

871 Equestrian Court, Unit 1, Oakville, ON L6L 6L7 Tel: 647-795-8153 | www.pecg.ca

Hydrogeological Assessment

12519 & 12713 Humber Station Road, Bolton, Ontario

> Palmer Project # 2008102

Prepared For Prologis c/o Mainline Planning Services Inc.

November 21, 2024

871 Equestrian Court, Unit 1, Oakville, ON L6L 6L7 Tel: 647-795-8153 | www.pecg.ca

November 21, 2024

Prologis c/o Mainline Planning Services Inc. P.O. Bo 319 Kleinburg, ON L0J 1C0

Re: Hydrogeological Assessment – 12519 & 12713 Humber Station Road, Bolton, ON Project #: 2008102

Palmer is pleased to submit the attached report presenting the results of our hydrogeological assessment for the proposed development located at 12519 & 12713 Humber Station Road, Bolton, ON. The hydrogeological assessment covers all the items provided in the proposal with adjustment based on site constraints and project requirement. Palmer conducted the required assessments and analyses as per applicable provincial guidelines and generally accepted practices. The major findings include:

- The site is underlain with over 20 m thick overburden sediments that consist of silt to clay till and silt of the Halton Till formation within investigation depths. Significant aquifers are not identified below the site;
- Groundwater levels from monitoring wells range from 0.2 to 2.9 metres below ground surface (mbgs) with a predominant flow direction from northwest to southeast and to southwest, towards the tributary of West Humber River. The shallow groundwater levels measured are interpreted to be a reflection of the low permeability and poor drainage of the surficial soils;
- Groundwater level and surface water level data from mini-piezometers do not show hydraulic connection between groundwater and surface water, indicating that groundwater does not support stream flow and associated wetlands and shallow ponds. Therefore, groundwater does not take part in forming the hydroperiod of these features and these feature can be considered surface water supported;
- Hydraulic conductivity values range from the orders of 6.0x10⁻¹⁰ to 6.6x10⁻⁷ m/s, generally increasing with depths and grain size of formations;
- Based on in-situ percolation testing, the infiltration rate for the shallow soils averages 2.3 cm/min with a T-time of 56 min/cm;
- Groundwater quality is fresh and no visual or olfactory evidence of contamination such as visible petroleum hydrocarbon film or sheen as well as smell and odor were recorded during drilling or sampling. A number of exceedances were identified over ODWS and PWQO criteria, which is typical in raw groundwater, particularly in an agricultural setting;

- The construction dewatering analysis shows that the required dewatering rate for a typical construction working face for site servicing or shallow foundations could be up to 6,018 L/day, which is below the thresholder of 50,000 L/day for consideration of an EASR. Therefore, neither an EASR registration nor a PTTW application is expected to be required for this project. Potential possible stormwater accumulation is provided for client's reference only;
- The water taking for construction dewatering is of short term, limited quantity and limited influence zones. No impacts from construction dewatering to natural heritage features or private wells is expected;
- The site water balance analysis shows the proposed Phase 1 development will cause a reduction of infiltration of 25,476 m³/year and an increase in runoff of 158,582 m³/year. The proposed infiltration tank will fully compensate the infiltration deficit;
- FBWB conducted for Phase One development shows that the development will result in an increased runoff of 86,633 m³/year and reduced infiltration of 1,012 m³/year in the East Wetland catchment, and an increased runoff of 81,353 m³/year and reduced infiltration of 678 m³/year in the East Wetland catchment. As neither the East Wetland and West Wetland receive groundwater discharge contribution, the minor reduction of infiltration within the catchment of each wetland will not adversely impact the wetlands. Runoff should be properly managed through the proposed SWM Plan to prevent the increased runoff to end up in the both wetlands. Through the establishment of wetland setbacks and new compensation areas in the Eastern Wetland catchment, and the creation of a new, higher functioning drainage channel in the Western Wetland catchment, no impacts to wetland hydrology or hydrogeology is expected.

We trust that this report is complete within our terms of reference and suitable for your present requirements. If you have any questions or require further information, please do not hesitate to contact our office.

Yours truly,

1. Cle

Jason Cole, M.Sc., P.Geo. Technical Discipline Manager, Hydrology and Hydrogeology

Table of Contents

Letter

1.	Introduction							
	1.1 1.2	Proposed Development Methodology	1 1					
		 1.2.1 Review of Records and Previous Studies	1 2 3 4					
		1.2.6 WWIS Well Record and PGMN Well Inventory	4					
2.	Site	Characterization	6					
	2.1	Physiography and Natural Heritage 2.1.1 Geomorphology and Climate 2.1.2 Natural Heritage Features	6 6 6					
	2.Z 2.3	Site Groundwater Conditions	9					
	2.0	2.3.1 Source Protection Water Supply and Sewerage System	13					
	2.4	Groundwater Levels. Flow Direction and Gradient	17					
	2.5	Hydraulic Conductivity	21					
		2.5.1 Hydraulic Conductivity from Single Well Response Tests	21					
		2.5.2 Hydraulic Conductivity from Grain Size Analysis	21					
		2.5.3 Hydraulic Conductivity for Different Formations	22					
	2.6	Infiltration Rate	22					
	2.7	Groundwater Chemistry	23					
	2.8	Water Levels from Mini-Piezometers	24					
3.	Con	struction Dewatering Assessment	24					
	3.1	Dewatering Rate and Influence Zone	25					
	3.2	Location of Discharge and Dewatering Methods	26					
	3.3	PTTW, EASR and Municipal Permits	27					
4.	Site	Water Balance Assessment	27					
	4.1	.1 Water Surplus						
	4.2	Land Use Unit Delineation and Infiltration Factor	29					
	4.3	Water Balance for Pre-Development and Post-Development	30					
	4.4	LID Design Considerations	31					
5.	Feat	ure-Based Water Balance Assessment	32					
	5.1	Water Surplus	32					

	5.2	Catchment Delineation and Infiltration Factor	33
	5.3	Feature-Based Water Balance for Pre-Development and Post- Development	36
	5.4	Retained Natural Heritage Features Protection	38
6.	Impa	ct Assessment and Mitigation	38
	6.1	Natural Heritage Features	38
	6.2	Source Water Protection	38
	6.3	Private Water Wells	39
	6.4	Discharge Receiver	39
7.	Conc	lusions and Recommendations	39
8.	Signa	atures	41
Limit	ations	of Report	42
Refe	rences		43

List of Figures

Figure 1. Site Investigation Plan	5
Figure 2. Physiography	7
Figure 3. Terrain and Drainage System	8
Figure 4. Surficial geology	. 11
Figure 5. Bedrock geology	. 12
Figure 6. Source Water Protection	. 14
Figure 7. Well Record Locations	. 16
Figure 8. Groundwater Level Hydrographs	. 19
Figure 9. Groundwater Level Contours and Flow Direction	. 20
Figure 10. Catchment Delineation for Pre-Development Condition	. 34
Figure 11. Catchment Delineation for Post-Development Condition	. 35

List of Tables

Table 1. Monitoring Wells and Mini-piezometers Selected for Current Study	3
Table 2. Monthly Averaged Climate Data	6
Table 3. Overburden Geology (ORMGP)	9
Table 4. Summary of Stratigraphy	10
Table 5. Summary of Well Records	13
Table 6. Groundwater Levels	17
Table 7. Historical Groundwater Levels	18
Table 8 Hydraulic Conductivity from Slug Tests	21
Table 9 Hydraulic Conductivity from Grain Size Analysis	22
Table 10. Hydraulic Conductivity Summary	
Table 11. Infiltration Rate	23

Table 12. Exceedances Over ODWQS	
Table 13. Water Level Monitoring Results for MPs	24
Table 14. Summary of Dewatering Analysis for Typical Length of Trenches	
Table 15. Water Surplus for pervious Soil	
Table 16. Land Use Units and Infiltration Factor for Pre- and Post-Development	
Table 17. Site Water Balance for Pre- and Post-Development	
Table 18. Catchment Areas and Infiltration Factor for East Wetland	33
Table 19. Catchment Areas and Infiltration Factor for West Wetland	36
Table 20. Feature Water Balance for East Wetland	36
Table 21. Feature Water Balance for West Wetland	37

List of Appendices

Appendix A.	Site Plan (Prologis 2023, Crozier 2024)
Appendix B.	Well Logs (Pinchin and IBI 2022)
Appendix C.	Single Well Response Tests (Palmer, 2022)
Appendix D.	Grain Size Distribution and K-Value Estimation (Pinchin and Palmer 2022)
Appendix E.	Groundwater Chemistry Analyses (ALS, 2022)
Appendix F.	Well Records (WWIS)
Appendix G.	Natural Heritage Features (GEI 2022)
Appendix H.	TRSPA Water Balance Results

1. Introduction

Palmer was retained by Prologis c/o Mainline Planning Services Inc. ("the client") to complete a Hydrogeological Assessment as part of the Draft Plan and Site Plan applications for the proposed industrial/ commercial development located at 12519 and 12713 Humber Station Road, Bolton, ON L7E 0Y1/0Z6 ("the site") (**Figure 1**). The site is approximately 78.46 ha in area and is located at the northwest quadrant of Mayfield Road and Humber Station Road. The site currently is vacant, and hosts cultivated lands, a small woodlot, a pond and hedgerows. The site has access to municipal servicing from Peel Region.

The purpose of the Hydrogeological Assessment is conducted as part of project design and permitting with the Town of Caledon, Region of Peel, and Toronto and Region Conservation Authority (TRCA).

1.1 Proposed Development

Based on site plans and design drawings provided by the client, dated April 2024, the development consists of following features (**Appendix A**):

- Proposed Phase One Building 1 with a footprint of 14.32 ha;
- Future Phase 2A and Phase 2B;
- Future Phase 3;
- Pavement for parking, loading areas, access driveways;
- Seven (7) storage tanks (Tank 1 to Tank 7) for Phase 1 Building 1;
- Three rainwater harvesting tanks (Tank A, B, D) for Phase 1 Building 1;
- Three infiltration tanks (Tank C, E, F) for Phase 1 Building 1;
- Shallow and deep servicing utilities such as storm sewers, sanitary sewers, gas and power lines; and
- Landscaped features.

The existing pond feature is planned to be retained and re-purposed as a stormwater management (SWM) facility.

1.2 Methodology

1.2.1 Review of Records and Previous Studies

Detailed background and record review was conducted for the area surrounding the site to delineate the regional setting of the site, including physical setting and environmental setting. The regional setting will help delineate site conditions, help with data interpretation, and help with impact assessment.

The sources of data and records reviewed included, but are not limited to, Ontario Geological Survey database (physiography, geology and boreholes), MECP database (well record, natural heritage, hydrology, source protection and environmental instruments), data from Conservation Authorities (watershed plan, subwatershed studies, source protection plan, stormwater criteria and LID), and data from the municipalities (official plan, zoning plan, permit application, well head protection policies and sewer use bylaw).

Four previous study reports had been identified for the property, including:

- 1. Geotechnical Investigation Report by Pinchin in 2022;
- 2. Supplemental Geotechnical Investigation Proposed Industrial Development, Pinchin 2023; and
- 3. Hydrogeological Investigation Report by IBI Group in 2022.

The following presents the parts from these studies that will contribute to the site characterization and data analysis of the present study.

Pinchin (2022) covered the same study area as the current study. The study was based on 18 boreholes (BH1 to BH18, depth range of 5.0 to 6.6 m, with six monitoring wells installed) and 14 test pits. The six monitoring wells installed for the first study will be enlisted for the current study. Grain size analysis results from this study were used by the present study to estimate hydraulic conductivity of formations (**Appendix D**).

Pinchin (2023) was based on the boreholes completed by the 2022 study and 82 more boreholes. Among the 82 boreholes, seven (7) monitoring wells were installed. The seven monitoring wells installed for this study will be enlisted for the current study. As this report was provided at later time, groundwater levels from only the recent rounds of monitoring were available.

The IBI Group (2022) Hydrogeological Study was completed for the overall Humber Station Landowners Group and was based on eight (8) monitoring wells (three nested) with depths ranging from 6.0 to 12.5 m, three (3) monitoring wells with depths ranging from 4.5 to 5.8 m, as well as nine (9) mini-piezometers, five groundwater samples (MW1-17, MW5-17S, MW3-17 and MW4-17D), and three surface water samples (SF1-17, SF5-17 and SF6-17). The monitoring wells and mini-piezometers installed within the site, and the two wells south of the site are enlisted for the current study.

1.2.2 Monitoring Point Inventory, Enlisting and Instrumentation

Following the review of previous studies, site reconnaissance was conducted several times by Palmer staff to examine landform, surficial features, monitoring wells, potential pathways, groundwater outcrops, water courses and potential natural hazards such as sinkholes, faults and karst features, and to inspect and confirm the conditions of monitoring wells and mini-piezometers.

The inspection of monitoring wells and mini-piezometers included such activities as grading surrounding ground surface to ensure surface water will not accumulate and infiltrate into wells and mini-piezometers, cleaning well structure (pit, pipe and cap), developing the wells and mini-piezometers, and measuring well depth and water levels in metres below ground surface (mbgs), and measuring stick-up height. Surface elevation of wells is presented in metres above sea level (masl). Four data loggers were installed in selected monitoring wells. **Table 1** lists the summary of the 21 monitoring wells (BH and MW) and five 95) mini-piezometers (SF and WL) that were confirmed to be in good condition and were selected to be monitored for the current study.

It should be noted that there are discrepancies between the elevations listed in **Table 1** and the elevations marked in borehole logs (**Appendix B**). The elevations in **Table 1** were provided by the client based on their survey, and will be used for calculating groundwater level elevations.

Figure 1 shows the location of the adopted monitoring wells. The well logs were attached as Appendix B.

Well ID	Surface Elevation (masl)	Stick-up (m)	Depth (mbgs)	Screened Interval (mbgs)	Screened Unit	Logger Installed	Consultant
BH1	239.28	0.97	6.02	3-6	Silt	Yes	Pinchin
BH9	235.57	0.95	6.09	3-6	Silt	Yes	Pinchin
BH12	237.15	0.89	4.3	3-6	Silt	-	Pinchin
BH12b	-	0.95	5.31	-	-	-	-
BH13	237.42	0.94	6.04	3-6	Silt	Yes	Pinchin
BH15	234.02	1	6.19	3-6	Silt	-	Pinchin
BH18	232.61	0.93	6.35	3-6	Silt	Yes	Pinchin
MW103	238.79	0.92	6.07	3-6	Clay till	-	Pinchin
MW108	236.89	1.05	6.1	3-6	Clay till	-	Pinchin
BHz	-	0.81	6.1	3-6		-	-
MW124	239.04	0.95	6.23	3-6	Clay till and sand	-	Pinchin
MW160	234.36	0.9	6.23	3-6	Clay till and sandy silt	-	Pinchin
MW161	232.84	1.0	6.29	3-6	Clay till	-	Pinchin
MW168	231.87	1.08	6.03	3-6	Clay till	-	Pinchin
MW3-17	234.79	0.7	6.01	3-6	Silt	-	Soil Eng.
MW4-17S	233.98	0.93	5.85	3-6	Silt	-	Soil Eng.
MW4-17D	233.98	0.72	12.18	9-12	Silt	-	Soil Eng.
MW8	231.86	0.86	15.11	3.5-5	Silt till	-	Burnside
MW9	235.59	0.84	5.4	3.7-5.2	Silty sand	-	Burnside
BHx	-	0.86	6.28	-	-	-	-
SF2-7S	-	0.24	0.97	-	-	-	IBI
SF2-17D	-	1.38	0.66	-	-	-	IBI
SF5-17S	-	0.42	0.8	-	-	-	IBI
SF5-17D	-	1.06	0.96	-	-	-	IBI
WL2-17	-	1.6	0.3	-	-	-	IBI

Table 1. Monitoring Wells and Mini-piezometers Selected for Current Study

1.2.3 In-Situ Hydraulic Test

Single well response test (SWRT or slug test) was conducted on November 21 and 29, 2021 in selected monitoring wells enlisted for the study to estimate hydraulic conductivity (K-value). During slut test, a change in hydraulic head was created with a bailer to remove water (<1 L) or with a slug rod to dispel water. The hydraulic conductivity was estimated by measuring the rate of change in water levels after the water head was created. The water level recovery during each test was recorded with an automatic datalogger. The recovery was also gauged manually using a water level tape. SWRTs in all wells were terminated after either 80% recovery was achieved or 30 minutes had passed. The testing results are attached as **Appendix C**.

1.2.4 Groundwater Sampling

Groundwater sampling was conducted in general accordance with provincial practices and Palmer's standard operation procedure (SOP). Chemical analysis was conducted by ALS Environmental Laboratory, which has been accredited Canadian Association for Laboratory Accreditation (CALA). The groundwater sample was taken from BH13 on November 21, 2022 and was submitted to the lab at the same day. The groundwater sample was tested against Ontario Drinking Quality Standards parameters. Test results were attached as **Appendix E**.

In addition, the chemical analysis results for groundwater from the enlisted monitoring wells located within the site from Pinchin (2023) are adopted for this study, which include testing results for groundwater samples from MW3-17 and MW4-17D. The certificates of analysis are attached as **Appendix E**.

1.2.5 Groundwater Level and Surface Water Stage Monitoring

Groundwater level and surface water stage monitoring was conducted through manual measurement, visual observations and logger recording, and was meant to delineate water level trend and fluctuation magnitude, as well as the interaction between surface water and groundwater. Palmer completed eight (8) rounds of site visits for groundwater level and surface water stage monitoring, and the following is the activities completed during each site visit:

- Measure groundwater levels for monitoring wells and mini-piezometers;
- Measure and observe surface water stage for creek and wetlands;
- Download data from loggers, confirm the conditions of logger, and reset loggers as required; and
- Carry out maintenance for monitoring wells and mini-piezometers.

1.2.6 WWIS Well Record and PGMN Well Inventory

Well records within 500 m from the site boundary were queried from the database of the Water Well Information System (WWIS) of Ontario for fields of well ID, completion date, well depth, static groundwater levels, aquifer type (bedrock or overburden well), water quality and water use. A total 46 wells were identified. The results of well survey were attached as **Appendix F**.

The Provincial Groundwater Monitoring Network (PGMN) was also searched. The closest PGMN well was found located 4.0 km northwest of the site (W0000327-3). Not water quality data is available for this well. Water level records show obvious seasonal trend, no yearly trend was observed, and fluctuations ranging from 0.6 to 0.8 m.

2. Site Characterization

2.1 Physiography and Natural Heritage

2.1.1 Geomorphology and Climate

The site is located in a Drumlinized Till Plain, part of an larger unit, South Slope (Chapman & Putnam, 1984 and OGS, **Figure 2**). The site is currently used as farmland, with flat to rolling ground surface. The ground elevations range from 239.0 to 232 masl, and dip gently from north to south.

The site is in a continental climate region with a warm, humid summer and a cold winter as well as wet spring, dry summer and moderate rainfall in autumn. The region is generally affected by warm, moist air masses from the south and cold, dry air masses from the north and experiences a wide range of weather conditions through the course of an average year. The following table lists the average and daily values of major climate parameters collected at the closest climate station (Toronto Lester B. Pearson International Airport) for the period between 1981 and 2010 (**Table 2**).

Average Value	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Daily Air T (°C)	-5.5	-4.5	0.1	7.1	13.1	18.6	21.5	20.6	16.2	9.5	3.7	-2.2
Rainfall (mm)	25.1	24.3	32.6	63	74.3	71.5	75.7	78.1	74.5	60.6	68	34
Snowfall (cm)	29.5	24	17.7	4.5	0	0	0	0	0	0.4	7.5	24.9
Precipitation (mm)	51.8	47.7	49.8	68.5	74.3	71.5	75.7	78.1	74.5	61.1	75.1	57.9
Extreme Daily Value	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Extreme Daily Rainfall (mm)	58.7	31.8	41.7	55.8	92.7	53.8	118.5	80.8	108	121.4	86.1	40.9
Extreme Daily Snowfall (cm)	36.8	39.9	32.3	26.7	2.3	0	0	0	0	7.4	33.5	28.2

Table 2. Monthly Averaged Climate Data

2.1.2 Natural Heritage Features

The site is in the West Humber subwatershed of Humber River watershed under the jurisdiction of Toronto and Region Conservation Authority (TRCA).

Goreway Drive Tributary to the West Humber River flows from northwest to southeast about 90 m to the west of the site, and a subtributary (an ephemeral creek) flows through the site and join the Goreway Drive Tributary to the west of the site. Clarkway Drive Tributary runs along the east boundary of the site flowing from northwest to southeast. An ephemeral subtributary of Clarkway Drive Tributary flows along the middle line of the site. This subtributary is dry and has flow recoded only during or immediately following rainfall (**Figure 3**).

Document Path: G:\Shared drives\Projects 2020\20081 - Prologis\2008102 - Humber Station Road\GIS\1_Workspace\Task 4 - HydroG Figures\2008102-1-1-Physiography.mxd

120 120 240 m

North American Datum 1983, UTM Zone 17N (EPSG: 26917)

Scale: 1:9,000 Page Size: Letter (11 x 8.5 inches)

Drawn: FL Checked: JC Date: Aug 2024 Source Notes: Basemap - Google Satellite (2020) Topo Contour - Peel Region (Spring 2021)

CLIENT
Prologis
PROJECT
12519 & 12713 Humber Station Road, Bolton, Ontario
TITLE
Terrain and Drainage
PROTOF

Based on the provincial natural heritage mapping and available site information, the site is located approximately 14 km east of the Niagara Escarpment, 6.0 km south of the Oak Ridges Moraine, 32.0 km to the north of Lake Ontario. Based on the Natural Heritage Feature map completed by GEI as part of the CEISMP Report (**Appendix G**), the natural heritage features identified near and within the site include:

- An ephemeral creek crossing the site. The creek is grown out with weed and shrubs;
- An in-line wetland on the north end of the site mapped by GEI as MAM2-11 and CUM1-1;
- A woodland located bordering the in-line wetland on the north end of the site mapped by GEI as FOD8-3.
- An in-line pond on the south part of the site. The pond was mapped as unevaluated wetland in the provincial natural heritage mapping, but mapped by GEI as SAS-1 and MAS2-1 and MAM2-2; and
- An in-line unevaluated wetland along the east boundary of the site mapped by GEI as MAM2-11/2, MAS2-1 and CUM1-1.

The ephemeral creek is proposed to be realigned to facilitate layout of the proposed development and is expected to maintain its function as a surface water supported, ephemeral feature.

2.2 Geology and Site Stratigraphy

Surficial geology of the Site was mapped by Ontario Geological Survey (OGS) as clay to silt-textured till (derived from glaciolacustrine deposits or shale), which is named regionally as Halton Till (**Figure 4**).

The site is located within the area of Oak Ridges Moraine Groundwater Program (ORMGP). ORMGP has developed three-dimensional overburden geological model within its area. Based on ORMGP model, the overburden geology under and surrounding the site is summarized in **Table 3**.

Division	Formation/Unit	Thickness (m)	Distribution within Site	Interpretation
	Halton Till	5-15	Whole area	
Overburden	ORM Complex	3-11	Whole area	Kame moraine
	Lower Newmarket Till	1-10	Whole area	-
Bedrock	Georgian Bay Formation	25-30 (depth)	-	-

Table 3. Overburden Geology (ORMGP)

Bedrock underlays the overburden and was mapped as Georgian Bay Formation of Late Ordovician age and consists of shale, limestone, dolostone, siltstone. Georgian Bay Formation serves as regional aquitard in the area based on regional hydrogeology of Ontario (**Figure 5**).

The stratigraphy under the site was characterized based on the regional information and the findings from the borehole logs completed by Pinchin, Soil Eng. and Burnside (**Table 1** and **Appendix B**). **Table 4**. summarises the stratigraphy under the site including major lithological units, bottom depth ranges, natural water content and mechanical properties.

Unit No	Unit Name	Lithology	Top Elvt (masl)	Bottom Elvt (masl)	Natural Water Content	N- Value	Hydro- stratigraphy
1	Topsoil	Silt, trace sand with organics, dark brown	239.28- 232.61	239.13- 232.46	Moist	-	
2	Brown Silt to silty clay till	Silt to clayey silt, trace sand and gravel, some oxidation.	239.13- 232.46	234.73- 229.19	Moist	8-30	Aquitard (Halton Till)
3	Grey Silt	Silt to sandy silt, or with trace sand and gravel, trace to some clay, trace oxidation locally.	234.73- 229.19	222.1	Moist to wet	30-77	

Table 4. Summary of Stratigraphy

As the summary of stratigraphy shows, the site is underlain with a suite of over-compacted clay till and silt deposited in glacial and proglacial environment. Both clay till and silt forms aquitards, and aquifer units were not encountered within the investigation depths.

٨

NORTH

2008102-2-1

Figure 4

REF. NO.

Document Path: G:\Shared drives\Projects 2020\20081 - Prologis\2008102 - Humber Station Road\GIS\1_Workspace\Task 4 - HydroG Figures\2008102-2-1-Surficial Geology.mxd

Document Path: G:\Shared drives\Projects 2020\20081 - Prologis\2008102 - Humber Station Road\GIS\1_Workspace\Task 4 - HydroG Figures\2008102-3-1-Bedrock Geology.mxd

2.3 Site Groundwater Conditions

2.3.1 Source Protection, Water Supply and Sewerage System

The site is located within the Toronto and Region Source Protection Area under the Source Protection Plan of CTC Source Protection Region. The Source Protection Plan designated the following 10 types of vulnerable areas:

- Wellhead Protection Area-Quality
- Wellhead Protection Area E-(GUDI)
- Intake Protection Zone-Quality
- Intake Protection Zone-Quantity
- Issue Contributing Area

- Significant Groundwater Recharge Area
- Highly Vulnerable Aquifer
- Event Based Area
- Wellhead Protection Area Q1-Quantity
- Wellhead Protection Area Q2-Quantity

Based on the provincial source protection mapping and the above source protection plan (**Figure 6**), only two isolated areas within the site are located above the Highly Vulnerable Aquifer (HVA) with a vulnerable score of 6.

Based on well records queried from WWIS database (**Appendix F**), groundwater levels range from 0 to 14 mbgs. The groundwater levels have no apparent and even reverse correlation with well depths, indicating upward gradient may exists at certain depths within the well record searching area. All of the domestic wells were constructed before 1994, and about half of the domestic wells tapped water from bedrock aquifer and the other half tapped water from overburden aquifer. The well records within the site show that the shallow regional aquifers consisted of gravels and weathered shale (contact aquifer) may exist at depths greater than 17 mbgs.

Classit	Record Number	
	Domestic/livestock	19
	Commercial	-
	Industrial	-
	Municipal	-
Water Hee	Monitoring	-
water Use	Monitoring and Test	8
	Hole	
	Irrigation	-
	Decommissioned	-
	Unknow/Not used	19
	Fresh	-
Water Overlite	Salty	-
water Quality	Untested	-
	Unknown	46
	Overburden	21
Aquifer	Bedrock	13
	Unknown	11

Table 5. Summary of Well Records

Document Path: G:\Shared drives\Projects 2020\20081 - Prologis\2008102 - Humber Station Road\GIS\1_Workspace\Task 4 - HydroG Figures\2008102-4a-1-Source Water Protection.mxd

Document Path: G:\Shared drives\Projects 2020\20081 - Prologis\2008102 - Humber Station Road\GIS\1_Workspace\Task 4 - HydroG Figures\2008102-4b-1-Source Water Protection.mxd

Document Path: G:\Shared drives\Projects 2020\20081 - Prologis\2008102 - Humber Station Road\GIS\1_Workspace\Task 4 - HydroG Figures\2008102-5-1-MECP Well Records.mxd

As shown above, majority of overburden soil were interpreted to be, from top down, Halton Till, ORM complex and Newmarket Till. Both Halton Till and Newmarket Till have limited capacity to store and transmit groundwater and act as regional aquitards. ORM complex is well recognized as a regional aquifer. Top weathered and fractured zone of bedrock has moderate capacity to store and transmit groundwater and may serve as regional aquifer.

The water supply and sanitary servicing are provided by the Region of Peel. The water supply for the area surrounding the site was provided by Peel Region through Palgrave - Caledon East Drinking Water System, which consists of three supply wells in Palgrave and four supply wells in Caledon East. The supply wells are located over ten (10) km to the north of the site.

2.4 Groundwater Levels, Flow Direction and Gradient

Several rounds of manual groundwater level measurement were conducted for the monitoring wells enlisted for this study. Data loggers were installed in four monitoring wells to monitor groundwater in a frequency of one recording per hour. The manual measurement results were summarized in **Table 6**.

	Surface Donth		Water Level (m)							
Well ID	Elevation	(mbas)	Nov 8/9, 22		Nov 2	21, 22	Nov 29, 22		Feb 8, 23	
	(masi)	,	mbgs	masl	mbgs	masl	mbgs	masl	mbgs	masl
BH1	239.28	6.02	2.51	236.77	2.62	236.66	2.72	236.56	2.74	236.54
BH9	235.57	6.09	2.24	233.33	2.14	233.43	2.28	233.29	1.52	234.05
BH12	237.15	4.30	0.53	236.62	0.44	236.71	-		0.23	236.92
BH12b	-	5.31	0.85	-	-	-	-		0.4	-
BH13	237.42	6.04	2.18	235.24	-	-	2.26	235.16	1.13	236.29
BH15	234.02	6.19	2.87	231.15	2.76	231.26	-		1.5	232.52
BH18	232.61	6.35	1.83	230.78	-	-	1.85	230.76	0.79	231.82
MW103	238.79	6.07	-	-	-	-	-	-	-	-
MW108	236.89	6.10	-	-	-	-	-	-	-	-
BHz	-	6.10	-	-	-	-	-	-	-	-
MW124	239.04	6.23	-	-	-	-	-	-	-	-
MW160	234.36	6.23	-	-	-	-	-	-	-	-
MW161	232.84	6.29	-	-	-	-	-	-	-	-
MW168	231.87	6.03	-	-	-	-	-	-	-	-
MW3-17	234.79	6.01	0.3	234.49	0.52	234.27	-	-	0.22	234.57
MW4-17S	233.98	5.85	1.97	232.01	2	231.98	2.06	231.92	0.87	233.11
MW4-17D	233.98	12.18	2.18	231.80	2.07	231.91	2.12	231.86	0.97	233.01
MW8	231.86	15.11	1.81	230.05	-	-	1.84	230.02	0.52	231.34
MW9	235.59	5.40	3.04	232.55	2.93	232.66	-	-	1.96	233.63
BHx	-	6.28	-	-	-	-	-	-	-	-

Table 6. Groundwater Levels

	Surface	Donth	Water Level (m)									
Well ID	Elevation	(mbqs)	Мау	12, 23	July 3	1, 23	Feb 1	18, 24	May 2	20, 24		
	(masi)	、υ ,	mbgs	masl	mbgs	masl	mbgs	masl	May 20, 24 mbgs masl 1.18 238.1 0.58 234.99 0.26 236.89 0.35 - 0.4 237.02 0.98 233.04 0.45 232.16 0.37 238.42 0.63 236.26 - - 0.62 238.42 1.05 233.31 0.53 232.31 0.67 231.2	masl		
BH1	239.28	6.02	1.49	237.79	1.14	238.14	-	-	1.18	238.1		
BH9	235.57	6.09	0.6	234.97	0.54	235.03	0.72	234.85	0.58	234.99		
BH12	237.15	4.30	0.24	236.91	0.13	237.02	0.17	236.98	0.26	236.89		
BH12b	-	5.31	0.27	-	0.27	-	0.21	-	0.35	-		
BH13	237.42	6.04	0.33	237.09	0.305	237.115	0.43	236.99	0.4	237.02		
BH15	234.02	6.19	0.93	233.09	-	-	1	233.02	0.98	233.04		
BH18	232.61	6.35	0.45	232.16	0.42	232.19	0.49	232.12	0.45	232.16		
MW103	238.79	6.07	-	-	-	-	1.04	237.75	0.37	238.42		
MW108	236.89	6.10	-	-	-	-	0.82	236.07	0.63	236.26		
BHz	-	6.10	-	-	-	-	1.69	-	-	-		
MW124	239.04	6.23	-	-	-	-	1.5	237.54	0.62	238.42		
MW160	234.36	6.23	-	-	-	-	1.01	233.35	1.05	233.31		
MW161	232.84	6.29	-	-	-	-	0.45	232.39	0.53	232.31		
MW168	231.87	6.03	-	-	-	-	-	-	0.67	231.2		
MW3-17	234.79	6.01	0.16	234.63	-	-	1.94	232.85	0.19	234.6		
MW4-17S	233.98	5.85	0.6	233.38	0.54	234.83	0.59	233.39	0.64	233.34		
MW4-17D	233.98	12.18	0.53	233.45	0.54	233.44	0.55	233.43	0.52	233.46		
MW8	231.86	15.11	0.59	231.27	0.66	233.44	0.52	231.34	0.66	231.2		
MW9	235.59	5.4	1.61	233.98	1.55	231.2	1.6	233.99	1.62	233.97		
BHx	-	6.28	-	-	-	-	0.96	-	0.81	-		

Representative range of historical values of groundwater levels measured by previous studies of Soil Engineers and Palmer were listed in **Table 7**.

	Surface	Depth							Water	Level (m)								
Well ID	Elevation	(mbgs	Aug	31, 17	Sep	22, 17	Nov	10, 17	Dec	5, 17	Feb	7, 18	Apr 2	23, 18	Apr	25, 22			
	(masi)	,	mbgs	masl	mbgs	masl	mbgs	masl	mbgs	masl	mbgs	masl	mbgs	masl	mbgs	masl			
BH1	239.28	6.15	-	-	-	-	-	-	-	-	-	-	-	-	5.5	233.78			
вн9	235.57	6.13	-	-	-	-	-	-	-	-		-	-	-	1.8	233.77			
BH12	237.15	4.22	-	-	-	-	-	-	-	-	-	-	-	-	1.2	235.95			
BH12b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
BH13	237.42	6.00	-	-	-	-	-	-	-	-	-	-	-	-	1.4	236.02			
BH15	234.02	6.30	-	-	-	-	-	-	-	-	-	-	-	-	2	232.02			
BH18	232.61	6.40	-	-	-	-	-	-	-	-	-	-	-	-	1.5	231.11			
MW3-17	234.79	7.04	2.61	232.18	0.45	234.34	0.3	234.49	0.14	234.65	-	-	0.1	234.69	-	-			
MW4-17S	233.98	5.90	1.06	232.92	1.37	232.61	1.76	232.22	1.4	232.58	1.48	232.5	0.48	233.5	-	-			
MW4-17D	233.98	12.20	0.95	233.03	1.27	232.71	1.67	232.31	1.44	232.54	1.44	232.54	0.61	233.37	-	-			
MW8	231.86	5.15	0.39	231.47	1.85	230.01	1.76	230.1	1.12	230.74	0.97	230.89	0.31	231.55	-	-			
MW9	235.59	5.15	1.89	233.7	2.1	233.49	2.24	233.35	1.92	233.67	2.11	233.48	1.38	234.21	-	-			

Table 7. Historical Groundwater Levels

Continuous recording of groundwater levels was acquired with dataloggers for BH1 BH9, BH13 and BH18. The hydrographs are presented in **Figure 8**. The hydrographs show the following characteristics of the groundwater regime at the site:

- The forms and trends of these hydrographs are highly synchronized, indicating that groundwater under different locations within the site responds to recharge similarly and the overburden soil at the site are hydraulically uniform;
- The hydrographs do not show typical spring-high and summer-low patterns of groundwater levels in Southern Ontario. The peak groundwater levels appear three to four months after spring, indicating that groundwater levels respond slowly to precipitation, which may be due to low permeability of soils; and
- Overall, the hydrographs show a semi-year pattern, with peak levels on August and lowest levels at late December.

Figure 8. Groundwater Level Hydrographs

Based on the elevation of groundwater levels, the groundwater table contours and flow direction were delineated and shown in **Figure 9**. The horizontal groundwater gradient is about 0.7% and the flow direction is from northwest to southeast and south toward the tributaries.

It should be noted that no aquifer units were encountered within the investigation depths, which means that all monitoring wells were completed in aquitard units. Recorded groundwater levels show drastic variation among different monitoring wells and over different monitoring events, indicating that the groundwater table and saturated zones are not continuous within the investigation depths at the site. Groundwater in monitoring wells stems mostly from local recharge and the predominant direction of the hydraulic gradient is expected to be downwards.

2.5 Hydraulic Conductivity

2.5.1 Hydraulic Conductivity from Single Well Response Tests

Hydraulic conductivity (K-value) of saturated zones was estimated through single well response tests (SWRTs) or slug tests, which has been introduced above. The results of the slug tests are summed up in **Table 8**.

Well ID	Surface Elevation (masl)	Depth (mbgs)	Screened Interval (mbgs)	Screened Unit	K-value (m/s)
BH9	235.57	6.13	3-6	Silt	6.6x10 ⁻⁷
BH12	237.15	4.22	3-6	Silt	5.7x10 ⁻⁹
BH15	234.02	6.3	3-6	Silt	5.3x10 ⁻⁸
BH18	232.61	6.4	3-6	Silt	7.7x10 ⁻⁸
MW3-17	235.5	5.9	3-6	Silt	7.2x10 ⁻⁸
MW4-17S	234.8	5.9	3-6	Silt	1.4x10 ⁻⁷
MW8	231.94	5.15	3.5-5	Silt till	5.6x10 ⁻⁷
MW9	235.69	5.15	3.7-5.2	Silty sand	7.1x10 ⁻⁷
MW4-17D	234.8	12.2	9-12	Silt	2.9x10-7

Table 8 Hydraulic Conductivity from Slug Tests

2.5.2 Hydraulic Conductivity from Grain Size Analysis

The K-values of sampled soils were estimated with the results of grain size analysis tests which was completed by Pinchin. Soil samples for grain size analysis were taken different depths, representing shallow to deep soil conditions. The results of grain size analysis were used to get K-values through the following empirical equation, and the estimation results are presented in **Table 9**. It should be noted that the K-values from grain size analysis is substantially lower than K-values from slug tests, which may be attributed to the lack of structures such as joints, fractures, burrows and rootholes, as well as the reconstitution of grain size analysis samples.

$$K (Sauerbrei, 1932) = \frac{\rho g}{\mu} [(3.75 \times 10^{-5}) \times \tau] \left[\frac{n^3}{(1-n)^2} \right] d_{17}^2 \frac{cm}{s}$$

Where	κ	=	hydraulic conductivity (cm/s)
	ρ	=	$3.1 \times 10^{-8} T^3 - 7.0 \times 10^{-6} T^2 + 4.19 \times 10^{-5} T + 0.99985$
	g	=	980 cms ⁻²
	μ	=	$-7.0x10^{-8}T^3 + 1.002x10^{-5}T^2 - 5.7x10^{-4}T + 0.0178$
	τ	=	1.093x10 ⁻⁴ T ² + 2.102x10 ⁻² T + 0.5889
	n	=	porosity as a fraction of aquifer volume
	Т	=	water temperature (°C)

Well ID	Sample ID	Depth (mbgs)	Depth Soil (mbgs) Classification	
BH4	SS4	3.0-3.5	Silt	6.0x10 ⁻¹⁰
BH6	SS1	0.0-0.6	Silt	7.0x10 ⁻¹⁰
BH14	SS5	4.5-4.7	Silt	1.0x10 ⁻⁸
BH18	SS4	3.0-3.5	Silt	1.7x10 ⁻⁹

Table 9 Hydraulic Conductivity from Grain Size Analysis

2.5.3 Hydraulic Conductivity for Different Formations

Different methods of hydraulic conductivity tests were targeted to soil formations of different depths in different water content states. Based on above test results, the K-values for each formation were summarised and listed **Table 10**.

Unit Name	Investigation Point ID	Test	Depth Range (mbgs)	K-value (m/s)	Geometric Mean K-value (m/s)	90th Percentile K-value (m/s)	
Clayey silt	BH6	Grain Size Analysis	0.0-0.6	7.0x10 ⁻¹⁰			
Silt and clay	BH4	Grain Size Analysis	3.0-3.5	6.0x10 ⁻¹⁰	8.9x10 ⁻¹⁰	1.5x10 ⁻⁹	
Silt	BH18	Grain Size Analysis	3.0-3.5	1.7x10 ⁻⁹			
Silt	BH14	Grain Size Analysis	4.5-4.7	1.0x10 ⁻⁸			
Silt	BH9	Slug Test	3-6	6.6x10 ⁻⁷		3.5x10 ⁻⁷	
Silt	BH12	Slug Test	3-6	5.7x10 ⁻⁹			
Silt	BH15	Slug Test	3-6	5.3x10 ⁻⁸	5.5x10 ⁻⁸		
Silt	BH18	Slug Test	3-6	7.7x10 ⁻⁸			
Silt	MW3-17	Slug Test	3-6	7.2x10 ⁻⁸			
Silt	MW4-17S	Slug Test	3-6	1.4x10 ⁻⁷			
Sandy silt till	MW8	Slug Test	3.5-5	5.6x10 ⁻⁷			
Silty sand	MW9	Slug Test	3.7-5.2	7.1x10 ⁻⁷	4.9x10⁻′	6.8x10 ⁻⁷	
Silt	MW4-17D	Slug Test	9-12	2.9x10-7			

Table 10. Hydraulic Conductivity Summary

2.6 Infiltration Rate

Infiltration rates were estimated through the following empirical equation correlating K-values and infiltration rate provided in Ontario Ministry of Municipal Affairs and Housing (OMMAH) Supplementary Guidelines to the Ontario Building Code 1997, and in the Low Impact Development Stormwater Management Planning and Design Guide (TRCA/CVC, 2010). The estimated infiltrate rates are listed in **Table 11**.

 $K = (6 \times 10^{-11})I^{3.7363}$ Where: K = hydraulic conductivity (cm/s)

I = infiltration rate (mm/hr)

Rearranging for infiltration rate, we obtain the following relationship:

$$I = \left[\frac{K}{6 \times 10^{-11}}\right]^{\frac{1}{3.7363}}$$

Unit	Unit Investigation		K-value	Infiltr	ation Rate	Geometric Mean		
Name	Point ID	(mbgs)	(m/s)	cm/min	T(min/cm)	cm/min	T(min/cm)	
Clavev	BH6	BH6 0.0-0.6 7.0x10 ⁻¹⁰ 1.1 91						
silt to	BH4	3.0-3.5	6.0x10 ⁻¹⁰	1.1	94	1.19	85	
silt	BH18	3.0-3.5	1.7x10 ⁻⁹	1.4	71			
	BH14	4.5-4.7	1.0x10 ⁻⁸	2.2	44			
	BH9	3-6	6.6x10 ⁻⁷	6.9	14			
	BH12	3-6	5.7x10 ⁻⁹	1.9	52			
Silt	BH15	3-6	5.3x10 ⁻⁸	3.5	28	3.5	27	
	BH18	3-6	7.7x10 ⁻⁸	3.9	26			
	MW3-17	3-6	7.2x10 ⁻⁸	3.8	26			
	MW4-17S	3-6	1.4x10 ⁻⁷	4.6	22			

Table 11. Infiltration Rate

2.7 Groundwater Chemistry

Groundwater analytical results for the current study (BH13) were assessed against Ontario Drinking Water Standards (ODWS) and Ontario Provincial Water Quality Objectives (PWQO), the exceedance is shown in **Table 12**. In addition, groundwater chemistry data for the two samples (MW3-17 and MW4-17D) from the hydrogeological assessment by IBI were also assessed against ODWS and PWQO, and their exceedances are shown in **Table 12**.

Parameters	Unit	PWQO	ODWS	BH13	MW3-17	MW4-17D
Color	CU	-	5	40	-	-
Total Dissolved Solid (TDS)	mg/L	-	500	689	-	-
Turbidity	NTU	-	5	21.4	-	-
Total Manganese	mg/L	-	0.05	0.12	-	-
Field pH	-	6.5-8.5	-	-	8.17	8.58
Total Phosphorus	mg/L	0.01	-	-	1.4	3.3
Total Boron	ug/L	200	-	-	260	ND
Total Cobalt	ug/L	0.9	-	-	ND	2.5
Total Copper	ug/L	5	-	-	ND	5.5
Total Iron	ug/L	300	-	-	ND	5400
Total Uranium	ug/L	5	-	-	3.4	1.2
Total Vanadium	ug/L	6	-	-	2.1	7.4

Table 12. Exceedances Over ODWQS

November 21, 2024

Palmer_2008102-Hydrogeoloical Assessment Report_Humber Station Road

These exceedances are associated with either agricultural operation or high concentration of particulate materials of raw groundwater. The exceedances associated with agriculture are expected to improve with the cessation of agricultural operation. The exceedances associated with groundwater turbidity can be easily eliminated through filtering and settling.

2.8 Water Levels from Mini-Piezometers

Monitoring data from the mini-piezometers installed along the creek beds and wetlands include groundwater levels within the mini-piezometer pipes and surface water levels outside the mini-piezometer pipes, both groundwater and surface water levels being measured manually as meters from top of the pipes and converted to meters from the ground surface. **Table 13** summarises the monitoring results. As the monitoring results show, surface water features are dry during most of monitoring events and groundwater levels are below ground surface during all monitoring events, indicating that groundwater does not support surface water features.

It should be noted that WL2-17 was installed only 20 cm into ground. Recordings from WL2-17 do not represent actual water conditions.

NAT	רו נ			Water Levels	(mbgs)	
IVIT	טו	Nov 9, 22	Nov 29, 22	Feb 8, 23	May 12, 23	July 31, 23
	In	-		-	0.01	0.06
SF2-17S	Out	-		-	Dry	Dry
	Gradient				Downward	Downward
	In	0.14		0.1	0	-0.08
SF2-17D	Out	0		dry	-0.06	-0.11
	Gradient	Downward		Downward	Downward	Downward
	In	Dry		0.04	0.12	0.05
SF5-17S	Out	Dry		Dry	Dry	Dry
	Gradient	-		Downward	Downward	Downward
	In	Dry		0.03	0.08	0.07
SF5-17D	Out	Dry		Dry	Dry	Dry
	Gradient	-		Downward	Downward	Downward
	In	-0.69	Dry	0.16	-0.07	-0.46
WL2-17	Out	dry	Dry	Dry	Dry	Dry
	Gradient	Upward	-	Downward	Upward	Upward

Table 13. Water Level Monitoring Results for MPs

In – groundwater levels within MP.

Out – surface water levels outside the MP.

Negative values for in/out measurements indicate water levels above ground surface.

Gradient: minus-downgradient, positive-upgradient.

*No measurement due to frozen.

3. Construction Dewatering Assessment

Dewatering for construction is conducted to fulfil three purposes: provide a dry working condition, help maintain ground stability and help maintain healthy and safe working environment. Based on the above characterization of site conditions, the recorded groundwater levels range from 0.1 to 2.7 mbgs, and from 230.0 to 238.3 masl. As the proposed industrial buildings will be built on slab-on-grade foundations, the

requirement for construction dewatering for the buildings is not anticipated. However, the trenches for storm and sanitary sewers will extend below groundwater levels, and construction dewatering should be assessed for trench excavation. The following will discuss construction dewatering for trench excavation.

3.1 Dewatering Rate and Influence Zone

Dewatering rate (L/day) and influence zone are the key parameters for implementing construction dewatering and impact assessment. The dewatering rate incorporates three kinds of potential water flow or seepage into trench excavations, including static groundwater seepage, storage of groundwater that has to be depleted before groundwater flow reaches a static state, and storm water. The following calculations and estimation are based on the assumptions:

- Depth of trenches 4.0 m;
- Typical length of trenches 30 m; and
- Width of trenches 2.0 m.

Based on the Grading Plan, the building grade will be 238.78 masl.

Static Groundwater Seepage and Influence Zone:

Based on the above delineation of excavation dimensions and stratigraphy, the excavation will penetrate through fill and silt to clay till unit. The major saturated soil body to be excavated is silt till. Therefore, the hydraulic conductivity value of silt to clay till (**Table 10**) will be used for calculation of dewatering rate and influence zone.

The static groundwater seepage for trench excavation for linear development features such as utilities and storm and sanitary sewers is estimated with the following Dupuit-Thiem equation, which include an item for two ends of the trench and the item for the trench length:

 $Q = K(H^2 - h_w^2) / [log (R / r_w)] + xK(H^2 - h^2)/L$

Q = pumping rate K = hydraulic conductivity (m/s) $K_v=K/10$ H = original water level (m) above lower aquitard h_w = targeted level (m) above the lower aquitard R = influence radius (combined) (m) r_w = well radius or equivalent radius (m) x=length of trench (m) w=width of trench (m) L=line source distance (m) which is the greater of R₀/2 or 10 m

Radius of influence zone is estimated with Sichardt and Kryieleis formula:

 $R_0 = C(H-h_w)K^{1/2}$

Storage of Groundwater:

The storage of groundwater was estimated based on porosity of excavated soil, the volume of excavated saturated soil and the volume of saturated soil enclosed by the drawdown cone and influence zone column. Based on the classification of soil encountered in the boreholes, no wet and saturated zones were identified under the site within the zone of excavation. The soil encountered in boreholes are mostly fine-grained. Free gravity flow of groundwater during construction is not anticipated. Consequently, storge of groundwater will be insignificant and should be ignored.

Stormwater:

25 mm/day rainfall intensity has been used to estimate potential stormwater that may accumulate in the excavations as this rainfall intensity represent 95% storm events in southern Ontario. The potential stormwater accumulation is meant to direct the client to make a contingency plan for the construction executed during wet season and will not be considered in assessing if a PTTW or EASR is required.

Dewatering Summary:

Table 14 lists the input parameters and output values for dewatering rate and influence zone calculation for trenches of linear development features such as utilities and storm and sanitary sewers. The maximal required pumping rate will be 6,018 L/day after applying an uncertainty factor of 1.5 to the static flow rate, corresponding 0.1 L/s.

Parameters	Values
Excavation Area (m)	30 x 2
Excavation Depth (mbgs)	4.0
GW Level (masl)	239.3
Groundwater Level Target (masl)	233.78
K (m/s)	3.5 x 10 ⁻⁷
H (m)	5.5
h (m)	0
x (m)	30
W (m)	2
Storm (mm/day)	25
R ₀ (m)	8.0
Q _{static} (L/day)	4,012
Q StaticFOU=1.5 (L/day)	6,018
Q _{storm=25mm} (L/day)	1,500

Table 14. Summary of Dewatering Analysis for Typical Length of Trenches

3.2 Location of Discharge and Dewatering Methods

MECP construction dewatering guides provided several options for discharging pumped water, including:

• Discharge to a sewage works that has the appropriate environmental compliance approval (ECA);

November 21, 2024

- Transfer to a waste management system that has the appropriate environmental compliance approval (ECA) or is registered under the non-hazardous waste transportation systems EASR;
- Discharge to a municipal sanitary sewer or storm sewer in accordance with any municipal requirements; and
- Discharge to land surface and managed on-site.

Based on the understanding of site conditions and the low dewatering rate, it is recommended that the pumped water be managed on site through an infiltration swale or pond. The contractor is responsible for design and construction of infiltration facilities. Best management practices should be exercised to prevent erosion, flooding and groundwater contamination. Based on the predicted pumping rate, Sump pumps should be adequate for controlling groundwater that may accumulate in the excavation pits or trenches.

3.3 PTTW, EASR and Municipal Permits

Water taking in Ontario is governed with Section 34 of Ontario Water Resources Act and its Regulation 387/04. The act and regulation require that no person shall take more than 50,000 litres of water on any day by any means except in accordance with a permit.

Construction dewatering is governed with Part II. 2 of Environmental Protection Act and its Regulation 63/16. Based on the act and regulation, construction dewatering with rates between 50,000 and 400,000 L/day can go through Environmental Activity and Sector Registry (EASR) and do not have to apply for a PTTW if the impact to natural resource and environment is not significant and no sensitive features are involved.

Based on the above analysis and understanding of the water taking legislations, construction dewatering for this project is expected to be below 50,000 L/day, and therefore neither an ESAR registration nor a PTTW application are required.

4. Site Water Balance Assessment

As presented above, the site is not located in WHPA-Q, and therefore, source protection water balance policies do not apply to the proposed development. The site water balance assessment was conducted to address concerns from agencies regarding stormwater management, and to provide inputs to stormwater management design. The water balance assessment was conducted in general accordance with the Hydrogeological Assessment Submissions, Conservation Authority Guidelines to Support Development Applications (2013) and Stormwater Management Planning and Design Manual of MECP (2003), and consists of the following steps:

- Water surplus determination;
- Land use unit delineation and infiltration factor determination for pre- and post-development scenarios;
- Pre- and post-development water balance analysis; and
- Low Impact Development (LID) considerations.

4.1 Water Surplus

Water surplus for pervious vegetated areas is estimated with Thornthwaite and Mather water balance method (1957) or based on Water Balance Tool developed by Toronto and Region Source Protection Area (TRSPA). Thornthwaite and Mather method is an accounting procedure to quantify components of the hydrologic cycle as expressed in the following equation:

P= ET + R + I + ∆S

P= Precipitation (mm/year) ET= Evapotranspiration (mm/year) R= Runoff (mm/year) I= Infiltration (mm/year) R+I=Water surplus (mm/year) ∆S= Change in groundwater storage (mm/year)

Palmer developed its own spreadsheet program to execute the analysis. The input data includes:

- Long term (30 years) monthly average precipitation and temperature collected from closest climate station (Toronto Lester B. Pearson International Airport) for the period between 1981 and 2010) (Section 3.1)
- Degrees of altitude = 44.51°.
- Soil moisture storage capacity for predominant land coverage = 100 mm.

Soil moisture storage capacity of 100 mm was selected based on shallow rooted bean and landscaping features in clayey silt soil. **Table 15** sums up the results of the analysis.

Month	Mean Temperature (°C)	Total Precipitation (mm)	Actual Evapotranspiration (mm)	Water Surplus (mm)
January	-5.5	51.8	0.0	51.8
February	-4.5	47.7	0.0	47.7
March	0.1	49.8	0.3	49.5
April	7.1	68.5	34.7	33.8
Мау	13.1	74.3	97.3	-23.0
June	18.6	71.5	88.5	-17.0
July	21.5	75.7	81.7	-6.0
August	20.6	78.1	74.1	4.0
September	16.2	74.5	59.5	15.0
October	9.5	61.1	40.5	20.6
November	3.7	75.1	11.8	63.3
December	-2.2	57.9	0.0	57.9
YEAR		786	488	298

Table 15. Water Surplus for pervious Soil

November 21, 2024

Palmer_2008102-Hydrogeoloical Assessment Report_Humber Station Road

TRSPA provided the following water balance values for the site and nearby area:

- Total precipitation 863 mm/year;
- Evapotranspiration 575 mm/year;
- Runoff 234 mm/year;
- Recharge 54 mm/year;
- Water surplus 288 mm/year.

TRSPA water balance results are fairly close to the results from the Thornthwaite and Mather method. Considering TRSPA used a higher and more recent precipitation value, <u>TRSPA water balance values are uses for the water balance analysis</u>.

Water surplus for impervious areas (building roof, impervious pavement etc.) was calculated based on the assumption that 10% of total precipitation will evaporate on impervious surface (acceptable range is 10% to 20%), or with a runoff rate of 90%, and no precipitation will infiltrate. Total precipitation from TRSPA is 863 mm/year, and the water surplus on impervious at the site is 777 mm/year.

4.2 Land Use Unit Delineation and Infiltration Factor

Delineation of land use units was based on topography, surficial soil and land cover at the site for current site conditions (pre-development) and the conditions after the completion of the proposed development (post-development). Infiltration factor for each catchment was calculated based on the scoring table presented in the Page 3-4 of the Stormwater Management Planning and Design Manual of MECP (2003) and in the Page 4-62 of MECP Hydrogeological Technical Information Requirements for Land Development Applications (1995). **Table 16** summarizes the results of land unit delineation and infiltration factors for pre-and post- development scenarios.

As the Site Plans (**Appendix A**) show, only Phase 1 will be developed, therefore the water balance will focus on the Phase 1 development area. The Phase 2 and 3 development areas are treated as farmland.

		Pre-Develo	pment					
Land Use Unit	Area (ha)	Slope Gradient	Soil	Land Cover	Infiltration Factor			
Farmland	71.79	0.2	0.1	0.1	0.4			
Woodland	2.98	0.2	0.1	0.2	0.5			
Wetland	1.42	0.2	0.1	0.2	0.5			
Grassland	0.64	0.2	0.1	0.2	0.5			
Grass Channel	0.84	0.1	0.1	0.2	0.4			
Pond	0.79	0.2	0.1	0.2	0.5			
Total	78.46	-	-	-	-			
Post-Development								
Land Use Unit	Area	Slope Gradient	Soil	Land Cover	Infiltration Factor*			

Table 16. Land Use Units and Infiltration Factor for Pre- and Post-Development

November 21, 2024

Pre-Development					
	(ha)				
Phase 1 Building	14.23	-	-	-	0
Phase 1 Pavement	12.99	-	-	-	0
Phase 2 A	11.38	0.2	0.1	0.1	0.4
Phase 2 B	10.92	0.2	0.1	0.1	0.4
Phase 3	13.55	0.2	0.1	0.1	0.4
Woodland	2.32	0.2	0.1	0.2	0.5
Wetland	1.42	0.2	0.1	0.2	0.5
Wetland Buffer	3.19	0.2	0.2	0.2	0.6
NHS	4.08	0.2	0.2	0.2	0.6
Pond	0.79	0.2	0.1	0.2	0.5
Landscape	3.59	0.2	0.2	0.2	0.6
Total	78.46	-	-	-	-

*Applies only to pervious areas.

4.3 Water Balance for Pre-Development and Post-Development

With water surplus, areas of land use units and infiltration factors being determined, water balance for preand post-development scenarios is a simple process of accounting.

It should be noted that the land use unit post-development includes buildings and paved areas with zero infiltration and landscaped areas usually with increased infiltration owing to grading, vegetation and topsoil application. Following generally accepted practices, the impervious factors adopted for the land use units are as follows:

- Low density residential 0.41;
- Low-medium density residential 0.42;
- Medium density residential 0.43;
- High density residential 0.44;
- Commercial 1.0;
- School 1.0;
- Parks 0;
- Wetland 0;

- Stormwater Management facilities 0.5;
- Vistas 0.5;
- Trails 0.5;
- Roads 1.0;
- Natural heritage 0;
- Farmland 0;
- Woodland 0;

Table 17 lists the results, which shows that the proposed development will cause a reduction of infiltration of 25,476 m³/year and an increase in runoff of 158,582 m³/year.

Pre-Development												
Land Use Unit	Area (ha)	Water Surplus (mm/year)	Infiltration Factor	Runoff (m³/year)	Infiltration (m³/year)							
Farmland	71.79	288	0.4	124,053	82,702							
Woodland	2.98	288	0.5	4,291	4,291							
Wetland	1.42	288	0.5	2,045	2,045							
Grassland	0.64	288	0.5	922	922							
Grass Channel	0.84	288	0.4	1,452	968							
Pond	0.79	288	0.5	1,138	1,138							
Total	78.46	-	-	133,900	92,065							
		Post-D	evelopment									
Land Use Unit	Area (ha)	Water Surplus (mm)	Infiltration Factor	Runoff (m³/year)	Infiltration (m³/year)							
Phase 1 Building	14.23	777	0	110,567	0							
Phase 1 Pavement	12.99	778	0	100,932	0							
Phase 2 A	11.38	288	0.4	19,665	13,110							
Phase 2 B	10.92	288	0.4	18,870	12,580							
Phase 3	13.55	288	0.4	23,414	15,610							
Woodland	2.32	288	0.5	3,341	3,341							
Wetland	1.42	288	0.5	2,045	2,045							
Wetland Buffer	3.19	288	0.6	3,675	5,512							
NHS	4.08	288	0.6	4,700	7,050							
Pond	0.79	288	0.5	0.5 1,138 1,138								
Landscape	3.59	288	0.6	4,136	6,204							
Total	78.46	-	292,482	66,588								
	Pre	- to Post- Developr	nent Change	+158,582	-25,476							
	Pre- to	Post- Developmen	t Change (%)	+118%	-28%							

Table 17. Site Water Balance for Pre- and Post-Development

4.4 LID Design Considerations

As mentioned above, the site is not located in any designation area of source protection, to maintain predevelopment water balance is not a mandatory condition for the proposed development under the source protection plan. However, considering the large increased runoff and reduces infiltration due to the proposed development, Low Impact Development (LID) features, as a best management practice, should be considered to control flooding and erosion at downstream areas and to maintain infiltration as far as reasonably practical.

Based on the Low Impact Development Stormwater Management Planning and Design Guide (CVC and TRCA), the major site constraints are low infiltration rate and shallow groundwater table. As presented above, the infiltration rate of soil samples at the site ranges from 1.19 to 3.5 cm/min (T-time of 27 to 85), indicating the soils are weak in taking in water. Therefore, LID features with shallow depth and large area should be considered.

Groundwater level monitoring recorded shallow groundwater table depths ranging from 0.1 to 2.7 mbgs (**Table 6**). In general, the bottom of LID features should stay 1 m above groundwater table. As the site is partly located within an HVA as presented in Section 3.3, clean water is preferred to be directed to infiltration-based LIDs. This would include rooftop runoff and runoff from grassed and vegetated areas.

To boost infiltration, the client proposed a three rainwater harvesting tanks (Tank A, B, D) and three infiltration tanks (Tank C, E, F). The three infiltration tanks have invert elevations ranging from 236.85 masl for Tank C, 236.03 masl for Tank E and 236.06 masl for Tank F. Based on recorded groundwater levels, the one meter of separation could be maintained.

Based on the Stormwater Management Implementation Report (Crozier 2024), the three infiltration tanks have a combined footprint of 1,500 m². Based on infiltration of 0.94 cm/min, the Phase 1 Building could provide clean roof runoff of 110,567 m³/year (142,300 x $0.777 = 110,567 \text{ m}^3/\text{yr}$). Both infiltration capacity of the infiltration tanks and the available clean roof runoff are greater that the infiltration deficit, therefore the infiltrate deficit will be fully compensated.

5. Feature-Based Water Balance Assessment

Feature-Based Water Balance Assessment (FBWBA) was conducted in general accordance with the guidelines of Hydrogeological Assessment Submissions, Conservation Authority Guidelines to Support Development Applications (2013) and the Overview of Water Balance Practices in the Greenbelt (Ryan Post and Devon Owens, 2020). Basically, the FBWBA for this study breaks into following steps:

- Water surplus estimation;
- Catchment area delineation and infiltration factor determination for pre- and post-development scenarios; and
- Pre- and post-development Water balance analysis.

The FBWBA will focus on Phase 1 development as no post-development drainage information is available for future Phase 2 and Phase 3 developments.

5.1 Water Surplus

Water surplus values used for FBWBA will be the same as what had been derived for site water balance analysis as presented above, which includes:

- 288 mm/year for pervious area.
- 777 mm/year for impervious area.

5.2 Catchment Delineation and Infiltration Factor

Delineation of units of catchment to each subject wetland was based on topography, surficial soil, land cover and storm sewers alignment at the site for current site conditions (pre-development) and the conditions after the completion of the proposed development (post-development). **Figure 10** and **Figure 11** shows the delineation of catchment areas for pre-development and post-development.

The area of catchment units was measured with the aid of GIS and available site plans (**Appendix A**). It should be noted that the roof of Building 1 accounts for substantial part of the catchment area post-development. It was assumed that half of the area of Building 1 roof discharges into East Wetland catchment and the other half discharges into West Wetland catchment.

The Infiltration factor for each catchment units was calculated based on the scoring table presented in the Page 3-4 of the Stormwater Management Planning and Design Manual of MECP (2003) and in the Page 4-62 of MECP Hydrogeological Technical Information Requirements for Land Development Applications (1995). **Table 18** summarizes the results of catchment area delineation and infiltration factors for pre- and post- development scenarios for the East Wetland.

		Pre-Devel	opment		
Catchment Unit	Area (ha)	Slope Gradient	Soil	Land Cover	Infiltration Factor
Wetland	0.46	0.2	0.1	0.2	0.5
Woodland/Shrub	0.07	0.2	0.1	0.2	0.5
Farmland	5.54	0.2	0.1	0.1	0.4
Total	6.08	-	-	-	-
		Post-Deve	lopment		
Catchment Unit	Area (ha)	Slope Gradient	Soil	Land Cover	Infiltration Factor*
Roof of Building 1	7.16	-	-	-	0.0
Paved Area	3.98	-	-	-	0.0
Woodland/Shrub	0.07	0.2	0.1	0.2	0.5
Wetland	0.46	0.2	0.1	0.2	0.5
Landscaped Area	1.59	0.2	0.1	0.2	0.5
Wetland Buffer	3.08	0.2	0.1	0.1	0.4
Total	16.34	-	-	-	-

Table 18. Catchment Areas and Infiltration Factor for East Wetland

*Apply to pervious area only.

2008102

240 m

		Pre-Devel	opment		
Catchment Unit	Area (ha)	Slope Gradient	Soil	Land Cover	Infiltration Factor
Grassland	0.94	0.2	0.1	0.1	0.4
Woodland/shrub	2.30	0.2	0.1	0.2	0.5
Wetland	0.78	0.2	0.1	0.2	0.5
Farmland	16.46	0.2	0.1	0.1	0.4
Total	20.48	-	-	-	-
		Post-Deve	lopment		
Catchment Unit	Area (ha)	Slope Gradient	Soil	Land Cover	Infiltration Factor*
Roof of Building 1	7.16	-	-	-	0.0
Paved Area	3.50	-	-	-	0.0
Grassland	0.94	0.2	0.1	0.2	0.5
Woodland/shrub	2.30	0.2	0.1	0.2	0.5
Wetland	0.78	0.2	0.1	0.2	0.5
Landscaped Area	0.19	0.2	0.1	0.2	0.5
Farmland	15.45	0.2	0.1	0.1	0.4
Total	30.32	-	-	-	-

Table 19. Catchment Areas and Infiltration Factor for West Wetland

5.3 Feature-Based Water Balance for Pre-Development and Post-Development

With water surplus, area of catchment units and infiltration factors being determined, water balance for preand post-development scenarios are a process of accounting. **Table 20** and **Table 21** list the water balance results for East and West Wetlands for pre- and post-development conditions. The water balance results show that the proposed Phase One development will result in an increased runoff of 86,633 m³/year and reduced infiltration of 1,012 m³/year in the East Wetland catchment, and an increased runoff of 81,353 m³/year and reduced infiltration of 678 m³/year in the East Wetland catchment.

Pre-Development					
Catchment Unit	Area (ha)	Water Surplus (mm/year)	Infiltration Factor	Runoff (m³/year)	Infiltration (m ³ /year)
Wetland	0.46	288	0.5	661	661
Woodland/Shrub	0.07	288	0.5	105	105
Farmland	5.54	288	0.4	9,581	6,387
Total	6.08			10,347	7,153
Post-Developmen	ht				

Table 20. Feature Water Balance for East Wetland

November 21, 2024

Palmer_2008102-Hydrogeoloical Assessment Report_Humber Station Road

Pre-Development	Pre-Development												
Catchment Unit	Area (ha)	Water Surplus (mm)	Infiltration Factor	Runoff (m³/year)	Infiltration (m ³ /year)								
Roof of Building 1	7.16	777	0.0	55,642	0								
Paved Area	3.98	777	0.0	30,955	0								
Woodland/Shrub	0.07	288	0.5	105	105								
Wetland	0.46	288	0.5	661	661								
Landscaped Area	1.59	288/777	0.5	4,302	1,831								
Wetland Buffer	3.08	288	0.4	5,315	3,543								
Total	16.34			96,980	6,141								
Pre- to Post- Devel	opment Cha	nge		86,633	-1,012								
Pre- to Post- Devel	opment Cha	nge (%)		837%	-14%								

Table 21. Feature Water Balance for West Wetland

Pre-Development												
Catchment Unit	Area (ha)	Water Surplus (mm/year)	Infiltration Factor	Runoff (m³/year)	Infiltration (m ³ /year)							
Grassland	0.94	288	0.40	1,630	1,086							
Woodland/shrub	2.30	288	0.50	3,313	3,313							
Wetland	0.78	288	0.50	1,122	1,122							
Farmland	16.46	288	0.40	28,443	18,962							
Total	20.48			34,508	24,484							
Post-Developmen	t											
Catchment Unit	Area (ha)	Water Surplus (mm)	Infiltration Factor	Runoff (m³/year)	Infiltration (m ³ /year)							
Roof of Building 1	7.16	777	0.00	55,642	0							
Paved Area	3.50	777	0.00	27,223	0							
Grassland	0.94	288	0.50	1,358	1,358							
Woodland/shrub	2.30	288	0.50	3,313	3,313							
Wetland	0.78	288	0.50	1,122	1,122							
Landscaped Area	0.19	288/777	0.50	512	218							
Farmland	15.45	288	0.40	26,691	17,794							
Total	30.32			115,861	23,805							
Pre- to Post- Devel	opment Cha	nge		81,353	-678							
Pre- to Post- Devel	opment Cha	nge (%)		221%	-4%							

5.4 Retained Natural Heritage Features Protection

The above FBWB shows that the proposed Phase One development will result in an increased runoff of 86,633 m³/year and reduced infiltration of 1,012 m³/year in the East Wetland catchment, and an increased runoff of 81,353 m³/year and reduced infiltration of 678 m³/year in the East Wetland catchment. Monitoring results, site observation and stratigraphy all proved that both wetlands do not receive groundwater discharge contribution. Therefore, the reduced infiltration will not have impact to the hydroperiod of both wetlands. Consequently, the minor reduction of infiltration within the catchment of each wetland will not adversely impact the wetlands. Runoff should be properly managed through the proposed SWM Plan to prevent the increased runoff to end up in both wetlands. Through the establishment of wetland setbacks and new compensation areas in the Eastern Wetland catchment, and the creation of a new, higher functioning drainage channel in the Western Wetland catchment, no impacts to wetland hydrology or hydrogeology is expected.

6. Impact Assessment and Mitigation

The construction and operation of the proposed development both have the potential to cause quantity and quality impact of groundwater to natural heritage, municipal water sources and private water supply. Impact assessment is based on the understanding of the physical and environmental settings of the site, the knowledge of the site subsurface condition, results of dewatering assessment and water balance assessment, as well as the nature of construction and operation of the proposed development. The following presents the assessment of impact to each major resource and environmental features and ways of mitigation if the impact is negative.

6.1 Natural Heritage Features

The major heritage features identified within and nearby the site include Goreway Drive Tributary, Clarkway Drive Tributary and associated West Wetland and East Wetland.

The above FBWB shows that the proposed Phase One development will lead to an increased runoff of 86,633 m³/year and reduced infiltration of 1,012 m³/year in the East Wetland catchment, and an increased runoff of 81,353 m³/year and reduced infiltration of 678 m³/year in the East Wetland catchment. If the stormwater is managed as recommended, the impact to the wetland and creeks will be insignificant,

The construction dewatering is of short term and will be discharged on site. The impact of construction dewatering to natural heritage features is not anticipated.

No impacts to groundwater supported natural heritage features is expected from the proposed development.

6.2 Source Water Protection

As presented above, the site is not located in WHPA-Q1 and WHPA-Q2, and to maintain site water balance post-development is not mandatory by source protection policies. The proposed infiltration tanks will fully compensate the infiltration deficit caused by the increased impervious area.

Two isolated areas within the site are located above a Highly Vulnerable Aquifer with a vulnerable score of 6. To prevent the potential impact to the HVA, a spill management plan generated and executed by the contractors should be enough to protect the HVA.

6.3 Private Water Wells

As presented above, the water supply for the area surrounding the site was provided by Peel Region through Palgrave - Caledon East Drinking Water System, and all domestic wells were constructed before 1994. Using private wells for drinking water supply is not anticipated within and surrounding the site. however, it can not be ruled out that certain wells are still being used for livestock and other purposes. Considering the low groundwater recharge, small dewatering rate and influence zone, the impact of reduced groundwater recharge and the short-term construction dewatering to the private water wells are not expected.

A private well survey and if needed, a monitoring program, can occur during the construction phase of the project.

6.4 Discharge Receiver

As presented above, the pumped water for the purpose of conduction dewatering is recommended to be discharged onto surface land. The major potential impact of the discharged water is flooding and erosion. Considering the limited dewatering rate and influence zones, flooding and erosion are not expected.

7. Conclusions and Recommendations

Based on the above site characterization, dewatering assessment and site and site water balance assessment, conclusions and recommendations are presented as follows:

- The site is underlain with over 20 m thick overburden sediments that consist of silt to clay till and silt of the Halton Till formation within investigation depths. Significant aquifers are not identified under the site;
- Groundwater levels from monitoring wells range from 0.2 to 2.9 mbgs at the site with a predominant horizontal groundwater flow direction from northwest to southeast, towards the tributary of West Humber River. Weak vertical gradients were identified in certain depths and certain area within and surrounding the site;
- Groundwater level and surface water level data from mini-piezometers do not show hydraulic connection between groundwater and surface water, indicating that groundwater does not support stream flow and associated wetlands and shallow ponds. Therefore, groundwater does not take part in forming the hydroperiod of these features;
- Hydraulic conductivity values range from the orders of 6.0x10⁻¹⁰ to 6.6x10⁻⁷ m/s, generally increasing with depths and grain size of formations. The infiltration rate for shallow formations has a geometric value of 2.3 cm/min and T-time of 56;

- Groundwater quality is fresh and no visual or olfactory evidence of contamination such as visible
 petroleum hydrocarbon film or sheen as well as smell and odor were recorded during drilling or
 sampling. A number of exceedances were identified over ODWS and PWQO. These exceedances
 are mostly associated with fine particle materials in natural groundwater caused by the sampling
 process or agricultural operation and will be easily removed through settling and filtration;
- The construction dewatering analysis shows that the required dewatering rate for a typical construction working face is 6,018 L/day, which is far under the thresholder of 50,000 L/day for consideration of EASR and PTTW. Therefore, neither an EASR registration nor a PTTW application is required. Potential possible stormwater accumulation is provided for client's reference only;
- The site water balance analysis shows the proposed Phase 1 development will cause a reduction of infiltration of 25,476 m³/year and an increase in runoff of 158,582 m³/year. The proposed infiltration tank will fully compensate the infiltration deficit.
- FBWB conducted for Phase One development shows that the development will result in an increased runoff of 86,633 m³/year and reduced infiltration of 1,012 m³/year in the East Wetland catchment, and an increased runoff of 81,353 m³/year and reduced infiltration of 678 m³/year in the East Wetland catchment. As neither the East Wetland and West Wetland receive groundwater discharge contribution, the minor reduction of infiltration within the catchment of each wetland will not adversely impact the wetlands. Runoff should be properly managed through the proposed SWM Plan to prevent the increased runoff to end up in the both wetlands. Through the establishment of wetland setbacks and new compensation areas in the Eastern Wetland catchment, and the creation of a new, higher functioning drainage channel in the Western Wetland catchment, no impacts to wetland hydrology or hydrogeology is expected;
- The water taking for construction dewatering is of short term, and of limited quantity and influence zones. The impacts of construction dewatering to natural heritage features and private wells are not expected.

The above hydrogeological assessment is based on the assumptions that the client and the contractors will undertake the execution and construction of the project following all applicable codes, regulations, guidelines and BPMs, and these assumptions will end up being realized through actual construction activities. This hydrogeological report should be considered preliminary until the final project design can assessed. Groundwater systems and other natural systems are highly complex and can have significant uncertainties between borehole locations. Additional hydrogeological testing is expected to be required as the project moves forward.

8. Signatures

This report was prepared, reviewed and approved by the undersigned.

Prepared By:

Frank C. Liu, P.Eng. Senior Hydrogeologist

Reviewed By:

Jason Cole, M.Sc., P.Geo. Technical Discipline Manager, Hydrology and Hydrogeology

Limitations of Report

The extent of this study was limited to the specific scope of work for which we were retained and that is described in this report. Palmer has assumed that the information provided by the client or any secondary sources of information are factual and accurate. Palmer accepts no responsibility for any deficiency, misstatement or inaccuracy contained in this report as a result of omissions, misinterpretations or negligent acts from relied upon data. Judgment has been used by Palmer in the interpretation of the information provided but subsurface physical and chemical characteristics may differ from regional scale geology mapping and vary between or beyond well/borehole locations given the inherent variability in geological conditions.

Palmer is not a guarantor of the geological or groundwater conditions at the subject site, but warrants only that its work was undertaken and its report prepared in a manner consistent with the level of skill and diligence normally exercised by competent geoscience professionals practicing in the Province of Ontario. Our findings, conclusions and recommendations should be evaluated in light of the limited scope of our work.

The information and opinions expressed in the Report are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT PALMER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS PALMER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belongs to Palmer. Any use which a third party makes of the Report is the sole responsibility of such third party. Palmer accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Palmer's express written permission. Should the project design change following issuance of the Report, Palmer must be provided the opportunity to review and revise the Report in light of such alteration or variation.

References

Geotechnical Investigation Report by Pinchin in 2022

Supplemental Geotechnical Investigation - Proposed Industrial Development, Pinchin 2023

Hydrogeological Investigation Report by IBI Group in 2022

Armstrong D.K. and Dodge J.E.P. 2007: Paleozoic geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release-Data 219.

Bedrock Geology, OGSEarth, Ministry of Energy, Northern Development and Mines, August 2019

Chapman, L.J. and Putnam, D.F. The Physiography of Southern Ontario, 1984, Ontario Geological Survey.

MNDM. Ontario Geology Survey, Central Database

MECP. MAP Well Records of Ontario

MECP. Ontario Source Protection Atlas.

MECP. Provincial Groundwater Monitoring Network

Ontario Regulation 63/16, MECP

Ontario Geological Survey (OGS). 2007: Paleozoic geology of Southern Ontario; Ontario Geological Survey, Map 2544

Surficial Geology, OGSEarth, Ministry of Energy, Northern Development and Mines, August 2019

Water Well Information System (WWIS) of Ontario, Dataset

Appendix A

Site Plans

(Prologis 2023, Crozier 2024)

Appendix B

Well Logs

(Pinchin 2022, IBI 2022)

Well Casing Size: 51 mm

Sheet: 1 of 1

	Log of Borehole: BH9												
					Pre	oje	ct #: 3	80856	7.001		Log	ged By: <mark>k</mark>	(S
		DINCHIN	J		Pro	oje	ct: Ge	eotech	nical	Inves	tigation		
		FINGIN			Cli	en	t: Prol	ogis					
					Lo	cat	tion: 1	2519	& 127	713 H	umber Station Drive, Cale	edon, Ont	ario
			_		Dr	ill C	Date: /	April 1	6, 202	22	Proj	ect Mana	ger: <mark>SA</mark>
			E 								SAMPLE		
Depth (m)	Symbol	Description	Elevation (m)		Monitoring Well Details		Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value Shea R P C 10	ar Strength kPa △ 00 200	Water Content • % • 10 20
0-		Ground Surface	235.57										
-		Dark brown silt, trace sand, with					SS	1	100	8			f
-		Silt	234.81			hite		•	100	05			
-		Brown with some grey mottling silt, some clay, trace sand with some	224.05			entor	55	Z	100	25			
-		Compact	ēr		ш	SS	3	100	28			•	
2-		Silt, some clay, trace sand and gravel	Ris										
-		Dense					SS	4	100	37			+
3-			232.52										
-		Brownish grey silt, trace sand, gravel and clay					SS	5	100	38			•
-				Þ									
4-				a sar									
-		Grev verv dense	231.00	Silic									
5-						creer	SS	6	100	56			
-						S							
-													
6-					₽		SS	7	100	64			
-	.L . . 	End of Borehole	229.02							• •			
7-													
-		Borehole terminated at 6.6 mbgs.		Wa	ater								
-				lev 1.7	el = '8								
-8				mb me	igs, A asur	λs ed							
- 25, 2022													
9-	9-												
	c	Contractor: TEC	I	1						I	Grade Elevation: 235	.57 masl	
	D	Drilling Method: Solid Stem Auge	ers								Top of Casing Elevat	tion: 236.0	69 masl
	И	Vell Casing Size: 51 mm									Sheet: 1 of 1		
	И	Vell Casing Size: 51 mm									Sheet: 1 of 1		

Log of Borehole: BH12

Logged By: KS

Project: Geotechnical Investigation

Client: Prologis

Location: 12519 & 12713 Humber Station Drive, Caledon, Ontario

Drill Date: April 16, 2022

Project #: 308567.001

Project Manager: SA

SUBSURFACE PROFILE									S	SAMPLE		
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Samula Tima	Sampler #	Recovery (%)	SPT N-Value	Standard N-1	Penetration /alue 04 00 0	Shear Strength △ kPa △ 100 200	Water Content • % • 10 20
0-		Ground Surface	237.15									
-		Topsoil Dark brown silt, trace sand, with			S	S 1	100	8				م ا
-		Silt	236.39		● —	_	_		$ \rangle$			
1-		Brown with some grey mottling silt, some clay, trace sand and gravel	225.62	-	Sentoni S	S 2	100	21	-			1
-		with some oxidation, loose, wet Reddish brown clayey silt, trace sand very stiff API -WTPI	233.03		s	S 3	100	15				
2-		Brown, silt some sand trace clay,	234.86] \			
-		compact, moist Greyish brown sandy silt, trace gravel, very dense			S	s 4	100	53	_			
3-		Silt some clay and sand, trace gravel, dense, moist	234.10		S	S 5	100	30	E C			
4			232.58	Silica sand	_							
5		Wet, very dense	231.05		Screen	S 6	100	>50				
<u>-</u>		Grey sandy silt some clay, trace	000.00		s	S 7	100	81				
		End of Borehole	230.60									
7		Borehole terminated at 6.6 mbgs.		Water level = 1.15 mbgs, A measure on April 25, 2022	vs ed 2							
	С	ontractor: TEC							Grade	Elevation	: 237.15 masl	
	D	rilling Method: Solid Stem Auge	ers						Τορ ο	f Casina E	levation: 238.	17 masl

Well Casing Size: 51 mm

Sheet: 1 of 1

	Log of Borehole: BH13													
				P	roje	ct #: :	30856	7.001			Logged By:	K S		
		DINCHIN	J	P	roje	ct: G	eotech	nnical	Inves	tigation				
				С	lien	<i>t:</i> Pro	logis							
				L	oca	tion:	12519	& 12	713 H	umber Station Drive	e, Caledon, Ont	ario		
				D	rill I	Date:	April [•]	16, 20	22	Project Manager: SA				
		SUBSURFACE PROFILE						1	1	SAMPLE	Γ			
Depth (m)	Symbol	Description	Elevation (m)	Monitoring		Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100 200	Water Content • % • 10 20		
0-		Ground Surface	237.42		8			00	7					
		Dark brown silt, trace sand, with organics - 150 mm	006.00			55		80	· ·	"\		/		
- 1-	┝╍┠╍┝╍	Silt		nite	SS	2	60	16	- 7					
_		mottling silt, some clay, trace sand,		Bento		-		10						
-		Compact		Ser		SS	3	50	23					
2-		Silt, some clay, trace sand and gravel	R											
			234.37											
-		Silt, trace sand, gravel and clay, dense, moist				SS	4	50	50			l f		
-				▶ pc										
4-				ca sal										
-		Grey silt, trace sand and gravel	232.85	Silic			-	10	. 50					
5-					Scree	55	5	10	>50					
-														
-			231 32											
	• • I• • • •	End of Borehole			-									
-														
7-		Borehole terminated at 6.1 mbgs												
-		Dorenole terminated at 0.1 mbgs.		Water level =										
8-				1.38 mbgs,	As									
-				measi on Ap	ired il									
-				25, 20	22									
9-														
	Contractor: TEC Grade Elevation: 237.42 masl													
	D	rilling Method: Solid Stem Auge	rs							Top of Casing E	Elevation: 238.	49 masl		
	Well Casing Size: 51 mm Sheet: 1 of 1													
		_												

	Log of Borehole: BH15														
					Pro	oje	ct #: (30856	7.001				Logged By:	<s< td=""></s<>	
		DINCHIN			Pro	oje	ct: Ge	eotech	nnical	Inves	tigation				
					Cli	en	t: Pro	logis							
					Lo	cat	tion:	12519	& 127	713 H	umber Stat	ion Drive	, Caledon, Ont	ario	
					Dri	II C	Date:	April 1	6, 20	22	Project Manager: SA				
		SUBSURFACE PROFILE	Ξ							1	SA	MPLE	1		
Depth (m)	Symbol	Description	Elevation (m)		Monitoring Well Details		Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Pe N-Val	enetration lue	Shear Strength △ kPa △ 100 200	Water Content • % • 10 20	
0-		Ground Surface	234.02												
		Dark brown silt, trace sand, with organics - 150 mm					SS	1	100	11	- \			•	
-		Silt	233.26	nite			SS	2	100	21					
-		sand and gravel, very stiff, APL	232.50	Bento				-							
-		brown silt, some clay, trace sand and gravel, compact, moist				-	SS	3	100	20					
2-		Reddish brown			Ŧ	reen ⁻									
-						Sc									
3-			230.97	-											
-		Greyish brown, dense					SS	4	100	31	<u></u> ф				
-				∎ pu											
4-				ca Sa											
				Silic					100						
5-						ser		5	100	32					
-						Ri									
6-			227.92												
		Grey silt, trace sand, very dense, moist	227 47		-		SS	6	100	>50				•	
-	I I.	End of Borehole	221.41												
7-		Perchala terminated at 6.6 mbra		Wa leve	iter əl =										
		Borenole terminated at 6.6 mbgs.		2.0 as	mbg	js,									
8-				me on	asur April	ed									
				25,	202	2									
-															
9-															
	Contractor: TEC Grade Elevation: 234.02 masl														
	I	Drilling Method: Solid Stem Auge	ers								Top of C	Casing E	levation: 235.	12 masl	

Well Casing Size: 51 mm

Sheet: 1 of 1

Log of Borehole: BH103(MW)

Project #: 308567.002

Logged By: SL

Project: Geotechnical Investigation for Proposed Industrial Development

Client: Prologis

Location: 12519 & 12713 Humber Station Road, Caledon, Ontario

Drill Date: January 27, 2023

	SUBSURFACE PROFILE					SAMPLE								
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis
0-		Ground Surface	238.72											
	XH/	Topsoil Dark brown silt, trace sand, with organics - 150mm	0.00		SS	1	65	6			20.9			
1-	\mathbb{H}	Silty Clay Till			SS	2	95	19	h h		14.8			
	XX	Brown with some grey mottling silty clay, trace gravel, firm, DTPL with black staining, trace oxidation,	<u>237.20</u> 1.52		SS	3	85	34			15.9			
	$\langle \cdot \rangle$	hard	236.44 2.29	Rise I I I										
- - 3-	\downarrow		235.67		SS	4	80	31	₩		13.4			
	Ħ	trace orange oxidation, very stiff, DTPL	3.05		ss	5	100	27	-		13.1			
4-	$\frac{1}{1}$		234 15											
-	H	Grey	4.57		ss	6	100	28	- -		12.8			
	H			Scr										
6-	1	Oilte Oand	232.63			_	400	. 50						
-	<u>::1::</u> [:	Grey silty sand, trace gravel, very dense, moist	0.10		SS		100	>50			6.9			
7		End of Borehole												
8-		Borehole terminated at												
		approximately 6.4 mbgs.												
-		Water Level Reading												
9-		May 26, 2023 0.6												
10-														
Contractor: Geo-Environmental Drilling Inc.									Crode	Elovatior		7 mad		
Drilling Method: Split Spoon / Hollow Stem Auger									Grade Top of	cievation	. 230 Iove	tion: N/	Δ	
Well Casing Size: 51 mm					71				Shoot.		vdl		~	
	V	en Gasing Size. St illill							Sheel.					

Log of Borehole: BH108(MW)

Project #: 308567.002

Logged By: SL

Project: Geotechnical Investigation for Proposed Industrial Development

Client: Prologis

Location: 12519 & 12713 Humber Station Road, Caledon, Ontario

Drill Date: January 31, 2023

	SUBSURFACE PROFILE								s	AMPLE				
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis
0-	<	Ground Surface	236.71											
-	H	Dark brown silt, trace sand, with organics - 150mm	0.00		SS	1	55	12	T T		16.4			
1-		Silty Clay Till	235.49 1.22		SS	2	55	16			16.3			
2-	H	silty clay, trace gravel, very stiff, DTPL			SS	3	75	19	- -		15.4			
-	Ħ	trace layer of sand with black staining, trace orange oxidation		te T	SS	4	80	16			15.4			
3-		trace grey mottling	233.66 3.05	entoni							47.4			
					SS	5	100	27	-		17.1			
4-				Sand										
5-	\square	troop male	231.68	Silica	SS	6	100	26			15.1			
-	Ħ		0.00	S ∎										
6-		Grey, hard, APL	230.62 6.10		SS	7	100	>50			11.1			
		End of Borehole												
7-		Borehole terminated at approximately 6.4 mbas.												
-		Water Level Reading												
8-		Date Water Depth (mbgs) May 26, 2023 0.7												
-														
9-														
-														
10-														
Contractor: Geo-Environmental Drilling Inc.									Grade	Elevation	: 236	.7 masl		
Drilling Method: Split Spoon / Hollow Stem Auger						Top of Casing Elevation: N/A								
Well Casing Size: 51 mm									Sheet:	1 of 1				
<u> </u>														

Log of Borehole: BH123

Project #: 308567.002

Logged By: SL

Project: Geotechnical Investigation for Proposed Industrial Development

Client: Prologis

Т

Location: 12519 & 12713 Humber Station Road, Caledon, Ontario

Drill Date: January 20, 2023

	SUBSURFACE PROFILE																
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis			
0-	~ .	Ground Surface	238.09	T													
-	H	Topsoil Dark brown silt, trace sand, with organics - 150mm	237.33		SS	1	50	7			19.2						
1	Ħ	Silty Clay Till Brown silty clay with sand, trace	236.57	ell Install	SS	2	80	20			19.5						
2-	Ħ	gravel, firm, DTPL with some grey mottling and black staining, trace orange oxidation,	1.52 235.80	oring We	SS	3	90	40			13.4						
-	H	very stiff	2.29	Vo Monit	SS	4	75	44			12.4						
	H	Grey	3.05 234.43	⊥ ⊥	SS	5	75	31			12.9						
		End of Borehole Borehole terminated at approximately 3.7 mbgs. At drilling completion, the borehole was open and dry.	3.66														
	C	ontractor: Geo-Environmental	nc.					Grade	Elevation	: 238	.1 masl						
	D	rilling Method: Split Spoon / He	ollow Ste	m Auger	er Top of Casing Elevation: N/A								A				
	И	/ell Casing Size: N/A							Sheet:	Sheet: 1 of 1							

Log of Borehole: BH124

Project #: 308567.002

Logged By: SL

Project: Geotechnical Investigation for Proposed Industrial Development

Client: Prologis

Location: 12519 & 12713 Humber Station Road, Caledon, Ontario

Drill Date: January 20, 2023

		SUBSURFACE PROFILE		SAMPLE													
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis			
0-		Ground Surface	239.14														
-		Topsoil Dark brown silt, trace sand, with organics - 150mm	0.00 238.38 0.76		SS	1	50	7			23.5						
1		Silty Clay Till Brown silty clay with sand, trace	237.62		SS	2	75	24			16.6						
2-	Ħ	gravel, firm, DTPL with some grey mottling, trace	1.52		SS	3	100	28			16.0						
-	H	stiff with black staining	2.29	ite	SS	4	100	37		13.1							
3-	Ħ	hard		Bentor	SS	5	100	57	1 }		15.1						
4-	Ħ																
-	Ħ		234.57														
5-		Sand Grey sand, trace silt, dense, moist	4.57	Screen Screen	SS	6	15	40			12.7						
6-			233.05														
-		Sandy Silt Grev sandy silt very dense moist	6.10		SS	7	100	>50	-		6.3						
- - 7-		End of Borehole															
-																	
8-		Borehole terminated at															
[•] =		Water Level Reading															
=		Date Water Depth (mbgs)															
9-		Way 20, 2023 1.3															
-																	
10-																	
-	C C	ontractor: Geo-Environmental					Grade	Elevation	: 239	.1 masl							
	D	rilling Method: Split Spoon / He	Top of Casing Flevation: N/A								A						
	и	/ell Casing Size: 51 mm		J					Sheet:	Sheet: 1 of 1							
L																	

Log of Borehole: BH160(MW)

Project #: 308567.002

Logged By: SL

Project: Geotechnical Investigation for Proposed Industrial Development

Client: Prologis

Location: 12519 & 12713 Humber Station Road, Caledon, Ontario

Drill Date: February 8, 2023

Image: contractor: Generation Gener			SUBSURFACE PROFILE		SAMPLE												
0 Cound Surface 224.19 0 Order Krown silt, trace sand, with regenice - 255m 0.76 1 Sifty Clay Till 223.43 0 Sifty Clay Till 223.43 0 Sifty Clay Till 231.51 0 Sift clay Sift 231.61 0 Sift clay Sift <td>Depth (m)</td> <td>Symbol</td> <td>Description</td> <td>Elevation (m)</td> <td>Monitoring Well Details</td> <td>Sample Type</td> <td>Sampler #</td> <td>Recovery (%)</td> <td>SPT N-Value</td> <td>Standard Penetration N-Value</td> <td>Shear Strength △ kPa △ 100200</td> <td>Water Content (%)</td> <td>Sample ID</td> <td>Soil Vapour Concentration (ppm)</td> <td>Laboratory Analysis</td>	Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis		
Lopson ergence - 250mm 3000 233,43 30,76 30,76 40,780 55 1 50 4 0 202 12,4 Istity Clay Till receiption sity clay, some sand, soft, value gravel, very stiff 233,43 231,21 0 1 12,4 1 Value gravel, very stiff 231,21 0 0 13,3 12,0 1 Value gravel, very stiff 231,21 0 0 0 9,8 1 13,0 12,0 13,0 12,0 12,0 1 10 28,10 0 0 9,8 1 10,0 20,02 10 0 9,8 1 10,0 10,0 0 9,8 12,0 1 10,0 10,0 10,0 0 9,8 1 10,0 10,0 10,0 12,2 1 10,0 10,0 10,0 12,2 10 10,0 10,0 12,2 10,0 12,2 10 10,0 10,0 10,0 12,2 10,0 10 10,0 10,0 10,0 10,0	0-	<	Ground Surface	<u>234.19</u> 0.00													
Sity Clay Till 22.6.77 Proven silly clay, some sand, soft, 23.9.17 23.67 Particle gravel, very silf 23.9.1 Particle gravel, very silf 30.5 Particle gravel, very silf	-	H	Dark brown silt, trace sand, with organics - 255mm	233.43		SS	1	50	4			20.2					
a down shy car, son, way, stiff a trace gravel, very stiff a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a b a b a b a b a b a c a c a c a c a c a c a c a c a c a c a c a c a c a c a c </td <td>1-</td> <td>Ħ</td> <td>Silty Clay Till</td> <td>222.67</td> <td></td> <td>SS</td> <td>2</td> <td>65</td> <td>19</td> <td></td> <td></td> <td>12.4</td> <td></td> <td></td> <td></td>	1-	Ħ	Silty Clay Till	222.67		SS	2	65	19			12.4					
with some grey multing and black 22191 layer of sand hard 221,15 hard 221,15 hard 221,15 hard 221,15 hard 221,15 hard 221,15 hard 221,15 hard 220,62 Crey sandy Silt trace gravel, very dense, moist Crey sandy silt, trace gravel, very dense, moist Borehole terminated at approximately 6.4 migs. Water Level Reading Denote terminated at approximately 6.4 migs. May 26, 2023 1.0 Denote terminate termi	2-	H	APL trace gravel, very stiff	1.52		SS	3	80	28			13.3					
a byer of sand 231.15 a	-		with some grey mottling and black staining, trace orange oxidation	231.91 2.29		SS	4	100	28			12.0					
Indu 0.00 0.00 40 0 0 9.8 Image: serie seri	3-		layer of sand	231.15	ntonit												
A 229.62 4.57 0 6.75 6.75 B Crey sandy silt, trace gravel, very 4.57 0 85 6 75 50 12.2 F Grey sint, trace sand, very dense, moist 6.10 85 7 100 >50 12.2 F End of Borehole 8 7 100 >50 12.2 B Borehole terminated at approximately 6.4 mbgs. 8 7 100 >50 12.2 B Borehole terminated at approximately 6.4 mbgs. 8 7 100 >50 12.2 B Borehole terminated at approximately 6.4 mbgs. 8 10 10 10 10 10 10 Contractor: Geo-Environmental Drilling Inc. Grade Elevation: 234.2 mas! Top of Casing Elevation: N/A Well Casing Size: 51 mm Sheet: 1 of 1 1 10 10	-	₽	naru			SS	5	100	40	- 2		9.8					
Sandy Silt 229.62 Grey sandy silt, trace gravel, very dense, moist 4.57 6 Silt 7 End of Borehole Borehole terminated at approximately 6.4 mbgs. Water Level Reading Date Water Depth (mbgs) May 26, 2023 1.0 Grade Elevation: 234.2 masi Drilling Method: Split Spoon / Hollow Stem Auger Well Casing Size: 51 mm Sheet: 1 of 1	4-	Ħ															
Grey sandy slit, trace gravel, very dense, moist 228.10 0 0 12.2 Grey sint, trace sand, very dense, moist 6.10 SS 7 100 >50 12.2 Grey sint, trace sand, very dense, moist 5.0 12.2 Find of Borehole 5.0 12.2 Borehole terminated at approximately 6.4 mbgs. Water Level Reading 10 Date Water Depth (mbgs) May 26, 2023 1.0 1.0 Contractor: Geo-Environmental Drilling Inc. Grade Elevation: 234.2 masl Drilling Method: Split Spoon / Hollow Stem Auger Top of Casing Elevation: N/A Well Casing Size: 51 mm Sheet: 1 of 1		1	Sandy Silt	229.62 4.57	ca Sa	SS	6	75	>50	-		6.7					
6 228.10 Image: Silt state stand, very dense, moist 6.10 SS 7 100 >50 12.2 7 End of Borehole Borehole terminated at approximately 6.4 mbgs. Image: Water Level Reading Date Water Level Reading Date Water Depth (mbgs) 9 Date Water Coesting Date Start Sta	5		Grey sandy silt, trace gravel, very dense, moist		Scree												
Silt 6.10 SS 7 100 >50 12.2 Grey silt, trace sand, very dense, moist End of Borehole 12.2 12.2 Borehole terminated at approximately 6.4 mbgs. Water Level Reading Date Water Depth (mbgs) 14.4 9 Date Water Depth (mbgs) Water Depth (mbgs) 10.4 14.4 10 Contractor: Geo-Environmental Drilling Inc. Grade Elevation: 234.2 masl Drilling Method: Split Spoon / Hollow Stem Auger Top of Casing Elevation: N/A Well Casing Size: 51 mm Sheet: 1 of 1	6-			228.10													
7 End of Borehole 8 Borehole terminated at approximately 6.4 mbgs. 9 Date 9 Date 10 Vater Level Reading Date 9 May 26, 2023 10 Grade Elevation: 234.2 masl Drilling Method: Split Spoon / Hollow Stem Auger Top of Casing Elevation: N/A Well Casing Size: 51 mm Sheet: 1 of 1			Silt Grey silt, trace sand, very dense,	6.10		SS	7	100	>50			12.2					
8 Borehole terminated at approximately 6.4 mbgs. 9 Water Level Reading Date Water Depth (mbgs) 10 Date Water Depth (mbgs) 10 Contractor: Geo-Environmental Drilling Inc. Drilling Method: Split Spoon / Hollow Stem Auger Top of Casing Elevation: N/A Well Casing Size: 51 mm Sheet: 1 of 1	7-		End of Borehole														
8 approximately 6.4 mbgs. 9 Water Level Reading Date Water Depth (mbgs) Nay 26, 2023 1.0 10 Grade Elevation: 234.2 masi Drilling Method: Split Spoon / Hollow Stem Auger Top of Casing Elevation: N/A Well Casing Size: 51 mm Sheet: 1 of 1	-		Borehole terminated at														
9 Water Level Reading Date Water Depth (mbgs) May 26, 2023 1.0 10 Grade Elevation: 234.2 masl <i>Contractor:</i> Geo-Environmental Drilling Inc. Grade Elevation: 234.2 masl <i>Drilling Method:</i> Split Spoon / Hollow Stem Auger Top of Casing Elevation: N/A <i>Well Casing Size:</i> 51 mm Sheet: 1 of 1	8-		approximately 6.4 mbgs.														
9 May 26, 2023 1.0			Water Level Reading Date Water Depth (mbgs)														
10- Image: Contractor: Geo-Environmental Drilling Inc. Grade Elevation: 234.2 masl Drilling Method: Split Spoon / Hollow Stem Auger Top of Casing Elevation: N/A Well Casing Size: 51 mm Sheet: 1 of 1	9-		May 26, 2023 1.0														
Image: Contractor: Geo-Environmental Drilling Inc. Grade Elevation: 234.2 masl Drilling Method: Split Spoon / Hollow Stem Auger Top of Casing Elevation: N/A Well Casing Size: 51 mm Sheet: 1 of 1	-																
Contractor: Geo-Environmental Drilling Inc. Grade Elevation: 234.2 masl Drilling Method: Split Spoon / Hollow Stem Auger Top of Casing Elevation: N/A Well Casing Size: 51 mm Sheet: 1 of 1	10-																
Drilling Method: Split Spoon / Hollow Stem AugerTop of Casing Elevation: N/AWell Casing Size: 51 mmSheet: 1 of 1		С	ontractor: Geo-Environmental					Grade	Elevation	: 234	.2 masl						
Well Casing Size: 51 mm Sheet: 1 of 1		D	rilling Method: Split Spoon / He	r				Top of	Casing E	levat	ion: N/	A					
		И	/ell Casing Size: 51 mm							Sheet: 1 of 1							

Log of Borehole: BH161(MW)

Project #: 308567.002

Logged By: SL

Project: Geotechnical Investigation for Proposed Industrial Development

Client: Prologis

Location: 12519 & 12713 Humber Station Road, Caledon, Ontario

Drill Date: February 8, 2023

		SUBSURFACE PROFILE	SAMPLE												
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis	
0-	~ .	Ground Surface													
-	Ĩ	Topsoil Dark brown silt, trace sand, with organics - 255mm	232.02		SS	1	60	6			15.4				
1		Silty Clay Till Brown silty clay, firm, APL	231.26		SS 2 80 17 15.1										
2-	Ħ	with some grey mottling, trace gravel, very stiff	1.52		SS	3	75	28			12.3				
-	H	with black staining, trace orange oxidation Brown, hard, DTPL	2.29		Ris Iite	SS	4	40	31			11.4			
3-	Ħ			Ento		5	65	40			03				
	H	trace rock	229.28 3.51		33	5	05	49			0.0				
4-	H		228.21	Sand -											
5-	H	Grey, very stiff	4.57	Silica	SS	6	70	20			8.4				
	Ħ			×											
6-		hard	226.69 6.10				7	100	31			17.8			
=	1	End of Borehole	226.08 6.71				100	0.	-						
7		Borehole terminated at													
		approximately 6.7 mbgs.													
-		Water Level Reading Date Water Depth (mbgs) May 26, 2023 0.6													
9-															
-															
_ 10-															
	С	ontractor: Geo-Environmental	nc.	-	-	-	-	Grade	Elevation	: 232	.8 masl				
	D	rilling Method: Split Spoon / He	em Auge	r				Top of	Casing E	levat	ion: N/	A			
	И	/ell Casing Size: 51 mm			Sheet: 1 of 1										

Log of Borehole: BH168(MW)

Project #: 308567.002

Logged By: SL

Project: Geotechnical Investigation for Proposed Industrial Development

Client: Prologis

Т

Location: 12519 & 12713 Humber Station Road, Caledon, Ontario

Drill Date: February 2, 2023

		SUBSURFACE PROFILE													
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis	
0-		Ground Surface	231.95												
-	H	Topsoil Dark brown silt, trace sand, with organics - 150mm	0.00		SS	1	50	5			17.2				
1	Ħ	Silty Clay Till Brown with some grey mottling	230.43		SS	2	50	19			14.8				
2-	H	silty clay with sand, trace gravel, firm, APL with black staining, trace orange	1.52 229.67	 - •	SS	3	65	24			12.3				
-	H	oxidation, very stiff Brown	2.29	nite	SS	4	100	26			14.0				
3-	H	Grey	3.05	Bento	SS	5	65	27	B		13.4				
4-	Ħ														
	H			een g	SS	6	65	24			15.4				
-				Scr											
6-		No recovery	225.86 6.10		SS	7	0	47			N/A				
-		End of Borobolo	225.25 6.71												
7-		Borehole terminated at approximately													
8-		Water Level Reading Date Water Depth (mbgs) May 26, 2023 0.8													
9-															
-															
10-															
-															
Contractor: Geo-Environmental Drilling Inc. Grade Elevation: 232.0 masl															
	D	rilling Method: Split Spoon / He	ollow Ste	em Auger					Top of	Casing E	levat	ion: N/	Α		
	И	/ell Casing Size: 51 mm							Sheet:	1 of 1					

LOG OF BOREHOLE NO.: MW3-17 FIGURE NO .: 4 JOB NO.: 1707-S200 PROJECT DESCRIPTION: Monitoring Wells Installation METHOD OF BORING: Hollow-Stem **PROJECT LOCATION:** East side of Humber Station Road, south of Healey Road DRILLING DATE: August 17, 2017 Town of Caledon Dynamic Cone (blows/30 cm) • SAMPLES 10 30 50 70 90 Atterberg Limits 1 Depth Scale (m) ΡL LL EI. WATER LEVEL X Shear Strength (kN/m²) (m) SOIL 100 150 50 200 DESCRIPTION Depth N-Value Number Penetration Resistance Ο (m) Type (blows/30 cm) Moisture Content (%) 10 30 50 70 90 10 20 30 40 235.5 Ground Surface 20 cm TOPSOIL Brown, firm to hard 0.0 1A 0 15 5 DO \cap 1B 13 2 AS 21 1 • weathered SILTY CLAY TILL 12 DO 3 32 n • 2 some sand to sandy, a trace of gravel occ. wet sand and silt seams and DO 53 4 D layers, cobbles and boulders ___ boulder 10 3 5 DO 55/15 232.0 3.5 Grey, very dense 10 Dry on completion 6 DO 50/8 4 SILT 1 7 DO 50/15 some clay, a trace of sand 5 -14 occ. clay layers DO 50/15 8 Û 6 14 DO 70/15 9 C 229.1 END OF BOREHOLE 6.4 7 Installed 50 mm Ø monitoring well to 6.0 m completed with 3.0 m screen Sand backfill from 2.4 m to 6.0 m Bentonite seal from 0.0 m to 2.4 m 8 Provided with a protective steel monument casing 9 10 11 12 13 14 15 Soil Engineers Ltd.

LOG OF BOREHOLE NO.: MW4-17D FIGURE NO.: JOB NO.: 1707-S200 PROJECT DESCRIPTION: Monitoring Wells Installation METHOD OF BORING: Hollow-Stem **PROJECT LOCATION:** East side of Humber Station Road, south of Healey Road DRILLING DATE: August 16, 2017 Town of Caledon Dynamic Cone (blows/30 cm) SAMPLES 10 30 50 70 90 Atterberg Limits 1 Depth Scale (m) PL LL EI. WATER LEVEL X Shear Strength (kN/m²) (m) SOIL 100 150 50 200 DESCRIPTION Depth N-Value Number Penetration Resistance Ο (m) Type (blows/30 cm) Moisture Content (%) 10 30 50 70 90 10 20 30 40 234.8 Ground Surface 0.0 23 cm TOPSOIL DO 1A 0 5 Brown, firm to hard \cap 1B AS 8 12 2 DO 20 1 • weathered SILTY CLAY TILL 15 2017 DO 3 24 \cap 2 Dry on completion some sand to sandy, a trace of gravel 12 4 DO occ. wet sand and silt seams and 42 . layers, cobbles and boulders 10 3 50/15 5 DO 231.2 12 3.6 Grey, dense to very dense 6 DO 50/15 . 4 brown grey 12 7 DO 50/15 ۰ 5 12 DO 55/15 8 Û 14 6 DO 60/15 9 SILT 14 DO 58/15 7 10 18 11 DO 50/15 • 8 18 12 DO 43 b c 9 6 some clay, a trace of sand 13 DO 67 С occ. clay layers 18 10 14 DO 66 0 • 18 15 DO 50/15 Û 11 18 DO 16 64 0 e 12 20 17 DO 38 d 222.1 12.7 END OF BOREHOLE 13 Installed 50 mm Ø monitoring well to 12.2 m completed with 3.0 m screen with filter sock Sand backfill from 8.5 m to 12.2 m 14 Bentonite seal from 0.0 m to 8.5 m Provided with a protective steel monument casing 15

Soil Engineers Ltd.

5

1,3-Bermide & Associates Limited 16 Towning, Deopyelly, Antonio 1987 391 1984 (1994 \$19) 641-6131 - 16: 5119) 941-6130

LOG OF DRILLING OPERATIONS

<u>MW8</u>

Page_1_ of _1_

Client: Solmar Development Corp.						Project Name:	Logged by	Logged by: S. Goemans										
F	Pro	ject I	No.: PTA 11575			Location: Cale	Ground (n	Ground (m amsl): 231.94										
	Drill	ing C	Co.: Lantech Drilling S	ervices Ind	C.	Date Started:	1/2/20	006				Static Water Level (m amsl):					231.4	60
	Drill	ing N	Nethod: Hollow Stem	Auger		Date Completed:	Sand Pac	Sand Pack (m amsl): 229.8				- 22	5.98					
	D -								Г		1			SAM	IPLE		D	- 41-
	De Sc	ptn ale	Stratig	raphic De	scriptior	1	Strat. Plot	Depth					Num.	Type	Int.	Recov	Dep Sca	ale
4	ft)	(m)	Surface Elevation (m)	: 	231	.94		(m)					-	'		%	(ft)	(m)
		_	Yellow-brown and g pebbles and stones fractures, grey alor	DIL, mois grey sanc S. Pocket ig fractur	t. SS-1 by SILT s of sar es, iron	(2, 3, 4, 4) TILL, with nd. Many staining.	× × ×	0.20	Ţ				1	SS	X	100	-	_
	_	- 1.0	Damp. SS-2 (8, 13	, 18, 23)				> > > >	Ţ		bentoni	te seal	2	SS		100		- 1.0
	5.0-	- 2.0	Yellow brown and g pebbles and sand p oxidation halos, fra- 18)	grey silty bockets. I ctures, m	CLAY 1 Dark br oist. St	FILL, some own iron S-3 (8, 13, 15,	×	1.52					3	SS		90	5.0 —	- 2.0
	_	_	Yellow brown sand pockets of sand. Ve on fractures, moist.	y SILT TI ertical fra SS-4 (11	LL, lots ctures, 1, 16, 3	of pebbles, iron staining 2, 53)		2.29			silica sa	and pack	4	SS		100	_	-
1	0.0-	- 3.0											5	SS	\mathbf{n}	70	10.0 —	- 3.0
	_	- 4.0	Silty SAND lense. V Yellow brown sand pockets of sand. Ve staining, moist. SS- 100 +)	<u>Vet.</u> y SILT TI ertical fra 5 (35, 33	LL, lots ctures 5, 50+),	of pebbles, with iron SS-6 (42,		3.35					6	SS	\propto	80	-	- 4.0
1	5.0-	-50	Grey CLAY, compa planes. Moist. SS-7	ict, parts 7 (24, 75)	along k	bedding		4.57			•		7	SS	X	100	15.0 -	-50
/05/07								5.18		5.08								
PROJECTS\P\PTA11575.GPJ TEMPLATE.GDT 31	Pre	pare	ed By: S. Goemans			Checked By:	D. G	ievaert				Date P	repa	red:	1'	1/13/	200	6
Ē	This	bor	ehole log was prepared	I and/or environme	ental pu	irposes	and c	does	not nece	essarily conta	ain inf	orma	ition s	suitab	le fo	r a		
	geo befo	tech ore u	nical assessment of the se by others.	subsurface	e conditio	ons. Borehole dat	a requi	ires inter	preta	ation	by R. J.	Burnside & A	Assoc	iates	Limit	ted pe	ersor	nel
	EG	END		MONITOR	ING WE	LL DATA	SA	MPLE T	/PE	AC	A A	Auger Cutting	SS	s 🖸		Split S	Spoon	1
8	Ţ	Wate	r found @ time of drilling	Pipe:	51 mm	dia. PVC				cs [Continuous	AF	× 🗹	2	Air Ro	otary	
<u>ـ</u> اھ	<u> </u>	Statio	c Water Level - 1/11/2007	Screen:	51 mm	dia. PVC #10 slot				RC	<u>Each</u> F	Rock Core	W	cĽ∠		Wash	Cutti	ngs

3.J. Barmids & Associaton Limited 16. Townling, Napropulla, National 800 334 Industries (STA) 641-8131. In: (STA) 841-8131

LOG OF DRILLING OPERATIONS

<u>MW9</u>

Page 1 of 1

											0		ı	
Client:	Solmar Development C	Corp.	Project Name:	Hydrog	jeologic	al Inve	stigation	Logged by	ogged by: S. Goemans					
Project N	No.: PTA 11575		Location: Cale	don, O	ntario			Ground (m	d (m amsl): 235.69					
Drilling C	Co.: Lantech Drilling Se	ervices Inc	Date Started:	11/6/20	ter Le	34.22								
Drilling N	Method: Hollow Stem	Auger	Date Completed	: 11/6	6/2006			Sand Pac	k (m :	amsl): 2	32.53	- 229.46	
Donth										SAN	IPLE		Donth	
Scale	Stratig	raphic De	scription	Plot	Depth		\neg		Ë	be	نب	20V	Scale	
(ft) (m)	Surface Elevation (m)		225.60	S T	(m)				٦2	Ţ	⊆	6Re	(ft) (m)	
	Dark brown TOPS	DIL. mois	<u> </u>									<u> </u>		
_	Grey brown silty CL pockets of sand. Ve moist.	AY TILL, ertical fra	with pebbles and ctures, iron staining,		- 0.15				1	SS	X	40	_	
- 1.0	SS-2 (6, 12, 18, 22))							2	SS	\bigvee	100	- - 1.0	
	SS-3 (6, 12, 23, 29))									$ / \setminus$			
5.0	SS-4 (9, 22, 32, 40))				$\overline{\nabla}$	bentoni	te seal					5.0 —	
- 2.0	SS-5 (7, 19, 41, 50))				⊻			3	SS	X	100	- 2.0	
													_	
_									4	SS	X	100	_	
10.0 3.0													0.0 3.0	
_							silica sa	and pack	5	SS	X	100	_	
- 4.0	Brown silty SAND, o	coarse to	medium sand,		3.81				6	SS	\times	100	- - 4.0	
	SS-6 (30, 97)				:									
15.0-	SS-7 (2, 7, 30, 40)				:				7	22		100	5.0 -	
- 5.0				×	5 18						\triangle	100	- 5.0	
GDT 31/	SS-8 (7, 18, 50)	id and gra	avel. Saturated.		E EG	5.	45					100	_	
LATE	Grey CLAY, uniforn	n, wet.							0	33		100		
CTS/P/PTA11575.GPJ TEMP														
	ad By: S Goomans		Checked By	D C	evaert			Data P	rena	red.	1.	1/12/2	2006	
geotechr before u	chole log was prepared f hical assessment of the s se by others.	for hydroge subsurface	eological and/or environm conditions. Borehole da	ental pu ta requi	rposes a res inter	and do pretatic	es not nece on by R. J.	Burnside & A	ain inf	orma iates	tion s Limit	suitable ted pe	e for a rsonnel	
		MONITOR	ING WELL DATA	SA	MPLE TY	PE AC		Auger Cutting	SS	Σ	\leq	Split S	boon	
ថ g ▼ Wate	r found @ time of drilling	Pipe:	51 mm dia. PVC			CS	s 💭 🛛 🕻	Continuous	AF	۲ 🗹	2	Air Rot	ary	
위 및 Statio	Water Level - 1/11/2007	Screen:	51 mm dia. PVC #10 slot			R		Rock Core	W	сĒ	`	Wash	- Cuttings	

Single Well Response Tests

(Palmer 2022)

Appendix D

Grain Size Distributions and K-value Estimation

(Pinchin and Palmer 2022)

Hydraulic Conductivity Report

Sample ID: BH14/SS5

Date: <u>Feb 2023</u>

Sample Mass (g):

T (oC): <u>20</u>

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d
Hazen	.124E-05	.124E-07	0.00
Hazen K (cm/s) = d_{10} (mm)	.165E-05	.165E-07	0.00
Slichter	.267E-06	.267E-08	0.00
Terzaghi	.418E-06	.418E-08	0.00
Beyer	.140E-05	.140E-07	0.00
Sauerbrei	.103E-05	.103E-07	0.00
Kruger	.128E-04	.128E-06	0.01
Kozeny-Carmen	.868E-05	.868E-07	0.01
Zunker	.613E-05	.613E-07	0.01
Zamarin	.757E-05	.757E-07	0.01
USBR	.751E-06	.751E-08	0.00
Barr	.302E-06	.302E-08	0.00
Alyamani and Sen	.494E-06	.494E-08	0.00
Chapuis	.109E-07	.109E-09	0.00
Krumbein and Monk	.296E-05	.296E-07	0.00
geometric mean	.110E-05	.110E-07	0.00
arithmetic mean	.314E-05	.314E-07	0.00

74 Berkeley Street, Toronto, ON M5A 2W7

Hydraulic Conductivity Report

Sample ID: BH18/SS4

Date: Feb 2023

Sample Mass (g):

T (oC): <u>20</u>

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d
Hazen	.252E-06	.252E-08	0.00
Hazen K (cm/s) = d_{10} (mm)	.444E-06	.444E-08	0.00
Slichter	.495E-07	.495E-09	0.00
Terzaghi	.705E-07	.705E-09	0.00
Beyer	.185E-06	.185E-08	0.00
Sauerbrei	.166E-06	.166E-08	0.00
Kruger	.142E-04	.142E-06	0.01
Kozeny-Carmen	.482E-05	.482E-07	0.00
Zunker	.373E-05	.373E-07	0.00
Zamarin	.447E-05	.447E-07	0.00
USBR	.147E-06	.147E-08	0.00
Barr	.530E-07	.530E-09	0.00
Alyamani and Sen	.209E-04	.209E-06	0.02
Chapuis	.707E-09	.707E-11	0.00
Krumbein and Monk	.133E-05	.133E-07	0.00
geometric mean	.416E-06	.416E-08	0.00
arithmetic mean	.360E-05	.360E-07	0.00

74 Berkeley Street, Toronto, ON M5A 2W7

Hydraulic Conductivity Report

Sample ID: BH4/SS4

Date: <u>Feb 2023</u>

Sample Mass (g):

T (oC): <u>20</u>

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d
Hazen	.972E-07	.972E-09	0.00
Hazen K (cm/s) = d_{10} (mm)	.160E-06	.160E-08	0.00
Slichter	.195E-07	.195E-09	0.00
Terzaghi	.285E-07	.285E-09	0.00
Beyer	.117E-06	.117E-08	0.00
Sauerbrei	.599E-07	.599E-09	0.00
Kruger	.917E-05	.917E-07	0.01
Kozeny-Carmen	.259E-05	.259E-07	0.00
Zunker	.194E-05	.194E-07	0.00
Zamarin	.233E-05	.233E-07	0.00
USBR	.359E-07	.359E-09	0.00
Barr	.211E-07	.211E-09	0.00
Alyamani and Sen	.341E-06	.341E-08	0.00
Chapuis	.210E-09	.210E-11	0.00
Krumbein and Monk	.244E-06	.244E-08	0.00
geometric mean	.133E-06	.133E-08	0.00
arithmetic mean	.121E-05	.121E-07	0.00

74 Berkeley Street, Toronto, ON M5A 2W7

Hydraulic Conductivity Report

Sample ID: BH6/SS1

Date: <u>Feb 2023</u>

Sample Mass (g):

T (oC): <u>20</u>

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d
Hazen	.117E-06	.117E-08	0.00
Hazen K (cm/s) = d_{10} (mm)	.207E-06	.207E-08	0.00
Slichter	.230E-07	.230E-09	0.00
Terzaghi	.328E-07	.328E-09	0.00
Beyer	.108E-06	.108E-08	0.00
Sauerbrei	.700E-07	.700E-09	0.00
Kruger	.174E-04	.174E-06	0.02
Kozeny-Carmen	.375E-05	.375E-07	0.00
Zunker	.288E-05	.288E-07	0.00
Zamarin	.343E-05	.343E-07	0.00
USBR	.482E-07	.482E-09	0.00
Barr	.247E-07	.247E-09	0.00
Alyamani and Sen	.324E-05	.324E-07	0.00
Chapuis	.241E-09	.241E-11	0.00
Krumbein and Monk	.468E-06	.468E-08	0.00
geometric mean	.202E-06	.202E-08	0.00
arithmetic mean	.225E-05	.225E-07	0.00

74 Berkeley Street, Toronto, ON M5A 2W7

Appendix E

Groundwater Chemistry Analyses

(ALS 2022, Maxxam 2017)

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WT2222750	Page	: 1 of 9
Client	: Palmer Environmental Consulting Group Inc.	Laboratory	: Waterloo - Environmental
Contact	: Lauren Bourke	Account Manager	Andrew Martin
Address	: 74 Berkeley Street Toronto ON Canada M5V 1E3	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 2008162-HUMBER STATION RD	Date Samples Received	: 21-Nov-2022 16:10
PO	:	Date Analysis Commenced	: 23-Nov-2022
C-O-C number	: 17-792826	Issue Date	: 28-Nov-2022 17:34
Sampler	:		
Site	:		
Quote number	: (Q88296) PALMER 2022 STANDING OFFER		
No. of samples received	: 1		
No. of samples analysed	· 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Metals, Waterloo, Ontario

Page	1	2 of 9
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
BH13	Water	colour, apparent	May interfere with disinfection; removal is important to ensure effective treatment.	ONDWS	AO/OG	40.0 CU	5 CU
	Water	solids, total dissolved [TDS]	Based on taste; TDS above 500 mg/L results in excessive scaling in water pipes, water heaters, boilers and appliances; TDS is composed of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, chloride, sulphate and nitrate.	ONDWS	AO/OG	689 mg/L	500 mg/L
	Water	turbidity	Filtration systems should be designed and operated to reduce turbidity levels as low as reasonably achievable and strive to achieve a treated water turbidity target from individual filters of less than 0.1 NTU. Particles can harbour microorganisms, protecting them from disinfection, and can entrap heavy metals and biocides; elevated or fluctuating turbidity in filtered water can indicate a problem with the water treatment process and a potential increased risk of pathogens in treated water.	ONDWS	AO/OG	21.4 NTU	5 NTU
	Water	manganese, total	Based on taste and staining of laundry and plumbing fixtures.	ONDWS	AO/OG	0.120 mg/L	0.05 mg/L
	Water	coliforms, total	Total coliforms are not used as indicators of potential health effects from pathogenic microorganisms; they are used as a tool to determine how well the drinking water treatment system is operating and to indicate water quality changes in the distribution system. Detection of total coliforms from consecutive samples from the same site or from more than 10% of the samples collected in a given sampling period should be investigated.	ONDWS	MAC	<10	1 CFU/100mL
	Water	sodium, total	Based on taste; where a sodium-based water softener is used, a separate unsoftened supply for cooking and drinking purposes is recommended.	ONDWS	MAC	58.4 mg/L	20 mg/L

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
%	percent
μS/cm	microsiemens per centimetre
CFU/100mL	colony forming units per hundred millilitres
CU	colour units (1 cu = 1 mg/l pt)
meq/L	milliequivalents per litre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

>: greater than.

<: less than.

Red shading is applied where the result is greater than the Guideline Upper Limit or the result is lower than the Guideline Lower Limit. For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
DLHC	Conductivity. Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Analytical Results Evaluation

	Clien	t sample ID	BH13	 	 	
Matrix: Water						
	Samplin	ng date/time	21-Nov-2022	 	 	
			14:45			
		Sub-Matrix	Water	 	 	
Analyte	CAS Number	Unit	WT2222750-001	 	 	
Physical Tests						
alkalinity, bicarbonate (as HCO3)	71-52-3	mg/L	608	 	 	
alkalinity, carbonate (as CO3)	3812-32-6	mg/L	<1.0	 	 	
alkalinity, hydroxide (as OH)	14280-30-9	mg/L	<1.0	 	 	
alkalinity, total (as CaCO3)		mg/L	498	 	 	
colour, apparent		CU	40.0	 	 	
conductivity		μS/cm	1230	 	 	
hardness (as CaCO3), from total Ca/Mg		mg/L	664	 	 	
рН		pH units	7.94	 	 	
solids, total dissolved [TDS]		mg/L	689 DLDS	 	 	
solids, total dissolved [TDS], calculated		mg/L	800	 	 	
turbidity		NTU	21.4	 	 	
Langelier index (@ 20°C)		-	1.03	 	 	
Langelier index (@ 4°C)		-	0.784	 	 	
pH, saturation (@ 20°C)		pH units	6.91	 	 	
pH, saturation (@ 4°C)		pH units	7.16	 	 	
Anions and Nutrients						
ammonia, total (as N)	7664-41-7	mg/L	0.0642	 	 	
bromide	24959-67-9	mg/L	<0.50 DLDS	 	 	
chloride	16887-00-6	mg/L	9.33 DLDS	 	 	
fluoride	16984-48-8	mg/L	0.228 DLDS	 	 	
nitrate (as N)	14797-55-8	mg/L	<0.100 DLDS	 	 	
nitrate + nitrite (as N)		mg/L	<0.112	 	 	
nitrite (as N)	14797-65-0	mg/L	<0.050 DLDS	 	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	mg/L	<0.0030	 	 	
sulfate (as SO4)	14808-79-8	mg/L	202 DLDS	 	 	
Microbiological Tests						
coliforms, Escherichia coli [E. coli]	(CFU/100mL	<1	 	 	

Analytical Results Evaluation

	Clie	ent sample ID	BH13	 	 	
Matrix: water						
	Sampling date/unie		21-Nov-2022 14:45	 	 	
		Sub-Matrix	Water	 	 	
Analyte	CAS Number	Unit	WT2222750-001	 	 	
Microbiological Tests						
coliforms, total		CFU/100mL	<10 DLM	 	 	
coliforms, total background		CFU/100mL	10 DLM	 	 	
Metals						
sodium adsorption ratio [SAR]		-	0.98	 	 	
Ion Balance						
anion sum		meq/L	14.4	 	 	
cation sum (total)		meq/L	16.0	 	 	
ion balance (APHA)		%	5.26	 	 	
ion balance (cations/anions)		%	111	 	 	
Total Metals						
aluminum, total	7429-90-5	mg/L	<0.0300 DLHC	 	 	
antimony, total	7440-36-0	mg/L	0.00161 DLHC	 	 	
arsenic, total	7440-38-2	mg/L	0.00225 DLHC	 	 	
barium, total	7440-39-3	mg/L	0.0776 DLHC	 	 	
beryllium, total	7440-41-7	mg/L	<0.000200 DLHC	 	 	
bismuth, total	7440-69-9	mg/L	<0.000500 DLHC	 	 	
boron, total	7440-42-8	mg/L	0.102 DLHC	 	 	
cadmium, total	7440-43-9	mg/L	<0.0000500 DLHC	 	 	
calcium, total	7440-70-2	mg/L	79.8 DLHC	 	 	
cesium, total	7440-46-2	mg/L	<0.000100 DLHC	 	 	
chromium, total	7440-47-3	mg/L	<0.00500 DLHC	 	 	
cobalt, total	7440-48-4	mg/L	<0.00100 DLHC	 	 	
copper, total	7440-50-8	mg/L	<0.00500 DLHC	 	 	
iron, total	7439-89-6	mg/L	<0.100 DLHC	 	 	
lead, total	7439-92-1	mg/L	<0.000500 DLHC	 	 	
lithium, total	7439-93-2	mg/L	0.0479 DLHC	 	 	
magnesium, total	7439-95-4	mg/L	113 DLHC	 	 	
manganese, total	7439-96-5	mg/L	0.120 DLHC	 	 	
molybdenum, total	7439-98-7	mg/L	0.0457 DLHC	 	 	

Page	:	6 of 9
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Analytical Results Evaluation

Matrix: Water	Client sa	ample ID	BH13	 	 	
	Sampling d	late/time	21-Nov-2022 14:45	 	 	
	Su	ıb-Matrix	Water	 	 	
Analyte	CAS Number	Unit	WT2222750-001	 	 	
Total Metals						
nickel, total	7440-02-0 r	mg/L	<0.00500 DLHC	 	 	
phosphorus, total	7723-14-0 r	mg/L	<0.500 DLHC	 	 	
potassium, total	7440-09-7 r	mg/L	6.68 DLHC	 	 	
rubidium, total	7440-17-7 r	mg/L	0.00227 DLHC	 	 	
selenium, total	7782-49-2 r	mg/L	<0.000500 DLHC	 	 	
silicon (as SiO2), total	7631-86-9 r	mg/L	20.7	 	 	
silicon, total	7440-21-3 r	mg/L	9.70 DLHC	 	 	
silver, total	7440-22-4 r	mg/L	<0.000100 DLHC	 	 	
sodium, total	7440-23-5 r	mg/L	58.4 DLHC	 	 	
strontium, total	7440-24-6 r	mg/L	0.886 DLHC	 	 	
sulfur, total	7704-34-9 r	mg/L	72.9 DLHC	 	 	
tellurium, total	13494-80-9 r	mg/L	<0.00200 DLHC	 	 	
thallium, total	7440-28-0 r	mg/L	<0.000100 DLHC	 	 	
thorium, total	7440-29-1 r	mg/L	<0.00100 DLHC	 	 	
tin, total	7440-31-5 r	mg/L	<0.00100 DLHC	 	 	
titanium, total	7440-32-6 r	mg/L	<0.00300 DLHC	 	 	
tungsten, total	7440-33-7 r	mg/L	<0.00100 DLHC	 	 	
uranium, total	7440-61-1 r	mg/L	0.00836 DLHC	 	 	
vanadium, total	7440-62-2 r	mg/L	<0.00500 DLHC	 	 	
zinc, total	7440-66-6 r	mg/L	<0.0300 DLHC	 	 	
zirconium, total	7440-67-7 r	mg/L	<0.00200 DLHC	 	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page	:	7 of 9
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Summary of Guideline Limits

Analyte CAS Number	r Unit	ONDWS AO/OG	ONDWS MAC			
Physical Tests						
alkalinity, bicarbonate (as HCO3) 71-52-	3 mg/L					
alkalinity, carbonate (as CO3) 3812-32-	ሪ mg/L					
alkalinity, hydroxide (as OH) 14280-30-) mg/L					
alkalinity, total (as CaCO3)	- mg/L	30 - 500 mg/L				
colour, apparent	- CU	5 CU				
conductivity	- μS/cm					
hardness (as CaCO3), from total Ca/Mg	- mg/L					
Langelier index (@ 20°C)						
Langelier index (@ 4°C)						
pH, saturation (@ 20°C)	- pH units					
pH, saturation (@ 4°C)	- pH units					
рН	- pH units	6.5 - 8.5 pH				
		units				
solids, total dissolved [TDS], calculated	- mg/L					
solids, total dissolved [TDS]	- mg/L	500 mg/L				
turbidity	- NTU	5 NTU				
Anions and Nutrients						
ammonia, total (as N) 7664-41-	′ mg/L					
bromide 24959-67-) mg/L					
chloride 16887-00-	6 mg/L	250 mg/L				
fluoride 16984-48-	B mg/L		1.5 mg/L			
nitrate (as N) 14797-55-	B mg/L		10 mg/L			
nitrate + nitrite (as N)	- mg/L		10 mg/L			
nitrite (as N) 14797-65-) mg/L		1 mg/L			
phosphate, ortho-, dissolved (as P) 14265-44-	2 mg/L					
sulfate (as SO4) 14808-79-	B mg/L					
Microbiological Tests						
coliforms, Escherichia coli [E. coli]	- CFU/100mL		1 CFU/100mL			
coliforms, total background	- CFU/100mL					
coliforms, total	- CFU/100mL		1 CFU/100mL			
Metals						
sodium adsorption ratio [SAR]						
Ion Balance						
anion sum	- meq/L					
cation sum (total)	- meq/L					
ion balance (APHA)	- %					
ion balance (cations/anions)	- %					

Page Work Order	:	8 of 9 WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Analyte	CAS Number	Unit					
Total Metals			Acies	IIIAO			
aluminum, total	7429-90-5	ma/L	0.1 mg/L				
antimony, total	7440-36-0	mg/L	····g·=	0.006 mg/L			
arsenic, total	7440-38-2	ma/L		0.01 mg/L			
barium, total	7440-39-3	mg/L		1 mg/L			
beryllium, total	7440-41-7	mg/L		-			
bismuth, total	7440-69-9	mg/L					
boron, total	7440-42-8	mg/L		5 mg/L			
cadmium, total	7440-43-9	mg/L		0.005 mg/L			
calcium, total	7440-70-2	mg/L					
cesium, total	7440-46-2	mg/L					
chromium, total	7440-47-3	mg/L		0.05 mg/L			
cobalt, total	7440-48-4	mg/L					
copper, total	7440-50-8	mg/L	1 mg/L				
iron, total	7439-89-6	mg/L	0.3 mg/L				
lead, total	7439-92-1	mg/L		0.01 mg/L			
lithium, total	7439-93-2	mg/L					
magnesium, total	7439-95-4	mg/L					
manganese, total	7439-96-5	mg/L	0.05 mg/L				
molybdenum, total	7439-98-7	mg/L					
nickel, total	7440-02-0	mg/L					
phosphorus, total	7723-14-0	mg/L					
potassium, total	7440-09-7	mg/L					
rubidium, total	7440-17-7	mg/L					
selenium, total	7782-49-2	mg/L		0.05 mg/L			
silicon (as SiO2), total	7631-86-9	mg/L					
silicon, total	7440-21-3	mg/L					
silver, total	7440-22-4	mg/L					
sodium, total	7440-23-5	mg/L	200 mg/L	20 mg/L			
strontium, total	7440-24-6	mg/L					
sulfur, total	7704-34-9	mg/L					
tellurium, total	13494-80-9	mg/L					
thallium, total	7440-28-0	mg/L					
thorium, total	7440-29-1	mg/L					
tin, total	7440-31-5	mg/L					
titanium, total	7440-32-6	mg/L					
tungsten, total	7440-33-7	mg/L					
uranium, total	7440-61-1	mg/L		0.02 mg/L			
vanadium, total	7440-62-2	mg/L					
zinc, total	7440-66-6	mg/L	5 mg/L				

Page	:	9 of 9
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Analyte	CAS Number	Unit	ONDWS AO/OG	ONDWS MAC			
Total Metals - Continued							
zirconium, total	7440-67-7	mg/L					

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

ONDWS	Ontario Drinking Water Regulation (JAN, 2020)
AO/OG	Aesthetic Objective/Operational Guideline
MAC	Schedule 1 (Microbiological) and 2 (Chemical) Standards (JAN.2020)

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	:WT2222750	Page	: 1 of 10
Client	Palmer Environmental Consulting Group Inc.	Laboratory	: Waterloo - Environmental
Contact	: Lauren Bourke	Account Manager	: Andrew Martin
Address	: 74 Berkeley Street	Address	: 60 Northland Road, Unit 1
	Toronto ON Canada M5V 1E3		Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	2008162-HUMBER STATION RD	Date Samples Received	: 21-Nov-2022 16:10
PO	:	Issue Date	: 28-Nov-2022 17:34
C-O-C number	: 17-792826		
Sampler	·		
Site	·		
Quote number	: (Q88296) PALMER 2022 STANDING OFFER		
No. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E١	/aluation: × =	Holding time excee	edance ; 🔹	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext		Analysis					
Container / Client Sample ID(s)			Preparation	paration Holding Times Ev		Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) BH13	E298	21-Nov-2022	24-Nov-2022				25-Nov-2022	28 days	4 days	✓
Anions and Nutrients : Bromide in Water by IC										
HDPE [ON MECP] BH13	E235.Br	21-Nov-2022	23-Nov-2022				24-Nov-2022	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP] BH13	E235.CI	21-Nov-2022	23-Nov-2022				24-Nov-2022	28 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (0.003 mg/L)										
HDPE [ON MECP] BH13	E378-T	21-Nov-2022					24-Nov-2022	7 days	3 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP] BH13	E235.F	21-Nov-2022	23-Nov-2022				24-Nov-2022	28 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC										
HDPE [ON MECP] BH13	E235.NO3	21-Nov-2022	23-Nov-2022				24-Nov-2022	7 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC										
HDPE [ON MECP] BH13	E235.NO2	21-Nov-2022	23-Nov-2022				24-Nov-2022	7 days	3 days	~

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; 🔹	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation					Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	; Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
BH13	E235.SO4	21-Nov-2022	23-Nov-2022				24-Nov-2022	28 days	3 days	1
Microbiological Tests : E. coli (MF-mFC-BCIG)										
Sterile HDPE (Sodium thiosulphate) [ON MECP] BH13	E012A.EC	21-Nov-2022					23-Nov-2022	48 hrs	46 hrs	~
Microbiological Tests : Total Coliforms (MF-mEndo)										
Sterile HDPE (Sodium thiosulphate) [ON MECP] BH13	E012.TC	21-Nov-2022					23-Nov-2022	48 hrs	46 hrs	~
Microbiological Tests : Total Coliforms Background (MF-mEndo)										
Sterile HDPE (Sodium thiosulphate) [ON MECP] BH13	E012.BG.TC	21-Nov-2022					23-Nov-2022	48 hrs	46 hrs	~
Physical Tests : Alkalinity Species by Titration										
HDPE [ON MECP] BH13	E290	21-Nov-2022	23-Nov-2022				24-Nov-2022	14 days	3 days	✓
Physical Tests : Colour (Apparent) by Spectrometer										
HDPE [ON MECP] BH13	E330	21-Nov-2022					28-Nov-2022	48 hrs	170 hrs	¥ EHT
Physical Tests : Conductivity in Water										
HDPE [ON MECP] BH13	E100	21-Nov-2022	23-Nov-2022				24-Nov-2022	28 days	3 days	~
Physical Tests : pH by Meter										
HDPE [ON MECP] BH13	E108	21-Nov-2022	23-Nov-2022				24-Nov-2022	14 days	3 days	~
Physical Tests : TDS by Gravimetry										
HDPE [ON MECP] BH13	E162	21-Nov-2022					24-Nov-2022	7 days	3 days	~

Matrix: Water Evaluation: \mathbf{x} = Holding time exceedance ; \mathbf{v} = Within Holding Time Sampling Date Extraction / Preparation Analysis Analyte Group Method Container / Client Sample ID(s) Holding Times Preparation Holding Times Eval Analysis Date Eval Rec Actual Rec Actual Date Physical Tests : Turbidity by Nephelometry HDPE [ON MECP] BH13 E121 21-Nov-2022 25-Nov-2022 3 days 4 days x ------------EHT Total Metals : Total metals in Water by CRC ICPMS HDPE total (nitric acid) ✓ BH13 E420 21-Nov-2022 23-Nov-2022 23-Nov-2022 180 2 days -------days

Legend & Qualifier Definitions

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: \star = QC frequency outside specification; \star = QC frequency within specification.							
Quality Control Sample Type		Count			Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Alkalinity Species by Titration	E290	754835	1	4	25.0	5.0	✓	
Ammonia by Fluorescence	E298	756310	1	20	5.0	5.0	✓	
Bromide in Water by IC	E235.Br	754832	1	2	50.0	5.0	✓	
Chloride in Water by IC	E235.Cl	754829	1	9	11.1	5.0	✓	
Colour (Apparent) by Spectrometer	E330	760306	1	20	5.0	5.0	✓	
Conductivity in Water	E100	754834	1	4	25.0	5.0	✓	
Dissolved Orthophosphate by Colourimetry (0.003 mg/L)	E378-T	755801	1	18	5.5	5.0	✓	
E. coli (MF-mFC-BCIG)	E012A.EC	754757	1	11	9.0	5.0	✓	
Fluoride in Water by IC	E235.F	754827	1	10	10.0	5.0	✓	
Nitrate in Water by IC	E235.NO3	754830	1	3	33.3	5.0	✓	
Nitrite in Water by IC	E235.NO2	754831	1	3	33.3	5.0	✓	
pH by Meter	E108	754833	1	18	5.5	5.0	✓	
Sulfate in Water by IC	E235.SO4	754828	1	14	7.1	5.0	✓	
TDS by Gravimetry	E162	756131	1	19	5.2	5.0	✓	
Total Coliforms (MF-mEndo)	E012.TC	754762	0	8	0.0	5.0	×	
Total Coliforms Background (MF-mEndo)	E012.BG.TC	754763	0	6	0.0	5.0	×	
Total metals in Water by CRC ICPMS	E420	755030	1	6	16.6	5.0	✓	
Turbidity by Nephelometry	E121	757299	1	20	5.0	5.0	✓	
Laboratory Control Samples (LCS)								
Alkalinity Species by Titration	E290	754835	1	4	25.0	5.0	✓	
Ammonia by Fluorescence	E298	756310	1	20	5.0	5.0	✓	
Bromide in Water by IC	E235.Br	754832	1	2	50.0	5.0	✓	
Chloride in Water by IC	E235.Cl	754829	1	9	11.1	5.0	✓	
Colour (Apparent) by Spectrometer	E330	760306	1	20	5.0	5.0	✓	
Conductivity in Water	E100	754834	1	4	25.0	5.0	~	
Dissolved Orthophosphate by Colourimetry (0.003 mg/L)	E378-T	755801	1	18	5.5	5.0	✓	
Fluoride in Water by IC	E235.F	754827	1	10	10.0	5.0	✓	
Nitrate in Water by IC	E235.NO3	754830	1	3	33.3	5.0	✓	
Nitrite in Water by IC	E235.NO2	754831	1	3	33.3	5.0	✓	
pH by Meter	E108	754833	1	18	5.5	5.0	✓	
Sulfate in Water by IC	E235.SO4	754828	1	14	7.1	5.0	~	
TDS by Gravimetry	E162	756131	1	19	5.2	5.0	 ✓ 	
Total metals in Water by CRC ICPMS	E420	755030	1	6	16.6	5.0	 ✓ 	
Turbidity by Nephelometry	E121	757299	1	20	5.0	5.0	✓	
Method Blanks (MB)								

Page Work Order	:	7 of 10 WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Matrix: Water	Evaluation: \star = QC frequency outside specification; \checkmark = QC frequency within specification.						
Quality Control Sample Type			Count		Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued							
Alkalinity Species by Titration	E290	754835	1	4	25.0	5.0	✓
Ammonia by Fluorescence	E298	756310	1	20	5.0	5.0	~
Bromide in Water by IC	E235.Br	754832	1	2	50.0	5.0	1
Chloride in Water by IC	E235.Cl	754829	1	9	11.1	5.0	~
Colour (Apparent) by Spectrometer	E330	760306	1	20	5.0	5.0	1
Conductivity in Water	E100	754834	1	4	25.0	5.0	1
Dissolved Orthophosphate by Colourimetry (0.003 mg/L)	E378-T	755801	1	18	5.5	5.0	✓
E. coli (MF-mFC-BCIG)	E012A.EC	754757	1	11	9.0	5.0	1
Fluoride in Water by IC	E235.F	754827	1	10	10.0	5.0	1
Nitrate in Water by IC	E235.NO3	754830	1	3	33.3	5.0	1
Nitrite in Water by IC	E235.NO2	754831	1	3	33.3	5.0	1
Sulfate in Water by IC	E235.SO4	754828	1	14	7.1	5.0	✓
TDS by Gravimetry	E162	756131	1	19	5.2	5.0	1
Total Coliforms (MF-mEndo)	E012.TC	754762	1	8	12.5	5.0	✓
Total Coliforms Background (MF-mEndo)	E012.BG.TC	754763	1	6	16.6	5.0	✓
Total metals in Water by CRC ICPMS	E420	755030	1	6	16.6	5.0	1
Turbidity by Nephelometry	E121	757299	1	20	5.0	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	756310	1	20	5.0	5.0	1
Bromide in Water by IC	E235.Br	754832	1	2	50.0	5.0	✓
Chloride in Water by IC	E235.Cl	754829	1	9	11.1	5.0	✓
Dissolved Orthophosphate by Colourimetry (0.003 mg/L)	E378-T	755801	1	18	5.5	5.0	✓
Fluoride in Water by IC	E235.F	754827	1	10	10.0	5.0	1
Nitrate in Water by IC	E235.NO3	754830	1	3	33.3	5.0	✓
Nitrite in Water by IC	E235.NO2	754831	1	3	33.3	5.0	✓
Sulfate in Water by IC	E235.SO4	754828	1	14	7.1	5.0	✓
Total metals in Water by CRC ICPMS	E420	755030	1	6	16.6	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Coliforms Background (MF-mEndo)	E012.BG.TC	Water	APHA 9222B (mod)	Noncoliform bacteria observed on Total Coliform plates are enumerated.
	Waterloo -			
	Environmental			
Total Coliforms (MF-mEndo)	E012.TC	Water	APHA 9222B (mod)	Following filtration (0.45 µm), and incubation at 35.0 ±0.5°C for 24 hours, colonies
				exhibiting characteristic morphology of the target organism are enumerated and
	Waterloo -			confirmed.
	Environmental	\\/otor	ON 52422 (mod)	
	E012A.EC	vvater	ON E3433 (mod)	Following filtration (0.45 µm), and incubation at 44.5±0.2°C for 24 hours, colonies
	Waterloo -			exhibiting characteristic morphology of the target organism are enumerated.
	Environmental			
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
				measured by immersion of a conductivity cell with platinum electrodes into a water
	Waterloo -			sample. Conductivity measurements are temperature-compensated to 25°C.
	Environmental			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Watarlaa			at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,
	Environmental			pri snouid be measured in the neid within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light
				scatter under defined conditions.
	Waterloo -			
	Environmental			
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
				filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Waterloo -			with gravimetric measurement of the residue.
Bromide in Water by IC	Environmental	Water	EPA 300 1 (mod)	lastrania aniona are analyzed by lan Chromategraphy with conductivity and/or UV
bioinide in water by io	E230.DI	valei		detection
	Waterloo -			
	Environmental			
Chloride in Water by IC	E235.Cl	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Waterloo -			
	Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
	Watarlaa			detection.
	Forvironmental			
	Environmental			
Page Work Order	:	9 of 10 WT2222750		
--------------------	---	--		
Client	:	Palmer Environmental Consulting Group Inc.		
Project	:	2008162-HUMBER STATION RD		

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Nitrite in Water by IC	E235.NO2	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Nitrate in Water by IC	E235.NO3	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Waterloo -			alkalinity values.
	Environmental			
Ammonia by Fluorescence	E298	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Waterloo -			This method is approved under US EPA 40 CFR Part 136 (May 2021)
	Environmental			
Colour (Apparent) by Spectrometer	E330	Water	APHA 2120 C (mod)	Colour (Apparent) is measured in an unfiltered sample spectrophotometrically using the single wavelength method. The colour contribution of settleable solids are not included
	Waterloo -			in the result. This method is intended for potable waters.
	Environmental			
				Colour measurements can be highly pH dependent, and apply to the pH of the sample as received (at time of testing), without pH adjustment.
Dissolved Orthophosphate by Colourimetry	E378-T	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has
(0.003 mg/L)				been lab or field filtered through a 0.45 micron membrane filter. Field filtration is
	Waterloo -			recommended to ensure test results represent conditions at time of sampling.
	Environmental			
Total metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Waterloo -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Hardness (Calculated) from Total Ca/Mg	EC100A	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and
				Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Waterloo -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations. Hardness from total Ca/Mg is
				normally comparable to Dissolved Hardness in non-turbid waters.

Page Work Order	:	10 of 10 WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Ion Balance using Total Metals	EC101A	Water	APHA 1030E	Cation Sum (using total metals), Anion Sum, and Ion Balance are calculated based on
				guidance from APHA Standard Methods (1030E Checking Correctness of Analysis).
	Waterloo -			Minor ions are included where data is present. Ion Balance cannot be calculated
	Environmental			accurately for waters with very low electrical conductivity (EC).
Sodium Adsorption Ratio [SAR] from Total	EC102	Water	CCME Sodium	The Sodium Adsorption Ratio (SAR) for a water sample is calculated from the Sodium,
Metals			Adsorption Ratio	Calcium, and Magnesium concentrations of the water, using the same calculations as
	Waterloo -		(SAR)	would be used for a sediment paste extract.
	Environmental			
TDS calculated from conductivity	EC103A	Water	APHA 1030 E	Total dissolved solids (as mg/L) can be estimated by multiplying electrical conductance
	Waterloo -			
	Environmental			
Langelier Index using Laboratory pH (Ca-T)	EC105A	Water	APHA 2330B	Langelier Index provides an indication of scale formation potential at a given pH and
5 5 71 (-)	20100/1			temperature and is calculated as per APHA 2330B Saturation Index. Positive values
	Waterloo -			indicate oversaturation with respect to CaCO3 . Negative values indicate
	Environmental			undersaturation of CaCO3 This calculation uses laboratory pH measurements and
				provides estimates of Langelier Index at temperatures of 4, 15, 20, 25, 66, and 77°C.
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as
				N) + Nitrate (as N).
	Waterloo -			
	Environmental			
Total Silicon as Silica (Calculation)	EC420.SiO2	Water	N/A	Total Silicon (as SiO2) is a calculated parameter. Total Silicon (as SiO2 mg/L) = 2.139 x
				Total Silicon (mg/L).
	Waterloo -			
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Waterloo -			
	Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page : 1 of 13 WT2222750 Client : Palmer Environmental Consulting Group Inc. Laboratory : Waterloo - Environmental Account Manager Contact : Lauren Bourke : Andrew Martin Address Address :74 Berkeley Street :60 Northland Road, Unit 1 Toronto ON Canada M5V 1E3 Waterloo, Ontario Canada N2V 2B8 Telephone Telephone :+1 519 886 6910 Project 2008162-HUMBER STATION RD Date Samples Received :21-Nov-2022 16:10 PO Date Analysis Commenced :23-Nov-2022 :----C-O-C number Issue Date :17-792826 :28-Nov-2022 17:34 Sampler :----Site · ____ Quote number (Q88296) PALMER 2022 STANDING OFFER No. of samples received :1 No. of samples analysed :1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Waterloo Microbiology, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Waterloo Metals, Waterloo, Ontario

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 754833)										
WT2222750-001	BH13	рН		E108	0.10	pH units	7.94	7.94	0.00%	4%	
Physical Tests (QC	Lot: 754834)										
WT2222750-001	BH13	conductivity		E100	1.0	μS/cm	1230	1220	0.981%	10%	
Physical Tests (QC	Lot: 754835)										
WT2222750-001	BH13	alkalinity, total (as CaCO3)		E290	1.0	mg/L	498	487	2.24%	20%	
Physical Tests (QC	Lot: 756131)										
HA2200039-003	Anonymous	solids, total dissolved [TDS]		E162	13	mg/L	80	89	9	Diff <2x LOR	
Physical Tests (QC	Lot: 757299)										
WT2222460-014	Anonymous	turbidity		E121	0.10	NTU	8.95	9.04	1.00%	15%	
Anions and Nutrient	s (QC Lot: 754827)										
WT2222750-001	BH13	fluoride	16984-48-8	E235.F	0.100	mg/L	0.228	0.237	0.009	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 754828)										
WT2222750-001	BH13	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	202	203	0.391%	20%	
Anions and Nutrient	s (QC Lot: 754829)										
WT2222750-001	BH13	chloride	16887-00-6	E235.Cl	2.50	mg/L	9.33	8.93	0.40	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 754830)										
WT2222750-001	BH13	nitrate (as N)	14797-55-8	E235.NO3	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 754831)										
WT2222750-001	BH13	nitrite (as N)	14797-65-0	E235.NO2	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 754832)										
WT2222750-001	BH13	bromide	24959-67-9	E235.Br	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 755801)										
WT2222604-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-T	0.300	mg/L	43.9	44.1	0.495%	20%	
Anions and Nutrient	s (QC Lot: 756310)										
WT2222602-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0507	0.0509	0.394%	20%	
Microbiological Test	ts (QC Lot: 754757)										
WT2222619-001	Anonymous	coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	2	1	1	Diff <2x LOR	
Total Metals (QC Lo	ot: 755030)										
TY2204274-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.961	0.950	1.17%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00014	0.00015	0.000008	Diff <2x LOR	

Page	:	4 of 13
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	t: 755030) - continued										
TY2204274-001	Anonymous	arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00119	0.00114	3.99%	20%	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0215	0.0211	1.82%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	0.000026	0.000026	0.0000009	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.024	0.022	0.001	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000218	0.0000210	0.0000008	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	39.0	37.0	5.19%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	0.000219	0.000203	7.68%	20%	
		chromium, total	7440-47-3	E420	0.00050	mg/L	0.00277	0.00303	0.00026	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00129	0.00126	2.25%	20%	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00759	0.00733	3.38%	20%	
		iron, total	7439-89-6	E420	0.010	mg/L	1.24	1.22	1.60%	20%	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000807	0.000764	5.41%	20%	
		lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	4.59	4.49	2.17%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0726	0.0706	2.89%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000671	0.000654	2.50%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00292	0.00283	0.00009	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	2.87	2.78	3.12%	20%	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00636	0.00613	3.72%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000199	0.000204	0.000006	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	3.99	4.00	0.224%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	0.000014	0.000013	0.0000008	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	4.32	4.26	1.60%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.122	0.116	5.28%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	7.17	7.14	0.431%	20%	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000024	0.000018	0.000005	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	0.00031	0.00030	0.00001	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.0371	0.0364	1.94%	20%	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000423	0.000401	5.34%	20%	
				4							

Page	:	5 of 13
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	Total Metals (QC Lot: 755030) - continued										
TY2204274-001	Anonymous	vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00280	0.00272	0.00007	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0064	0.0065	0.0001	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	0.00054	0.00049	0.00005	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sud-Matrix: water					
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 754834)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 754835)					
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 756131)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 757299)					
turbidity	E121	0.1	NTU	<0.10	
hysical Tests (QCLot: 760306)				1 1	
colour, apparent	E330	2	CU	<2.0	
nions and Nutrients (QCLot: 754827)				1 1	
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 754828)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
nions and Nutrients (QCLot: 754829)					
chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
nions and Nutrients (QCLot: 754830)				1	
nitrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 754831)					
nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
nions and Nutrients (QCLot: 754832)					
bromide	24959-67-9 E235.Br	0.1	mg/L	<0.10	
nions and Nutrients (QCLot: 755801)				1 1	
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-T	0.003	mg/L	<0.0030	
nions and Nutrients (QCLot: 756310)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
licrobiological Tests (QCLot: 754757)				1 1	
coliforms, Escherichia coli [E. coli]	E012A.EC	1	CFU/100mL	<1	
licrobiological Tests (QCLot: 75 <u>4762)</u>					
coliforms, total	E012.TC	1	CFU/100mL	<1	
/icrobiological Tests (QCLot: 754763)					
coliforms, total background	E012.BG.TC	1	CFU/100mL	<1	
otal Metals (QCLot: 755030)				1 1	

Page	:	7 of 13
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 755030) - co	ontinued					
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0	E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
		1	1	1	1	I

Page	:	8 of 13
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 755030) - con	tinued					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 754833)									
рН		E108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 754834)									
conductivity		E100	1	μS/cm	1409 µS/cm	102	90.0	110	
Physical Tests (QCLot: 754835)									
alkalinity, total (as CaCO3)		E290	1	mg/L	150 mg/L	99.6	85.0	115	
Physical Tests (QCLot: 756131)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	99.4	85.0	115	
Physical Tests (QCLot: 757299)									
turbidity		E121	0.1	NTU	200 NTU	96.4	85.0	115	
Physical Tests (QCLot: 760306)									
colour, apparent		E330	2	CU	25 CU	99.3	70.0	130	
Anions and Nutrients (QCLot: 754827)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 754828)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	99.8	90.0	110	
Anions and Nutrients (QCLot: 754829)									
chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	99.8	90.0	110	
Anions and Nutrients (QCLot: 754830)									
nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	2.5 mg/L	98.6	90.0	110	
Anions and Nutrients (QCLot: 754831)									
nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	0.5 mg/L	98.5	90.0	110	
Anions and Nutrients (QCLot: 754832)									
bromide	24959-67-9	E235.Br	0.1	mg/L	0.5 mg/L	103	85.0	115	
Anions and Nutrients (QCLot: 755801)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-T	0.003	mg/L	0.0212 mg/L	106	80.0	120	
Anions and Nutrients (QCLot: 756310)									
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	96.5	85.0	115	
Total Metals (QCLot: 755030)									
aluminum, total	7429-90-5	E420	0.003	mg/L	0.1 mg/L	103	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	0.05 mg/L	103	80.0	120	

Page	:	10 of 13
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 755030) - continu	ued								
arsenic, total	7440-38-2	E420	0.0001	mg/L	0.05 mg/L	108	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.0125 mg/L	101	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.005 mg/L	99.2	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	0.05 mg/L	103	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	0.05 mg/L	95.6	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.005 mg/L	104	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	2.5 mg/L	101	80.0	120	
cesium, total	7440-46-2	E420	0.00001	mg/L	0.0025 mg/L	104	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.0125 mg/L	104	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.0125 mg/L	105	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.0125 mg/L	102	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	0.05 mg/L	107	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.025 mg/L	104	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.0125 mg/L	98.9	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	2.5 mg/L	108	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.0125 mg/L	104	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.0125 mg/L	101	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.025 mg/L	104	80.0	120	
phosphorus, total	7723-14-0	E420	0.05	mg/L	0.5 mg/L	104	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	2.5 mg/L	104	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.005 mg/L	107	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	0.05 mg/L	103	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	0.5 mg/L	106	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.005 mg/L	92.6	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	2.5 mg/L	108	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.0125 mg/L	103	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	2.5 mg/L	99.4	80.0	120	
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.005 mg/L	94.6	80.0	120	
thallium, total	7440-28-0	E420	0.00001	mg/L	0.05 mg/L	105	80.0	120	
thorium, total	7440-29-1	E420	0.0001	mg/L	0.005 mg/L	99.3	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.025 mg/L	100	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.0125 mg/L	100	80.0	120	
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.005 mg/L	101	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.00025 mg/L	105	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.025 mg/L	106	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.025 mg/L	103	80.0	120	
l i i i i i i i i i i i i i i i i i i i		l i i i i i i i i i i i i i i i i i i i	1	1	Ĭ		l i i i i i i i i i i i i i i i i i i i		I I

Page	:	11 of 13
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 755030) - continu	ed								
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.005 mg/L	100	80.0	120	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report					
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutr	ients (QCLot: 754827									
WT2222750-001	BH13	fluoride	16984-48-8	E235.F	5.11 mg/L	5 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 754828									
WT2222750-001	BH13	sulfate (as SO4)	14808-79-8	E235.SO4	508 mg/L	500 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 754829									
WT2222750-001	BH13	chloride	16887-00-6	E235.CI	507 mg/L	500 mg/L	101	75.0	125	
Anions and Nutr	ients (QCLot: 754830									
WT2222750-001	BH13	nitrate (as N)	14797-55-8	E235.NO3	12.4 mg/L	12.5 mg/L	98.9	75.0	125	
Anions and Nutr	ients (QCLot: 754831									
WT2222750-001	BH13	nitrite (as N)	14797-65-0	E235.NO2	2.44 mg/L	2.5 mg/L	97.8	75.0	125	
Anions and Nutr	ients (QCLot: 754832									
WT2222750-001	BH13	bromide	24959-67-9	E235.Br	2.49 mg/L	2.5 mg/L	99.5	75.0	125	
Anions and Nutr	ients (QCLot: 755801									
WT2222604-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-T	ND mg/L	0.0196 mg/L	ND	70.0	130	
Anions and Nutr	ients (QCLot: 756310									
WT2222602-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.104 mg/L	0.1 mg/L	104	75.0	125	
Total Metals (QC	CLot: 755030)									
TY2204274-001	Anonymous	aluminum, total	7429-90-5	E420	ND mg/L	0.1 mg/L	ND	70.0	130	
		antimony, total	7440-36-0	E420	0.0519 mg/L	0.05 mg/L	104	70.0	130	
		arsenic, total	7440-38-2	E420	0.0537 mg/L	0.05 mg/L	107	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.00474 mg/L	0.005 mg/L	94.9	70.0	130	
		bismuth, total	7440-69-9	E420	0.0499 mg/L	0.05 mg/L	99.8	70.0	130	
		boron, total	7440-42-8	E420	0.045 mg/L	0.05 mg/L	89.3	70.0	130	
		cadmium, total	7440-43-9	E420	0.00522 mg/L	0.005 mg/L	104	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.00260 mg/L	0.0025 mg/L	104	70.0	130	
		chromium, total	7440-47-3	E420	0.0130 ma/L	0.0125 mg/L	104	70.0	130	
		cobalt, total	7440-48-4	E420	0.0128 ma/L	0.0125 mg/L	102	70.0	130	
I	I	copper, total	7440-50-8	E420	0.0121 mg/L	0.0125 mg/L	97.0	70.0	130	

Page : 13 of 13 Work Order : WT2222750 Client : Palmer Environmental Consulting Group Inc. Project : 2008162-HUMBER STATION RD

Sub-Matrix: Water					Matrix Spik	Natrix Spike (MS) Report				
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	Lot: 755030) - continue	d								
TY2204274-001	Anonymous	iron, total	7439-89-6	E420	ND mg/L	0.05 mg/L	ND	70.0	130	
		lead, total	7439-92-1	E420	0.0250 mg/L	0.025 mg/L	99.9	70.0	130	
		lithium, total	7439-93-2	E420	0.0115 mg/L	0.0125 mg/L	92.3	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0124 mg/L	0.0125 mg/L	99.4	70.0	130	
		nickel, total	7440-02-0	E420	0.0254 mg/L	0.025 mg/L	102	70.0	130	
		phosphorus, total	7723-14-0	E420	0.526 mg/L	0.5 mg/L	105	70.0	130	
		potassium, total	7440-09-7	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		rubidium, total	7440-17-7	E420	ND mg/L	0.005 mg/L	ND	70.0	130	
		selenium, total	7782-49-2	E420	0.0527 mg/L	0.05 mg/L	105	70.0	130	
		silicon, total	7440-21-3	E420	ND mg/L	0.5 mg/L	ND	70.0	130	
		silver, total	7440-22-4	E420	0.00460 mg/L	0.005 mg/L	92.0	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		tellurium, total	13494-80-9	E420	0.00460 mg/L	0.005 mg/L	92.0	70.0	130	
		thallium, total	7440-28-0	E420	0.0511 mg/L	0.05 mg/L	102	70.0	130	
		thorium, total	7440-29-1	E420	0.00472 mg/L	0.005 mg/L	94.4	70.0	130	
		tin, total	7440-31-5	E420	0.0251 mg/L	0.025 mg/L	100	70.0	130	
		titanium, total	7440-32-6	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		tungsten, total	7440-33-7	E420	0.00492 mg/L	0.005 mg/L	98.4	70.0	130	
		uranium, total	7440-61-1	E420	ND mg/L	0.00025 mg/L	ND	70.0	130	
		vanadium, total	7440-62-2	E420	0.0259 mg/L	0.025 mg/L	104	70.0	130	
		zinc, total	7440-66-6	E420	0.0239 mg/L	0.025 mg/L	95.8	70.0	130	
		zirconium, total	7440-67-7	E420	0.00410 mg/L	0.005 mg/L	82.1	70.0	130	

	u
	Ē
	1000
	h
	Q
	<u></u>
	5
	ž
	han
	ш
	\sim
Â	N
	å
	4
	\sim

	ž
	Bran

of	
Page	

Custody (COC) / Analytical Aff Request Form at Justitution an Iol Free 1 800 668 9878 a Toll Free: 1 800 668 9878 a Toll Free: 1 800 668 9878 Report Format / Distribution be able to the analytic control (OC) Report with Report Toward each be the able to the analytic control (OC) Report with Report Toward each be able to the analytic control (OC) Report to the analytic control (OC) (C) and (C)

1. If any waler samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

GC103, NY33, MH449

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WT2222750	Page	: 1 of 6
Client	: Palmer Environmental Consulting Group Inc.	Laboratory	: Waterloo - Environmental
Contact	: Lauren Bourke	Account Manager	: Andrew Martin
Address	: 74 Berkeley Street Toronto ON Canada M5V 1E3	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 2008162-HUMBER STATION RD	Date Samples Received	: 21-Nov-2022 16:10
PO	:	Date Analysis Commenced	: 23-Nov-2022
C-O-C number	: 17-792826	Issue Date	: 28-Nov-2022 17:34
Sampler			
Site			
Quote number	: (Q88296) PALMER 2022 STANDING OFFER		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Metals, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non -infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
%	percent
µS/cm	microsiemens per centimetre
CFU/100mL	colony forming units per hundred millilitres
CU	colour units (1 cu = 1 mg/l pt)
meq/L	milliequivalents per litre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units
>: greater than.	

<: less than.

Red shading is applied where the result is greater than the Guideline Upper Limit or the result is lower than the Guideline Lower Limit. For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit .

Qualifiers	
Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).

Analytical Results

			Client sample ID	BH13					
Sub-Matrix: Water		S	ampling date/time	21-Nov-2022					
(Matrix: Water)				14:45					
Analyte	Method	LOR	Unit	WT2222750-001		ONDWS	ONDWS		
						AO/OG	MAC		
Physical Tests									
alkalinity, bicarbonate (as HCO3)	E290	1.0	mg/L	608				 	
alkalinity, carbonate (as CO3)	E290	1.0	mg/L	<1.0				 	
alkalinity, hydroxide (as OH)	E290	1.0	mg/L	<1.0				 	
alkalinity, total (as CaCO3)	E290	1.0	mg/L	498		30 - 500 mg/L		 	
colour, apparent	E330	2.0	CU	40.0		5 CU		 	
conductivity	E100	1.0	μS/cm	1230				 	
hardness (as CaCO3), from total Ca/Mg	EC100A	0.50	mg/L	664				 	
рН	E108	0.10	pH units	7.94		6.5 - 8.5 pH units		 	
solids, total dissolved [TDS], calculated	EC103A	1.0	mg/L	800				 	
solids, total dissolved [TDS]	E162	10	mg/L	689	DLDS	500 mg/L		 	
turbidity	E121	0.10	NTU	21.4		5 NTU		 	
Langelier index (@ 20°C)	EC105A	0.010	-	1.03				 	
Langelier index (@ 4°C)	EC105A	0.010	-	0.784				 	
pH, saturation (@ 20°C)	EC105A	0.010	pH units	6.91				 	
pH, saturation (@ 4°C)	EC105A	0.010	pH units	7.16				 	
Anions and Nutrients									
ammonia, total (as N)	E298	0.0050	mg/L	0.0642				 	
bromide	E235.Br	0.10	mg/L	<0.50	DLDS			 	
chloride	E235.Cl	0.50	mg/L	9.33	DLDS	250 mg/L		 	
fluoride	E235.F	0.020	mg/L	0.228	DLDS		1.5 mg/L	 	
nitrate (as N)	E235.NO3	0.020	mg/L	<0.100	DLDS		10 mg/L	 	
nitrate + nitrite (as N)	EC235.N+N	0.0032	mg/L	<0.112			10 mg/L	 	
nitrite (as N)	E235.NO2	0.010	mg/L	<0.050	DLDS		1 mg/L	 	
phosphate, ortho-, dissolved (as P)	E378-T	0.0030	mg/L	<0.0030				 	
sulfate (as SO4)	E235.SO4	0.30	mg/L	202	DLDS			 	
Microbiological Tests									
coliforms, Escherichia coli [E. coli]	E012A.EC	1	CFU/100mL	<1			1 CFU/100mL	 	

Page	:	4 of 6
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project		2008162-HUMBER STATION RD

Analyte	Method	LOR	Unit	WT2222750-001 (Continued)		ONDWS AO/OG	ONDWS MAC			
Microbiological Tests - Contin	Microbiological Tests - Continued									
coliforms, total background	E012.BG.TC	1	CFU/100mL	10	DLM					
coliforms, total	E012.TC	1	CFU/100mL	<10	DLM		1 CFU/100mL			
Metals										
sodium adsorption ratio [SAR]	EC102	0.10	-	0.98						
Ion Balance										
anion sum	EC101A	0.10	meq/L	14.4						
cation sum (total)	EC101A	0.10	meq/L	16.0						
ion balance (APHA)	EC101A	0.010	%	5.26						
ion balance (cations/anions)	EC101A	0.01	%	111						
Total Metals										
aluminum, total	E420	0.0030	mg/L	<0.0300	DLHC	0.1 mg/L				
antimony, total	E420	0.00010	mg/L	0.00161	DLHC		0.006 mg/L			
arsenic, total	E420	0.00010	mg/L	0.00225	DLHC		0.01 mg/L			
barium, total	E420	0.00010	mg/L	0.0776	DLHC		1 mg/L			
beryllium, total	E420	0.000020	mg/L	<0.000200	DLHC					
bismuth, total	E420	0.000050	mg/L	<0.000500	DLHC					
boron, total	E420	0.010	mg/L	0.102	DLHC		5 mg/L			
cadmium, total	E420	0.0000050	mg/L	<0.0000500	DLHC		0.005 mg/L			
calcium, total	E420	0.050	mg/L	79.8	DLHC					
cesium, total	E420	0.000010	mg/L	<0.000100	DLHC					
chromium, total	E420	0.00050	mg/L	<0.00500	DLHC		0.05 mg/L			
cobalt, total	E420	0.00010	mg/L	<0.00100	DLHC					
copper, total	E420	0.00050	mg/L	<0.00500	DLHC	1 mg/L				
iron, total	E420	0.010	mg/L	<0.100	DLHC	0.3 mg/L				
lead, total	E420	0.000050	mg/L	<0.000500	DLHC		0.01 mg/L			
lithium, total	E420	0.0010	mg/L	0.0479	DLHC					
magnesium, total	E420	0.0050	mg/L	113	DLHC					
manganese, total	E420	0.00010	mg/L	0.120	DLHC	0.05 mg/L				
molybdenum, total	E420	0.000050	mg/L	0.0457	DLHC					
nickel, total	E420	0.00050	mg/L	<0.00500	DLHC					
phosphorus, total	E420	0.050	mg/L	<0.500	DLHC					
potassium, total	E420	0.050	mg/L	6.68	DLHC					
rubidium, total	E420	0.00020	mg/L	0.00227	DLHC					
selenium, total	E420	0.000050	mg/L	<0.000500	DLHC		0.05 mg/L			
silicon (as SiO2), total	EC420.SiO2	0.25	mg/L	20.7						
silicon, total	E420	0.10	mg/L	9.70	DLHC					

Page	:	5 of 6
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Droject		

Project 2008162-HUMBER STATION RD

Analyte	Method	LOR	Unit	WT2222750-001 (Continued)					
Total Metals - Continued				(Containded)		Roioo			
silver, total	E420	0.000010	mg/L	<0.000100	DLHC			 	
sodium, total	E420	0.050	mg/L	58.4	DLHC	200 mg/L	20 mg/L	 	
strontium, total	E420	0.00020	mg/L	0.886	DLHC			 	
sulfur, total	E420	0.50	mg/L	72.9	DLHC			 	
tellurium, total	E420	0.00020	mg/L	<0.00200	DLHC			 	
thallium, total	E420	0.000010	mg/L	<0.000100	DLHC			 	
thorium, total	E420	0.00010	mg/L	<0.00100	DLHC			 	
tin, total	E420	0.00010	mg/L	<0.00100	DLHC			 	
titanium, total	E420	0.00030	mg/L	<0.00300	DLHC			 	
tungsten, total	E420	0.00010	mg/L	<0.00100	DLHC			 	
uranium, total	E420	0.000010	mg/L	0.00836	DLHC		0.02 mg/L	 	
vanadium, total	E420	0.00050	mg/L	<0.00500	DLHC			 	
zinc, total	E420	0.0030	mg/L	<0.0300	DLHC	5 mg/L		 	
zirconium, total	E420	0.00020	mg/L	<0.00200	DLHC			 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page	:	6 of 6
Work Order	:	WT2222750
Client	:	Palmer Environmental Consulting Group Inc.
Project	:	2008162-HUMBER STATION RD

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
BH13	Water	colour, apparent	May interfere with disinfection; removal is important to ensure effective treatment.	ONDWS	AO/OG	40.0 CU	5 CU
	Water	solids, total dissolved [TDS]	Based on taste; TDS above 500 mg/L results in excessive scaling in water pipes, water heaters, boilers and appliances; TDS is composed of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, chloride, sulphate and nitrate.	ONDWS	AO/OG	689 mg/L	500 mg/L
	Water	turbidity	Filtration systems should be designed and operated to reduce turbidity levels as low as reasonably achievable and strive to achieve a treated water turbidity target from individual filters of less than 0.1 NTU. Particles can harbour microorganisms, protecting them from disinfection, and can entrap heavy metals and biocides; elevated or fluctuating turbidity in filtered water can indicate a problem with the water treatment process and a potential increased risk of pathogens in treated water.	ONDWS	AO/OG	21.4 NTU	5 NTU
	Water	manganese, total	Based on taste and staining of laundry and plumbing fixtures.	ONDWS	AO/OG	0.120 mg/L	0.05 mg/L
	Water	coliforms, total	Total coliforms are not used as indicators of potential health effects from pathogenic microorganisms; they are used as a tool to determine how well the drinking water treatment system is operating and to indicate water quality changes in the distribution system. Detection of total coliforms from consecutive samples from the same site or from more than 10% of the samples collected in a given sampling period should be investigated.	ONDWS	MAC	<10	1 CFU/100mL
	Water	sodium, total	Based on taste; where a sodium-based water softener is used, a separate unsoftened supply for cooking and drinking purposes is recommended.	ONDWS	MAC	58.4 mg/L	20 mg/L

Key:

ONDWS	Ontario Drinking Water Regulation (JAN, 2020)
AO/OG	Aesthetic Objective/Operational Guideline
MAC	Schedule 1 (Microbiological) and 2 (Chemical) Standards (JAN,2020)

Your Project #: 2017-0293 Site#: BOLTON Site Location: SOLMAR Your C.O.C. #: 629279-01-01

Attention:Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2017/09/29 Report #: R4745503 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM	JOB #	‡: B7	K87	60
Received :	2017	/09/2	22,	14:25

Sample Matrix: Water # Samples Received: 1					
# Samples neceived. 1		Data	Data		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Dissolved Aluminum (0.2 u, clay free)	1	N/A	2017/09/25	CAM SOP-00447	EPA 6020B m
Alkalinity	1	N/A	2017/09/26	CAM SOP-00448	SM 22 2320 B m
Chromium (VI) in Water	1	N/A	2017/09/28	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	1	N/A	2017/09/27	CAM SOP-00457	OMOE E3015 m
Dissolved Oxygen	1	2017/09/23	2017/09/23	CAM SOP-00427	SM 22 4500 O G m
Hardness (calculated as CaCO3)	1	N/A	2017/09/26	CAM SOP	SM 2340 B
				00102/00408/00447	
Mercury	1	2017/09/26	2017/09/27	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	N/A	2017/09/28	CAM SOP-00447	EPA 6020B m
Total Ammonia-N	1	N/A	2017/09/28	CAM SOP-00441	EPA GS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (1)	1	N/A	2017/09/28	CAM SOP-00440	SM 22 4500-NO3I/NO2B
рН	1	N/A	2017/09/26	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2017/09/26	CAM SOP-00444	OMOE E3179 m
Field pH (2)	1	N/A	2017/09/28		Field pH Meter
Sulphide	1	N/A	2017/09/26	CAM SOP-00455	SM 22 4500-S G m
Field Temperature (2)	1	N/A	2017/09/28		Field Thermometer
Total Phosphorus (Colourimetric)	1	2017/09/27	2017/09/27	CAM SOP-00407	SM 22 4500 P B H m
Turbidity	1	N/A	2017/09/24	CAM SOP-00417	SM 22 2130 B m
Un-ionized Ammonia	1	2017/09/23	2017/09/29		

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise

Your Project #: 2017-0293 Site#: BOLTON Site Location: SOLMAR Your C.O.C. #: 629279-01-01

Attention:Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2017/09/29 Report #: R4745503 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K8760

Received: 2017/09/22, 14:25 agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(2) This is a field test, therefore, the results relate to items that were not analysed at Maxxam Analytics Inc.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905)817-5751 _____

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

====

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

PWQO METALS AND INORGANICS (WATER)

Maxxam ID	cxam ID FEK658							
Sampling Date			2017/09/22					
			10:15					
COC Number			629279-01-01					
	UNITS	Criteria	MW3-17	RDL	QC Batch			
Calculated Parameters								
Hardness (CaCO3)	mg/L	-	560	1.0	5179429			
Total Un-ionized Ammonia	mg/L	-	0.019	0.0022	5179420			
Field Measurements								
Field Temperature	Celcius	-	13.79	N/A	ONSITE			
Field pH	рН	6.5:8.5	8.17		ONSITE			
Inorganics				<u> </u>				
Total Ammonia-N	mg/L	-	0.44	0.050	5182709			
Dissolved Oxygen	mg/L	-	4.47		5179915			
рН	рН	6.5:8.5	8.05		5179875			
Phenols-4AAP	mg/L	0.001	ND	0.0010	5183116			
Total Phosphorus	mg/L	0.01	1.4	0.2	5184483			
Sulphide	mg/L	0.02	ND	0.020	5181226			
Turbidity	NTU	-	12	0.1	5179395			
WAD Cyanide (Free)	ug/L	5	ND	1	5182547			
Alkalinity (Total as CaCO3)	mg/L	-	250	1.0	5179872			
Metals				<u> </u>				
Dissolved (0.2u) Aluminum (Al)	ug/L	15	15 7		5179909			
Chromium (VI)	ug/L	1	1 ND		5184085			
Mercury (Hg)	ug/L	0.2	ND	0.1	5183039			
Total Antimony (Sb)	ug/L	20	ND	0.50	5186729			
Total Arsenic (As)	ug/L	100	2.2	1.0	5186729			
Total Beryllium (Be)	ug/L	11	ND	0.50	5186729			
Total Boron (B)	ug/L	200	260	10	5186729			
Total Cadmium (Cd)	ug/L	0.2	ND	0.10	5186729			
Total Chromium (Cr)	ug/L	-	ND	5.0	5186729			
Total Cobalt (Co)	ug/L	0.9	ND	0.50	5186729			
Total Copper (Cu)	ug/L	5	ND	1.0	5186729			
No Fill No Exceedance				<u> </u>				
Grey Exceeds 1 criteri	a policy/	level						
Black Exceeds both cri	Black Exceeds both criteria/levels							
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Criteria: Ontario Provincial Water Quality Objectives								
Ref. to MOEE Water Management	nt docum	nent date	d Feb.1999					
ND = Not detected								
N/A = Not Applicable	N/A = Not Applicable							

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

Maxxam ID			FEK658		
Sampling Date			2017/09/22 10:15		
COC Number			629279-01-01		
	UNITS	Criteria	MW3-17	RDL	QC Batch
Total Iron (Fe)	ug/L	300	ND	100	5186729
Total Lead (Pb)	ug/L	5	ND	0.50	5186729
Total Molybdenum (Mo)	ug/L	40	11	0.50	5186729
Total Nickel (Ni)	ug/L	25	1.9	1.0	5186729
Total Selenium (Se)	ug/L	100	ND	2.0	5186729
Total Silver (Ag)	ug/L	0.1	ND	0.10	5186729
Total Thallium (Tl)	ug/L	0.3	ND	0.050	5186729
Total Tungsten (W)	ug/L	30	ND	1.0	5186729
Total Uranium (U)	ug/L	5	3.4	0.10	5186729
Total Vanadium (V)	ug/L	6	2.1	0.50	5186729
Total Zinc (Zn)	ug/L	30	ND	5.0	5186729
Total Zirconium (Zr)	ug/L	4	ND	1.0	5186729

PWQO METALS AND INORGANICS (WATER)

No Fill No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

ND = Not detected

Grey

Black

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

RESULTS OF ANALYSES OF WATER

Maxxam ID		FEK658				
Sampling Date		2017/09/22				
		10:15				
COC Number		629279-01-01				
	UNITS	MW3-17	RDL	QC Batch		
Inorganics						
Nitrite (N)	mg/L	ND	0.010	5185563		
Nitrate (N)	mg/L	ND	0.10	5185563		
Nitrate + Nitrite (N)	mg/L	ND	0.10	5185563		
RDL = Reportable Detection Limit						
QC Batch = Quality Control Ba	atch					

ND = Not detected

Page 5 of 12 Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

TEST SUMMARY

Maxxam ID:	FEK656	Collected:	2017/09/22
Sample ID:	MW1-17	Shipped:	
Matrix:	Water	Received:	2017/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/26	Surinder Rai
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/27	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5181316	N/A	2017/09/26	Amanpreet Sappal
рН	AT	5179875	N/A	2017/09/26	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5185031	N/A	2017/09/27	Zahid Soikot
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Sulphide	ISE/S	5181226	N/A	2017/09/26	Tahir Anwar
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Maxxam ID: Sample ID: Matrix:	FEK656 Dup MW1-17 Water						Collected: Shipped: Received:	2017/09/22 2017/09/22
Test Description		Instru	umentation	Batch	Extracted	Date Analyzed	Analyst	
Chromium (VI) in Water		IC		5184085	N/A	2017/09/28	Lang Le	
Dissolved Oxygen		DO		5179915	2017/09/23	2017/09/23	Prakash Piy	a

Maxxam ID: FEK657 Sample ID: MW5-17S Matrix: Water Collected: 2017/09/22 Shipped: Received: 2017/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/25	Surinder Rai
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/27	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5181316	N/A	2017/09/26	Amanpreet Sappal
рН	AT	5179875	N/A	2017/09/25	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5185031	N/A	2017/09/27	Zahid Soikot
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith

Page 6 of 12

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

TEST SUMMARY

Maxxam ID: Sample ID:	FEK657 MW5-17S					Collected: Shipped:	2017/09/22
Matrix:	Water					Received:	2017/09/22
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

	motration	Datem	Extracted	Bateranaryzea	/ manyoe
Sulphide	ISE/S	5181226	N/A	2017/09/26	Tahir Anwar
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Maxxam ID: Sample ID: Matrix:	Maxxam ID: FEK657 Dup Sample ID: MW5-17S Matrix: Water				Collected: Shipped: Received:	2017/09/22 2017/09/22	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Alkalinity		AT	5179872	N/A	2017/09/25	Surinder Ra	i
рН		AT	5179875	N/A	2017/09/25	Surinder Ra	i

Maxxam ID:	FEK658	

Maxxam ID: FEK658 Sample ID: MW3-17 Matrix: Water			<u>}</u>		Collected: 2017/09/22 Shipped: Received: 2017/09/22
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/26	Surinder Rai
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/26	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5185563	N/A	2017/09/28	Chandra Nandlal
рН	AT	5179875	N/A	2017/09/26	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5183116	N/A	2017/09/26	Zahid Soikot
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Sulphide	ISE/S	5181226	N/A	2017/09/26	Tahir Anwar
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Maxxam ID: FEK659 Sample ID: MW4-17D Matrix: Water					Collected: 2017/09/22 Shipped: Received: 2017/09/22
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/26	Surinder Rai

Page 7 of 12

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

TEST SUMMARY

Maxxam ID:	FEK659	Collected:	2017/09/22
Matrix:	Water	Received:	2017/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/27	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5181316	N/A	2017/09/26	Amanpreet Sappal
рН	AT	5179875	N/A	2017/09/26	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5185031	N/A	2017/09/27	Zahid Soikot
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Sulphide	ISE/S	5181239	N/A	2017/09/25	Tahir Anwar
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

GENERAL COMMENTS

Each te	emperature is the	average of up to t	three cooler te	mperatures	s taken at	t receipt		
	Package 1	13.3°C						
		l						
Desult								
Result	s relate only to th	e items tested.						

QUALITY ASSURANCE REPORT

Cole Engineering Group Ltd Client Project #: 2017-0293

Site Location: SOLMAR

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5179395	Turbidity	2017/09/24			101	85 - 115	ND, RDL=0.1	NTU	2.8	20		
5179872	Alkalinity (Total as CaCO3)	2017/09/25			97	85 - 115	ND, RDL=1.0	mg/L	0.70	20		
5179875	рН	2017/09/25			101	98 - 103			0.63	N/A		
5179909	Dissolved (0.2u) Aluminum (Al)	2017/09/25	110	80 - 120	102	80 - 120	ND,RDL=5	ug/L	NC	20		
5181226	Sulphide	2017/09/26	109	80 - 120	98	80 - 120	ND, RDL=0.020	mg/L	NC	20		
5181239	Sulphide	2017/09/25	96	80 - 120	105	80 - 120	ND, RDL=0.020	mg/L	3.8	20		
5181316	Nitrate (N)	2017/09/26	100	80 - 120	101	80 - 120	ND, RDL=0.10	mg/L	NC	20		
5181316	Nitrite (N)	2017/09/26	101	80 - 120	100	80 - 120	ND, RDL=0.010	mg/L				
5182547	WAD Cyanide (Free)	2017/09/27	103	80 - 120	101	80 - 120	ND,RDL=1	ug/L	NC	20		
5182709	Total Ammonia-N	2017/09/28	99	80 - 120	99	85 - 115	ND, RDL=0.050	mg/L	6.1	20		
5183039	Mercury (Hg)	2017/09/27	100	75 - 125	102	80 - 120	ND, RDL=0.1	ug/L	NC	20		
5183116	Phenols-4AAP	2017/09/26	94	80 - 120	96	85 - 115	ND, RDL=0.0010	mg/L	NC	20		
5184085	Chromium (VI)	2017/09/28	101	80 - 120	102	80 - 120	ND, RDL=0.50	ug/L	NC	20		
5184483	Total Phosphorus	2017/09/27	96	80 - 120	92	80 - 120	ND, RDL=0.004	mg/L	NC	20	93	80 - 120
5185031	Phenols-4AAP	2017/09/27	97	80 - 120	99	85 - 115	ND, RDL=0.0010	mg/L	NC	20		
5185563	Nitrate (N)	2017/09/28	84	80 - 120	98	80 - 120	ND, RDL=0.10	mg/L	NC	20		
5185563	Nitrite (N)	2017/09/28	103	80 - 120	103	80 - 120	ND, RDL=0.010	mg/L				
5186729	Total Antimony (Sb)	2017/09/28	110	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	NC	20		
5186729	Total Arsenic (As)	2017/09/28	104	80 - 120	99	80 - 120	ND, RDL=1.0	ug/L	10	20		
5186729	Total Beryllium (Be)	2017/09/28	106	80 - 120	101	80 - 120	ND, RDL=0.50	ug/L	NC	20		
5186729	Total Boron (B)	2017/09/28	102	80 - 120	98	80 - 120	ND, RDL=10	ug/L	5.1	20		
5186729	Total Cadmium (Cd)	2017/09/28	105	80 - 120	99	80 - 120	ND, RDL=0.10	ug/L	NC	20		
5186729	Total Chromium (Cr)	2017/09/28	104	80 - 120	100	80 - 120	ND, RDL=5.0	ug/L	NC	20		
5186729	Total Cobalt (Co)	2017/09/28	107	80 - 120	103	80 - 120	ND, RDL=0.50	ug/L	5.4	20		
5186729	Total Copper (Cu)	2017/09/28	108	80 - 120	97	80 - 120	ND, RDL=1.0	ug/L	9.7	20		

QUALITY ASSURANCE REPORT(CONT'D)

Cole Engineering Group Ltd Client Project #: 2017-0293

Site Location: SOLMAR

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5186729	Total Iron (Fe)	2017/09/28	105	80 - 120	101	80 - 120	ND, RDL=100	ug/L	2.3	20		
5186729	Total Lead (Pb)	2017/09/28	102	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	0.80	20		
5186729	Total Molybdenum (Mo)	2017/09/28	108	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	0.14	20		
5186729	Total Nickel (Ni)	2017/09/28	100	80 - 120	97	80 - 120	ND, RDL=1.0	ug/L	8.1	20		
5186729	Total Selenium (Se)	2017/09/28	103	80 - 120	101	80 - 120	ND, RDL=2.0	ug/L	NC	20		
5186729	Total Silver (Ag)	2017/09/28	101	80 - 120	96	80 - 120	ND, RDL=0.10	ug/L	NC	20		
5186729	Total Thallium (Tl)	2017/09/28	101	80 - 120	102	80 - 120	ND, RDL=0.050	ug/L	NC	20		
5186729	Total Tungsten (W)	2017/09/28	112	80 - 120	108	80 - 120	ND, RDL=1.0	ug/L	NC	20		
5186729	Total Uranium (U)	2017/09/28	106	80 - 120	102	80 - 120	ND, RDL=0.10	ug/L	7.8	20		
5186729	Total Vanadium (V)	2017/09/28	101	80 - 120	95	80 - 120	ND, RDL=0.50	ug/L	0.15	20		
5186729	Total Zinc (Zn)	2017/09/28	105	80 - 120	102	80 - 120	ND, RDL=5.0	ug/L	NC	20		
5186729	Total Zirconium (Zr)	2017/09/28	106	80 - 120	95	80 - 120	ND, RDL=1.0	ug/L	NC	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

avisting Carriere

Cristina Carriere, Scientific Service Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 2017-0293 Site#: BOLTON Site Location: SOLMAR Your C.O.C. #: 629279-01-01

Attention:Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2017/09/29 Report #: R4745503 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM	JOB #	‡: B7	K87	60
Received :	2017	/09/2	22,	14:25

Sample Matrix: Water # Samples Received: 1					
# Samples neceived. 1		Data	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Dissolved Aluminum (0.2 u, clay free)	1	N/A	2017/09/25	CAM SOP-00447	EPA 6020B m
Alkalinity	1	N/A	2017/09/26	CAM SOP-00448	SM 22 2320 B m
Chromium (VI) in Water	1	N/A	2017/09/28	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	1	N/A	2017/09/27	CAM SOP-00457	OMOE E3015 m
Dissolved Oxygen	1	2017/09/23	2017/09/23	CAM SOP-00427	SM 22 4500 O G m
Hardness (calculated as CaCO3)	1	N/A	2017/09/27	CAM SOP	SM 2340 B
				00102/00408/00447	
Mercury	1	2017/09/26	2017/09/27	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	N/A	2017/09/28	CAM SOP-00447	EPA 6020B m
Total Ammonia-N	1	N/A	2017/09/28	CAM SOP-00441	EPA GS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (1)	1	N/A	2017/09/26	CAM SOP-00440	SM 22 4500-NO3I/NO2B
рН	1	N/A	2017/09/26	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2017/09/27	CAM SOP-00444	OMOE E3179 m
Field pH (2)	1	N/A	2017/09/28		Field pH Meter
Sulphide	1	N/A	2017/09/25	CAM SOP-00455	SM 22 4500-S G m
Field Temperature (2)	1	N/A	2017/09/28		Field Thermometer
Total Phosphorus (Colourimetric)	1	2017/09/27	2017/09/27	CAM SOP-00407	SM 22 4500 P B H m
Turbidity	1	N/A	2017/09/24	CAM SOP-00417	SM 22 2130 B m
Un-ionized Ammonia	1	2017/09/23	2017/09/29		

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise

Your Project #: 2017-0293 Site#: BOLTON Site Location: SOLMAR Your C.O.C. #: 629279-01-01

Attention:Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2017/09/29 Report #: R4745503 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K8760

Received: 2017/09/22, 14:25 agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(2) This is a field test, therefore, the results relate to items that were not analysed at Maxxam Analytics Inc.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905)817-5751 _____

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

====

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

PWQO METALS AND INORGANICS (WATER)

Maxxam ID			FEK659				
Sampling Date			2017/09/22				
			10:50				
COC Number			629279-01-01				
	UNITS	Criteria	MW4-17D	RDL	QC Batch		
Calculated Parameters							
Hardness (CaCO3)	mg/L	-	310	1.0	5179429		
Total Un-ionized Ammonia	mg/L	-	0.067	0.005	5179420		
Field Measurements							
Field Temperature	Celcius	-	13.15	N/A	ONSITE		
Field pH	рН	6.5:8.5	8.58		ONSITE		
Inorganics							
Total Ammonia-N	mg/L	-	0.67	0.050	5182709		
Dissolved Oxygen	mg/L	-	2.84		5179915		
рН	рН	6.5:8.5	8.36		5179875		
Phenols-4AAP	mg/L	0.001	ND	0.0010	5185031		
Total Phosphorus	mg/L	0.01	3.3	0.2	5184483		
Sulphide	mg/L	0.02	ND	0.020	5181239		
Turbidity	NTU	-	3000	0.5	5179395		
WAD Cyanide (Free)	ug/L	ug/L 5 N		1	5182547		
Alkalinity (Total as CaCO3)	mg/L	-	340	1.0	5179872		
Metals							
Dissolved (0.2u) Aluminum (Al)	ug/L	s/L 15 ND		5	5179909		
Chromium (VI)	ug/L	/L 1 ND		0.50	5184085		
Mercury (Hg)	ug/L	0.2	ND	0.1	5183039		
Total Antimony (Sb)	ug/L	20	0.94	0.50	5186729		
Total Arsenic (As)	ug/L	100	2.8	1.0	5186729		
Total Beryllium (Be)	ug/L	11	ND	0.50	5186729		
Total Boron (B)	ug/L	200	110	10	5186729		
Total Cadmium (Cd)	ug/L	0.2	ND	0.10	5186729		
Total Chromium (Cr)	ug/L	-	ND	5.0	5186729		
Total Cobalt (Co)	ug/L	0.9	2.5	0.50	5186729		
Total Copper (Cu)	ug/L	5	5.5	1.0	5186729		
No Fill No Exceedance							
Grey Exceeds 1 criteri	a policy/	level					
Black Exceeds both cri	teria/lev	els					
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
Criteria: Ontario Provincial Wate	Criteria: Ontario Provincial Water Quality Objectives						
Ref. to MOEE Water Management	nt docun	nent date	d Feb.1999				
ND = Not detected							
N/A = Not Applicable							

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

Maxxam ID			FEK659		
Sampling Date			2017/09/22 10:50		
COC Number			629279-01-01		
	UNITS	Criteria	MW4-17D	RDL	QC Batch
Total Iron (Fe)	ug/L	300	5400	100	5186729
Total Lead (Pb)	ug/L	5	2.5	0.50	5186729
Total Molybdenum (Mo)	ug/L	40	8.4	0.50	5186729
Total Nickel (Ni)	ug/L	25	5.2	1.0	5186729
Total Selenium (Se)	ug/L	100	ND	2.0	5186729
Total Silver (Ag)	ug/L	0.1	ND	0.10	5186729
Total Thallium (Tl)	ug/L	0.3	ND	0.050	5186729
Total Tungsten (W)	ug/L	30	ND	1.0	5186729
Total Uranium (U)	ug/L	5	1.2	0.10	5186729
Total Vanadium (V)	ug/L	6	7.4	0.50	5186729
Total Zinc (Zn)	ug/L	30	21	5.0	5186729
Total Zirconium (Zr)	ug/L	4	1.1	1.0	5186729
No Fill No Excoodance					

PWQO METALS AND INORGANICS (WATER)

No Fill Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

ND = Not detected

Grey

Black

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

RESULTS OF ANALYSES OF WATER

Maxxam ID		FEK659						
Sampling Date		2017/09/22						
		10:50						
COC Number		629279-01-01						
	UNITS	MW4-17D	RDL	QC Batch				
Inorganics								
Nitrite (N)	mg/L	ND	0.010	5181316				
Nitrate (N)	mg/L	ND	0.10	5181316				
Nitrate + Nitrite (N)	mg/L	ND	0.10	5181316				
RDL = Reportable Detection Limit								
QC Batch = Quality Control Ba	atch							

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

TEST SUMMARY

Maxxam ID:	FEK656	Collected:	2017/09/22
Sample ID:	MW1-17	Shipped:	
Matrix:	Water	Received:	2017/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/26	Surinder Rai
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/27	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5181316	N/A	2017/09/26	Amanpreet Sappal
рН	AT	5179875	N/A	2017/09/26	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5185031	N/A	2017/09/27	Zahid Soikot
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Sulphide	ISE/S	5181226	N/A	2017/09/26	Tahir Anwar
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Maxxam ID: Sample ID: Matrix:	FEK656 Dup MW1-17 Water						Collected: Shipped: Received:	2017/09/22 2017/09/22
Test Description		Instru	umentation	Batch	Extracted	Date Analyzed	Analyst	
Chromium (VI) in Water		IC		5184085	N/A	2017/09/28	Lang Le	
Dissolved Oxygen		DO		5179915	2017/09/23	2017/09/23	Prakash Piy	a

Maxxam ID: FEK657 Sample ID: MW5-17S Matrix: Water Collected: 2017/09/22 Shipped: Received: 2017/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/25	Surinder Rai
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/27	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5181316	N/A	2017/09/26	Amanpreet Sappal
рН	AT	5179875	N/A	2017/09/25	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5185031	N/A	2017/09/27	Zahid Soikot
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith

Page 6 of 12

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

TEST SUMMARY

Maxxam ID: Sample ID:	FEK657 MW5-17S					Collected: Shipped:	2017/09/22
Matrix:	Water					Received:	2017/09/22
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

	motration	Baten	Extracted	Bateranaryzea	/ manyoe
Sulphide	ISE/S	5181226	N/A	2017/09/26	Tahir Anwar
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Maxxam ID: Sample ID: Matrix:	FEK657 Dup MW5-17S Water			<u>e</u> >		Collected: Shipped: Received:	2017/09/22 2017/09/22
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Alkalinity		AT	5179872	N/A	2017/09/25	Surinder Ra	i
рН		AT	5179875	N/A	2017/09/25	Surinder Ra	i

Maxxam ID:	FEK658	

Maxxam ID: FEK658 Sample ID: MW3-17 Matrix: Water			<u>}</u>		Collected: 2017/09/22 Shipped: Received: 2017/09/22
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/26	Surinder Rai
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/26	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5185563	N/A	2017/09/28	Chandra Nandlal
рН	AT	5179875	N/A	2017/09/26	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5183116	N/A	2017/09/26	Zahid Soikot
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Sulphide	ISE/S	5181226	N/A	2017/09/26	Tahir Anwar
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Maxxam ID: FEK659 Sample ID: MW4-17D Matrix: Water					Collected: 2017/09/22 Shipped: Received: 2017/09/22
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/26	Surinder Rai

Page 7 of 12

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

TEST SUMMARY

Maxxam ID:	FEK659	Collected:	2017/09/22
Matrix:	Water	Received:	2017/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/27	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5181316	N/A	2017/09/26	Amanpreet Sappal
рН	AT	5179875	N/A	2017/09/26	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5185031	N/A	2017/09/27	Zahid Soikot
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Sulphide	ISE/S	5181239	N/A	2017/09/25	Tahir Anwar
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

GENERAL COMMENTS

Each te	emperature is the	average of up to t	three cooler te	mperatures	s taken at	t receipt		
	Package 1	13.3°C						
		l						
Desult								
Result	s relate only to th	e items tested.						

QUALITY ASSURANCE REPORT

Cole Engineering Group Ltd Client Project #: 2017-0293

Site Location: SOLMAR

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5179395	Turbidity	2017/09/24			101	85 - 115	ND, RDL=0.1	NTU	2.8	20		
5179872	Alkalinity (Total as CaCO3)	2017/09/25			97	85 - 115	ND, RDL=1.0	mg/L	0.70	20		
5179875	рН	2017/09/25			101	98 - 103			0.63	N/A		
5179909	Dissolved (0.2u) Aluminum (Al)	2017/09/25	110	80 - 120	102	80 - 120	ND,RDL=5	ug/L	NC	20		
5181226	Sulphide	2017/09/26	109	80 - 120	98	80 - 120	ND, RDL=0.020	mg/L	NC	20		
5181239	Sulphide	2017/09/25	96	80 - 120	105	80 - 120	ND, RDL=0.020	mg/L	3.8	20		
5181316	Nitrate (N)	2017/09/26	100	80 - 120	101	80 - 120	ND, RDL=0.10	mg/L	NC	20		
5181316	Nitrite (N)	2017/09/26	101	80 - 120	100	80 - 120	ND, RDL=0.010	mg/L				
5182547	WAD Cyanide (Free)	2017/09/27	103	80 - 120	101	80 - 120	ND,RDL=1	ug/L	NC	20		
5182709	Total Ammonia-N	2017/09/28	99	80 - 120	99	85 - 115	ND, RDL=0.050	mg/L	6.1	20		
5183039	Mercury (Hg)	2017/09/27	100	75 - 125	102	80 - 120	ND, RDL=0.1	ug/L	NC	20		
5183116	Phenols-4AAP	2017/09/26	94	80 - 120	96	85 - 115	ND, RDL=0.0010	mg/L	NC	20		
5184085	Chromium (VI)	2017/09/28	101	80 - 120	102	80 - 120	ND, RDL=0.50	ug/L	NC	20		
5184483	Total Phosphorus	2017/09/27	96	80 - 120	92	80 - 120	ND, RDL=0.004	mg/L	NC	20	93	80 - 120
5185031	Phenols-4AAP	2017/09/27	97	80 - 120	99	85 - 115	ND, RDL=0.0010	mg/L	NC	20		
5185563	Nitrate (N)	2017/09/28	84	80 - 120	98	80 - 120	ND, RDL=0.10	mg/L	NC	20		
5185563	Nitrite (N)	2017/09/28	103	80 - 120	103	80 - 120	ND, RDL=0.010	mg/L				
5186729	Total Antimony (Sb)	2017/09/28	110	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	NC	20		
5186729	Total Arsenic (As)	2017/09/28	104	80 - 120	99	80 - 120	ND, RDL=1.0	ug/L	10	20		
5186729	Total Beryllium (Be)	2017/09/28	106	80 - 120	101	80 - 120	ND, RDL=0.50	ug/L	NC	20		
5186729	Total Boron (B)	2017/09/28	102	80 - 120	98	80 - 120	ND, RDL=10	ug/L	5.1	20		
5186729	Total Cadmium (Cd)	2017/09/28	105	80 - 120	99	80 - 120	ND, RDL=0.10	ug/L	NC	20		
5186729	Total Chromium (Cr)	2017/09/28	104	80 - 120	100	80 - 120	ND, RDL=5.0	ug/L	NC	20		
5186729	Total Cobalt (Co)	2017/09/28	107	80 - 120	103	80 - 120	ND, RDL=0.50	ug/L	5.4	20		
5186729	Total Copper (Cu)	2017/09/28	108	80 - 120	97	80 - 120	ND, RDL=1.0	ug/L	9.7	20		

QUALITY ASSURANCE REPORT(CONT'D)

Cole Engineering Group Ltd Client Project #: 2017-0293

Site Location: SOLMAR

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5186729	Total Iron (Fe)	2017/09/28	105	80 - 120	101	80 - 120	ND, RDL=100	ug/L	2.3	20		
5186729	Total Lead (Pb)	2017/09/28	102	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	0.80	20		
5186729	Total Molybdenum (Mo)	2017/09/28	108	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	0.14	20		
5186729	Total Nickel (Ni)	2017/09/28	100	80 - 120	97	80 - 120	ND, RDL=1.0	ug/L	8.1	20		
5186729	Total Selenium (Se)	2017/09/28	103	80 - 120	101	80 - 120	ND, RDL=2.0	ug/L	NC	20		
5186729	Total Silver (Ag)	2017/09/28	101	80 - 120	96	80 - 120	ND, RDL=0.10	ug/L	NC	20		
5186729	Total Thallium (Tl)	2017/09/28	101	80 - 120	102	80 - 120	ND, RDL=0.050	ug/L	NC	20		
5186729	Total Tungsten (W)	2017/09/28	112	80 - 120	108	80 - 120	ND, RDL=1.0	ug/L	NC	20		
5186729	Total Uranium (U)	2017/09/28	106	80 - 120	102	80 - 120	ND, RDL=0.10	ug/L	7.8	20		
5186729	Total Vanadium (V)	2017/09/28	101	80 - 120	95	80 - 120	ND, RDL=0.50	ug/L	0.15	20		
5186729	Total Zinc (Zn)	2017/09/28	105	80 - 120	102	80 - 120	ND, RDL=5.0	ug/L	NC	20		
5186729	Total Zirconium (Zr)	2017/09/28	106	80 - 120	95	80 - 120	ND, RDL=1.0	ug/L	NC	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

avisting Carriere

Cristina Carriere, Scientific Service Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 2017-0293 Site#: BOLTON Site Location: SOLMAR Your C.O.C. #: 629279-01-01

Attention:Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2017/09/29 Report #: R4745503 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K8760

Received: 2017/09/22, 14:	25
---------------------------	----

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Dissolved Aluminum (0.2 u, clay free)	4	N/A	2017/09/25	CAM SOP-00447	EPA 6020B m
Alkalinity	1	N/A	2017/09/25	CAM SOP-00448	SM 22 2320 B m
Alkalinity	3	N/A	2017/09/26	CAM SOP-00448	SM 22 2320 B m
Chromium (VI) in Water	4	N/A	2017/09/28	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	4	N/A	2017/09/27	CAM SOP-00457	OMOE E3015 m
Dissolved Oxygen	4	2017/09/23	2017/09/23	CAM SOP-00427	SM 22 4500 O G m
Hardness (calculated as CaCO3)	1	N/A	2017/09/26	CAM SOP 00102/00408/00447	SM 2340 B
Hardness (calculated as CaCO3)	3	N/A	2017/09/27	CAM SOP 00102/00408/00447	SM 2340 B
Mercury	4	2017/09/26	2017/09/27	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	4	N/A	2017/09/28	CAM SOP-00447	EPA 6020B m
Total Ammonia-N	4	N/A	2017/09/28	CAM SOP-00441	EPA GS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (1)	3	N/A	2017/09/26	CAM SOP-00440	SM 22 4500-NO3I/NO2B
Nitrate (NO3) and Nitrite (NO2) in Water (1)	1	N/A	2017/09/28	CAM SOP-00440	SM 22 4500-NO3I/NO2B
рН	1	N/A	2017/09/25	CAM SOP-00413	SM 4500H+ B m
рН	3	N/A	2017/09/26	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2017/09/26	CAM SOP-00444	OMOE E3179 m
Phenols (4AAP)	3	N/A	2017/09/27	CAM SOP-00444	OMOE E3179 m
Field pH (2)	4	N/A	2017/09/28		Field pH Meter
Sulphide	1	N/A	2017/09/25	CAM SOP-00455	SM 22 4500-S G m
Sulphide	3	N/A	2017/09/26	CAM SOP-00455	SM 22 4500-S G m
Field Temperature (2)	4	N/A	2017/09/28		Field Thermometer
Total Phosphorus (Colourimetric)	4	2017/09/27	2017/09/27	CAM SOP-00407	SM 22 4500 P B H m
Turbidity	4	N/A	2017/09/24	CAM SOP-00417	SM 22 2130 B m
Un-ionized Ammonia	4	2017/09/23	2017/09/29		

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

Your Project #: 2017-0293 Site#: BOLTON Site Location: SOLMAR Your C.O.C. #: 629279-01-01

Attention:Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2017/09/29 Report #: R4745503 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K8760 Received: 2017/09/22, 14:25

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(2) This is a field test, therefore, the results relate to items that were not analysed at Maxxam Analytics Inc.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905)817-5751

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

PWQO METALS AND INORGANICS (WATER)

Maxxam ID				FEK656	FEK656		FEK657	FEK657		
Sampling Date				2017/09/22	2017/09/22		2017/09/22	2017/09/22		
				12:45	12:45		11:50	11:50		
COC Number				629279-01-01	629279-01-01		629279-01-01	629279-01-01		
		UNITS	Criteria	MW1-17	MW1-17 Lab-Dup	RDL	MW5-17S	MW5-17S Lab-Dup	RDL	QC Batch
Calculated Parameters										
Hardness (CaCO3)		mg/L	-	590		1.0	230		1.0	5179429
Total Un-ionized Ammo	nia	mg/L	-	0.0037		0.0016	0.11		0.0054	5179420
Field Measurements										
Field Temperature		Celcius	-	15.7		N/A	14.7		N/A	ONSITE
Field pH		рН	6.5:8.5	7.98			8.56			ONSITE
Inorganics								·		
Total Ammonia-N		mg/L	-	0.11		0.050	1.0		0.050	5182709
Dissolved Oxygen		mg/L	-	5.77	5.82		3.94			5179915
рН		рН	6.5:8.5	8.02			8.06	8.12		5179875
Phenols-4AAP		mg/L	0.001	ND		0.0010	ND		0.0010	5185031
Total Phosphorus		mg/L	0.01	0.36		0.02	0.8		0.1	5184483
Sulphide		mg/L	0.02	ND		0.020	ND		0.020	5181226
Turbidity		NTU	-	6.1		0.1	28		0.1	5179395
WAD Cyanide (Free)		ug/L	5	ND		1	ND		1	5182547
Alkalinity (Total as CaCC)3)	mg/L	-	520		1.0	110	110	1.0	5179872
Metals										
Dissolved (0.2u) Alumin	um (Al)	ug/L	15	ND		5	6		5	5179909
Chromium (VI)		ug/L	1	ND	ND	0.50	ND		0.50	5184085
Mercury (Hg)		ug/L	0.2	ND		0.1	ND		0.1	5183039
Total Antimony (Sb)		ug/L	20	ND		0.50	0.58		0.50	5186729
Total Arsenic (As)		ug/L	100	ND		1.0	ND		1.0	5186729
Total Beryllium (Be)		ug/L	11	ND		0.50	ND		0.50	5186729
Total Boron (B)		ug/L	200	110		10	420		10	5186729
Total Cadmium (Cd)		ug/L	0.2	ND		0.10	ND		0.10	5186729
Total Chromium (Cr)		ug/L	-	ND		5.0	ND		5.0	5186729
Total Cobalt (Co)		ug/L	0.9	ND		0.50	ND		0.50	5186729
Total Copper (Cu)		ug/L	5	1.6		1.0	1.3		1.0	5186729
Total Iron (Fe)		ug/L	300	ND		100	ND		100	5186729
No Fill	No Exce	edance								
Grey	Exceeds	s 1 criter	ia policy/	level						
Black	Exceeds	s both cr	iteria/lev	els						
RDL = Reportable Detec	tion Limit	t								
QC Batch = Quality Cont	trol Batch	1								
Lab-Dup = Laboratory Ir	nitiated Dr	uplicate								
Criteria: Ontario Provine	Criteria: Ontario Provincial Water Quality Objectives									
Ref. to MOEE Water Ma	anagemen	nt docum	ient date	d Feb.1999						
ND = Not detected										

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

PWQO METALS AND INORGANICS (WATER)

Maxxam ID		l.		FEK656	FEK656		FEK657	FEK657		
Sampling Date				2017/09/22 12:45	2017/09/22 12:45		2017/09/22 11:50	2017/09/22 11:50		
COC Number				629279-01-01	629279-01-01		629279-01-01	629279-01-01		
		UNITS	Criteria	MW1-17	MW1-17 Lab-Dup	RDL	MW5-17S	MW5-17S Lab-Dup	RDL	QC Batch
Total Lead (Pb)		ug/L	5	ND		0.50	ND		0.50	5186729
Total Molybdenum (Mo	o)	ug/L	40	6.9		0.50	5.9		0.50	5186729
Total Nickel (Ni)		ug/L	25	2.6		1.0	ND		1.0	5186729
Total Selenium (Se)		ug/L	100	ND		2.0	ND		2.0	5186729
Total Silver (Ag)		ug/L	0.1	ND		0.10	ND		0.10	5186729
Total Thallium (Tl)		ug/L	0.3	ND		0.050	ND		0.050	5186729
Total Tungsten (W)		ug/L	30	ND		1.0	ND		1.0	5186729
Total Uranium (U)		ug/L	5	9.2		0.10	1.2		0.10	5186729
Total Vanadium (V)		ug/L	6	ND		0.50	0.74		0.50	5186729
Total Zinc (Zn)		ug/L	30	ND		5.0	ND		5.0	5186729
Total Zirconium (Zr)		ug/L	4	ND		1.0	ND		1.0	5186729
No Fill	No Exce	edance								
Grey	Exceeds	3 1 criter	ia policy/	'level						

eds 1 criteria policy/level

Black

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

PWQO METALS AND INORGANICS (WATER)

Maxxam ID				FEK658			FEK659		
Sampling Date				2017/09/22			2017/09/22		
				10:15			10:50		-
COC Number				629279-01-01			629279-01-01		
		UNITS	Criteria	MW3-17	RDL	QC Batch	MW4-17D	RDL	QC Batch
Calculated Paramete	ers								
Hardness (CaCO3)		mg/L	-	560	1.0	5179429	310	1.0	5179429
Total Un-ionized Am	monia	mg/L	-	0.019	0.0022	5179420	0.067	0.005	5179420
Field Measurements	5								
Field Temperature		Celcius	-	13.79	N/A	ONSITE	13.15	N/A	ONSITE
Field pH		рН	6.5:8.5	8.17		ONSITE	8.58		ONSITE
Inorganics									
Total Ammonia-N		mg/L	-	0.44	0.050	5182709	0.67	0.050	5182709
Dissolved Oxygen		mg/L	-	4.47		5179915	2.84		5179915
рН		рН	6.5:8.5	8.05		5179875	8.36		5179875
Phenols-4AAP		mg/L	0.001	ND	0.0010	5183116	ND	0.0010	5185031
Total Phosphorus		mg/L	0.01	1.4	0.2	5184483	3.3	0.2	5184483
Sulphide		mg/L	0.02	ND	0.020	5181226	ND	0.020	5181239
Turbidity		NTU	-	12	0.1	5179395	3000	0.5	5179395
WAD Cyanide (Free)		ug/L	5	ND	1	5182547	ND	1	5182547
Alkalinity (Total as C	aCO3)	mg/L	-	250	1.0	5179872	340	1.0	5179872
Metals									
Dissolved (0.2u) Alur	minum (Al)	ug/L	15	7	5	5179909	ND	5	5179909
Chromium (VI)		ug/L	1	ND	0.50	5184085	ND	0.50	5184085
Mercury (Hg)		ug/L	0.2	ND	0.1	5183039	ND	0.1	5183039
Total Antimony (Sb)		ug/L	20	ND	0.50	5186729	0.94	0.50	5186729
Total Arsenic (As)		ug/L	100	2.2	1.0	5186729	2.8	1.0	5186729
Total Beryllium (Be)		ug/L	11	ND	0.50	5186729	ND	0.50	5186729
Total Boron (B)		ug/L	200	260	10	5186729	110	10	5186729
Total Cadmium (Cd)		ug/L	0.2	ND	0.10	5186729	ND	0.10	5186729
Total Chromium (Cr)		ug/L	-	ND	5.0	5186729	ND	5.0	5186729
Total Cobalt (Co)		ug/L	0.9	ND	0.50	5186729	2.5	0.50	5186729
Total Copper (Cu)		ug/L	5	ND	1.0	5186729	5.5	1.0	5186729
Total Iron (Fe)		ug/L	300	ND	100	5186729	5400	100	5186729
No Fill	No Exceeda	ance							
Grey	Exceeds 1 c	riteria p	olicy/lev	el					
Black	Exceeds bo	th criter	ia/levels						
RDL = Reportable De	etection Limit	:							
QC Batch = Quality C	Control Batch								
Criteria: Ontario Pro	vincial Water	r Quality	, Objectiv	es					

Ref. to MOEE Water Management document dated Feb.1999

N/A = Not Applicable

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

PWQO METALS AND INORGANICS (WATER)

Maxxam ID			FEK658			FEK659		
Sampling Date			2017/09/22			2017/09/22		
			10:15			10:50		
COC Number			629279-01-01			629279-01-01		
	UNITS	Criteria	MW3-17	RDL	QC Batch	MW4-17D	RDL	QC Batch
Total Lead (Pb)	ug/L	5	ND	0.50	5186729	2.5	0.50	5186729
Total Molybdenum (Mo)	ug/L	40	11	0.50	5186729	8.4	0.50	5186729
Total Nickel (Ni)	ug/L	25	1.9	1.0	5186729	5.2	1.0	5186729
Total Selenium (Se)	ug/L	100	ND	2.0	5186729	ND	2.0	5186729
Total Silver (Ag)	ug/L	0.1	ND	0.10	5186729	ND	0.10	5186729
Total Thallium (Tl)	ug/L	0.3	ND	0.050	5186729	ND	0.050	5186729
Total Tungsten (W)	ug/L	30	ND	1.0	5186729	ND	1.0	5186729
Total Uranium (U)	ug/L	5	3.4	0.10	5186729	1.2	0.10	5186729
Total Vanadium (V)	ug/L	6	2.1	0.50	5186729	7.4	0.50	5186729
Total Zinc (Zn)	ug/L	30	ND	5.0	5186729	21	5.0	5186729
Total Zirconium (Zr)	ug/L	4	ND	1.0	5186729	1.1	1.0	5186729

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

RESULTS OF ANALYSES OF WATER

Maxxam ID		FEK656	FEK657		FEK658		FEK659		
Sampling Data		2017/09/22	2017/09/22		2017/09/22		2017/09/22		
Sampling Date		12:45	11:50		10:15		10:50		
COC Number		629279-01-01	629279-01-01		629279-01-01		629279-01-01		
	UNITS	MW1-17	MW5-17S	QC Batch	MW3-17	QC Batch	MW4-17D	RDL	QC Batch
Inorganics									
Nitrite (N)	mg/L	ND	0.013	5181316	ND	5185563	ND	0.010	5181316
Nitrate (N)	mg/L	ND	ND	5181316	ND	5185563	ND	0.10	5181316
Nitrate + Nitrite (N)	mg/L	ND	ND	5181316	ND	5185563	ND	0.10	5181316

QC Batch = Quality Control Batch

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

TEST SUMMARY

Maxxam ID: Sample ID:	FEK656	Collected: Shinned:	2017/09/22
Matrix:	Water	Received:	2017/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/26	Surinder Rai
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/27	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5181316	N/A	2017/09/26	Amanpreet Sappal
рН	AT	5179875	N/A	2017/09/26	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5185031	N/A	2017/09/27	Zahid Soikot
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Sulphide	ISE/S	5181226	N/A	2017/09/26	Tahir Anwar
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Maxxam ID: Sample ID: Matrix:	FEK656 Dup MW1-17 Water						Collected: Shipped: Received:	2017/09/22 2017/09/22
Test Description		Instru	mentation	Batch	Extracted	Date Analyzed	Analyst	
Chromium (VI) in Water		IC		5184085	N/A	2017/09/28	Lang Le	
Dissolved Oxygen		DO		5179915	2017/09/23	2017/09/23	Prakash Piy	/a

Maxxam ID:	FEK657
Sample ID:	MW5-17S
Matrix:	Water

Collected: 2017/09/22 Shipped: **Received:** 2017/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/25	Surinder Rai
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/27	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5181316	N/A	2017/09/26	Amanpreet Sappal
рН	AT	5179875	N/A	2017/09/25	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5185031	N/A	2017/09/27	Zahid Soikot
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith

Page 8 of 14

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

TEST SUMMARY

Maxxam ID: Sample ID:	FEK657 MW5-17S					Collected:	2017/09/22
Matrix:	Water					Received:	2017/09/22
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

	motration	Daten	Exclusion	Baterinaryzea	/ manyoe
Sulphide	ISE/S	5181226	N/A	2017/09/26	Tahir Anwar
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Maxxam ID: Sample ID: Matrix:	FEK657 Dup MW5-17S Water					Collected: Shipped: Received:	2017/09/22 2017/09/22
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Alkalinity		AT	5179872	N/A	2017/09/25	Surinder Ra	i
рН		AT	5179875	N/A	2017/09/25	Surinder Ra	i

Maxxam ID:	FEK658

Maxxam ID: FEK658 Sample ID: MW3-17 Matrix: Water			$\boldsymbol{\mathcal{D}}$		Collected: 2017/09/22 Shipped: Received: 2017/09/22
Dissolved Aluminum (0.2 yr clay frag)		5170000	Extracted		Analyst Drompol Dhotti
Alkelinity		5179909	N/A	2017/09/25	Surinder Dei
		5179872	N/A	2017/09/26	
Chromium (VI) in Water	IC .	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/26	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5185563	N/A	2017/09/28	Chandra Nandlal
рН	AT	5179875	N/A	2017/09/26	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5183116	N/A	2017/09/26	Zahid Soikot
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Sulphide	ISE/S	5181226	N/A	2017/09/26	Tahir Anwar
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Maxxam ID: Sample ID: Matrix:	FEK659 MW4-17D Water					Collected: 2017/09/22 Shipped: Received: 2017/09/22	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Dissolved Aluminum (0.2	u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti	
Alkalinity		AT	5179872	N/A	2017/09/26	Surinder Rai	

Page 9 of 14

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

TEST SUMMARY

Maxxam ID:	FEK659	Collected:	2017/09/22
Matrix:	Water	Received:	2017/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/27	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5181316	N/A	2017/09/26	Amanpreet Sappal
рН	AT	5179875	N/A	2017/09/26	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5185031	N/A	2017/09/27	Zahid Soikot
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Sulphide	ISE/S	5181239	N/A	2017/09/25	Tahir Anwar
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

GENERAL COMMENTS

Each te	emperature is the	average of up to t	three cooler te	mperatures	s taken at	t receipt		
	Package 1	13.3°C						
		l						
Desult								
Result	s relate only to th	e items tested.						

QUALITY ASSURANCE REPORT

Cole Engineering Group Ltd Client Project #: 2017-0293

Site Location: SOLMAR

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	andard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5179395	Turbidity	2017/09/24			101	85 - 115	ND, RDL=0.1	NTU	2.8	20		
5179872	Alkalinity (Total as CaCO3)	2017/09/25			97	85 - 115	ND, RDL=1.0	mg/L	0.70	20		
5179875	рН	2017/09/25			101	98 - 103			0.63	N/A		
5179909	Dissolved (0.2u) Aluminum (Al)	2017/09/25	110	80 - 120	102	80 - 120	ND,RDL=5	ug/L	NC	20		
5181226	Sulphide	2017/09/26	109	80 - 120	98	80 - 120	ND, RDL=0.020	mg/L	NC	20		
5181239	Sulphide	2017/09/25	96	80 - 120	105	80 - 120	ND, RDL=0.020	mg/L	3.8	20		
5181316	Nitrate (N)	2017/09/26	100	80 - 120	101	80 - 120	ND, RDL=0.10	mg/L	NC	20		
5181316	Nitrite (N)	2017/09/26	101	80 - 120	100	80 - 120	ND, RDL=0.010	mg/L				
5182547	WAD Cyanide (Free)	2017/09/27	103	80 - 120	101	80 - 120	ND,RDL=1	ug/L	NC	20		
5182709	Total Ammonia-N	2017/09/28	99	80 - 120	99	85 - 115	ND, RDL=0.050	mg/L	6.1	20		
5183039	Mercury (Hg)	2017/09/27	100	75 - 125	102	80 - 120	ND, RDL=0.1	ug/L	NC	20		
5183116	Phenols-4AAP	2017/09/26	94	80 - 120	96	85 - 115	ND, RDL=0.0010	mg/L	NC	20		
5184085	Chromium (VI)	2017/09/28	101	80 - 120	102	80 - 120	ND, RDL=0.50	ug/L	NC	20		
5184483	Total Phosphorus	2017/09/27	96	80 - 120	92	80 - 120	ND, RDL=0.004	mg/L	NC	20	93	80 - 120
5185031	Phenols-4AAP	2017/09/27	97	80 - 120	99	85 - 115	ND, RDL=0.0010	mg/L	NC	20		
5185563	Nitrate (N)	2017/09/28	84	80 - 120	98	80 - 120	ND, RDL=0.10	mg/L	NC	20		
5185563	Nitrite (N)	2017/09/28	103	80 - 120	103	80 - 120	ND, RDL=0.010	mg/L				
5186729	Total Antimony (Sb)	2017/09/28	110	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	NC	20		
5186729	Total Arsenic (As)	2017/09/28	104	80 - 120	99	80 - 120	ND, RDL=1.0	ug/L	10	20		
5186729	Total Beryllium (Be)	2017/09/28	106	80 - 120	101	80 - 120	ND, RDL=0.50	ug/L	NC	20		
5186729	Total Boron (B)	2017/09/28	102	80 - 120	98	80 - 120	ND, RDL=10	ug/L	5.1	20		
5186729	Total Cadmium (Cd)	2017/09/28	105	80 - 120	99	80 - 120	ND, RDL=0.10	ug/L	NC	20		
5186729	Total Chromium (Cr)	2017/09/28	104	80 - 120	100	80 - 120	ND, RDL=5.0	ug/L	NC	20		
5186729	Total Cobalt (Co)	2017/09/28	107	80 - 120	103	80 - 120	ND, RDL=0.50	ug/L	5.4	20		
5186729	Total Copper (Cu)	2017/09/28	108	80 - 120	97	80 - 120	ND, RDL=1.0	ug/L	9.7	20		

QUALITY ASSURANCE REPORT(CONT'D)

Cole Engineering Group Ltd Client Project #: 2017-0293

Site Location: SOLMAR

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5186729	Total Iron (Fe)	2017/09/28	105	80 - 120	101	80 - 120	ND, RDL=100	ug/L	2.3	20		
5186729	Total Lead (Pb)	2017/09/28	102	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	0.80	20		
5186729	Total Molybdenum (Mo)	2017/09/28	108	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	0.14	20		
5186729	Total Nickel (Ni)	2017/09/28	100	80 - 120	97	80 - 120	ND, RDL=1.0	ug/L	8.1	20		
5186729	Total Selenium (Se)	2017/09/28	103	80 - 120	101	80 - 120	ND, RDL=2.0	ug/L	NC	20		
5186729	Total Silver (Ag)	2017/09/28	101	80 - 120	96	80 - 120	ND, RDL=0.10	ug/L	NC	20		
5186729	Total Thallium (Tl)	2017/09/28	101	80 - 120	102	80 - 120	ND, RDL=0.050	ug/L	NC	20		
5186729	Total Tungsten (W)	2017/09/28	112	80 - 120	108	80 - 120	ND, RDL=1.0	ug/L	NC	20		
5186729	Total Uranium (U)	2017/09/28	106	80 - 120	102	80 - 120	ND, RDL=0.10	ug/L	7.8	20		
5186729	Total Vanadium (V)	2017/09/28	101	80 - 120	95	80 - 120	ND, RDL=0.50	ug/L	0.15	20		
5186729	Total Zinc (Zn)	2017/09/28	105	80 - 120	102	80 - 120	ND, RDL=5.0	ug/L	NC	20		
5186729	Total Zirconium (Zr)	2017/09/28	106	80 - 120	95	80 - 120	ND, RDL=1.0	ug/L	NC	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

avisting Carriere

Cristina Carriere, Scientific Service Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 2017-0293 Site#: BOLTON Site Location: SOLMAR Your C.O.C. #: 629279-01-01

Attention:Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2017/09/29 Report #: R4745503 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM	JOB #	‡: B7	K87	60
Received :	2017	/09/2	22,	14:25

Sample Matrix: Water # Samples Received: 1					
# Samples neceived. 1		Data	Data		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Dissolved Aluminum (0.2 u, clay free)	1	N/A	2017/09/25	CAM SOP-00447	EPA 6020B m
Alkalinity	1	N/A	2017/09/26	CAM SOP-00448	SM 22 2320 B m
Chromium (VI) in Water	1	N/A	2017/09/28	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	1	N/A	2017/09/27	CAM SOP-00457	OMOE E3015 m
Dissolved Oxygen	1	2017/09/23	2017/09/23	CAM SOP-00427	SM 22 4500 O G m
Hardness (calculated as CaCO3)	1	N/A	2017/09/27	CAM SOP	SM 2340 B
				00102/00408/00447	
Mercury	1	2017/09/26	2017/09/27	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	N/A	2017/09/28	CAM SOP-00447	EPA 6020B m
Total Ammonia-N	1	N/A	2017/09/28	CAM SOP-00441	EPA GS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (1)	1	N/A	2017/09/26	CAM SOP-00440	SM 22 4500-NO3I/NO2B
рН	1	N/A	2017/09/26	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2017/09/27	CAM SOP-00444	OMOE E3179 m
Field pH (2)	1	N/A	2017/09/28		Field pH Meter
Sulphide	1	N/A	2017/09/26	CAM SOP-00455	SM 22 4500-S G m
Field Temperature (2)	1	N/A	2017/09/28		Field Thermometer
Total Phosphorus (Colourimetric)	1	2017/09/27	2017/09/27	CAM SOP-00407	SM 22 4500 P B H m
Turbidity	1	N/A	2017/09/24	CAM SOP-00417	SM 22 2130 B m
Un-ionized Ammonia	1	2017/09/23	2017/09/29		

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise

Your Project #: 2017-0293 Site#: BOLTON Site Location: SOLMAR Your C.O.C. #: 629279-01-01

Attention:Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2017/09/29 Report #: R4745503 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K8760

Received: 2017/09/22, 14:25 agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(2) This is a field test, therefore, the results relate to items that were not analysed at Maxxam Analytics Inc.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905)817-5751 _____

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

====

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

PWQO METALS AND INORGANICS (WATER)

Maxxam ID			FEK656						
Sampling Date			2017/09/22						
			12:45						
COC Number			629279-01-01						
	UNITS	Criteria	MW1-17	RDL	QC Batch				
Calculated Parameters									
Hardness (CaCO3)	mg/L	-	590	1.0	5179429				
Total Un-ionized Ammonia	mg/L	-	0.0037	0.0016	5179420				
Field Measurements									
Field Temperature	Celcius	-	15.7	N/A	ONSITE				
Field pH	рН	6.5:8.5	7.98		ONSITE				
Inorganics				<u> </u>					
Total Ammonia-N	mg/L	-	0.11	0.050	5182709				
Dissolved Oxygen	mg/L	-	5.77		5179915				
рН	рН	6.5:8.5	8.02		5179875				
Phenols-4AAP	mg/L	0.001	ND	0.0010	5185031				
Total Phosphorus	mg/L	0.01	0.36	0.02	5184483				
Sulphide	mg/L	0.02	ND	0.020	5181226				
Turbidity	NTU	-	6.1	0.1	5179395				
WAD Cyanide (Free)	ug/L	5	ND	1	5182547				
Alkalinity (Total as CaCO3)	mg/L	-	520	1.0	5179872				
Metals									
Dissolved (0.2u) Aluminum (Al)	ug/L	15	ND	5	5179909				
Chromium (VI)	ug/L	1	ND	0.50	5184085				
Mercury (Hg)	ug/L	0.2	ND	0.1	5183039				
Total Antimony (Sb)	ug/L	20	ND	0.50	5186729				
Total Arsenic (As)	ug/L	100	ND	1.0	5186729				
Total Beryllium (Be)	ug/L	11	ND	0.50	5186729				
Total Boron (B)	ug/L	200	110	10	5186729				
Total Cadmium (Cd)	ug/L	0.2	ND	0.10	5186729				
Total Chromium (Cr)	ug/L	-	ND	5.0	5186729				
Total Cobalt (Co)	ug/L	0.9	ND	0.50	5186729				
Total Copper (Cu)	ug/L	5	1.6	1.0	5186729				
No Fill No Exceedance									
Grey Exceeds 1 criteri	a policy/	level							
Black Exceeds both cri	teria/lev	els							
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Criteria: Ontario Provincial Water Quality Objectives									
Ref. to MOEE Water Management	nt docum	nent date	d Feb.1999						
ND = Not detected									
N/A = Not Applicable									

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

		FEK656		
		2017/09/22 12:45		
		629279-01-01		
UNITS	Criteria	MW1-17	RDL	QC Batch
ug/L	300	ND	100	5186729
ug/L	5	ND	0.50	5186729
ug/L	40	6.9	0.50	5186729
ug/L	25	2.6	1.0	5186729
ug/L	100	ND	2.0	5186729
ug/L	0.1	ND	0.10	5186729
ug/L	0.3	ND	0.050	5186729
ug/L	30	ND	1.0	5186729
ug/L	5	9.2	0.10	5186729
ug/L	6	ND	0.50	5186729
ug/L	30	ND	5.0	5186729
ug/L	4	ND	1.0	5186729
	UNITS UNITS Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	Image Image UNITS Criteria Ug/L 300 ug/L 5 ug/L 25 ug/L 25 ug/L 100 ug/L 0.1 ug/L 0.3 ug/L 30 ug/L 5 ug/L 30 ug/L 30 ug/L 5 ug/L 6 ug/L 30 ug/L 4	Image: FEK656 2017/09/22 12:45 2017/09/22 12:45 629279-01-01 UNITS Criteria UQ/L 300 ug/L 300 ug/L 5 ug/L 40 ug/L 25 ug/L 0.1 ug/L 0.3 ug/L 30 ug/L 30 ug/L 0.3 ug/L 5 ug/L 0.3 ug/L 5 ug/L 30 ug/L 5 ug/L 30 ug/L 5 ug/L 6 ug/L 6 ug/L 30 ug/L 30 ug/L 30 ug/L 30 ug/L 4	FEK656 2017/09/22 12:45 12:45 Criteria 629279-01-01 UNITS Criteria MW1-17 RDL ug/L 300 ug/L 400 6.9 ug/L 400 6.9 ug/L 100 ug/L 100 ug/L 100 ug/L 100 ug/L 100 ug/L 0.10 ug/L 0.11 ND ug/L 0.3 ND ug/L 30 ND ug/L 30 ND ug/L 6 ND ug/L 30 ND ug/L 30

PWQO METALS AND INORGANICS (WATER)

No Exceedance No Fill

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

Black RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

ND = Not detected

Grey

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

RESULTS OF ANALYSES OF WATER

Maxxam ID		FEK656						
Sampling Date		2017/09/22						
		12:45						
COC Number		629279-01-01						
	UNITS	MW1-17	RDL	QC Batch				
Inorganics								
Nitrite (N)	mg/L	ND	0.010	5181316				
Nitrate (N)	mg/L	ND	0.10	5181316				
Nitrate + Nitrite (N)	mg/L	ND	0.10	5181316				
RDL = Reportable Detection Limit								
QC Batch = Quality Control Ba	atch							

ND = Not detected

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

TEST SUMMARY

Maxxam ID:	FEK656	Collected:	2017/09/22
Sample ID:	MW1-17	Shipped:	
Matrix:	Water	Received:	2017/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/26	Surinder Rai
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/27	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5181316	N/A	2017/09/26	Amanpreet Sappal
рН	AT	5179875	N/A	2017/09/26	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5185031	N/A	2017/09/27	Zahid Soikot
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Sulphide	ISE/S	5181226	N/A	2017/09/26	Tahir Anwar
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Maxxam ID: Sample ID: Matrix:	FEK656 Dup MW1-17 Water						Collected: Shipped: Received:	2017/09/22 2017/09/22
Test Description		Instru	umentation	Batch	Extracted	Date Analyzed	Analyst	
Chromium (VI) in Water		IC		5184085	N/A	2017/09/28	Lang Le	
Dissolved Oxygen		DO		5179915	2017/09/23	2017/09/23	Prakash Piy	a

Maxxam ID: FEK657 Sample ID: MW5-17S Matrix: Water Collected: 2017/09/22 Shipped: Received: 2017/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/25	Surinder Rai
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/27	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5181316	N/A	2017/09/26	Amanpreet Sappal
рН	AT	5179875	N/A	2017/09/25	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5185031	N/A	2017/09/27	Zahid Soikot
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith

Page 6 of 12

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

TEST SUMMARY

Maxxam ID: Sample ID:	FEK657 MW5-17S					Collected: Shipped:	2017/09/22
Matrix:	Water					Received:	2017/09/22
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

	motration	Datem	Extracted	Bateranaryzea	/ manyoe
Sulphide	ISE/S	5181226	N/A	2017/09/26	Tahir Anwar
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Maxxam ID: Sample ID: Matrix:	FEK657 Dup MW5-17S Water			<u>e</u> >		Collected: Shipped: Received:	2017/09/22 2017/09/22
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Alkalinity		AT	5179872	N/A	2017/09/25	Surinder Ra	i
рН		AT	5179875	N/A	2017/09/25	Surinder Ra	i

Maxxam ID:	FEK658	

Maxxam ID: FEK658 Sample ID: MW3-17 Matrix: Water			<u>}</u>		Collected: 2017/09/22 Shipped: Received: 2017/09/22
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/26	Surinder Rai
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/26	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5185563	N/A	2017/09/28	Chandra Nandlal
рН	AT	5179875	N/A	2017/09/26	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5183116	N/A	2017/09/26	Zahid Soikot
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Sulphide	ISE/S	5181226	N/A	2017/09/26	Tahir Anwar
Field pH	PH	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Maxxam ID: FEK659 Sample ID: MW4-17D Matrix: Water					Collected: 2017/09/22 Shipped: Received: 2017/09/22
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Aluminum (0.2 u, clay free)	ICP/MS	5179909	N/A	2017/09/25	Prempal Bhatti
Alkalinity	AT	5179872	N/A	2017/09/26	Surinder Rai

Page 7 of 12

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

TEST SUMMARY

Maxxam ID:	FEK659	Collected:	2017/09/22
Matrix:	Water	Received:	2017/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chromium (VI) in Water	IC	5184085	N/A	2017/09/28	Lang Le
Free (WAD) Cyanide	SKAL/CN	5182547	N/A	2017/09/27	Louise Harding
Dissolved Oxygen	DO	5179915	2017/09/23	2017/09/23	Prakash Piya
Hardness (calculated as CaCO3)		5179429	N/A	2017/09/27	Automated Statchk
Mercury	CV/AA	5183039	2017/09/26	2017/09/27	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5186729	N/A	2017/09/28	Arefa Dabhad
Total Ammonia-N	LACH/NH4	5182709	N/A	2017/09/28	Sarabjit Raina
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	5181316	N/A	2017/09/26	Amanpreet Sappal
рН	AT	5179875	N/A	2017/09/26	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5185031	N/A	2017/09/27	Zahid Soikot
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Sulphide	ISE/S	5181239	N/A	2017/09/25	Tahir Anwar
Field pH	РН	ONSITE	N/A	2017/09/23	Adriana Smith
Total Phosphorus (Colourimetric)	LACH/P	5184483	2017/09/27	2017/09/27	Amanpreet Sappal
Turbidity	AT	5179395	N/A	2017/09/24	Neil Dassanayake
Un-ionized Ammonia	CALC/NH3	5179420	2017/09/29	2017/09/29	Automated Statchk

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

GENERAL COMMENTS

Each te	emperature is the	average of up to t	three cooler te	mperatures	s taken at	t receipt		
	Package 1	13.3°C						
		l						
Desult								
Result	s relate only to th	e items tested.						

QUALITY ASSURANCE REPORT

Cole Engineering Group Ltd Client Project #: 2017-0293

Site Location: SOLMAR

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5179395	Turbidity	2017/09/24			101	85 - 115	ND, RDL=0.1	NTU	2.8	20		
5179872	Alkalinity (Total as CaCO3)	2017/09/25			97	85 - 115	ND, RDL=1.0	mg/L	0.70	20		
5179875	рН	2017/09/25			101	98 - 103			0.63	N/A		
5179909	Dissolved (0.2u) Aluminum (Al)	2017/09/25	110	80 - 120	102	80 - 120	ND,RDL=5	ug/L	NC	20		
5181226	Sulphide	2017/09/26	109	80 - 120	98	80 - 120	ND, RDL=0.020	mg/L	NC	20		
5181239	Sulphide	2017/09/25	96	80 - 120	105	80 - 120	ND, RDL=0.020	mg/L	3.8	20		
5181316	Nitrate (N)	2017/09/26	100	80 - 120	101	80 - 120	ND, RDL=0.10	mg/L	NC	20		
5181316	Nitrite (N)	2017/09/26	101	80 - 120	100	80 - 120	ND, RDL=0.010	mg/L				
5182547	WAD Cyanide (Free)	2017/09/27	103	80 - 120	101	80 - 120	ND,RDL=1	ug/L	NC	20		
5182709	Total Ammonia-N	2017/09/28	99	80 - 120	99	85 - 115	ND, RDL=0.050	mg/L	6.1	20		
5183039	Mercury (Hg)	2017/09/27	100	75 - 125	102	80 - 120	ND, RDL=0.1	ug/L	NC	20		
5183116	Phenols-4AAP	2017/09/26	94	80 - 120	96	85 - 115	ND, RDL=0.0010	mg/L	NC	20		
5184085	Chromium (VI)	2017/09/28	101	80 - 120	102	80 - 120	ND, RDL=0.50	ug/L	NC	20		
5184483	Total Phosphorus	2017/09/27	96	80 - 120	92	80 - 120	ND, RDL=0.004	mg/L	NC	20	93	80 - 120
5185031	Phenols-4AAP	2017/09/27	97	80 - 120	99	85 - 115	ND, RDL=0.0010	mg/L	NC	20		
5185563	Nitrate (N)	2017/09/28	84	80 - 120	98	80 - 120	ND, RDL=0.10	mg/L	NC	20		
5185563	Nitrite (N)	2017/09/28	103	80 - 120	103	80 - 120	ND, RDL=0.010	mg/L				
5186729	Total Antimony (Sb)	2017/09/28	110	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	NC	20		
5186729	Total Arsenic (As)	2017/09/28	104	80 - 120	99	80 - 120	ND, RDL=1.0	ug/L	10	20		
5186729	Total Beryllium (Be)	2017/09/28	106	80 - 120	101	80 - 120	ND, RDL=0.50	ug/L	NC	20		
5186729	Total Boron (B)	2017/09/28	102	80 - 120	98	80 - 120	ND, RDL=10	ug/L	5.1	20		
5186729	Total Cadmium (Cd)	2017/09/28	105	80 - 120	99	80 - 120	ND, RDL=0.10	ug/L	NC	20		
5186729	Total Chromium (Cr)	2017/09/28	104	80 - 120	100	80 - 120	ND, RDL=5.0	ug/L	NC	20		
5186729	Total Cobalt (Co)	2017/09/28	107	80 - 120	103	80 - 120	ND, RDL=0.50	ug/L	5.4	20		
5186729	Total Copper (Cu)	2017/09/28	108	80 - 120	97	80 - 120	ND, RDL=1.0	ug/L	9.7	20		

QUALITY ASSURANCE REPORT(CONT'D)

Cole Engineering Group Ltd Client Project #: 2017-0293

Site Location: SOLMAR

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5186729	Total Iron (Fe)	2017/09/28	105	80 - 120	101	80 - 120	ND, RDL=100	ug/L	2.3	20		
5186729	Total Lead (Pb)	2017/09/28	102	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	0.80	20		
5186729	Total Molybdenum (Mo)	2017/09/28	108	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	0.14	20		
5186729	Total Nickel (Ni)	2017/09/28	100	80 - 120	97	80 - 120	ND, RDL=1.0	ug/L	8.1	20		
5186729	Total Selenium (Se)	2017/09/28	103	80 - 120	101	80 - 120	ND, RDL=2.0	ug/L	NC	20		
5186729	Total Silver (Ag)	2017/09/28	101	80 - 120	96	80 - 120	ND, RDL=0.10	ug/L	NC	20		
5186729	Total Thallium (Tl)	2017/09/28	101	80 - 120	102	80 - 120	ND, RDL=0.050	ug/L	NC	20		
5186729	Total Tungsten (W)	2017/09/28	112	80 - 120	108	80 - 120	ND, RDL=1.0	ug/L	NC	20		
5186729	Total Uranium (U)	2017/09/28	106	80 - 120	102	80 - 120	ND, RDL=0.10	ug/L	7.8	20		
5186729	Total Vanadium (V)	2017/09/28	101	80 - 120	95	80 - 120	ND, RDL=0.50	ug/L	0.15	20		
5186729	Total Zinc (Zn)	2017/09/28	105	80 - 120	102	80 - 120	ND, RDL=5.0	ug/L	NC	20		
5186729	Total Zirconium (Zr)	2017/09/28	106	80 - 120	95	80 - 120	ND, RDL=1.0	ug/L	NC	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Cole Engineering Group Ltd Client Project #: 2017-0293 Site Location: SOLMAR

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

avisting Carriere

Cristina Carriere, Scientific Service Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.
Party Party <th< th=""><th></th><th>INVOICE TO:</th><th>Contanto Canada L.</th><th>HA 200 1 81 (905) 8</th><th>17-5700 Toll-free 8</th><th>00-563-6266 F</th><th>ax (905) 81</th><th>7-5777 ww</th><th>w maxxam</th><th>ca</th><th></th><th></th><th>CH</th><th>AIN OF CL</th><th>ISTODY RECORD</th><th></th></th<>		INVOICE TO:	Contanto Canada L.	HA 200 1 81 (905) 8	17-5700 Toll-free 8	00-563-6266 F	ax (905) 81	7-5777 ww	w maxxam	ca			CH	AIN OF CL	ISTODY RECORD	
Image: state in the	y Name #24008 ,Cole	Engineering Group Ltd	Com	* *	REP	ORT TO:					PRC	JECT INFORMATIC	IN:	1	Laboratory U.	Page of
¹ / ₁ (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Accounts Pays	able	Attent	Alire	za Heiazi				-	Quotation #	BC	2064			Maxxam Job #	e Only:
Line Line <thline< th=""> Line Line</thline<>	70 Valleywood	Dr	Addre	SS.	an riojaci				-	P 0 #		*		1		Bottle Order #:
Image: Non-State The second seco	(416) 087 646	L3R 4T5				74				Project	20	17-0293				
Image: Description of the control of the co	(410) 967-010 accountenavat	Fax (905) 940-20	64 x Tat	(416) 987-6161 x24	3 Eau	-			Project Name	1		- Solmar/		COC #:	629279 Project Manager:
In DUDUNING VALUE NITE ROOK DATE IN TRADE OF RUMAN CONSUMPTION UNST REF Interview Int	RECHLATED DOWN	ne@coleengineering.ca	Email	AHe	jazi@coleengin	eering.ca				Site #	-	11 00	Bolton	100		
<u> <u> <u> </u> <u> </u></u></u>	SUBMITTEL	ON THE MAXXAM DRINKING W	D FOR HUMAN	CONSUMPTIO	ON MUST BE				AN	ALYSIS REQUE	STED (PI FA	SE RE SPECIEIC	11	_	C#629279-01-01	Jolanta Goralczyk
Image: Decomposition Second interaction Open of the second interactio	gulation 153 (2011)	Other Provide	ATEN CHAIN O	CUSTODY		-							1.1	-	Turnaround Time (TAT)	Required:
 	Res/Park Med	Ium/Fine CCME Sanitani Sa	ions	Specia	Instructions	- ice								Regular	(Standard) TAT:	for rush projects
	Ind/Comm Coar	se Reg 558 Storm Sewe	wer Bylaw r Bylaw			Se Se	Inics	1					-	(will be app	lied if Rush TAT is not specified).	-
Include Citeria on Cartificate of Analysis (YMP) The Sample Landon (Interia Circ) The Sam	Agri/Other For	RSC MISA Municipality				plea	orge							Stundard T	AT = 5.7 Working days for most lests.	
Light Big gr	-	PWQO				Per	and It	y l	a					days - conta	Standard TAT for certain tests such as act your Project Manager for details.	BOD and Dioxins/Furans are > 5
Include Criteria on Certification of Analysis (YMP) Image: Contract		Other				etals	tais a	To	F					Job Speci	fic Rush TAT (if applies to entire sub	mission
Barele Ilocation Isentration Due Sample It Time Sample Internation Time Sample Internatinternation Time Sample Internatinterna	. Include Crite	ria on Certificate of Analysis (Y/N)?				eld P	eW c	I	15					Date Requir	ed:T	me Required.
MW1-17 22/69/17/12:45 GW X: X	ample Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampler	t Matrix	- E	MOG	5	13				10	Rush Confi	mation Number	call lab for #)
Image aprector on writing, work submitted on this change of customer principal and construction of customer principal and constructing andeconstruction of customer principal and construction		MW1-17	72/01-	712:45	CIL	N.	1	V	1				_	# of Bottles	Comm	nents
MWS-173 II SO SW			-70 1/1	12.41	GW	X.	X	X	X						Temo 15.7%	04 7.98 54
Image: New Sector Devices Terms 14,7%, pH 8:56, 6:Heat Image: New Sector Devices Terms 14,7%, pH 8:56, 6:Heat Image: New Sector Devices Terms 14,7%, pH 8:56, 6:Heat Image: New Sector Devices Terms 14,7%, pH 8:56, 6:Heat Image: New Sector Devices Terms 14,7%, pH 8:56, 6:Heat Image: New Sector Devices Terms 14,7%, pH 8:56, 6:Heat Image: New Sector Devices Terms 14,7%, pH 8:56, 6:Heat Image: New Sector Devices Terms 14,7%, pH 8:56, 6:Heat Image: New Sector Devices Terms 13,79%, pH 8:56, 6:Heat Image: New Sector Devices Terms 13,15%, pH 8:58, 6:Heat Image: New Sector Devices Terms 14,125 Image: New Sector Dev		MW5-175		11.50	61	V	51	V			-			-	comp rearry	bu united with
Image: New Submitted The second and and and and and and and and and a		1		11.00	GW	X	X	X	1						Temp 14,7%, ph	+ 8.56, Filtera
MW4+17d 10:50 GW		MW3-17		10:15	(T.)	X	V	V		-					De la contra	
MW4477d V 10.50 GW Karley 22-Sep-17 14:25 Image: Sep-17 14:25 Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Image: Sep-17 14:25 Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk B7K87600 GK1 ENV-1359 Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk B7K87600 GK1 ENV-1359 Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Goralczyk Jolanta Jolanta Goralczyk<	1	MAL HIT I		10:10	Gu	1	X	~	X						Temp 13.79 & , pl	+ 8:17, Altered
* RELINQUISHED BY: (Signature/Print) Date: (YY/MMDD) Time RECEIVED BY: (Signature/Print) Received BY: (Signature/Print) Date: (YY/MMDD) Time Received BY: (Signature/Print) Received BY: (Signature/Print) Received BY: (Signature/Prin		MW4-11d		10:50	GW	X	\mathbf{V}	V	V							
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time 22-Sep-17 14:25 * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time Signature/Print) * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time * Signature/Print) * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time * Signature/Print) Time * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time * Jars used and int submitted Time Sensitive Tenpreguture (C) on Receit Yes N * RWISE AGREED TO N WRITING, WORK SUBMITED OX THE CHAIN OF CUSTOOV IS SUBJECT TO MAXAAM: STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTOOV DOCUMENT IS Time Sensitive Tenpreguture (C) on Receit Yes N PONSIBILITY OF THE RELINQUISHER TO ENSURE THE CARAN OF CUSTOOV IS SUBJECT TO MAXAAM: CATERMS. N NOCOMPONE TERMS WHICH RE AVAILABLE FOR WIENMAG AT WWW MAXAAM: CATERMS. Yes on NOTIONS. SIGNING OF THIS CHAIN OF CUSTOOV DOCUMENT IS Yes on N		the state of the s	1			~	1	1							1emp 13.15 C, pH	8.58, filtered
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time 22-Sep-17 14:25 * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time B7K8760 * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time Entropy stude and not submitted * Machine Advance Of Dia Wattings (YV/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) * Machine Advance Of Dia Wattings (YV/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) * Machine Advance Of Dia Wattings (YV/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) * Machine Advance Of Dia Wattings (YV/MM/DD) Time * Jains used and not submitted Laboratory Use Only * Machine Advance Of Dia Wattings (YV/MM/DD) Time Dia Submitted Time Sensitive Contrody Seal Yys N * Machine Advance Advance Advance Custory is subject to MaxAm's Standard Terms and conditions at www.maxAmachine Advance Conditions. Signing OF THIS CHAIN OF Custory Document is Time Sensitive Time Sensitive Time Sensitive Yins N * Downshill UTy OF The Reclinguisher to Ensure the Accuracy of the Custory the Custory Record is the Control Custory Dia Subject to MaxAm's Standard Terms Standard Terms White: Maxa* Yins N <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>																
**RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time Z2-Sep-17 14:25 **RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time B7K8760 **RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time Time **RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time */// Signature/Print) **Received BY: (Signature/Print) Date: (YY/MM/DD) Time */// Signature/Print) Time **Received BY: (Signature/Print) Date: (YY/MM/DD) Time */// Signature/Print) Time **Reverse Custody Signature/Print) Date: (YY/MM/DD) Time */// Signature/Print) Time Signature/Print) **Reverse Custody Signature/Print) Date: (YY/MM/DD) Time */// Signature/Print) Time Signature/Print) **Reverse Custody Signature/Print) Date: (YY/MM/DD) Time */// Signature/Print) Time S											-					
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # Jolanta Goralczyk * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # Jolanta Goralczyk * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # Jolanta Goralczyk * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # Jars used and not submitted * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # Jars used and not submitted * Received by: (Signature/Print) Date: (YY/MM/DD) Time # Jars used and not submitted * Received by: (Signature/Print) Date: (YY/MM/DD) Time # Jars used and not submitted Laboratory Use Only * Revise agreed to in writing, work submitted on this chain of Custory is subject to maxxans's standard terms and conditions. signing of this chain of custory document is Time Sensitive Temperature (PC) on Receive in the docustory of the chain of custory document is Ponsultity of the Relinguisher to ensure the accuracy of the chain of custory is not become the custory document is White: Maxxa Yellow: Cli											1	1 1				1
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted * Received of the water water and the submitted of the water water and the submitted of the submit submit the submitted of the submit submit the submit t												22.0	1 1	-		
Solidinia Goralczyk IIIII IIII IIII IIII IIIIIIIIIIII											Iolan	22-Sep-17	14:25			
RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time Reveared Time Sensitive Time Sensi							2.0				I III III	ta Goralczy	k	-	-1	
											D		11.00	1.0		
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time # Jars used and * RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # Jars used and Laboratory Use Only * RELINQUISHED DY: (Signature/Print) Date: (YY/MM/DD) Time # Jars used and Laboratory Use Only * REVISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO MAXXAN'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS Time Sensitive Time Sensitive * REVISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO MAXXAN'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS Time Sensitive Time Sensitive * REVISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO MAXXAN'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS Time Sensitive Time Sensitive * RAVE AGCEPTANCE OF OUR TERMS WING AT WWW.MAXXAN.CONTERMS STANDARD TERMS WING AT REVISION TO CUSTODY IS SUBJECT TO MAXXAN.CONTERMS Standard TERMS WING AT REVISION TO CUSTODY IS SUBJECT TO MAXXAN.CONTERMS * PONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY ECONTANT White: Maxxa Yellow: Cli * PONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY ECONTANT White: Maxxa Yellow: Cli<						-					D,	K8760				
RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted Time Sensitive Time Se										(GK1.	Prost.	0			
RECINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not submitted Time Sensitive Tomperature (PC) on Receive Custody Seal Yes N KENT AND ACCEPTANCE OF OUR TERMS WHITED ON THIS CHAIN OF CUSTODY IS SUBJECT TO MAXXAM'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS 20NSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY BECORD AN INCOMPLETE CHAIN OF CUSTODY DOCUMENT IS White: Maxxa Yellow: Cli											1	ENV-135	9 0			
DRowship Andrew O Romship D2/09/17 14.20 Township Date: (YYMM/DD) Time # Jars used and not submitted Laboratory Use Only ERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTORY IS SUBJECT TO MAXXAM'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTORY DOCUMENT IS Date: (YYMM/DD) Time # Jars used and not submitted Laboratory Use Only ERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTORY IS SUBJECT TO MAXXAM'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTORY DOCUMENT IS Tomperature (C) on Receil Custody Seal Yes N PORNIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTORY DOCUMENT IS Unite: Maxxa Yellow: Cli Yellow: Cli	* RELINQUISHED BY: (SI	gnature/Print) Date: (YY/)	MM/DD) Tir	ne	RECEIVED	101000							1			
Image: Construction of the construction of custory is subject to maximum and acceptance of our trends when the construction of custory is subject to maximum and acceptance of our trends when the construction of the chain of custory is constructed of the chain of custory document is Image: Custory is constructed of the chain of custory is constructed of the chain of custory document is Image: Custory is constructed of the chain of custory is constructed of the chain of custory document is Image: Custory is constructed of the chain of custory is constructed of the chain of custory document is Image: Custory is constructed of the chain of custory is constructed of the chain of custory document is Image: Custory is constructed of the chain of custory is constructed of the chain of custory document is Image: Custory is constructed of the chain of custory is constructed of the chain of custory document is Image: Custory is constructed of the chain of custory is constructed of the chain of custory document is Image: Custory is constructed of the chain of custory is constructed of the chain of custory document is Image: Custory is constructed of the chain of custory is constructed o	Mainde Ano	Lev O'Ronke 22/09	17 14	20 1	the To	. (Signature/Pr	int)	Da	ate: (YY/MM	M/DD)	Time	# jars used and	1	Laborat	ory Use Only	
RWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO MAXXAM'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS PONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD, AN INCOMPLETE CHAIN OF CUSTODY MAXXAM.CATTERNS. White: Maxxa Yellow: Cli				104	11-15- 11-1	VIBIN	64	20	12/24/	22 14	1.25	not submitted	Time Sensitive	Temperatu	E EC) ont Raco Custody Sea	I Yes No.
PONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD, AN INCOMPLETE CHAIN OF CUSTODY DOCUMENT IS White: Maxxa Yellow: Cli	RWISE AGREED TO IN WR MENT AND ACCEPTANCE	ITING, WORK SUBMITTED ON THIS CHAIN O	OF CUSTODY IS SUE	JECT TO MAXXAN	S STANDARD TED	MS AND CONT	TIONE							1	5/72/15 Present	NO V
White: Maxxa Yellow: Cli	PONSIBILITY OF THE RELI	QUISHER TO ENSURE THE ACCURACE	R VIEWING AT WW	V.MAXXAM.CA/TE	RMS.	MO AND CONDI	HONS. SIC	GNING OF T	THIS CHAIN	OF CUSTODY D	OCUMENT IS	13.	201 21 24	See to	- / · · / · Intact	21 Manuar 14 11
ITAINER, PRESERVATION HOLD THE FUR REVECTION THE OF SAMPLES AND THE OF	TAINER PRESERVATION	HOLD THE AUD REPORT OF	THE CHAIN OF CUS	TODY RECORD. A	N INCOMPLETE CH.	AIN OF CUSTOR	Y MAY RE	SULT IN AN	VALYTICAL	TAT DELAYS.		SAMP	LES MUST BE KEPT O	COL (< 10" C	FROM TIME OF SAMPLING	e: maxxa Yellow: Client

Well Records (WWIS)

WELL_ID	COMPLETED	DEPTH TO BEDROCK	DEPTH	STATIC_LEV	WELL_USE	FORMATION
4900205	1958-10-28	0.00	7.6	3.7	DO	BRWN LOAM 0012 GREY CLAY STNS 0023 GREY MSND 0025
4900209	1967-01-24	0.00	10.4	4.9	DO	BRWN LOAM 0012 GREY CLAY MSND STNS 0032 MSND GRVL 0034
4900211	1961-08-05	0.00	16.8	4.6	DO	BRWN LOAM 0016 GREY CLAY STNS 0054 GRVL 0055
4900249	1961-10-02	Bedrock	36.6	0.0		PRDG 0030 BLDR CLAY 0035 BLUE CLAY 0055 BLUE CLAY MSND GRVL 0080 BLUE CLAY 0087 SHLE 0120
4900250	1961-10-17	Bedrock	23.2	3.4	DO	BRWN CLAY 0025 MSND CLAY 0032 BLUE CLAY 0052 HPAN 0075 GRVL 0076
4900258	1963-05-08	Bedrock	35.1	0.0		LOAM 0001 BRWN CLAY 0018 BLUE CLAY 0079 BLUE SHLE 0115
4900259	1963-05-31	Bedrock	24.4	13.7	DO	BRWN LOAM 0015 GREY CLAY 0066 GREY SHLE 0080
4900260	1965-05-15	0.00	15.8	9.8	DO	BRWN LOAM 0018 GREY CLAY 0049 CSND GRVL 0052
4903285	1969-07-07	Bedrock	27.4	3.7	ST DO	LOAM 0001 CLAY MSND STNS 0025 BLUE CLAY 0055 BLUE CLAY STNS 0058 BLUE SHLE 0090
4903556 4903572	1970-09-18 1970-09-28	Bedrock Bedrock	30.5 45.7	0.0 0.0		FILL 0001 BRWN CLAY 0015 BLUE CLAY GRVL 0060 BLUE SHLE 0100 PRDG 0055 BLUE SHLE 0150
4903573	1970-10-08	Bedrock	38.1	0.0		BRWN CLAY 0010 BLUE CLAY STNS 0055 BLUE GRVL MSND 0070 BLUE CLAY GRVL 0077 BLUE SHLE 0125
4903622	1971-03-15	Bedrock	27.7	0.0		BRWN LOAM 0001 BRWN STNS CLAY 0022 GREY CLAY MSND GRVL 0065 BLUE CLAY SHLE 0070 BLUE SHLE 0091
4903719	1971-11-05	0.00	17.7	7.6	DO	BRWN CLAY 0014 GREY CLAY 0057 GRVL 0058
4904113	1973-06-21	0.00	18.6	3.4	ST DO	BRWN CLAY STNS 0015 SAND CLAY 0017 BRWN CLAY 0050 SAND GRVL CLAY 0061

4904241	1973-09-25	0.00	66.1	0.0		BRWN CLAY 0016 BLUE CLAY 0112 GREY GRVL CLAY 0114 BLUE CLAY 0170 BLUE CLAY GRVL SILT 0205 BLUE SILT SAND 0217
4904566	1973-06-15	Bedrock	39.6	0.0		LOAM 0002 BLUE CLAY 0090 BLUE SHLE 0130
4905460	1978-09-15	0.00	9.8	7.6	DO	UNKN 0032
4905997	1982-09-01	0.00	15.8	3.0	DO	BLCK LOAM 0002 BRWN CLAY STNS 0017 BLUE CLAY STNS 0025 BLUE CLAY STNS SAND 0036 BLUE CLAY STNS 0045 BLUE CLAY CGVL 0048 BLUE CLAY STNS 0052
4906200	1984-05-11	Bedrock	16.5	3.7	DO ST	BLCK LOAM 0002 BRWN CLAY STNS 0015 GREY CLAY 0048 BRWN SAND GRVL 0053 BLUE SHLE 0054
4906309	1985-06-03	0.00	29.0	2.7	DO	BRWN SAND CLAY 0013 GREY SAND CLAY LYRD 0089 GREY SAND FSND SLTY 0094 GREY CLAY 0095
4906980	1988-11-20	0.00	18.9	6.1	DO	BRWN LOAM HARD 0001 BRWN CLAY HARD 0040 GREY CLAY LYRD PCKD 0062
4907464	1991-01-04	Bedrock	121.9	0.0	DO	BRWN CLAY 0040 GREY CGVL CMTD 0079 GREY FSND 0080 GREY CGVL CMTD 0092 GREY LMSN 0400
4907506	1991-02-01	0.00	0.0	2.4	DO	
4907515	1991-03-02	0.00	19.8	6.1	DO	BRWN LOAM HARD 0001 BRWN CLAY HARD 0030 GREY CLAY GRVL LYRD 0065
4907815	1993-09-03	0.00	18.3	3.0	DO	BRWN LOAM HARD 0001 BRWN CLAY HARD 0040 BRWN SAND LOOS 0060
4907950	1994-12-21	Bedrock	51.8	4.0	DO	BRWN CLAY STNS DNSE 0006 GREY CLAY STNS DNSE 0015 BLUE CLAY STNS DNSE 0059 BLUE SHLE HARD 0120 BLUE SHLE HARD 0170

					1	
4910381	2006-10-31	0.00	11.9	0.0		BRWN LOAM 0001 BRWN SILT TILL 0015 GREY SILT TILL 0020 GREY SILT TILL 0035 GREY SILT 0039
4910384	2006-11-06	0.00	53.3	0.0		BRWN LOAM 0001 BRWN SILT TILL 0010 GREY SILT TILL 0175
7210516	2013-10-11	0.00	6.1	0.0	МО	BRWN CLAY SAND PCKD 0005 GREY CLAY SAND SILT 0020
7224983	2014-06-09	0.00	7.6	0.0	мо	BRWN CLAY SILT LOOS 0015 GREY SILT CLAY PCKD 0025
7224993	2014-06-09	0.00	6.1	0.0	мо	BRWN CLAY SILT LOOS 0015 GREY SILT CLAY PCKD 0020
7224994	2014-06-09	0.00	7.6	0.0	мо	BRWN CLAY SILT LOOS 0015 GREY SILT CLAY PCKD 0025
7224997	2014-06-09	0.00	7.6	0.0	мо	BRWN CLAY SILT LOOS 0015 GREY SILT CLAY PCKD 0025
7224999	2014-06-09	0.00	6.1	0.0	мо	BRWN CLAY SILT LOOS 0015 GREY SILT CLAY PCKD 0020
7243117	2015-05-29	0.00	0.0	0.0		
7245005	2015-07-16	0.00	0.0	0.0		
7245006	2015-07-06	0.00	0.0	0.0		
7280866	2016-12-13	0.00	0.0	3.7		
7303451	2017-08-17	0.00	6.1	0.0	мо тн	BRWN SILT CLAY 0011 GREY SILT CLAY 0020
7306838	2017-08-16	0.00	0.0	0.0		
7306839	2017-08-16	0.00	0.0	0.0		
7306854	2017-08-18	0.00	0.0	0.0		
7326539	2018-12-07	0.00	0.0	0.0		
7328991	2018-04-05	0.00	0.0	0.0		
7355972	2019-04-02	0.00	6.1	0.0	тн	BRWN SILT CLAY 0012 GREY SILT CLAY 0020

Natural Heritage Features

(GEI 2022)

GEI

Appendix H

TRSPA Water Balance Results

A WATER BALANCE TOOL

