trailer Parking Proposed BUILDING 1 (12499 DIXIE RD) 61 BUILDING 3 (12489 DIXIE RD) 61 BUILDING 3 (12489 DIXIE RD) 98 Total no. of Trailer Parking Spaces 219 Loading Space Calculations Proposed Required BUILDING 1 (12489 DIXIE RD) 87 7 BUILDING 2 (12489 DIXIE RD) 87 7 BUILDING 3 (12489 DIXIE RD) 77 7 BU3 + 1 per 9300 m ² in excess of 7441 m ² o	@139 + BUILDIN @139 + Total no (Includin Accessil @201 to @More ti BUILDIN	1000 parking spaces is 2 plus 2% of total spaces han 1000 parking spaces is 11 plus 1% of total spaces IG 1 (12489 DIXIE RD)		9		
Total no. of Accessible Parking Spaces 20 Type - A 13 Type - A 20 Type - B 14 Type - B 24 - A <	@139 + BUILDIN @139 + Total no (Includin) Accessil @201 to @More ti BUILDIN BUILDIN	1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD)	18		EXCEPT	
Aisle Aisle AccessiBLE: TYPE A - 3.4m × 5.4m TYPE B - 2.75m × 5.4m W O GO O H <td>@139 + BUILDIN @139 + Total no (Including Accessil @201 to @More to BUILDIN BUILDIN</td> <td>1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD)</td> <td>18 12 10 40</td> <td>9 9 27</td> <td>WORK EXCEPT</td> <td></td>	@139 + BUILDIN @139 + Total no (Including Accessil @201 to @More to BUILDIN BUILDIN	1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD)	18 12 10 40	9 9 27	WORK EXCEPT	
Parking Stall Dimensions TYPE B - 2.75m X 5.4m wf 1.5m access aisle on either side NO DO	@139 + BUILDIN @139 + Total no (Including @201 to @More ti BUILDIN BUILDIN BUILDIN	1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces NG 1 (12489 DIXIE RD) NG 2 (12489 DIXIE RD) NG 3 (12489 DIXIE RD)	18 12 10 40 20 Type - A 20 Type - B	9 9 27 13 Type - A	WORK EXCEPT	
In Proposed Trailer ParkingProposed RequiredBUILDING 1 (12489 DIXIE RD)60-BUILDING 2 (12489 DIXIE RD)61-BUILDING 3 (12489 DIXIE RD)98-Total no. of Trailer Parking Spaces219-Loading Space CalculationsProposed RequiredBUILDING 1 (12489 DIXIE RD)857BUILDING 2 (12489 DIXIE RD)877BUILDING 3 (12489 DIXIE RD)877BUILDING 3 (12489 DIXIE RD)777BUILDING 3 (12489 DIXIE RD)777@3 + 1 per 9300 m² in excess of 7441 m² of Net Floor AreaTotal no. of Loading SpacesTotal no. of Loading Spaces24921Min. Loading Space Dimensions3.5m(W) × 14.0m(L) × 3.35m(H)	@139 + BUILDIN @139 + Total no (Includin @201 to @More ti BUILDIN BUILDIN BUILDIN	1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces NG 1 (12489 DIXIE RD) NG 2 (12489 DIXIE RD) NG 3 (12489 DIXIE RD)	18 12 10 40 20 Type - A 20 Type - B 24 Aisle	9 27 13 Type - A 14 Type - B -	OTHER WORK EXCEPT	
BUILDING 2 (12489 DIXIE RD) 61 - WI	@139 + BUILDIN @139 + Total no (Including Accessil @201 to @More th BUILDIN BUILDIN BUILDIN Total no EV Parki	1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) . of Accessible Parking Spaces ing Spaces	18 12 10 40 20 Type - A 20 Type - B 24 Aisle ACCESSIBLE: TYP TYPE B - 2.75m X 5	9 27 13 Type - A 14 Type - B - E A - 3.4m X 5.4m 5.4m	ANY OTHER WORK EXCEPT	
BOILDING 3 (12489 DIXIE RD)30-Total no. of Trailer Parking Spaces219-Loading Space CalculationsProposedRequiredBUILDING 1 (12489 DIXIE RD)857BUILDING 2 (12489 DIXIE RD)877BUILDING 3 (12489 DIXIE RD)777@3 + 1 per 9300 m² in excess of 7441 m² of Net Floor Area(If the second	@139 + BUILDIN @139 + Total no (Includin) Accessil @201 to @More ti BUILDIN BUILDIN BUILDIN BUILDIN Cotal no EV Parki Parking S	1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD)	18 12 10 40 20 Type - A 20 Type - B 24 Aisle ACCESSIBLE: TYP TYPE B - 2.75m X 5 w/ 1.5m access ais Proposed	9 27 13 Type - A 14 Type - B - E A - 3.4m X 5.4m 5.4m le on either side	ON ANY OTHER WORK EXCEPT	
Loading Space Calculations Proposed Required T BUILDING 1 (12489 DIXIE RD) 85 7 BUILDING 2 (12489 DIXIE RD) 87 7 BUILDING 3 (12489 DIXIE RD) 77 7 @3 + 1 per 9300 m ² in excess of 7441 m ² of Net Floor Area Image: Constant of Loading Spaces 249 21 Min. Loading Space Dimensions 3.5m(W) × 14.0m(L) × 3.35m(H) Image: Constant of Loading Space Dimensions Image: Constant of Loading S	@139 + BUILDIN @139 + Total no (Including Accessil @201 to @More the BUILDIN BUILDIN BUILDIN BUILDIN EV Parking S Propose BUILDIN BUILDIN	1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 4 ccessible Parking Spaces Stall Dimensions Ed Trailer Parking IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD)	18 12 10 40 20 Type - A 20 Type - B 24 Aisle ACCESSIBLE: TYP TYPE B - 2.75m X 5 w 1.5m access aisl Proposed 60 61	9 27 13 Type - A 14 Type - B - E A - 3.4m X 5.4m 5.4m le on either side	USED ON ANY OTHER WORK EXCEPT	
BUILDING 3 (12489 DIXIE RD) 77 7 7 @3 + 1 per 9300 m ² in excess of 7441 m ² of Net Floor Area Total no. of Loading Spaces 249 21 Min. Loading Space Dimensions 3.5m(W) × 14.0m(L) × 3.35m(H) Total No. State Dimensions 1.5m(W) × 14.0m(L) × 3.35m(H)	<pre>@139 + @139 + BUILDIN @139 + Total no (Including Accessil @201 to @More ti BUILDIN BUILDIN BUILDIN BUILDIN Cotal no EV Parking Parking S Propose BUILDIN BUILDIN BUILDIN BUILDIN BUILDIN BUILDIN</pre>	1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 4 ccessible Parking Spaces Stall Dimensions IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD)	18 12 10 40 20 Type - A 20 Type - B 24 Aisle ACCESSIBLE: TYP TYPE B - 2.75m X 5 w/ 1.5m access aisl Proposed 60 61 98	9 27 13 Type - A 14 Type - B - E A - 3.4m X 5.4m 5.4m le on either side	BE USED ON ANY OTHER WORK EXCEPT	LAN KS
W 3 + 1 per 9300 m² in excess of 7441 m² of Net Floor AreaTotal no. of Loading Spaces24921Min. Loading Space Dimensions3.5m(W) × 14.0m(L) × 3.35m(H)	<pre>@139 + ** BUILDIN @139 + ** Total no (Including Accessil @201 to @More th BUILDIN BUILDIN BUILDIN Fotal no EV Parking S Propose BUILDIN BUILDIN BUILDIN BUILDIN BUILDIN Cotal no Loading</pre>	1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 4 ccessible Parking Spaces Stall Dimensions Ed Trailer Parking IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD)	18 12 10 40 20 Type - A 20 Type - B 24 Aisle ACCESSIBLE: TYP TYPE B - 2.75m X 5 w/ 1.5m access aisl Proposed 60 61 98 219 Proposed	9 27 13 Type - A 14 Type - B - E A - 3.4m X 5.4m 5.4m le on either side Required - - - - - - -	NOT BE USED ON ANY OTHER WORK EXCEPT	PL
Min. Loading Space Dimensions 3.5m(W) × 14.0m(L) × 3.35m(H) O I <td>@139 +BUILDIN@139 +Total no(IncludingAccessil@201 to@More tiBUILDIN</td> <td>1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 4 ccessible Parking Spaces Stall Dimensions Stall Dimensions IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 1 (12489 DIXIE RD) IG 1 (12489 DIXIE RD) IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD)</td> <td>18 12 10 40 20 Type - A 20 Type - B 24 Aisle ACCESSIBLE: TYP TYPE B - 2.75m X 5 w/ 1.5m access aisl Proposed 60 61 98 219 Proposed 85 87</td> <td>9 9 27 13 Type - A 14 Type - B - E A - 3.4m × 5.4m 5.4m le on either side Required - - - - - Required 7 7</td> <td>SHALL NOT BE USED ON ANY OTHER WORK EXCEPT</td> <td>TE PL</td>	@139 +BUILDIN@139 +Total no(IncludingAccessil@201 to@More tiBUILDIN	1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 4 ccessible Parking Spaces Stall Dimensions Stall Dimensions IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 1 (12489 DIXIE RD) IG 1 (12489 DIXIE RD) IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD)	18 12 10 40 20 Type - A 20 Type - B 24 Aisle ACCESSIBLE: TYP TYPE B - 2.75m X 5 w/ 1.5m access aisl Proposed 60 61 98 219 Proposed 85 87	9 9 27 13 Type - A 14 Type - B - E A - 3.4m × 5.4m 5.4m le on either side Required - - - - - Required 7 7	SHALL NOT BE USED ON ANY OTHER WORK EXCEPT	TE PL
	@139 +BUILDIN@139 +Total no(IncludingAccessil@201 to@More tiBUILDIN	1000 parking spaces is 2 plus 2% of total spaces than 1000 parking spaces is 11 plus 1% of total spaces IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 4ccessible Parking Spaces ing Spaces Stall Dimensions Ed Trailer Parking IG 1 (12489 DIXIE RD) IG 2 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 3 (12489 DIXIE RD) IG 1 (12489 DIXIE RD) IG 3 (12489 DIXIE RD)	18 12 10 40 20 Type - A 20 Type - B 24 Aisle ACCESSIBLE: TYP TYPE B - 2.75m X 5 w/ 1.5m access aisl Proposed 60 61 98 219 Proposed 85 87 77 249	9 9 27 13 Type - A 14 Type - B - E A - 3.4m X 5.4m 5.4m te on either side Required - - - - - - 7 7 7 21	AND SHALL NOT BE USED ON ANY OTHER WORK EXCEPT	- SITE PL

ISSUED FC REISSUED ISSUED FC ISSUED FC

26 26 26

H 4 6 4 4

DA 2023-2024-2024-2024-2024-

l SK

- 0 0 4

PA / PM:

DRAWN BY:

VICINITY MAP SCALE: NOT TO SCALE