

TOWN OF CALEDON PLANNING RECEIVED

Dec 17, 2024

LEA Consulting Ltd.

40 University Ave, Suite 503 Toronto, ON, M5J 1T1 Canada T | 905 470 0015 F | 905 470 0030 WWW.LEA.CA

November 14, 2024 Reference Number: 25134

PROLOGIS

c/o Mainline Planning 185 The West Mall, Suite 700 Toronto, ON M9C 5L5

RE: Transportation Impact Study
Proposed Industrial Development
12519-12715 Humber Station Road, Town of Caledon

LEA Consulting Ltd. (LEA) is pleased to present the findings of our Transportation Impact Study (TIS) for the proposed industrial development located at 12519-12715 Humber Station Road in the Town of Caledon. This TIS has been prepared for Prologis in support of the Site Plan Approval (SPA) application for the proposed development. This report concludes that the traffic associated with the proposed development maintains acceptable conditions for the road network in the surrounding area, with minor optimizations for the network.

Should you have any questions regarding this Transportation Impact Study, please do not hesitate to contact the undersigned at (905) 470-0015.

Yours truly,

LEA CONSULTING LTD.

Christopher Sidlar, M.Sc.Pl., MCIP, RPP Senior Vice President, Transportation

Encl. Transportation Impact Study – Proposed Industrial Development, 12519-12715 Humber Station Road, Town of Caledon (November 2024)

Transportation Impact Study Proposed Industrial Development 12519-12715 Humber Station Road 25134

Disclaimer

This Report represents the work of LEA Consulting Ltd ("LEA"). This Report may not be relied upon for detailed implementation or any other purpose not specifically identified within this Report. This Document is confidential and prepared solely for the use of Prologis. Neither LEA, its sub-consultants nor their respective employees assume any liability for any reason, including, but not limited to, negligence, to any party other than Prologis for any information or representation herein.

TABLE OF CONTENTS

1		Introduction
	1.1	Proposed Development
2		Existing Transportation Conditions
	2.1	Humber Station Employment Area Secondary Plan
	2.2	Existing Road Network5
	2.3	Existing Transit Network
	2.4	Existing Cycling Network8
	2.	4.1 Cycling Multimodal Level of Service Evaluation
	2.5	Existing Pedestrian Network9
	2.	5.1 Pedestrian Multimodal Level of Service Evaluation
	2.6	Traffic Data Collection
	2.7	Existing Traffic Volumes
3		Future Background Transportation Conditions
	3.1	Background Developments
	3.2	Corridor Growth
	3.3	Planned External Road Network
	3.4	Planned Transit and Active Transportation Improvements
	3.5	Future Background Traffic Volumes
4		Site-Generated Traffic
	4.1	Trip Generation
	4.2	Trip Distribution and Assignment
5		Future Total Transportation Conditions
	5.1	Future Total Traffic Volumes
6		Intersection Capacity Analysis
	6.1	Existing Synchro Model Inputs24
	6.2	Future Background Synchro Model Inputs
	6.3	Future Total Synchro Model Inputs24
	6.4	Existing Signalized Intersections
	6.	4.1 Clarkway Drive/Humber Station Road & Mayfield Road
	6.5	Future Signalized Intersections

	6	.5.1	Humber Station Road & Healey Road	2/
	6	.5.2	Humber Station Road & George Bolton Parkway Extension	28
	6.6	Existir	ng Unsignalized Intersections	29
	6	.6.1	Humber Station Road & Healey Road	30
	6.7	Future	Unsignalized Intersections	30
	6	.7.1	George Bolton Parkway Extension & Subject Site Access 1	30
	6	.7.2	George Bolton Parkway Extension & Subject Site Access 2	31
	6.8	Summ	ary of Intersection Capacity Analysis Results	32
7		Sensiti	vity Analysis	32
8		Parkin	g and Loading Review	36
	8.1	Vehic	ular Parking Review	36
	8	.1.1	Accessible Parking	36
	8.2	Bicycle	e Parking Review	36
	8.3	Loadii	ng Review	37
9		Transp	ortation Demand Management	38
	9.1	Pedes	trian-Based Strategies	38
	9.2	Transi	t-Based Strategies	38
	9.3	Travel	and Parking Management Strategies	38
10	0	Conclu	sion	39
			LIST OF TABLES	
Ta	able	1-1: Pro	posed Site Statistics	2
Ta	able	2-1: Exis	ting Transit Service	7
Ta	able	2-2: Exis	ting Bicycle Level of Service (BLOS)	9
Ta	able	2-3: Exis	ting Pedestrian Level of Service (PLOS)	10
Ta	able	2-4: Dat	a Collection Summary	10
Ta	able	3-1: Bac	kground Developments	12
Ta	able	3-2: Cor	ridor Growth Summary	13
Ta	able	3-3: Fut	ure Transportation Network Improvements	14
Τί	able 4	4-1: Trip	Generation	19

Table 4-2: Trip Distribution
Table 6-1: Signal Timing Optimizations, Clarkway Drive/Humber Station Road & Mayfield Road 25
Table 6-2: Capacity Analysis, Clarkway Drive/Humber Station Road & Mayfield Road (2029)26
Table 6-3: Recommended Timing Plan, Humber Station Road & Healey Road
Table 6-4: Capacity Analysis, Humber Station Road & Healey Road (2029)
Table 6-5: Recommended Timing Plan, Humber Station Road & George Bolton Parkway Extension 29
Table 6-6: Capacity Analysis, Humber Station Road & George Bolton Parkway Extension (2029) 29
Table 6-7: Capacity Analysis, Humber Station Road & Healey Road (Existing)30
Table 6-8: Capacity Analysis, George Bolton Parkway Extension & Subject Site Access 1 (2029)
Table 6-9: Capacity Analysis, George Bolton Parkway Extension & Subject Site Access 2 (2029)
Table 7-1: Sensitivity Analysis – Humber Station Road & George Bolton Parkway Extension (2029) 34
Table 7-2: Sensitivity Analysis –George Bolton Parkway Extension & Site Access 1 (2029)
Table 7-3: Sensitivity Analysis – Humber Station Road & Site Access 2 (2029)
Table 8-1: Town of Caledon Zoning By-law 2006-50 Parking Requirement
Table 8-2: Town of Caledon Zoning By-law 2006-50 Loading Requirement
LIST OF FIGURES
Figure 1-1: Subject Site & Future Development Lands Location
Figure 1-2: Proposed Site Plan
Figure 2-1: Humber Station Employment Area Land Use Plan (Schedule C8)
Figure 2-2: Existing Road Network
Figure 2-3: GO Transit Route 38
Figure 2-4: Bolton Local Transit Route
Figure 2-5: Existing and Planned Cycling Network
Figure 2-6: Existing Peak Hour Traffic Volumes
Figure 3-1: Background Development Locations
Figure 3-2: 2029 Future Background Road Network
Figure 3-3: Future Transit Network
Figure 3-4: Future Active Transportation Network

Figure 3-5: 2029 Future Background Peak Hour Traffic Volumes	. 18
Figure 4-1: 2029 Site Generated Peak Hour Auto Traffic Volumes	. 20
Figure 4-2: 2029 Site Generated Peak Hour Truck Traffic Volumes	. 21
Figure 5-1: Future Road Network with Site Accesses	. 22
Figure 5-2: 2029 Future Total Peak Hour Traffic Volumes	. 23
Figure 7-1: George Bolton Parkway Extension (2-lanes) Lane Configuration	. 33
Figure 7-2: George Bolton Parkway Extension (4-lanes) Lane Configuration	. 33

APPENDICES

APPENDIX A	MMLOS
APPENDIX B	TMCS & STPS
APPENDIX C	BACKGROUND DEVELOPMENTS
APPENDIX D	CORRIDOR GROWTH CALCULATIONS
APPENDIX E	MAYFIELD WIDENING CORRESPONDENCES
APPENDIX F	TTS DATA
APPENDIX G	LOS DEFINITIONS
APPENDIX H	EXISTING INTERSECTION CAPACITY ANALYSIS
APPENDIX I	FUTURE BACKGROUND INTERSECTION CAPACITY ANALYSIS
APPENDIX J	FUTURE TOTAL INTERSECTION CAPACITY ANALYSIS
APPENDIX K	SENSITIVITY ANALYSIS
APPENDIX L	FUNCTIONAL DESIGN REVIEW

1 INTRODUCTION

LEA Consulting Ltd., (LEA) has been retained by Prologis to undertake a Transportation Impact Study (TIS) in support of the Site Plan Approval (SPA) application for Phase 1 of the proposed industrial development located at 12519-12715 Humber Station Road, in the Town of Caledon (herein referred to as the "subject site"). It is understood that the master plan concept for the development lands includes six (6) industrial buildings. This TIS has been prepared to support Phase 1 of the development which will introduce the first industrial building to the currently vacant site. The development lands are bounded by Humber Station Road to the west, the Clarkway Tributary to the east, and vacant lands to the north and south, as illustrated in Figure 1-1.

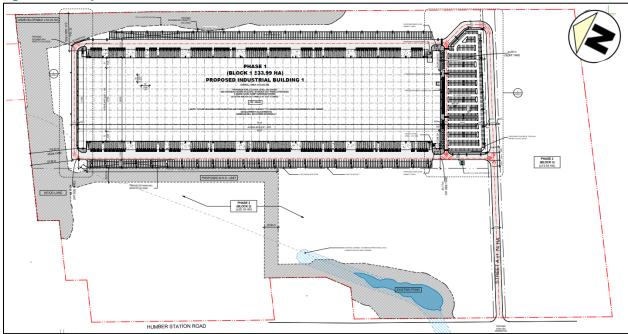
Healey Road Future Develope Humber Station Road Coleraine Drive Mayfield Road

Figure 1-1: Subject Site & Future Development Lands Location

Source: Google Maps, Accessed August 2024

The purpose of this study is to assess the proposed development from a transportation perspective, to determine the traffic impacts to the adjacent road network over a 6-year horizon, and to identify any required mitigation measures. In addition, this study provides a review of the parking and loading supply

and outlines Transportation Demand Management (TDM) measures to encourage alternative modes of travel. The study will be conducted in accordance with the Town of Caledon *Transportation Impact Study Guidelines (2017)* and in-line with the Region of Peel *Transportation Impact Study Guidelines*.


1.1 PROPOSED DEVELOPMENT

Phase 1 of the development proposal consists of a 143,222 m² industrial building. It is understood that warehousing activities are proposed for the building. The proposed development will provide 681 parking spaces, 368 trailer parking spaces, and 260 loading docks at grade. As part of the development proposal, the partial extension of George Bolton Parkway will be constructed, from Humber Station Road to the Clarkway Tributary. The intersection of Humber Station Road & George Bolton Parkway is proposed as a signalized full movements intersection. Access to the proposed development will be provided via two (2) full-movement accesses off the future George Bolton Parkway extension. A breakdown of the site statistics is outlined in **Table 1-1**. The proposed site plan is illustrated in **Figure 1-2**.

Table 1-1: Proposed Site Statistics

Land Use	GFA or Spaces
Industrial (Building 1)	143,222 m ²
Parking Supply	681 spaces plus 3 trailer parking spaces
Loading Supply	260 spaces

Figure 1-2: Proposed Site Plan

Source: Petroff Partnership Architects, April 19, 2024

2 EXISTING TRANSPORTATION CONDITIONS

This section reviews the existing transportation conditions and policy context within the study area, including the road, transit, cycling, and pedestrian networks. The study area was determined by assessing the size of the proposed development and its anticipated transportation impacts. The intersections and streets included in the analysis are listed below:

- Humber Station Road & Healey Road (unsignalized);
- Humber Station Road/Clarkway Drive & Mayfield Road (signalized); and
- Humber Station Road & George Bolton Parkway Extension (future signalized).

2.1 HUMBER STATION EMPLOYMENT AREA SECONDARY PLAN

The Town of Caledon is working with the Humber Station Villages Landowners Group (HSV LOG) to prepare a secondary plan for the Humber Station Employment Area lands in southwest Caledon. On October 10, 2023, Council adopted Official Plan Amendment No. 274 (OPA 274), to expand the Bolton Rural Service Centre Boundary and designate the Humber Station Employment lands as a 'New Employment Area'. The secondary plan is currently under review and will include more detailed policies and land use designations to guide development on the employment lands. The subject site is located within the central region of the Humber Station Employment Area lands as illustrated in the proposed Land Use Schedule (C8) shown in **Figure 2-1**. The employment lands are planned for employment consisting of Prestige Employment and predominately General Employment land use designations.

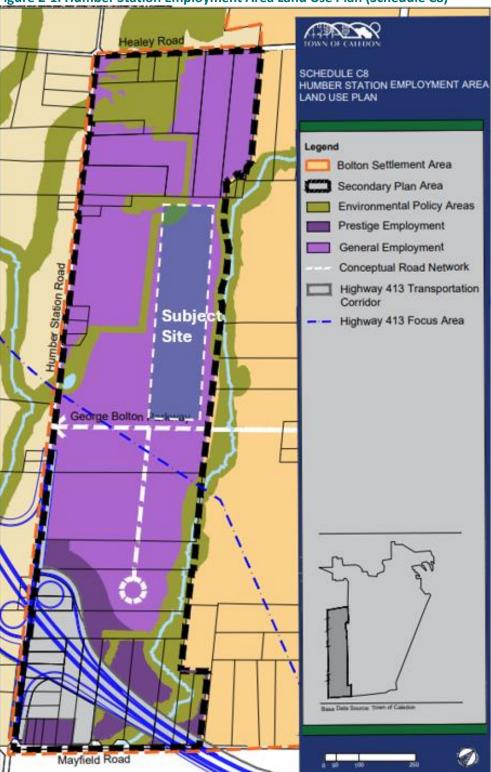
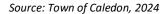
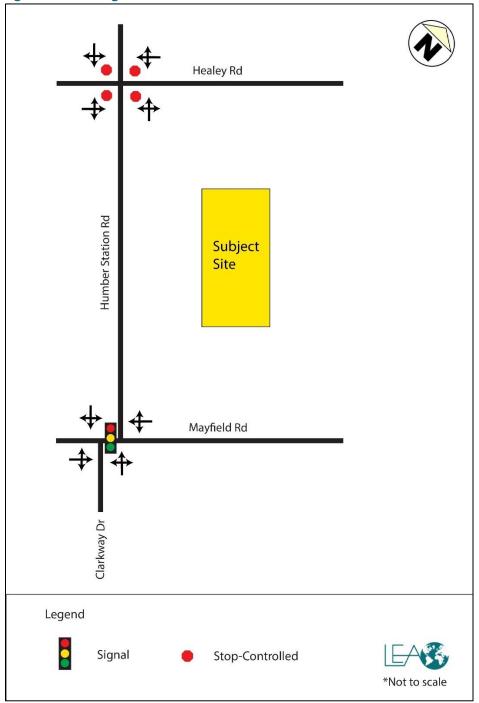



Figure 2-1: Humber Station Employment Area Land Use Plan (Schedule C8)



2.2 EXISTING ROAD NETWORK

The following section provides a description and classification of roadways within the study area. All regional roadways are under the jurisdiction of Peel Region while the remaining roadways are under the jurisdiction of the Town of Caledon or City of Brampton. **Figure 2-2** illustrates the existing lane configuration and traffic control of the study area intersections.

Figure 2-2: Existing Road Network

- Humber Station Road is a north-south collector road under the jurisdiction of the Town of Caledon. The roadway extends north from Mayfield Road to Highway 9, operating with a 2-lane cross-section (1 lane per direction) and with a posted speed limit of 80 km/h within the study area. Of note, the Town of Caledon plans to reduce the posted speed limit along Humber Station Road to 60 km/h, which will be presented to Council in 2024.
- Clarkway Drive is a north-south collector road under the jurisdiction of the City of Brampton. The roadway extends north from Cottrelle Boulevard in Brampton to Mayfield Road, operating with a 2-lane cross-section (1 lane per direction) and with a posted speed limit of 70 km/h within the study area.
- Mayfield Road is an east-west high-capacity arterial road under the jurisdiction of Peel Region. The roadway extends west from Albion Vaughan Road to Winston Churchill Boulevard in Halton Hills. The roadway acts as a municipal boundary between Caledon and Brampton. Mayfield Road operates with a 2-lane cross-section (1 lane per direction) and with a posted speed limit of 80 km/h within the study area.
- **Healey Road** is an east-west collector road under the jurisdiction of the Town of Caledon. The roadway extends west from Queen Street S to Airport Road, operating with a 2-lane cross-section (1 lane per direction) and with a posted speed limit of 60 km/h within the study area.
- George Bolton Parkway is an east-west industrial collector road under the jurisdiction of the
 Town of Caledon. The roadway extends west from Highway 50 and terminates approximately 430
 m west of Coleraine Drive. George Bolton Parkway operates with a 2-lane cross-section (1 lane
 per direction) and with a posted speed limit of 50 km/h within the study area. As part of the
 development proposal, the partial extension of George Bolton Parkway west of the Clarkway
 Tributary will be constructed.

2.3 EXISTING TRANSIT NETWORK

There is currently no Town-wide local public transit service operated by the Town of Caledon. However, following the Town's Transit Feasibility Study in 2019, Voyago was retained to provide local service in the Bolton area. It is understood that as of 2024, service by Voyago has been replaced by Brampton Transit via Route 41 which operates along Highway 50 between Queen Street/Highway 7 in Brampton to Columbia Way/Bolton Heights in Caledon. The route operates Monday to Friday during peak commute hours. The closest bus stop to the subject site is located at George Bolton Parkway & Coleraine Drive. However, given the lack of mid-block road connections to Coleraine Drive, this bus stop is located approximately 5 km from the subject site.

An inter-regional commuter bus service is also available within the Bolton area. The inter-regional route is operated by GO Transit between Malton and the area of Highway 50 & Columbia Way with opportunities to transfer to Metrolinx's GO rail transit. The route operates Monday to Friday during peak hours. The existing transit routes within the Bolton area are illustrated in **Figure 2-3** and **Figure 2-4**. Details of the available services in the area are provided in **Table 2-1**.

Table 2-1: Existing Transit Service

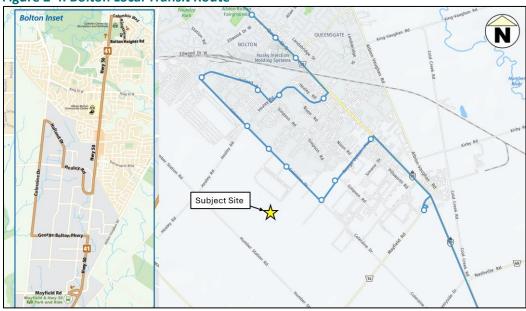
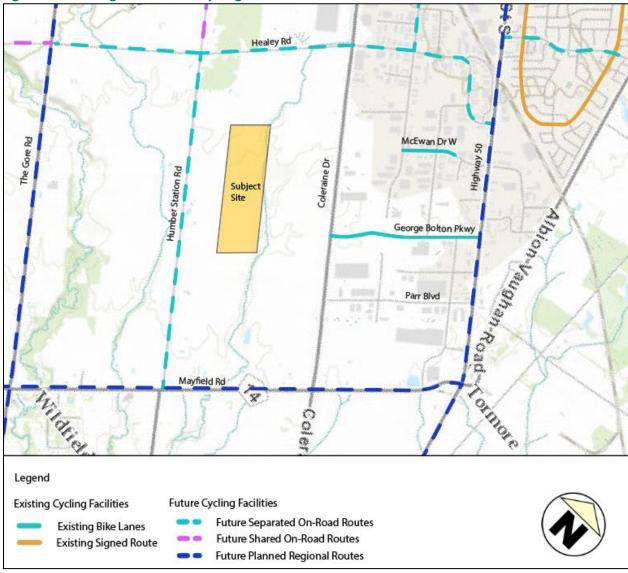

Transit System	Route	Description	Frequency	Accessibility from Subject Site
GO Transit	Route 38	Bolton to Malton (Monday to Friday, 5AM - 7:30AM and 3:30PM - 6:30PM)	60 minutes	Mayfield Road @ Highway 50: 4.3 km
Brampton Transit	Route 41	Bolton to Brampton (Monday to Friday, 5AM - 9:30AM and 3PM - 6:30 PM)	2 hours	George Bolton Parkway @ Coleraine Drive: 5 km

Figure 2-3: GO Transit Route 38

Source: GO Train and Bus Schedule (Metrolinx, April 2023)

Figure 2-4: Bolton Local Transit Route


Source: Brampton Transit & Triplinx, 2024

2.4 EXISTING CYCLING NETWORK

Cycling facilities in Caledon consist of on and off-road facilities that are managed by the Town of Caledon, Peel Region, and adjacent municipalities. Due to the current rural and undeveloped nature of the study area, there are a limited number of active transportation and cycling facilities. Bike lanes are provided on both sides of George Bolton Parkway, east of Coleraine Drive as well as along a portion of McEwan Drive W. However, no cycling facilities are available along the remaining study area roadways. **Figure 2-5** illustrates the existing and planned cycling facilities within the study area.

2.4.1 Cycling Multimodal Level of Service Evaluation

An analysis of the multimodal level of service (MMLOS) for the cycling network in the study area was undertaken to provide a baseline biking level of service in the study area. The cycling network has been evaluated in accordance with the *City of Ottawa's Multi-Modal Level of Service (MMLOS) Guidelines* to describe the convenience and comfort level of active transportation infrastructure in the study area. The results are on a scale of 'A' to 'F', where 'A' represents the preferred conditions and 'F' represents the least preferred conditions. The biking level of service (BLOS) evaluation was conducted for the worst segments of Healey Road, Humber Station Road, and Mayfield Road within the study area.

The BLOS for the study area roadway segments is summarized in **Table 2-2**. Detailed MMLOS analysis is provided in **Appendix A**.

T-1-1- 2 2.	English to a	Discouls	1 1 - 6	C	(DI OC)
Table 2-2:	Existing	Bicycle	Level of	Service	(BLOS)

Segment	From	То	Side	Existing (2024) LOS
Haalay Daad	Llumber Station Bood	Coleraine Drive	North	F
Healey Road	Humber Station Road	Coleraine Drive	South	F
Humber Station Road	Haalay Baad	Road Mayfield Road	East	F
Humber Station Road	Healey Road		West	F
Mayfield Bood	Humber Station Road	Coleraine Drive	North	F
Mayfield Road			South	F

Overall, the study area displays a BLOS of 'F'. This is largely due to the lack of dedicated cycling facilities, the number of travel lanes, and the speed of traffic along most roads within the study area.

2.5 EXISTING PEDESTRIAN NETWORK

Given the rural nature of the study area, the site exhibits poor pedestrian connectivity. Surrounding the study area, sidewalks and a multi-use path are provided along George Bolton Parkway, east of the tributary. However, sidewalks are missing along the surrounding collector and arterial roadways including Mayfield Road, Humber Station Road, and Healey Road. Improvements to the pedestrian connectivity which will be addressed as the Secondary Plan Area becomes urbanized through development.

2.5.1 Pedestrian Multimodal Level of Service Evaluation

An analysis of the multimodal level of service (MMLOS) for the pedestrian network in the study area was undertaken to provide a baseline pedestrian level of service in the study area. The pedestrian network has been evaluated in accordance with the *City of Ottawa's Multi-Modal Level of Service (MMLOS) Guidelines* to describe the convenience and comfort level of active transportation infrastructure in the study area. The results are on a scale of 'A' to 'F', where 'A' represents the preferred conditions and 'F' represents the least preferred conditions. The pedestrian level of service (PLOS) evaluation was conducted for the worst segments of Healey Road, Humber Station Road, and Mayfield Road within the study area.

The PLOS for the study area roadway segments is summarized in **Table 2-3**. Detailed MMLOS analysis is provided in **Appendix A**.

Table 2-3: Existing Pedestrian Level of Service (PLOS)

Segment	From	То	Side	Existing (2024)
Segment		10		LOS
Healey Road	Humber Station Road	Coleraine Drive	North	F
пеагеу коай			South	F
Humber Station Road	Healey Road	Mayfield Road	East	F
Humber Station Road			West	F
May field Dood	Humber Station Road	Coleraine Drive	North	F
Mayfield Road			South	F

Overall, the study area displays a PLOS of 'F'. This is largely due to the lack of pedestrian facilities along the arterial and collector roads within the study area including Mayfield Road, Humber Station Road, and Healey Road.

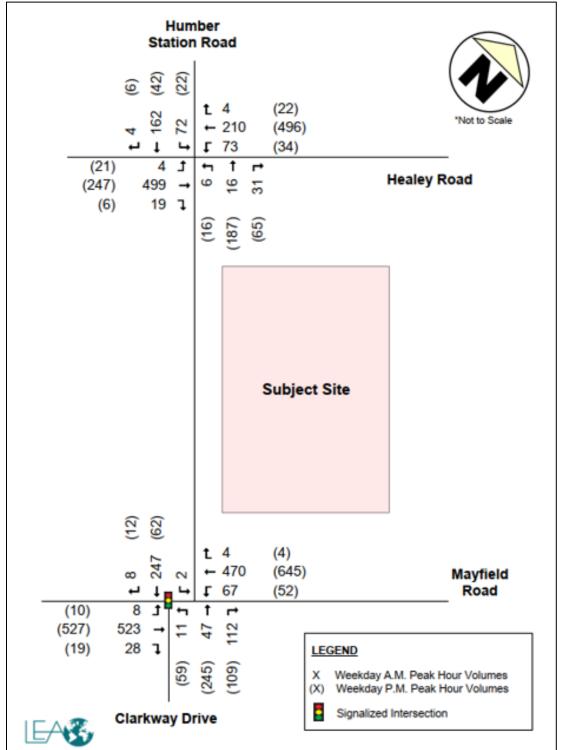
2.6 TRAFFIC DATA COLLECTION

Turning movement counts (TMCs) were used as the source of traffic data for the intersection capacity analysis. Traffic counts were collected by LEA Consulting on Wednesday, May 3, 2023, between 7:00AM - 9:30AM and 4:00PM - 6:30PM to capture the weekday AM and PM peak periods.

Signal timing plans at the signalized intersections were obtained from the Region of Peel. Heavy vehicle traffic, pedestrian traffic, and cyclist traffic were recorded separately and included in the capacity analysis. A summary of the TMC data collected is provided in **Table 2-4**, with detailed traffic counts and signal timing plans available in **Appendix B**.

Table 2-4: Data Collection Summary

Intersection	TMC Date	Source
Humber Station Road & Healey Road	Wednesday, May 3,	LEA Consulting
Mayfield Road & Humber Station Road/Clarkway Drive	2023	LEA Consulting


As of fall 2022, it is understood that the Town of Caledon accepts new traffic data. As such, no COVID adjustments were performed on the counts collected.

2.7 EXISTING TRAFFIC VOLUMES

The existing traffic volumes during the weekday AM and PM peak hours are illustrated in **Figure 2-6**. Volume balancing was applied to through movements where adjacent intersections had volume discrepancies greater than 10%.

Figure 2-6: Existing Peak Hour Traffic Volumes

3 FUTURE BACKGROUND TRANSPORTATION CONDITIONS

For the analysis of future background traffic conditions, this study considers a 6-year horizon from the existing year 2023 to the future year 2029. Future background conditions include traffic added to the network from other future developments, corridor growth, and road network improvements. The future background conditions will be used as the baseline for evaluating the impact of the proposed development.

3.1 BACKGROUND DEVELOPMENTS

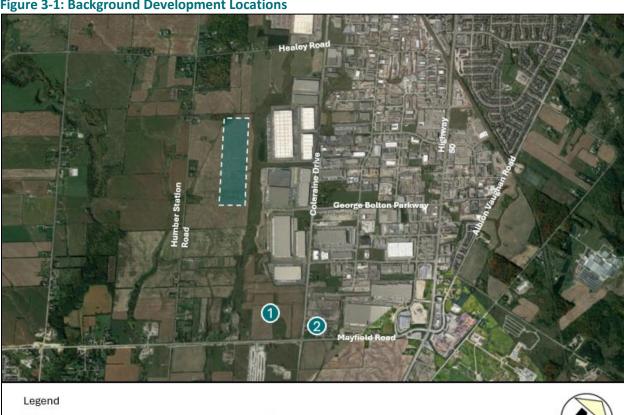

Two (2) background developments have been identified within the surrounding study area. Information on the background developments included in the analysis was obtained from the Town's development application online inventory. The background developments are summarized in **Table 3-1** with their location illustrated in **Figure 3-1**.

Table 3-1: Background Developments

#	Development	Statistics	Anticipated Horizon	Source
1	Triangle Lands	406,000 m ² of industrial GFA	2029	LEA Estimate
2	Coleraine Drive & Mayfield Road Block Plan (South Simpson Landowners Group)	224,000 m ² of industrial GFA	2029	LEA Estimate

As traffic studies were not available for the background developments, site traffic was estimated based on ITE Trip Generation rates and TTS trip distribution, and subsequently assigned to the study area. It was assumed that site accesses for the Triangle Lands and Coleraine Drive & Mayfield Road Block Plan development would occur along Mayfield Road. Detailed trip generation calculations for the background developments are provided in **Appendix C.**

Figure 3-1: Background Development Locations

3.2 CORRIDOR GROWTH

Subject Site

EMME plots from the Region of Peel's 2021, 2031, and 2041 Travel Demand Forecasting Model were used to determine corridor growth rates along major roads. Table 3-2 summarizes the applied growth rates calculated between screenlines. Detailed corridor growth rate calculations are provided in **Appendix D**.

Background Development

Table 3-2: Corridor Growth Summary

Corridor	Direction	Annual Growth Rate (AM/PM)
Llumahan Chatian Dand	Northbound	2%
Humber Station Road	Southbound	1%
NAO, field Dood	Eastbound	3%
Mayfield Road	Westbound	2%
Harley Dand	Eastbound	3%
Healey Road	Westbound	4%

3.3 PLANNED EXTERNAL ROAD NETWORK

There are several proposed and planned changes to the road network surrounding the subject site. The road network improvements considered are summarized in Table 3-3. Of note, based on correspondence with Regional staff (see Appendix E), it is understood that the widening of Mayfield Road from 2 to 6 lanes west of Humber Station Road and from 2 to 4 lanes between Humber Station Road and Highway 50 is

scheduled for construction starting 2026. As such, the completion of this improvement has been considered by the 2029 horizon year.

Table 3-3: Future Transportation Network Improvements

Roadway	Network Improvement	Horizon Year as per Policy Document	Included in Analysis?
	Regional		
Mayfield Road	 Peel Region Long Range Transportation Plan Widening from 2 to 6 lanes, between Dixie Road and Humber Station Road Widening from 2 to 4 lanes, between Humber Station Road and Highway 50 	2031	Yes ⁽¹⁾
	Peel Region Long Range Transportation Plan ■ Widening from 4 to 6 lanes, between Humber Station Road and Coleraine Drive	2041	No
	Local		
Humber	Town of Caledon Transportation Master Plan ■ Proposed signalization of Humber Station Road & Healey Road	2031	Yes ⁽²⁾
Station Road	Town of Caledon Multi-Modal Transportation Master Plan ■ Widening from 2 to 4 lanes, between Highway 8 and Mayfield Road	2031	No
	Town of Caledon Transportation Master Plan • Proposed signalization of Humber Station Road & Healey Road	2031	Yes ⁽²⁾
Healey Road	Town of Caledon Multi-Modal Transportation Master Plan • Widening from 2 to 4 lanes, between Heritage Road and Coleraine Drive	2031	No
George Bolton Parkway	Town of Caledon Multi-Modal Transportation Master Plan	2031	Yes, to be built out partially, by the development proposal

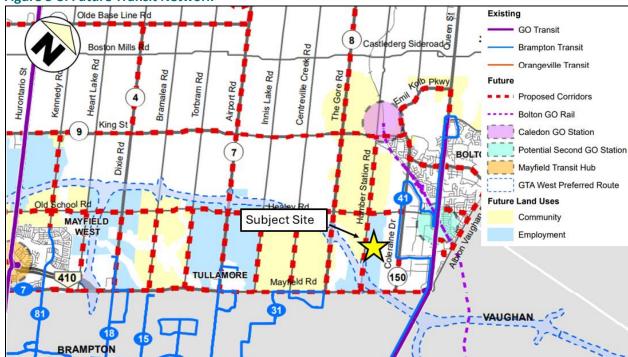

Note:

Figure 3-2 illustrates the 2029 future background road network. Lane configurations Mayfield Road & Humber Station Road/Clarkway Road and Humber Station Road & Healey Road were based on required improvements from the intersection capacity analysis results in **Section 6**. It was assumed that the dedicated turn lanes would be implemented with the signalization of Humber Station Road & Healey Road and widening of Mayfield as part of future background improvements.

^{(1) –} The widening of Mayfield Road from 2 to 6 lanes west of Humber Station Road and from 2 to 4 lanes between Humber Station Road and Highway 50 has been considered under the 2029 horizon year based on correspondence with the Region.

^{(2) –} Based on the capacity analysis results in **Section 6**, the signalization of Humber Station Road & Healey Road is recommended by the 2029 horizon year.

Figure 3-2: 2029 Future Background Road Network



Note: Lane configuration and traffic control for new intersections were based on required improvements from the intersection capacity analysis results in **Section 6.**

3.4 PLANNED TRANSIT AND ACTIVE TRANSPORTATION IMPROVEMENTS

As illustrated in **Figure 3-3**, the Town of Caledon's MMTMP proposes a future transit network including local transit routes along the Humber Station Employment Area boundary roadways and commuter rail service to connect the west side of Toronto to Vaughan and Caledon. The Bolton commuter rail corridor would include a planned Major Transit Station Area (MTSA) centered around the Caledon GO Station (planned at King Street & Humber Station Road). A second potential GO Station / MTSA is identified in the draft MMTMP along Highway 50 / Queen Street. This second GO Station would support new high density mixed-use transit-oriented communities. It is understood that this station will be further assessed as part of future secondary plan processes. Furthermore, a Highway 413 Transitway station is proposed at Mayfield Road & Humber Station Road. The transit corridor is expected to provide separated, exclusive access alongside the highway for public transit.

These nearby transit initiatives aim to expand transit reach to existing and proposed residential and employment land uses. Having more frequent and reliable transit service, as well as improving first/last mile initiatives to existing transit stops will enhance the multi-modal transportation network in the study area.

Figure 3-3: Future Transit Network

Source: Multi-Modal Transportation Master Plan (Town of Caledon, June 2024)

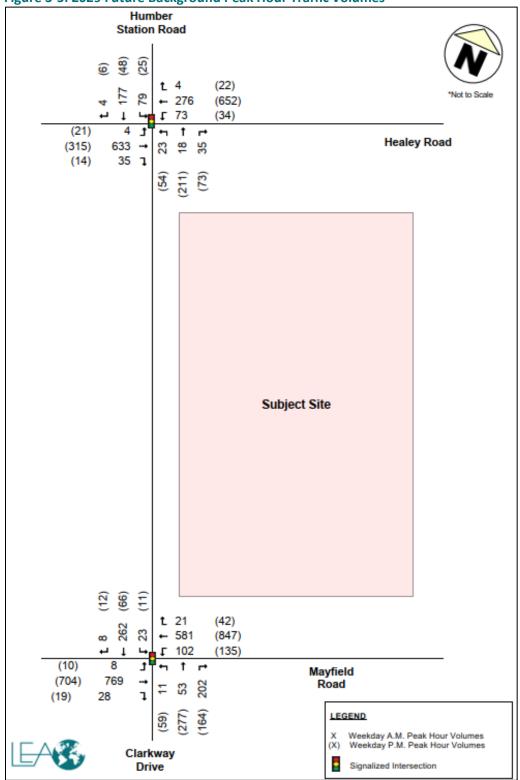
Improved pedestrian and cycling facilities are provisionally planned for all 3 surrounding roadways. The Town of Caledon's MMTMP proposes physically separated cycling facilities along Humber Station Road and Healey Road. Regional cycling facilities are also planned along Mayfield Road. These external facilities will serve as active transportation links to nearby neighbourhoods within the community.

As part of the development lands, George Bolton Parkway will extend from its existing terminal west of Coleraine Drive to Humber Station Road. The proposed active transportation facilities along the George

Bolton extension will be informed by the Town's MMTMP and evaluated as part of the EA for the George Bolton Parkway extension. The type of active transportation facility will be determined through this process and in consultation with any available standard cross-sections for industrial collector roads. The active transportation facilities along George Bolton will serve as the primary link to external facilities.

A conceptual diagram illustrating the future active transportation network informed by the Town and Region's TMP is provided in **Figure 3-4**.

Healey Rd The Gore Rd McEwan Dr W Highway 50 Humber Station Rd George Bolton Pkwy Parr Blvd Mayfield Rd 0 4 Legend **Future Cycling Facilities Existing Cycling Facilities** Future Physically Separated Town Routes **Existing Bike Lanes Future Planned Regional Routes Existing Signed Route Existing Multi-Use Path**


Figure 3-4: Future Active Transportation Network

3.5 FUTURE BACKGROUND TRAFFIC VOLUMES

The future background traffic volumes for the weekday AM and PM peak hours under the 2029 horizon year are illustrated in **Figure 3-5**.

Figure 3-5: 2029 Future Background Peak Hour Traffic Volumes

4 SITE-GENERATED TRAFFIC

Prologis Building 1 is being delivered first by the 2029 horizon year. Access to the proposed development will be provided via two (2) full-movement accesses off the George Bolton Parkway extension. The calculation, distribution, and assignment of future site generated trips are discussed below.

4.1 TRIP GENERATION

It is understood that warehousing activities are proposed for Building 1. As such, trip generation was estimated using average baseline auto and truck trip rates from the ITE Trip Generation Manual 11th Edition for ITE LUC 150 – Warehousing in General Urban/Suburban and based on the proposed industrial GFA of 143,222 m² (1,541,629 ft²). The site trip generation is provided in **Table 4-1**.

Table 4-1: Trip Generation

Land Use	Description	Weekday AM Peak Hour				Weekday PM Peak Hour			
Land Ose	Description	In	Out	Total	In	Out	Total		
			Building 1						
	Auto Trip Rate (/1000 ft²)	0.13	0.04	0.17	0.05	0.13	0.18		
ITE LUC 150	Total ITE Auto Trips	202	60	262	78	200	278		
ITE LUC 150 – Warehousing 1,541,629 ft ²	Truck Trip Rate (/1000 ft²)	0.01	0.01	0.02	0.02	0.01	0.03		
1,541,02911	Total ITE Truck Trips	16	15	31	24	22	46		
	External Auto Trips (100%)	218	75	293	102	222	324		

The proposed development is anticipated to generate 262 two-way auto vehicle trips during the AM peak hour (202 inbound and 60 outbound) and 278 two-way auto vehicle trips during the PM peak hour (78 inbound and 200 outbound). In addition, 31 two-way truck trips (16 inbound and 15 outbound) are anticipated during the AM peak hour and 46 two-way truck trips (24 inbound and 22 outbound) are anticipated during the PM peak hour.

4.2 TRIP DISTRIBUTION AND ASSIGNMENT

The directional trip distribution of site traffic was derived using the 2016 TTS data filtered for trips originating in/destined to industrial areas during the AM and PM peak periods within Traffic Analysis Zones (TAZ) 3017 and 3191. Inbound and outbound distribution was based on the results of the peak hour for the peak direction (i.e., inbound direction based on AM in and outbound distribution based on PM out). Site traffic was assigned to the road network based on logical routing, turn restrictions, and changes in the future network.

The trip distribution for the proposed development is outlined in **Table 4-2**. Detailed TTS data is provided in **Appendix F**.

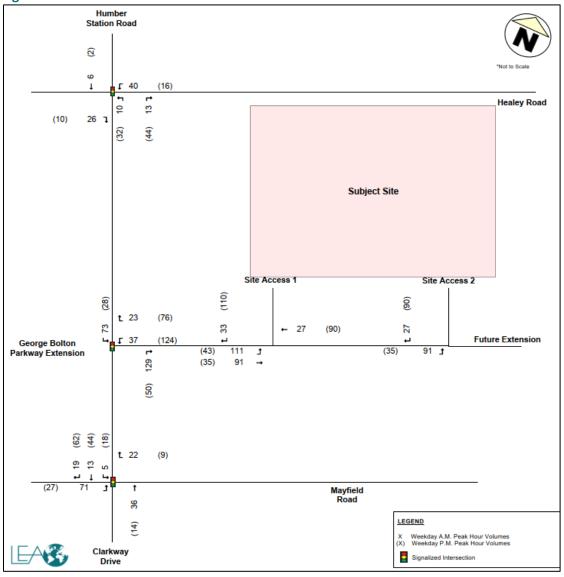
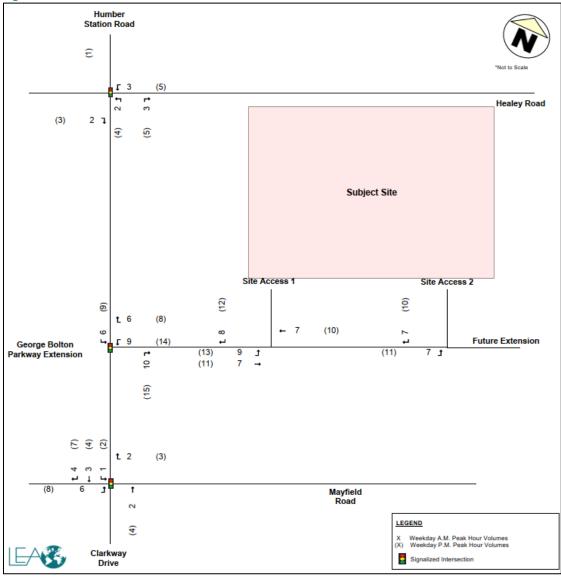


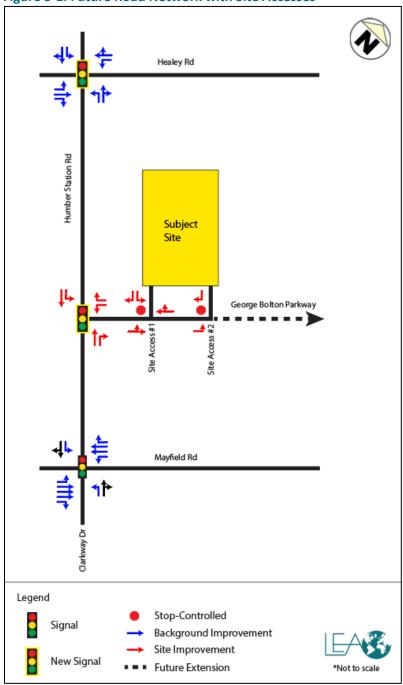
Table 4-2: Trip Distribution

Direction		Indu	strial				
From/To	Expected Route	Weekday AM/PM					
FIGHTIO		In	Out				
North	Humber Station Road	3%	0%				
South	Clarkway Drive	18%	22%				
East	Healey Road	20%	22%				
EdSt	Mayfield Road	11%	9%				
\^/+	Healey Road	13%	16%				
West	Mayfield Road	35%	31%				
	Total	100%	100%				

The site-generated traffic volumes for the weekday AM and PM peak hours under the 2029 horizon for the auto and truck trips are illustrated in **Figure 4-2** and **Figure 4-2**, respectively.

Figure 4-1: 2029 Site Generated Peak Hour Auto Traffic Volumes

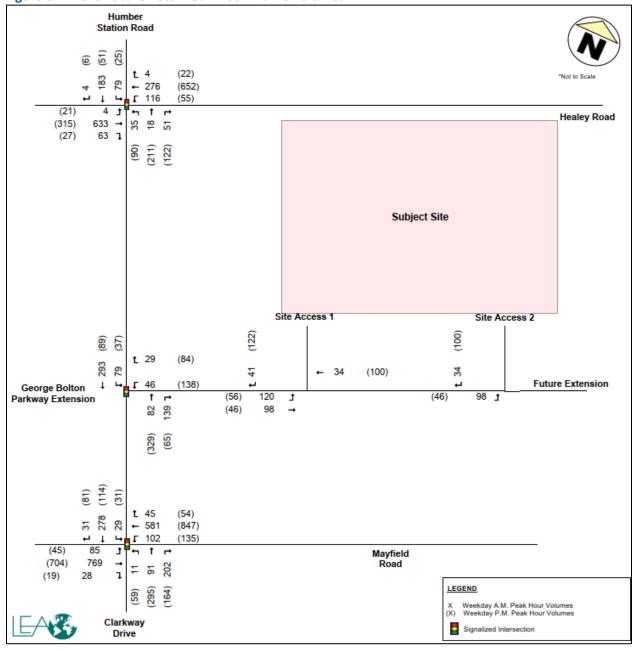



Figure 4-2: 2029 Site Generated Peak Hour Truck Traffic Volumes

5 FUTURE TOTAL TRANSPORTATION CONDITIONS

Future total traffic conditions include the addition of site vehicle trips to future background volumes. As part of the development proposal, a partial extension of George Bolton Parkway will be constructed from Humber Station Road to the Clarkway Tributary. **Figure 5-1** illustrates the future road network with the site accesses in place.

Figure 5-1: Future Road Network with Site Accesses



5.1 FUTURE TOTAL TRAFFIC VOLUMES

Future total traffic volumes during the weekday AM and PM peak hours under the 2029 horizon year are illustrated in **Figure 5-2**.

Figure 5-2: 2029 Future Total Peak Hour Traffic Volumes

6 INTERSECTION CAPACITY ANALYSIS

The intersection capacity analysis was undertaken using Synchro 11.0, which is based on the Highway Capacity Manual (HCM) (2000) and adheres to the Town of Caledon's Transportation Impact Studies Terms of Reference and Guidelines dated March 2017. HCM 2000 and 6 results are presented for signalized and unsignalized study intersections, respectively. As per the Town of Caledon guidelines, critical movements of interest for signalized intersections were identified as those with a volume-to-capacity (v/c) ratio greater than 0.90 for overall intersection operations, through movements or shared through/turning movements and a v/c ratio greater than 1.00 for exclusive turning movements. For unsignalized intersections, critical movements were identified as those with a level-of-service (LOS) 'E' or greater. LOS definitions are included in **Appendix G**.

6.1 EXISTING SYNCHRO MODEL INPUTS

Existing traffic operations were assessed to provide a baseline for future traffic operations and identify intersections currently experiencing capacity constraints. The existing analysis incorporates the most recent signal timing plans for the study intersections. The applied Peak Hour Factor (PHF) values were calculated based on surveyed counts.

6.2 FUTURE BACKGROUND SYNCHRO MODEL INPUTS

Input parameters from the existing scenario were maintained with corresponding future background volumes, with the exception of the following changes:

- Clarkway Drive/Humber Station Road & Mayfield Road
 - Optimized splits during the AM and PM peak hours while maintaining the overall cycle length of 120 seconds.
 - Lane configuration changed to accommodate the widening of Mayfield Road, with the introduction of 3 eastbound through lanes and 2 westbound through lanes. Exclusive left and right-turning lanes were also added for the westbound and eastbound directions, as well as and exclusive left turning lanes for the northbound and southbound directions.
- ► Humber Station Road & Healey Road
 - New signalized intersection under the 2029 horizon year.
 - Lane configuration changed to accommodate signalization. Lane configuration changed with the introduction of exclusive left-turning lanes for all directions.

6.3 FUTURE TOTAL SYNCHRO MODEL INPUTS

Input parameters from the existing and future background scenarios were maintained with corresponding future total volumes, with the exception of the following changes:

► Humber Station Road & George Bolton Parkway Extension

- New intersection to facilitate access for the subject site. The intersection is recommended as a signalized intersection under the 2029 horizon year. Partial buildout of the George Bolton Parkway extension was assumed to accommodate access to the subject site.
- ► George Bolton Parkway & Site Access 1
 - o New unsignalized intersection to facilitate access for the subject site.
- George Bolton Parkway & Site Access 2
 - New unsignalized intersection to facilitate access for the subject site.

The following sections outline a comparison of the capacity analysis results under existing, future background, and future total conditions. Detailed capacity analysis results are provided in the following appendices:

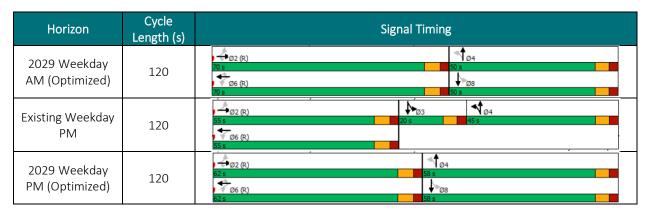
- ► Appendix H: Existing Intersection Capacity Analysis;
- ▶ Appendix I: 2029 Future Background Intersection Capacity Analysis; and
- ► Appendix J: 2029 Future Total Intersection Capacity Analysis.

6.4 EXISTING SIGNALIZED INTERSECTIONS

The results for the existing signalized intersections under each traffic scenario during the weekday AM and PM peak hours are summarized in the sections below.

6.4.1 Clarkway Drive/Humber Station Road & Mayfield Road

As per the Peel Region Long Range Transportation Plan (2019), Mayfield Road is planned to be widened from 2 to 6 lanes west of Humber Station Road and from 2 to 4 lanes between Humber Station Road and Highway 50 by 2031. However, based on correspondence with Peel Region staff, it is understood that this improvement is scheduled for construction starting 2026. It is further understood that the widening of Mayfield Road will include realignment of the north and south legs of Humber Station Road to eliminate the existing jogged intersection and split phasing. As such, completion of these improvements has been incorporated into the analysis by the 2029 horizon year.


As per the Mayfield Road Improvement Class Environment Assessment (April 2013), exclusive left- and right-turning lanes for the westbound and eastbound directions, and exclusive left turning lanes for the northbound and southbound directions have been included in the analysis.

To reflect the realignment of Humber Station Road and removal of the existing split phasing, optimized signal timing plans were applied during both peak hours while maintaining the overall cycle length. The signal timing optimizations for the future horizons are summarized in **Table 6-1**.

Table 6-1: Signal Timing Optimizations, Clarkway Drive/Humber Station Road & Mayfield Road

Horizon	Cycle Length (s)	S	ignal Timing	
Existing Weekday	120	02 (R) 70 s	₩ Ø3	1 04
AM	120	1 Ø6 (R)		

The intersection capacity analysis at Clarkway Drive/Humber Station Road & Mayfield Road under the 2029 horizon year is summarized in **Table 6-2** for the weekday AM and PM peak hours.

Table 6-2: Capacity Analysis, Clarkway Drive/Humber Station Road & Mayfield Road (2029)

AM PEAK		Existing Tra	,	3)	,	Future B	ackground Optimized)		,	Future Total (2029 - Optimized)			
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)	
Overall	-	0.81	D (41)	-/-	-	-	B (19)	-/-	-	-	C (20)	-/-	
EBL				_	8	0.02	B (10)	1/3	85	0.19	B (14)	8/20	
EBT	559	0.71	C (27)	106/153	769	0.26	A (8)	26/39	769	0.27	A (9)	28/43	
EBR					28	0.03	A (7)	0/3	28	0.04	A (8)	0/3	
WBL					102	0.24	B (13)	9/23	102	0.25	B (15)	10/26	
WBT	541	0.78	C (32)	110/165	581	0.29	A (8)	28/46	581	0.30	A (10)	31/51	
WBR					21	0.02	A (7)	0/2	45	0.05	A (8)	0/5	
NBL	170	0.88	F (86)	44/92	11	0.09	D (53)	2/7	11	0.09	D (53)	2/7	
NBTR	170	0.88	1 (80)	44/32	255	0.78	D (49)	27/51	293	0.78	D (47)	46/72	
SBL	257	0.83	E (64)	63/101	23	0.21	E (56)	6/15	29	0.24	E (55)	7/17	
SBTR	257	0.83	L (04)	03/101	270	0.72	D (47)	72/99	309	0.74	D (45)	82/111	
					Future Background			Future Background Future Total					
PM PEAK	E	Existing Tra	affic (2023	3)									
PM PEAK Mvmt	Vol	Existing Tra	affic (2023 LOS (Delay)	Queues (50/95)	Vol		ackground Optimized) LOS (Delay)	Queues (50/95)	Vol				
PEAK			LOS	Queues	Vol -	(2029 - 0	Optimized) LOS	-	Vol -	(2029 - 0	ptimized) LOS	Queues	
PEAK Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)		(2029 - 0 V/C	Optimized) LOS (Delay)	(50/95)	Vol - 45	(2029 - O V/C	ptimized) LOS (Delay)	Queues (50/95)	
PEAK Mvmt Overall	Vol	V/C	LOS (Delay)	Queues (50/95)	-	(2029 - 0 V/C	Dptimized) LOS (Delay) C (22)	(50/95) -/-	-	(2029 - O V/C -	ptimized) LOS (Delay) C (24)	Queues (50/95)	
PEAK Mvmt Overall EBL	Vol -	V/C 0.92	LOS (Delay) D (52)	Queues (50/95) -/-	- 10	V/C - 0.03	Dptimized) LOS (Delay) C (22) B (18)	(50/95) -/- 1/5	- 45	(2029 - O V/C - 0.18	LOS (Delay) C (24) C (25)	Queues (50/95) -/- 5/16	
PEAK Mvmt Overall EBL EBT	Vol -	V/C 0.92	LOS (Delay) D (52)	Queues (50/95) -/-	- 10 704	V/C - 0.03 0.26	Dptimized) LOS (Delay) C (22) B (18) B (12)	(50/95) -/- 1/5 31/48	- 45 704	(2029 - O V/C - 0.18 0.27	timized) LOS (Delay) C (24) C (25) B (14)	Queues (50/95) -/- 5/16 33/50	
PEAK Mvmt Overall EBL EBT EBR	Vol -	V/C 0.92	LOS (Delay) D (52)	Queues (50/95) -/-	- 10 704 19	V/C - 0.03 0.26 0.02	Deptimized) LOS (Delay) C (22) B (18) B (12) B (10)	(50/95) -/- 1/5 31/48 0/2	- 45 704 19	V/C - 0.18 0.27 0.03	timized) LOS (Delay) C (24) C (25) B (14) B (12)	Queues (50/95) -/- 5/16 33/50 0/2	
PEAK Mvmt Overall EBL EBT EBR WBL	Vol - 556	V/C 0.92 0.74	LOS (Delay) D (52)	Queues (50/95) -/- 118/199	- 10 704 19 135	V/C - 0.03 0.26 0.02 0.35	Deptimized) LOS (Delay) C (22) B (18) B (12) B (10) C (21)	(50/95) -/- 1/5 31/48 0/2 18/44	- 45 704 19 135	V/C - 0.18 0.27 0.03 0.37	timized) LOS (Delay) C (24) C (25) B (14) B (12) C (23)	Queues (50/95) -/- 5/16 33/50 0/2 19/45	
PEAK Mvmt Overall EBL EBT EBR WBL WBT	Vol - 556 701	V/C 0.92 0.74 0.99	LOS (Delay) D (52) C (32) E (64)	Queues (50/95) -/- 118/199 195/290	- 10 704 19 135 847	V/C - 0.03 0.26 0.02 0.35 0.41	Deptimized) LOS (Delay) C (22) B (18) B (12) B (10) C (21) B (14)	(50/95) -/- 1/5 31/48 0/2 18/44 60/93	- 45 704 19 135 847	(2029 - O V/C - 0.18 0.27 0.03 0.37 0.47	timized) LOS (Delay) C (24) C (25) B (14) B (12) C (23) B (16)	Queues (50/95) -/- 5/16 33/50 0/2 19/45 65/100	
PEAK Mvmt Overall EBL EBT EBR WBL WBT WBR	Vol - 556	V/C 0.92 0.74	LOS (Delay) D (52)	Queues (50/95) -/- 118/199	- 10 704 19 135 847 42	V/C - 0.03 0.26 0.02 0.35 0.41 0.05	Deptimized) LOS (Delay) C (22) B (18) B (12) B (10) C (21) B (14) B (11)	(50/95) -/- 1/5 31/48 0/2 18/44 60/93 0/6	- 45 704 19 135 847 54	(2029 - O V/C - 0.18 0.27 0.03 0.37 0.47 0.07	D (138) Description of the properties of the pr	Queues (50/95) -/- 5/16 33/50 0/2 19/45 65/100 0/7	
PEAK Mvmt Overall EBL EBT EBR WBL WBT WBR NBL	Vol - 556 701	V/C 0.92 0.74 0.99	LOS (Delay) D (52) C (32) E (64)	Queues (50/95) -/- 118/199 195/290	- 10 704 19 135 847 42 59	V/C - 0.03 0.26 0.02 0.35 0.41 0.05 0.17	Deptimized) LOS (Delay) C (22) B (18) B (12) B (10) C (21) B (14) B (11) C (35)	(50/95) -/- 1/5 31/48 0/2 18/44 60/93 0/6 11/20	- 45 704 19 135 847 54 59	(2029 - O V/C - 0.18 0.27 0.03 0.37 0.47 0.07 0.21	D (138) Description of the properties of the pr	Queues (50/95) -/- 5/16 33/50 0/2 19/45 65/100 0/7 11/20	

Existing Conditions: The signalized intersection operates within capacity, with acceptable delays and an overall LOS of 'D' during both weekday AM and PM peak hours. The NBLTR movement during the AM peak hour experiences some delay and a LOS of 'F'; however, operates with residual capacity. During the PM

peak hour, the overall intersection operates with a v/c above 0.90. Notably, the WBLTR movement is approaching capacity and operating with a LOS of 'E'. It should be noted that these conditions improve under future conditions as a result of widening on Mayfield Road from 2 to 6 lanes west of Humber Station Road and from 2 to 4 lanes east of Humber Station Road.

Future Background Conditions: With signal optimization and widening of Mayfield Road, the intersection operates acceptably under future background conditions with acceptable delays and an overall LOS of 'C' or better during both peak hours. No critical movements have been identified.

Future Total Conditions: The intersection is expected to experience some increase in delays and v/c ratios when compared to future background conditions. The addition of site traffic is expected to have an acceptable impact on intersection operations. No traffic constraints have been identified as a result of site traffic.

6.5 FUTURE SIGNALIZED INTERSECTIONS

The results for the future signalized intersections under each traffic scenario during the weekday AM and PM peak hours are summarized in the sections below.

6.5.1 Humber Station Road & Healey Road

As per *Town of Caledon Transportation Master Plan (2017)*, Humber Station Road & Healey Road is planned to be signalized by 2031. However, this improvement was applied under the 2029 horizon year to accommodate future traffic volumes. The recommended signal timing plan under future conditions is summarized in **Table 6-3**. Furthermore, exclusive left-turning lanes are recommended for all directions.

Cycle Horizon **Signal Timing Modifications** Length (s) Existing Weekday AM **↑**Ø2 (R) 2029 Weekday 120 AM (New) **Existing Weekday** PM **1**ø2 (R) 2029 Weekday 120 Ø6 (R) PM (New)

Table 6-3: Recommended Timing Plan, Humber Station Road & Healey Road

The intersection capacity analysis at Humber Station Road & Healey Road under the 2029 horizon year is summarized in **Table 6-4** for the weekday AM and PM peak hours.

Table 6-4: Capacit	y Analysis	s, Humber Station	n Road & Heale	y Road (202	9)
--------------------	------------	-------------------	----------------	-------------	----

AM PEAK	·	Existing Tr	affic (2023	3)			ackground - New)			Future (2029	e Total - New)	
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)
Overall					-	-	C (32)	-/-	-	-	C (32)	-/-
EBL					4	0.01	C (23)	1/2	4	0.01	C (21)	1/2
EBT					633	0.90	D (44)	146/177	633	0.90	D (44)	146/177
EBR					35	0.06	C (22)	0/4	63	0.11	C (22)	2/9
WBL		Saa Sart	ion 6.6.1		73	0.45	C (29)	9/14	116	0.61	C (30)	14/22
WBTR		See Sect	.1011 0.0.1		280	0.34	B (20)	38/46	280	0.32	B (18)	36/44
NBL					23	0.05	C (24)	5/13	35	0.09	C (26)	7/16
NBTR					53	0.08	B (19)	4/15	69	0.10	C (21)	4/15
SBL					79	0.14	C (22)	14/30	79	0.15	C (24)	15/31
SBTR					181	0.23	C (21)	33/58	187	0.25	C (23)	36/62
PM		Existing Tr	affic (2023	3)			ackground			Future		
PEAK						(2029	- New)			(2029	- New)	
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)
Overall					ı	-	C (32)	-/-	-	-	C (32)	-/-
EBL					21	0.20	D (55)	4/9	21	0.20	D (55)	4/9
EBT					315	0.50	C (32)	59/74	315	0.51	C (32)	59/74
EBR					14	0.03	C (26)	0/0	27	0.06	C (27)	0/2
WBL		Saa Sart	ion 6.6.1		34	0.11	C (24)	5/9	55	0.19	C (25)	8/13
WBTR		Jee Ject	.1011 0.0.1		674	0.90	D (41)	142/163	674	0.90	D (41)	142/163
NBL					54	0.08	B (16)	12/25	90	0.14	B (17)	18/32
NBTR					284	0.32	B (18)	68/99	333	0.38	B (19)	69/97
SBL					25	0.05	C (21)	4/11	25	0.06	C (23)	4/11
SBTR					54	0.06	B (15)	7/17	57	0.06	B (15)	7/18

Future Background Conditions: With signalization, the intersection operates within capacity, with acceptable delays and an overall LOS of 'C' during both peak hours. No constraints have been identified.

Future Total Conditions: Minor increases in delay and v/c ratio are expected under futural total conditions compared to future background conditions during both weekday peak hours. No constraints have been identified as a result of site traffic.

6.5.2 Humber Station Road & George Bolton Parkway Extension

Of note, the future intersection of George Bolton Parkway & Humber Station Road Extension is proposed as a full movements signalized intersection by the 2029 horizon. The recommended signal timing plan under future conditions is summarized in **Table 6-5**.

As per the *Town of Caledon's Multi-Modal Transportation Master Plan (2024),* George Bolton Parkway is planned as a 4-lane connection from Humber Station Road to Coleraine Drive by 2031. However, the 2029 horizon includes the partial buildout of George Bolton Parkway to facilitate access for the subject site.

To understand the minimum road network required to service the lands, George Bolton Parkway was analyzed as a 2-lane cross-section. A sensitivity analysis is provided in **Section 7** detailing operations for George Bolton Parkway as 4-lanes.

Table 6-5: Recommended Timing Plan, Humber Station Road & George Bolton Parkway Extension

Horizon	Cycle Length (s)	Signal Timing
Existing Weekday AM	-	-
2029 Weekday AM (New)		75 s
Existing Weekday PM	-	-
2029 Weekday PM (New)		61s 61s 06 (R) 61s

The intersection capacity analysis at Humber Station Road & George Bolton Parkway extension under the 2029 and horizon year are summarized in **Table 6-6** for the weekday AM and PM peak hours.

Table 6-6: Capacity Analysis, Humber Station Road & George Bolton Parkway Extension (2029)

Table 6	o. cap	0.0.0, 7.	, 515)	1141116		11 11044	0001	Sc Doite		way Exc	CHISTOTI	(/
AM PEAK	Existing Traffic (2023)				g Traffic (2023) Future Background (2029)				Future Total (2029 - New)			
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)
Overall									-	-	A (9)	-/-
WBL									46	0.29	D (52)	11/23
WBR									29	0.24	D (52)	0/10
NBT			-				-		82	0.06	A (3)	3/9
NBR									139	0.12	A (3)	0/7
SBL									79	0.09	A (3)	2/10
SBT									293	0.20	A (3)	10/28
					Future Background						10/20	
PM PEAK		Existing Tr	affic (2023	3)			ackground 029)			Future		10/20
	Vol	Existing Tr	affic (2023 LOS (Delay)	Queues (50/95)	Vol			Queues (50/95)	Vol	Future	Total	Queues (50/95)
PEAK			LOS	Queues	Vol	(2	029) LOS	Queues		Future (2029	Total - New) LOS	Queues
PEAK Mvmt			LOS	Queues	Vol	(2	029) LOS	Queues		Future (2029	e Total - New) LOS (Delay)	Queues (50/95)
PEAK Mvmt Overall			LOS	Queues	Vol	(2	029) LOS	Queues	Vol -	Future (2029 V/C	e Total - New) LOS (Delay) B (20)	Queues (50/95)
PEAK Mvmt Overall WBL			LOS	Queues	Vol	(2	029) LOS	Queues	Vol - 138	Future (2029 V/C - 0.79	Total - New) LOS (Delay) B (20) E (60)	Queues (50/95) -/- 33/52
PEAK Mvmt Overall WBL WBR			LOS	Queues	Vol	(2	029) LOS	Queues	Vol - 138 84	Future (2029 V/C - 0.79 0.54	E Total - New) LOS (Delay) B (20) E (60) D (53)	Queues (50/95) -/- 33/52 0/14
PEAK Mvmt Overall WBL WBR NBT			LOS	Queues	Vol	(2	029) LOS	Queues	Vol - 138 84 329	Future (2029 V/C - 0.79 0.54 0.23	E Total - New) LOS (Delay) B (20) E (60) D (53) A (4)	Queues (50/95) -/- 33/52 0/14 10/24

Future Total Conditions: With signalization, the intersection is expected to operate well within capacity and with acceptable delays during both peak hours. No constraints have been identified as a result of site traffic.

6.6 EXISTING UNSIGNALIZED INTERSECTIONS

The results for the studied existing unsignalized intersections under each traffic scenario during the weekday AM and PM peak hours are summarized in the sections below.

6.6.1 Humber Station Road & Healey Road

As previously mentioned, signalization of Humber Station Road & Healey Road is recommended in 2029. As such, only the existing intersection operations are provided below in **Table 6-7** for the weekday AM and PM peak hours.

Table 6-7: Capacity Analysis, Humber Station Road & Healey Road (Existing)

AM		Existing Con	ditions (2023)	57
Mvmt	Vol	V/C	Delay (LOS)	Queue 95th
EBLTR	522	0.87	34 (D)	-
WBLTR	287	0.51	15 (C)	-
NBLTR	53	0.11	11 (B)	-
SBLTR	238	0.46	15 (C)	-
PM		Existing Con	ditions (2023)	
Mvmt	Vol	V/C	Delay (LOS)	Queue 95th
EBLTR	274	0.48	15 (B)	-
WBLTR	552	0.89	38 (E)	-
NBLTR	268	0.49	16 (C)	=
SBLTR	70	0.14	11 (B)	-

Existing Conditions: All movements at the unsignalized intersection operate within capacity and with acceptable delays during both weekday AM and PM peak hours. No critical movements have been identified.

6.7 FUTURE UNSIGNALIZED INTERSECTIONS

The results for the studied future unsignalized intersections under each traffic scenario during the weekday AM and PM peak hours are summarized in the sections below.

6.7.1 George Bolton Parkway Extension & Subject Site Access 1

The intersection capacity analysis at George Bolton Parkway Extension & Subject Site Access 1 under the 2029 and horizon year is summarized in **Table 6-8** for the weekday AM and PM peak hours.

Table 6-8: Capacity Analysis, George Bolton Parkway Extension & Subject Site Access 1 (2029)

AM PEAK		Existing Tr			Future Background (2029)				Future Total (2029 - New)				
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)	
Overall									ı	ı	- (4)	-/-	
EBL									120	0.09	A (8)	-/0	
EBT									98	0.00	-/0		
WBT			-				-		34	0.00	(0)	-/0	
SBL									0	0.00	A (0)	-/0	
SBR									41 0.04 A (9)				
PM PEAK		Existing Tr	affic (2023	3)			ackground 029)		Future Total (2029 - New)				
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol V/C LOS Queues (Delay) (50/95)				Vol	V/C	LOS (Delay)	Queues (50/95)	
Overall									ı	ı	- (5)	-/-	
EBL									56	0.05	A (8)	-/0	
EBT									46	0.00	A (0)	-/0	
WBT			-				-		100	0.00	(0)	-/0	
SBL									0	0.00	A (0)	-/0	
SBR									122	0.14	A (10)	-/1	

Future Total Conditions: Site Access 1 is expected to operate well within capacity and with acceptable delays during both peak hours. No constraints have been identified as a result of site traffic.

6.7.2 George Bolton Parkway Extension & Subject Site Access 2

The intersection capacity analysis at George Bolton Parkway Extension & Subject Site Access 2 under the 2029 and horizon year is summarized in **Table 6-9** for the weekday AM and PM peak hours.

Table 6-9: Capacity Analysis, George Bolton Parkway Extension & Subject Site Access 2 (2029)

AM PEAK	ĺ	Existing Tr	affic (2023	3)	Future Background (2029)				Future Total (2029 - New)				
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)	
Overall									-	-	- (8)	-/-	
EBL									98	0.07	A (7)	-/0	
EBT			-				-		0	0.00	A (0)	-/0	
WBT									0	0.00	(0)	-/0	
SBR									34	0.04	A (9) -/0		
PM PEAK	1	Existing Tr	affic (2023	3)	Future Background (2029)				Future Total (2029 - New)				
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)	
Overall									-	ı	- (8)	-/-	
EBL									46	0.03	A (8)	-/0	
EBT			-				-		0	0.00	A (0)	-/0	
WBT									0	0.00	(0)	-/0	
SBR									100	0.10	A (9)	-/0	

Future Total Conditions: Site Access 2 is expected to operate well within capacity and with acceptable delays during both peak hours. No constraints have been identified as a result of site traffic.

6.8 SUMMARY OF INTERSECTION CAPACITY ANALYSIS RESULTS

With signal optimizations, the realignment of the Clarkway Drive/Humber Station Road & Mayfield Road intersection, and planned widenings along Mayfield Road, the intersection capacity analysis results indicate that site traffic is expected to have an acceptable impact on the surrounding road network. In addition, the proposed site accesses to the subject site are expected to operate sufficiently under future conditions. Furthermore, signalization is recommended at Humber Station Road & Healey Road by the 2029 horizon to accommodate future traffic growth, a recommendation which is irrespective of site traffic given that the intersection operates poorly under future background conditions. Overall, the subject site is expected to have an acceptable impact on the road network operations in the surrounding area.

7 SENSITIVITY ANALYSIS

The intersection capacity analysis undertaken in **Section 6** assumed a 2-lane cross-section for George Bolton Parkway to understand the minimum road network improvements required to service the subject site. It is understood that as per the *Town of Caledon's Multi-Modal Transportation Master Plan (2024)*, George Bolton Parkway is planned as a 4-lane connection. As such, the following sensitivity analysis has been prepared to compare the traffic operations between a George Bolton Parkway extension as 2 lanes vs. 4 lanes. The following intersections were included in the sensitivity analysis:

- Humber Station Road & George Bolton Parkway Extension;
- George Bolton Parkway Extension & Subject Site Access 1; and
- George Bolton Parkway Extension & Subject Site Access 2.

Figure 7-1 and Figure 7-2 illustrate the lane configurations assumed under each scenario.

Figure 7-1: George Bolton Parkway Extension (2-lanes) Lane Configuration

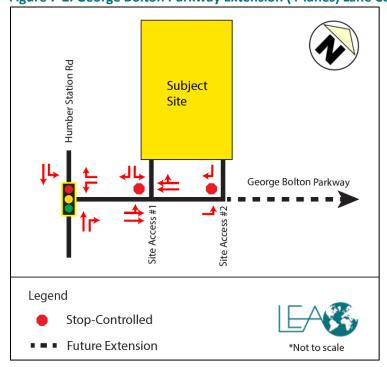



Figure 7-2: George Bolton Parkway Extension (4-lanes) Lane Configuration

A comparison of the intersection capacity analysis between the 2-lane vs. 4-lane George Bolton Parkway extension for the intersection of Humber Station Road & George Bolton Parkway Extension is provided in **Table 7-1**. Detailed synchro results are provided in **Appendix K**.

Table 7-1: Sensitivity Analysis – Humber Station Road & George Bolton Parkway Extension (2029)

(2029)													
AM	G	ieorge Bolton P	arkway (2-lanes	s)	George	e Bolton Parkwa	ay (4-lanes) Sen	sitivity					
PEAK		Future To	tal (2029)			Future To	tal (2029)						
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)					
Overall	1	-	A (9)	-/-	-	-	A (9)	-/-					
WBL	46	0.29	D (52)	11/23	46	0.29	D (52)	11/23					
WBR	29	0.24	D (52)	0/10	29	0.24	D (52)	0/10					
NBT	82	0.06	A (3)	3/9	82	0.06	A (3)	3/9					
NBR	139	0.12	A (3)	0/7	139	0.12	A (3)	0/7					
SBL	79	0.09	A (3)	2/10	79	0.09	A (3)	2/10					
SBT	293	0.20	A (3)	10/28	293	0.20	A (3) 10/28						
PM	9	ieorge Bolton P	arkway (2-lanes	s)	George Bolton Parkway (4-lanes) Sensitivity								
PEAK		Future To	tal (2029)		Future Total (2029)								
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)					
Overall	-	-	B (20)	-/-	-	-	B (20)	-/-					
WBL	138	0.79	E (60)	33/52	138	0.79	E (60)	33/52					
WBR	84	0.54	D (53)	0/14	84	0.54	D (53)	0/14					
NBT	329	0.23	A (4)	10/24	329	0.23	A (4)	10/24					
NBR	65	0.07	A (3)	0/2	65	0.07	A (3)	0/2					
SBL	37	0.06	A (5)	3/9	37	0.06	A (5)	3/9					
SBT	89	0.06	A (3)	8/16	89	0.06	A (3)	8/16					

A comparison of the intersection capacity analysis between the 2-lane vs. 4-lane George Bolton Parkway extension for Site Access 1 and Site Access 2 are provided in **Table 7-2** and **Table 7-3**, respectively.

Table 7-2: Sensitivity Analysis – George Bolton Parkway Extension & Site Access 1 (2029)

AM		, ,	arkway (2-lane:		George Bolton Parkway (4-lanes) Sensitivity							
PEAK		Future To	tal (2029)			Future To	tal (2029)					
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)				
Overall	i	-	- (4)	-/-	ı	ı	- (4)	-/-				
EBL	120	0.09	A (8)	-/0	120	0.09	A (8)	-/0				
EBT	98	0.00	A (0)	-/0	98	0.00	A (0)	-/0				
WBT	34	0.00	(0)	-/0	34	0.00	(O)	-/0				
SBL	0	0.00	A (0)	-/0	0	0.00	A (0)	-/0				
SBR	41	0.04	A (9)			0.04	A (9)	-/0				
PM	G	ieorge Bolton P	arkway (2-lane:	s)	George Bolton Parkway (4-lanes) Sensitivity							
PEAK		Future To	tal (2029)			Future To	tal (2029)					
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)				
Overall	-	-	- (5)	-/-	-	-	- (5)	-/-				
EBL	56	0.05	A (8)	-/0	56	0.05	A (8)	-/0				
EBT	46	0.00	A (0) -/0		46	0.00	A (0)	-/0				
WBT	100	0.00	(0)	-/0	100	0.00	(0)	-/0				

SBL	0	0.00	A (0)	-/0	0	0.00	A (0)	-/0
SBR	122	0.14	A (10)	-/1	122	0.14	A (9)	-/1

Table 7-3: Sensitivity Analysis – Humber Station Road & Site Access 2 (2029)

AM	G		arkway (2-lanes	5)	George	e Bolton Parkwa	ay (4-lanes) Sen	sitivity				
PEAK		Future To	tal (2029)			Future To	tal (2029)					
Mvmt	Vol	V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)				
Overall	-	1	- (8)	-/-	-	1	- (8)	-/-				
EBL	98	0.07	A (7)	-/0	98	0.07	A (7)	-/0				
EBT	0	0.00	A (0)	-/0	0	0.00	A (0)	-/0				
WBT	0	0.00	(0)	-/0	0	0.00	(0)	-/0				
SBR	34	0.04	A (9)	-/0	34 0.04 A (9)							
PM	G	eorge Bolton P	arkway (2-lanes	s)	George Bolton Parkway (4-lanes) Sensitivity							
PEAK			+-I (2020)		Future Total (2029)							
PEAK		Future To	tai (2029)			rutule 10	lai (2029)					
Mvmt	Vol	Future To V/C	LOS (Delay)	Queues (50/95)	Vol	V/C	LOS (Delay)	Queues (50/95)				
	Vol -				Vol -							
Mvmt	Vol - 46		LOS (Delay)	(50/95)	Vol - 46		LOS (Delay)	(50/95)				
Mvmt Overall	-	V/C -	LOS (Delay) - (8)	(50/95) -/-	-	V/C -	LOS (Delay) - (8)	(50/95) -/-				
Mvmt Overall EBL	- 46	V/C - 0.03	LOS (Delay) - (8) A (8)	(50/95) -/- -/0	- 46	V/C - 0.03	LOS (Delay) - (8) A (8)	(50/95) -/- -/0				

Based on the sensitivity analysis above, all three (3) intersections along George Bolton Parkway Extension operate the same with a 2-lane or 4-lane George Bolton cross-section.

8 PARKING AND LOADING REVIEW

8.1 VEHICULAR PARKING REVIEW

The vehicle parking requirements for the proposed industrial development is subject to standards provided within the Town of Caledon Zoning By-law 2006-50, Section 5 - Parking, Loading and Delivery (Section 5.2.3 - Non-Residential Parking Requirements, Revised: July 20, 2023). It should be noted that the proposed net floor area (NFA) is 122,107 which excludes the 260 loading docks and their interior loading areas. The parking requirements and proposed supply are summarized in **Table 8-1**.

Table 8-1: Town of Caledon Zoning By-law 2006-50 Parking Requirement

			Town of Caledon ZB	L 2006-50	
Building	Land Use	NFA	Parking Standard	Parking Required (1)	Proposed Supply
1	Warehouse (>20,000 m²)	122,107 m ²	168 spaces + 1 per 170 m² of NFA over 20,000 m²	769	681
			Total	769	681
		Parking Ra	ate (spaces per 100 m²)	0.63	0.56

Note: (1) — According to Town of Caledon By-law 2006-50, Section 5.2.4, where the minimum number of parking, loading or delivery spaces is calculated on the basis of a rate or ratio, the required number of parking, loading or delivery spaces shall be rounded to the next higher whole number.

Based on the minimum parking requirements under the Town of Caledon By-law 2006-50, the proposed development is required to provide a total of 769 parking spaces. The proposed supply of 681 parking spaces does not satisfy the by-law requirements. As the deficiency is only 11%, the reduction will be addressed in the proposed site-specific by-law.

8.1.1 Accessible Parking

By-law 2015-058 stipulates a requirement for accessible parking spaces. If the number of required parking spaces is between 201 to 1,000 spaces, a minimum of 2 plus 2% of the total required parking spaces should be accessible. Parking spaces must comply with the minimum dimensions for an accessible parking space (Type A: 3.4 m in width, 6 m in length, and 3.0 m in vertical clearance, Type B: 2.75 m in width, 6 m in length, and 3.0 m in vertical clearance).

As the development is required to provide 769 total parking spaces, the number of accessible spaces required is 18. The site plan currently shows a total of 20 accessible parking spaces, satisfying the requirement.

8.2 BICYCLE PARKING REVIEW

The Town of Caledon Zoning By-law 2006-50 does not include bicycle parking requirements. However, short-term bicycle parking spaces will be provided to encourage biking as a mode of transportation. The bike parking supply will follow the short-term bicycle parking requirements for industrial uses from Peel Region's Healthy Development Assessment.

8.3 LOADING REVIEW

The loading requirements are subject to Town of Caledon Zoning By-law 2006-50, Section 5 - Parking, Loading and Delivery (Section 5.3.2 – Loading Space Requirements, Revised: July 20, 2023). The loading space requirements referenced in Section 5.3.2 of the By-law was applied to the proposed development as summarized in **Table 8-2**.

Table 8-2: Town of Caledon Zoning By-law 2006-50 Loading Requirement

			Town of Caledon ZBL	2006-50	
Building	Land Use	NFA	Parking Standard	Parking Required ⁽¹⁾	Proposed Supply
1	Warehouse (>7,441 m²)	122,107 m ²	3 spaces + 1 per 9,300 m² of NFA over 7,441 m²	16	260
			Total	16	260

Note: (1) – According to Town of Caledon By-law 2006-50, Section 5.2.4, where the minimum number of parking, loading or delivery spaces is calculated on the basis of a rate or ratio, the required number of parking, loading or delivery spaces shall be rounded to the next higher whole number.

According to the By-law requirements, a total of 16 loading spaces are required. A total of 260 loading spaces are proposed for the overall development, satisfying the by-law requirements. Furthermore, all proposed loading spaces meet the required delivery space dimensions of at least 14 metres long, 3.5 metres wide, and 3.35 metres in vertical clearance.

A review of the functionality and accessibility of the proposed loading spaces was completed to determine that the proposed loading spaces can be accessed and egressed by the appropriate vehicles. The functionality of the proposed parking spaces was also confirmed. Furthermore, a review of internal roads reveals that Fire and Emergency Service vehicles can safely access the site. The swept path diagrams are provided in **Appendix L**. The review finds that all design vehicles can be accommodated.

9 TRANSPORTATION DEMAND MANAGEMENT

Transportation Demand Management (TDM) is a set of strategies which strive towards a more efficient transportation network by influencing travel behaviour. Effective TDM measures can reduce vehicle usage and encourage people to engage in more sustainable methods of travel. There are several opportunities to incorporate TDM measures that support alternative modes of transportation. The recommendations should enhance non-single occupant vehicle trips for existing and future employees of the development. In efforts to reduce single-occupant vehicle (SOV) trips for employees traveling to and tram the subject site.

9.1 PEDESTRIAN-BASED STRATEGIES

Orient building entrances close to the street with direct connections to pedestrian pathways: The proposed pedestrian entrances are oriented facing the future extension of George Bolton Parkway. Walkways and crosswalks will be provided to facilitate a safe and convenient linkage for pedestrians accessing the building.

9.2 TRANSIT-BASED STRATEGIES

Provision of real-time transit schedule screens: Upon full build out of the George Bolton Parkway extension, it is recommended that screens be provided in the employees' lounges and main exits to display real-time data for transit services, including schedules and service alerts.

9.3 TRAVEL AND PARKING MANAGEMENT STRATEGIES

Signed Carpool Spaces: It is recommended that the proposed development include dedicated carpool spaces as a means to reduce SOV usage. These carpool spaces should be clearly signed and located conveniently close to the main entrances to provide a greater incentive for employees carpooling.

Smart Commute Membership: Once tenants are secured, it is recommended that future tenants/owners register with the Smart Commute program. Smart Commute provides the means for businesses to help provide an alternative option for their employees to get to and from work through ride matching. One benefit with Smart Commute is the Emergency Ride Home program that provides carpoolers with a sense of reassurance under urgent circumstances. The Owner could also help tenants in establishing an employer-based carpool program specifically for the employees that would be working on-site.

Communications Strategy: Once tenants are secured, it is recommended that future tenants/owners provide communications and distribute information to employees via information packages or through email regarding the different travel demand management measures and programs that are offered. Information on Smart Commute, Emergency Ride Home, or other incentives can be obtained from the Town or Region and be included as part of this material. The Region and/or Town should also be responsible for making Smart Commute information brochures, pedestrian/cycling maps, transit maps, and other general information available for distribution to the building occupant to help commuters become aware of the various travel alternatives.

10 CONCLUSION

- ➤ This Transportation Impact Study has been prepared in support of the Site Plan Approval (SPA) application for Phase 1 of the proposed industrial development located at 12519-12715 Humber Station Road, in the Town of Caledon. The master plan concept includes six (6) industrial buildings. This TIS has been prepared to support Phase 1 of the development which will introduce the first industrial building to the currently vacant site.
- ▶ Phase 1 of the development proposal consists of a 143,222 m² industrial building. It is understood that warehousing activities are proposed for the building. The proposed development will provide 681 parking spaces, 368 trailer parking spaces, and 260 loading docks at grade.
- As part of the development proposal, a partial extension of George Bolton Parkway from Humber Station Road to the Clarkway Tributary will be constructed. Access to the proposed development will be provided via two (2) full-movement accesses off the future George Bolton Parkway extension.
- ▶ Local transit service for the Bolton area is provided by Brampton Transit while interregional commuter bus service is operated by GO Transit between Malton and the area of Highway 50 & Columbia Way. Bike lanes are provided on both sides of George Bolton Parkway, east of Coleraine Drive. However, no cycling facilities are available along the remaining study area roadways. The study area also exhibits poor pedestrian connectivity which will be addressed as the Secondary Plan area becomes urbanized through development.
- ▶ This assessment considers the 6-year horizon from the existing year 2023. The future background conditions include traffic added to the network from other future developments, corridor growth, and road network improvements.
- ▶ The proposed development is anticipated to generate 262 two-way auto vehicle trips during the AM peak hour (202 inbound and 60 outbound) and 278 two-way auto vehicle trips during the PM peak hour (78 inbound and 200 outbound). In addition, 31 two-way truck trips (16 inbound and 15 outbound) are anticipated during the AM peak hour and 46 two-way truck trips (24 inbound and 22 outbound) are anticipated during the PM peak hour.
- The intersection capacity analysis was conducted for the AM and PM peak hours under the existing, future background (2029), and future total (2029). With signal optimizations, the realignment of the Clarkway Drive/Humber Station Road & Mayfield Road intersection, and planned widenings along Mayfield Road, the intersection capacity analysis results indicate that site traffic is expected to have an acceptable impact on the surrounding road network. In addition, the proposed site accesses to the subject site are expected to operate sufficiently under future conditions. Furthermore, signalization is recommended at Humber Station Road & Healey Road by the 2029 horizon to accommodate future traffic growth, a recommendation which is irrespective of site traffic given that the intersection operates poorly under future background conditions.

- ▶ The proposed development is required to provide a total of 769 parking spaces under the Town of Caledon Zoning By-law 2006-50 whereas 681 are provided. The proposed site-specific by-law will address this minor 11% deficiency by reducing the parking ratio to accordingly.
- No bicycle parking requirements are provided in Town of Caledon Zoning By-law 2006-50. However, short-term bicycle parking spaces will be provided to encourage biking as a mode of transportation.
- ➤ The proposed development is required to provide a total of 16 loading spaces under the Town of Caledon Zoning By-law 2006-50. A total of 260 loading spaces will be provided on-site, satisfying the minimum requirements.
- ➤ A set of TDM measures have been recommended to reduce single-occupant vehicle trips and encourage multi-modal travel alternatives. Such measures include but are not limited to smart commute memberships, active transportation connections, and carpooling spaces.

APPENDIX A

MMLOS

Pedestrian Level of Service

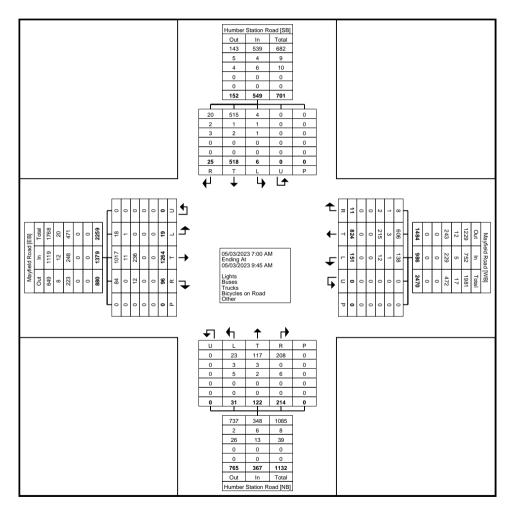
Segment	From	То	Side	Sidewalk Width	Blvd Width	AADT per lane	Parking?	Speed	Segment PLOS
Healey Road	Humber Station Road	Coleraine Drive	North	No Sidewalk	0	>3000	No	60	F
nealey Roau	number station kodu	Coleraine Drive	South	No Sidewalk	0	>3000	No	60	F
Humber Station Road	Healey Road	Mayfield Road	East	No Sidewalk	0	>3000	No	80	F
Hulliber Station Road	Healey Rodu	iviayilelu Kodu	West	No Sidewalk	0	>3000	No	80	F
Mayfield Road	Humber Station Road	Coleraine Drive	North	No Sidewalk	0	>3000	No	80	F
Mayneid Koad	nulliber Station Road	Coleraine Drive	South	No Sidewalk	0	>3000	No	80	F

Bicycle Level of Service

Segment	From	То	Side	Туре	No. of Lanes	Bike Lane Width	Operating Speed	Centreline?	Segment BLOS
Healey Road	Humber Station Road	Coleraine Drive	North	Mixed	2 travel lanes	-	60	Yes	F
Healey Road	number Station Road	Coleraine Drive	South	Mixed	2 travel lanes	-	60	Yes	F
Humber Station Road	Healey Road	Mayfield Road	East	Mixed	2 travel lanes	-	80	Yes	F
Hulliber Station Road	пеагеу коай	Mayrielu Koau	West	Mixed	2 travel lanes	-	80	Yes	F
Mayfield Road	Humber Station Road	Coleraine Drive	North	Mixed	2 travel lanes	-	80	Yes	F
iviayilela Road	number Station Road	Colei aiile Drive	South	Mixed	2 travel lanes	-	80	Yes	F

APPENDIX B

TMCS & STPS

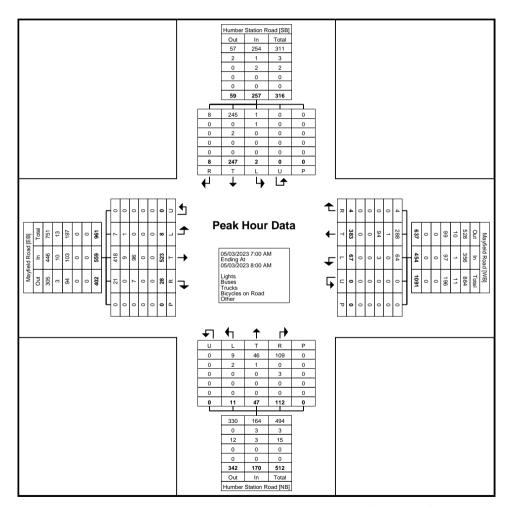

Count Name: 23347_Humber Station Rd & Mayfield Rd-AM Site Code: 23347 Start Date: 05/03/2023 Page No: 1

Turning Movement Data

				tation Road	I				,	eld Road tbound	Ü					tation Road bound					,	eld Road bound			
Start Time	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Int. Total
7:00 AM	5	55	1	0	0	61	1	104	23	. 0	0	128	41	9	2	0	0	52	4	131	0	. 0	0	135	376
7:15 AM	0	52	0	0	0	52	0	99	18	0	0	117	25	13	2	0	0	40	4	155	1	0	0	160	369
7:30 AM	1	77	0	0	0	78	1	88	13	0	0	102	21	13	5	0	0	39	10	98	2	0	0	110	329
7:45 AM	2	63	1	0	0	66	2	92	13	. 0	0	107	25	12	2	0	0	39	10	139	5	. 0	0	154	366
Hourly Total	8	247	2	0	0	257	4	383	67	0	0	454	112	47	11	0	0	170	28	523	8	0	0	559	1440
8:00 AM	4	51	0	0	0	55	0	75	19	0	0	94	17	16	4	0	0	37	17	140	2	0	0	159	345
8:15 AM	3	77	0	0	0	80	0	82	11	. 0	0	93	15	11	2	0	0	28	16	129	1	. 0	0	146	347
8:30 AM	5	53	0	0	0	58	4	71	28	0	0	103	22	17	3	0	0	42	12	110	0	0	0	122	325
8:45 AM	2	27	3	0	0	32	0	77	15	0	0	92	24	7	3	0	0	34	11	128	1	0	0	140	298
Hourly Total	14	208	3	0	0	225	4	305	73	0	0	382	78	51	12	0	0	141	56	507	4	0	0	567	1315
9:00 AM	1	28	0	0	0	29	1	80	5	0	0	86	17	17	7	0	0	41	6	127	2	0	0	135	291
9:15 AM	2	35	1	0	0	38	2	56	6	0	0	64	7	7	1	0	0	15	6	107	5	0	0	118	235
9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	25	518	6	0	0	549	11	824	151	0	0	986	214	122	31	0	0	367	96	1264	19	0	0	1379	3281
Approach %	4.6	94.4	1.1	0.0	-		1.1	83.6	15.3	0.0	-		58.3	33.2	8.4	0.0	-		7.0	91.7	1.4	0.0	-		-
Total %	0.8	15.8	0.2	0.0	-	16.7	0.3	25.1	4.6	0.0	-	30.1	6.5	3.7	0.9	0.0	-	11.2	2.9	38.5	0.6	0.0	-	42.0	-
Lights	20	515	4	0	-	539	8	606	138	0	-	752	208	117	23	0	-	348	84	1017	18	0	-	1119	2758
% Lights	80.0	99.4	66.7	-	-	98.2	72.7	73.5	91.4	-	-	76.3	97.2	95.9	74.2	-	-	94.8	87.5	80.5	94.7	-	-	81.1	84.1
Buses	2	1	1	0	-	4	1	3	1	0	-	5	0	3	3	0	-	6	0	11	1	0	-	12	27
% Buses	8.0	0.2	16.7	-	-	0.7	9.1	0.4	0.7	-	-	0.5	0.0	2.5	9.7	-	-	1.6	0.0	0.9	5.3	-	-	0.9	0.8
Trucks	3	2	1	0	-	6	2	215	12	0	-	229	6	2	5	0	-	13	12	236	0	0	-	248	496
% Trucks	12.0	0.4	16.7	-	-	1.1	18.2	26.1	7.9	-	-	23.2	2.8	1.6	16.1	-	-	3.5	12.5	18.7	0.0	-	-	18.0	15.1
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Count Name: 23347_Humber Station Rd & Mayfield Rd-AM Site Code: 23347 Start Date: 05/03/2023 Page No: 2

Turning Movement Data Plot

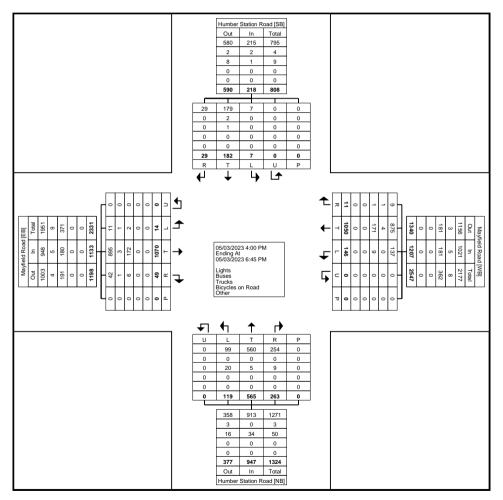

Count Name: 23347_Humber Station Rd & Mayfield Rd-AM Site Code: 23347 Start Date: 05/03/2023 Page No: 3

Turning Movement Peak Hour Data (7:00 AM)

	1						i	ı an	_	/IOVCII	ICITE I	can	loai	Data	(7.00	/ (IVI)									1
			Humber S	tation Road	i				Mayfie	ld Road					Humber St	tation Road					Mayfie	ld Road			
			South	nbound					West	bound					North	bound			[East	oound			
Start Time	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Int. Total
7:00 AM	5	55	. 1	0	0	61	1	104	23	0	0	128	41	9	2	0	0	52	4	131	0	0	0	135	376
7:15 AM	0	52	0	0	0	52	0	99	18	0	0	117	25	13	2	0	0	40	4	155	1	0	0	160	369
7:30 AM	1	77	0	0	0	78	1	88	13	0	0	102	21	13	5	0	0	39	10	98	2	0	0	110	329
7:45 AM	2	63	1	0	0	66	2	92	13	0	0	107	25	12	2	0	0	39	10	139	5	0	0	154	366
Total	8	247	2	0	0	257	4	383	67	0	0	454	112	47	11	0	0	170	28	523	8	0	0	559	1440
Approach %	3.1	96.1	0.8	0.0	-	-	0.9	84.4	14.8	0.0	-	-	65.9	27.6	6.5	0.0	-	-	5.0	93.6	1.4	0.0	-	-	-
Total %	0.6	17.2	0.1	0.0	-	17.8	0.3	26.6	4.7	0.0	-	31.5	7.8	3.3	0.8	0.0	-	11.8	1.9	36.3	0.6	0.0	-	38.8	-
PHF	0.400	0.802	0.500	0.000	-	0.824	0.500	0.921	0.728	0.000	-	0.887	0.683	0.904	0.550	0.000	-	0.817	0.700	0.844	0.400	0.000	-	0.873	0.957
Lights	8	245	1	0	-	254	4	288	64	0	-	356	109	46	9	0	-	164	21	418	7	0	-	446	1220
% Lights	100.0	99.2	50.0	-	-	98.8	100.0	75.2	95.5	-	-	78.4	97.3	97.9	81.8	-	-	96.5	75.0	79.9	87.5	-	-	79.8	84.7
Buses	0	0	1	0	-	1	0	1	0	0	-	1	0	1	2	0	-	3	0	9	1	0	-	10	15
% Buses	0.0	0.0	50.0	-	-	0.4	0.0	0.3	0.0	-	-	0.2	0.0	2.1	18.2	-	-	1.8	0.0	1.7	12.5	-	-	1.8	1.0
Trucks	0	2	0	0	-	2	0	94	3	0	-	97	3	0	0	0	-	3	7	96	0	0	-	103	205
% Trucks	0.0	0.8	0.0	-	-	0.8	0.0	24.5	4.5	-	-	21.4	2.7	0.0	0.0	-	-	1.8	25.0	18.4	0.0	-	-	18.4	14.2
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	•			-	•		•						•						•	-					

Count Name: 23347_Humber Station Rd & Mayfield Rd-AM Site Code: 23347 Start Date: 05/03/2023 Page No: 4

Turning Movement Peak Hour Data Plot (7:00 AM)

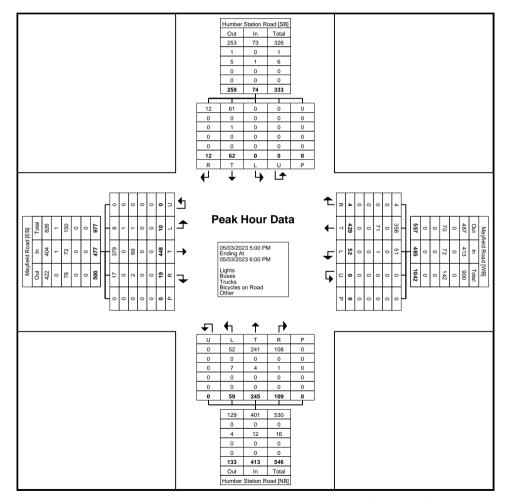

Count Name: 23347_Humber Station Rd & Mayfield Rd-PM Site Code: 23347 Start Date: 05/03/2023 Page No: 1

Turning Movement Data

			Humber St	tation Road	l				Mayfie	eld Road					Humber S	tation Road					Mayfie	ld Road			
			South	nbound					West	tbound					North	bound					East	bound			
Start Time	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Int. Total
4:00 PM	4	26	0	0	0	30	1	112	8	0	0	121	30	60	10	0	0	100	3	87	1	0	0	91	342
4:15 PM	2	26	2	0	0	30	1	122	11	0	0	134	20	50	7	0	0	77	7	99	0	0	0	106	347
4:30 PM	2	20	1	0	0	23	0	72	16	0	0	88	20	58	8	0	0	86	7	108	0	0	0	115	312
4:45 PM	2	12	1	. 0	0	15	0	93	20	0	0	113	24	63	16	. 0	0	103	6	112	0	0	0	118	349
Hourly Total	10	84	4	0	0	98	2	399	55	0	0	456	94	231	41	0	0	366	23	406	1	0	0	430	1350
5:00 PM	1	15	0	0	0	16	0	79	17	0	0	96	34	73	13	0	0	120	6	110	1	0	0	117	349
5:15 PM	5	18	0	. 0	0	23	0	115	19	0	0	134	31	48	15	. 0	0	94	4	108	2	0	0	114	365
5:30 PM	4	18	0	0	0	22	3	108	6	0	0	117	25	69	22	0	0	116	5	99	1	0	0	105	360
5:45 PM	2	11	0	0	0	13	1	127	10	0	0	138	19	55	9	0	0	83	4	131	6	0	0	141	375
Hourly Total	12	62	0	0	0	74	4	429	52	0	0	485	109	245	59	0	0	413	19	448	10	0	0	477	1449
6:00 PM	2	16	1	0	0	19	2	94	17	0	0	113	29	61	10	0	0	100	3	108	2	0	0	113	345
6:15 PM	5	20	2	0	0	27	3	128	22	0	0	153	31	28	9	0	0	68	4	108	1	0	0	113	361
6:30 PM	0	0	0	. 0	0	0	0	0	0	. 0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
Grand Total	29	182	7	0	0	218	11	1050	146	0	0	1207	263	565	119	0	0	947	49	1070	14	0	0	1133	3505
Approach %	13.3	83.5	3.2	0.0	-	-	0.9	87.0	12.1	0.0	-	-	27.8	59.7	12.6	0.0	-	-	4.3	94.4	1.2	0.0	-	-	-
Total %	0.8	5.2	0.2	0.0	-	6.2	0.3	30.0	4.2	0.0	-	34.4	7.5	16.1	3.4	0.0	-	27.0	1.4	30.5	0.4	0.0	-	32.3	-
Lights	29	179	7	0	-	215	9	875	137	0	-	1021	254	560	99	0	-	913	42	895	11	0	-	948	3097
% Lights	100.0	98.4	100.0	-	-	98.6	81.8	83.3	93.8	-	-	84.6	96.6	99.1	83.2	-	-	96.4	85.7	83.6	78.6	-	-	83.7	88.4
Buses	0	2	0	. 0	-	2	1	4	0	0	-	. 5	0	0	0	. 0	-	0	1	3	1	0	-	5	12
% Buses	0.0	1.1	0.0	-	-	0.9	9.1	0.4	0.0	-	-	0.4	0.0	0.0	0.0	-	-	0.0	2.0	0.3	7.1	-	-	0.4	0.3
Trucks	0	1	0	0	-	1	1	171	9	0	-	181	9	5	20	0	-	34	6	172	2	0	-	180	396
% Trucks	0.0	0.5	0.0	-	-	0.5	9.1	16.3	6.2	-	-	15.0	3.4	0.9	16.8	-	-	3.6	12.2	16.1	14.3	-	-	15.9	11.3
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	<u>-</u>	0	_	-	-	-	-	0	-	-	-	_	-	0	-	-	_	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	_	-	_	-	-	-	-	-
Pedestrians	-	-	-		0	-	-	-	-	-	0	-	-	-	-	-	0		-		-	-	0	-	-
% Pedestrians	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-

Count Name: 23347_Humber Station Rd & Mayfield Rd-PM Site Code: 23347 Start Date: 05/03/2023 Page No: 2

Turning Movement Data Plot


Count Name: 23347_Humber Station Rd & Mayfield Rd-PM Site Code: 23347 Start Date: 05/03/2023 Page No: 3

Turning Movement Peak Hour Data (5:00 PM)

	1						1		_			-			(0.00	,									1
			Humber S	tation Road					Mayfie	ld Road					Humber St	tation Road					Mayfiel	ld Road			
			South	nbound					West	bound					North	bound					Easth	oound			
Start Time	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Int. Total
5:00 PM	1	15	0	0	0	16	0	79	17	0	0	96	34	73	13	0	0	120	6	110	1	0	0	117	349
5:15 PM	5	18	0	0	0	23	0	115	19	0	0	134	31	48	15	0	0	94	4	108	2	0	0	114	365
5:30 PM	4	18	0	0	0	22	3	108	6	0	0	117	25	69	22	0	0	116	5	99	1	0	0	105	360
5:45 PM	2	11	0	0	0	13	1	127	10	0	0	138	19	55	9	0	0	83	4	131	6	0	0	141	375
Total	12	62	0	0	0	74	4	429	52	0	0	485	109	245	59	0	0	413	19	448	10	0	0	477	1449
Approach %	16.2	83.8	0.0	0.0	-	-	0.8	88.5	10.7	0.0	-	-	26.4	59.3	14.3	0.0	-	-	4.0	93.9	2.1	0.0	-	-	-
Total %	0.8	4.3	0.0	0.0	-	5.1	0.3	29.6	3.6	0.0	-	33.5	7.5	16.9	4.1	0.0	-	28.5	1.3	30.9	0.7	0.0	-	32.9	-
PHF	0.600	0.861	0.000	0.000	-	0.804	0.333	0.844	0.684	0.000	-	0.879	0.801	0.839	0.670	0.000	-	0.860	0.792	0.855	0.417	0.000	-	0.846	0.966
Lights	12	61	0	0	-	73	4	358	51	0	-	413	108	241	52	0	-	401	17	379	8	0	-	404	1291
% Lights	100.0	98.4	-	-	-	98.6	100.0	83.4	98.1	-	-	85.2	99.1	98.4	88.1	-	-	97.1	89.5	84.6	80.0	-	-	84.7	89.1
Buses	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	1	0	-	1	1
% Buses	0.0	0.0	-	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	10.0	-	-	0.2	0.1
Trucks	0	1	0	0	-	1	0	71	1	0	-	72	1	4	7	0	-	12	2	69	1	0	-	72	157
% Trucks	0.0	1.6	-	-	-	1.4	0.0	16.6	1.9	-	-	14.8	0.9	1.6	11.9	-	-	2.9	10.5	15.4	10.0	-	-	15.1	10.8
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Count Name: 23347_Humber Station Rd & Mayfield Rd-PM Site Code: 23347 Start Date: 05/03/2023 Page No: 4

Turning Movement Peak Hour Data Plot (5:00 PM)

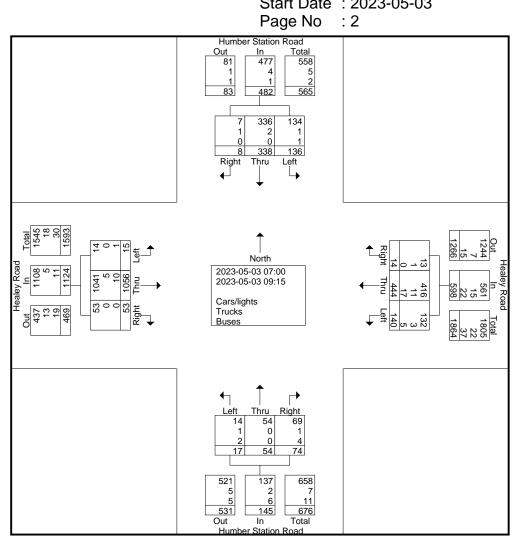
625 Cochrane Drive, 5th Floor Markham, ON L3R 9R9

Project No.: 23347 File Name: Humber Station Rd & Healey Rd - AM

Intersection: Humber Station Rd & Healey Site Code : 00023347 Weather: Rain Start Date : 2023-05-03

Surveyor(s): ID Page No : 1

Groups Printed- Cars/lights - Trucks - Buses

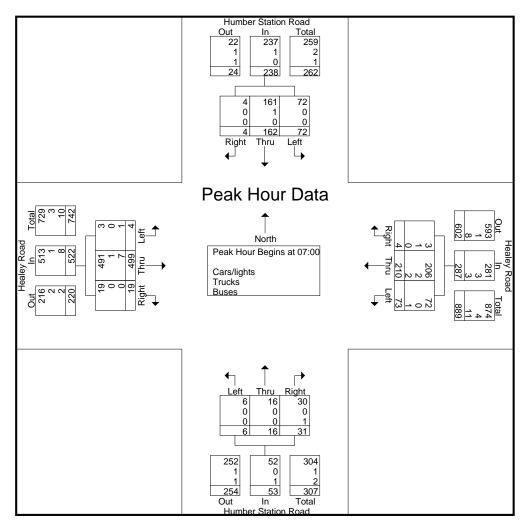

	Н		Statio		ad			aley R estbou	oad	nicu- C	_	umber	Station or Station	on Roa				aley R					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Exclu. Total	Inclu. Total	Int. Total
07:00	15	34	0	[0]	49	23	46	0	[0]	69	0	3	4	[0]	7	2	131	2	[0]	135	0	260	260
07:15	21	46	2	[0]	69	18	60	0	[0]	78	2	7	8	[0]	17	1	129	3	[0]	133	0	297	297
07:30	15	43	1	[0]	59	21	60	2	[0]	83	2	2	10	[0]	14	0	117	10	[0]	127	0	283	283
07:45	21	39	1	[0]	61	11	44	2	[0]	57	2	4	9	[0]	15	1	122	4	[0]	127	0	260	260
Total	72	162	4	[0]	238	73	210	4	[0]	287	6	16	31	[0]	53	4	499	19	[0]	522	0	1100	1100
08:00	6	33	0	[0]	39	17	45	1	[0]	63	1	10	10	[0]	21	1	99	3	[0]	103	0	226	226
08:15	15	54	0	[0]	69	16	35	2	[0]	53	1	5	5	[0]	11	1	103	13	[0]	117	0	250	250
08:30	9	26	2	[0]	37	16	42	4	[0]	62	1	4	7	[0]	12	3	96	5	[0]	104	0	215	215
08:45	14	17	1_	[0]	32	7	41	0	[0]	48	4	3	8	[0]	15	1	109	6	[0]	116	0	211	211
Total	44	130	3	[0]	177	56	163	7	[0]	226	7	22	30	[0]	59	6	407	27	[0]	440	0	902	902
09:00	10	22	0	[0]	32	3	31	2	[0]	36	0	9	8	[0]	17	4	79	2	[0]	85	0	170	170
09:15	10	24	1	[0]	35	8	40	1	[0]	49	4	7	5	[0]	16	1	71	5	[0]	77	0	177	177
Grand Total	136	338	8	[0]	482	140	444	14	[0]	598	17	54	74	[0]	145	15	1056	53	[0]	1124	0	2349	2349
Apprch %	28.2	70.1	1.7			23.4	74.2	2.3			11.7	37.2	51			1.3	94	4.7					
Total %	5.8	14.4	0.3		20.5	6	18.9	0.6		25.5	0.7	2.3	3.2		6.2	0.6	45	2.3		47.9	0	100	
Cars/lights	134	336	7		477	132	416	13		561	14	54	69		137	14	1041	53		1108	0	0	2283
% Cars/lights	98.5	99.4	87.5	0	99	94.3	93.7	92.9	0	93.8	82.4	100	93.2	0	94.5	93.3	98.6	100	0	98.6	0	0	97.2
Trucks	1	2	1		4	3	11	1		15	1	0	1		2	0	5	0		5	0	0	26
% Trucks	0.7	0.6	12.5	0	0.8	2.1	2.5	7.1	0	2.5	5.9	0	1.4	0	1.4	0	0.5	0	0	0.4	0	0	1.1
Buses	1	0	0		1	5	17	0		22	2	0	4		6	1	10	0		11	0	0	40
% Buses	0.7	0	0	0	0.2	3.6	3.8	0	0	3.7	11.8	0	5.4	0	4.1	6.7	0.9	0	0	1	0	0	1.7

625 Cochrane Drive, 5th Floor Markham, ON L3R 9R9

File Name: Humber Station Rd & Healey Rd - AM

Site Code : 00023347 Start Date : 2023-05-03

Page No : 2


625 Cochrane Drive, 5th Floor Markham, ON L3R 9R9

File Name: Humber Station Rd & Healey Rd - AM

Site Code : 00023347 Start Date : 2023-05-03

Page No : 3

	Hu	mber St	ation Ro	oad		Heale	y Road		Hu	mber St	ation Ro	oad		Heale	y Road		
		South	bound			West	bound			North	bound			Eastl	ound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Anal	ysis Fro	m 07:00	to 09:1	5 - Peak 1	of 1												
Peak Hour for E	entire Int	ersectio	n Begin	s at 07:00													
07:00	15	34	0	49	23	46	0	69	0	3	4	7	2	131	2	135	260
07:15	21	46	2	69	18	60	0	78	2	7	8	17	1	129	3	133	297
07:30	15	43	1	59	21	60	2	83	2	2	10	14	0	117	10	127	283
07:45	21	39	1	61	11	44	2	57	2	4	9	15	1	122	4	127	260
Total Volume	72	162	4	238	73	210	4	287	6	16	31	53	4	499	19	522	1100
% App. Total	30.3	68.1	1.7		25.4	73.2	1.4		11.3	30.2	58.5		0.8	95.6	3.6		
PHF	.857	.880	.500	.862	.793	.875	.500	.864	.750	.571	.775	.779	.500	.952	.475	.967	.926
Cars/lights	72	161	4	237	72	206	3	281	6	16	30	52	3	491	19	513	1083
% Cars/lights	100	99.4	100	99.6	98.6	98.1	75.0	97.9	100	100	96.8	98.1	75.0	98.4	100	98.3	98.5
Trucks	0	1	0	1	0	2	1	3	0	0	0	0	0	1	0	1	5
% Trucks	0	0.6	0	0.4	0	1.0	25.0	1.0	0	0	0	0	0	0.2	0	0.2	0.5
Buses	0	0	0	0	1	2	0	3	0	0	1	1	1	7	0	8	12
% Buses	0	0	0	0	1.4	1.0	0	1.0	0	0	3.2	1.9	25.0	1.4	0	1.5	1.1

LEA Consulting Ltd. 625 Cochrane Drive, 5th Floor Markham, ON L3R 9R9

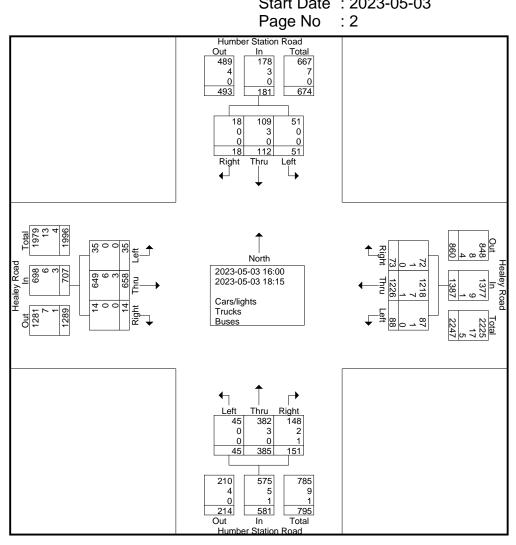
625 Cochrane Drive, 5th Floor Markham, ON L3R 9R9

Project No.: 23347 File Name: Humber Station Rd & Healey Rd - PM

Intersection: Humber Station Rd & Healey Site Code : 00023347 Weather: Rain Start Date : 2023-05-03

Surveyor(s): ID Page No : 1

Groups Printed- Cars/lights - Trucks - Buses

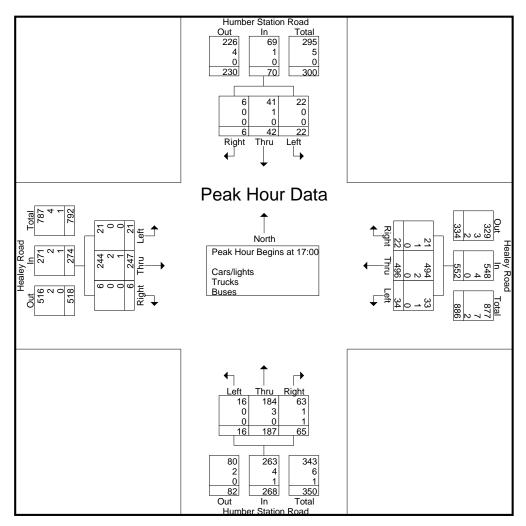

	Н		r Statio		ad			aley R	oad	inicu- C	_	umber		on Roa				aley R					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Exclu. Total	Inclu. Total	Int. Total
16:00	5	14	5	[0]	24	9	109	11	[0]	129	11	37	11	[0]	59	1	69	2	[0]	72	0	284	284
16:15	3	16	0	[0]	19	12	121	7	[0]	140	7	34	16	[0]	57	6	64	3	[0]	73	0	289	289
16:30	5	11	2	[0]	18	9	129	8	[0]	146	4	38	14	[0]	56	0	60	2	[0]	62	0	282	282
16:45	6	6	1	[0]	13	7	123	14	[0]	144	4	35	18	[0]	57	2	73	0	[0]	75	0	289	289
Total	19	47	8	[0]	74	37	482	40	[0]	559	26	144	59	[0]	229	9	266	7	[0]	282	0	1144	1144
17:00	4	14	3	[0]	21	10	124	6	[0]	140	5	53	20	[0]	78	9	51	1	[0]	61	0	300	300
17:15	6	13	3	[0]	22	5	132	6	[0]	143	1	44	15	[0]	60	1	64	1	[0]	66	0	291	291
17:30	8	7	0	[0]	15	10	123	5	[0]	138	6	35	13	[0]	54	4	62	2	[0]	68	0	275	275
17:45	4	8	0	[0]	12	9	117	5	[0]	131	4	55	17	[0]	76	7	70	2	[0]	79	0	298	298
Total	22	42	6	[0]	70	34	496	22	[0]	552	16	187	65	[0]	268	21	247	6	[0]	274	0	1164	1164
18:00	2	9	1	[0]	12	10	135	7	[0]	152	2	34	18	[0]	54	1	63	0	[0]	64	0	282	282
18:15	8	14	3	[0]	25	7	113	4	[0]	124	1	20	9	[0]	30	4	82	1	[0]	87	0	266	266
Grand Total	51	112	18	[0]	181	88	1226	73	[0]	1387	45	385	151	[0]	581	35	658	14	[0]	707	0	2856	2856
Apprch %	28.2	61.9	9.9			6.3	88.4	5.3			7.7	66.3	26			5	93.1	2					
Total %	1.8	3.9	0.6		6.3	3.1	42.9	2.6		48.6	1.6	13.5	5.3		20.3	1.2	23	0.5		24.8	0	100	
Cars/lights	51	109	18		178	87	1218	72		1377	45	382	148		575	35	649	14		698	0	0	2828
% Cars/lights	100	97.3	100	0	98.3	98.9	99.3	98.6	0	99.3	100	99.2	98	0	99	100	98.6	100	0	98.7	0	0	99
Trucks	0	3	0		3	1	7	1		9	0	3	2		5	0	6	0		6	0	0	23
% Trucks	0	2.7	0	0	1.7	1.1	0.6	1.4	0	0.6	0	0.8	1.3	0	0.9	0	0.9	0	0	0.8	0	0	0.8
Buses	0	0	0		0	0	1	0		1	0	0	1		1	0	3	0		3	0	0	5
% Buses	0	0	0	0	0	0	0.1	0	0	0.1	0	0	0.7	0	0.2	0	0.5	0	0	0.4	0	0	0.2

625 Cochrane Drive, 5th Floor Markham, ON L3R 9R9

File Name: Humber Station Rd & Healey Rd - PM

Site Code : 00023347 Start Date : 2023-05-03

Page No : 2


625 Cochrane Drive, 5th Floor Markham, ON L3R 9R9

File Name: Humber Station Rd & Healey Rd - PM

Site Code : 00023347 Start Date : 2023-05-03

Page No : 3

	Hu	mber St	ation Ro	oad		Heale	y Road		Hu	mber St	tation Ro	oad		Heale	y Road		
		South	bound			West	bound			North	bound			Eastl	ound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Anal	ysis Fro	m 16:00	to 18:1	5 - Peak 1	of 1												
Peak Hour for E	ntire Int	ersectio	n Begin	s at 17:00													
17:00	4	14	3	21	10	124	6	140	5	53	20	78	9	51	1	61	300
17:15	6	13	3	22	5	132	6	143	1	44	15	60	1	64	1	66	291
17:30	8	7	0	15	10	123	5	138	6	35	13	54	4	62	2	68	275
17:45	4	8	0	12	9	117	5	131	4	55	17	76	7	70	2	79	298
Total Volume	22	42	6	70	34	496	22	552	16	187	65	268	21	247	6	274	1164
% App. Total	31.4	60	8.6		6.2	89.9	4		6	69.8	24.3		7.7	90.1	2.2		
PHF	.688	.750	.500	.795	.850	.939	.917	.965	.667	.850	.813	.859	.583	.882	.750	.867	.970
Cars/lights	22	41	6	69	33	494	21	548	16	184	63	263	21	244	6	271	1151
% Cars/lights	100	97.6	100	98.6	97.1	99.6	95.5	99.3	100	98.4	96.9	98.1	100	98.8	100	98.9	98.9
Trucks	0	1	0	1	1	2	1	4	0	3	1	4	0	2	0	2	11
% Trucks	0	2.4	0	1.4	2.9	0.4	4.5	0.7	0	1.6	1.5	1.5	0	0.8	0	0.7	0.9
Buses	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	1	2
% Buses	0	0	0	0	0	0	0	0	0	0	1.5	0.4	0	0.4	0	0.4	0.2

LEA Consulting Ltd. 625 Cochrane Drive, 5th Floor Markham, ON L3R 9R9

		REGIONAL MUI	NICIPAL	ITY OF P	EEL				
		Traffic Signa	l Timing Pa	rameters					
Database D	Date	June 27, 2023			Pre	pared Date		June 30, 202	23
Database F	Rev	Maxview			Coi	mpleted By		TF	
Timing Car	rd / Field rev	-			C	hecked By		МН	
Location		Mayfield Road at Cla	rkway Dr	ive / Huml	ber Static	n Road			
Phase	Street Name - Direction	Vehicle		estrian num (s)	Amber	All Red		IME PERIOD	
#		Minimum (s)	WALK	FDWALK	(s)	(s)	AM SPLITS	OFF SPLITS	PM SPLITS
1	Not In Use	_	-	-	-	_	- JF L113	-	-
	Mayfield Road - EB	12.0	12.0	8.0	4.6	2.7	70.0	50.0	55.0
	Humber Station Road - SB	8.0	12.0	7.0	4.2	2.8	30.0	20.0	20.0
4	Clarkway Drive - NB	8.0	12.0	7.0	4.2	2.8	20.0	30.0	45.0
5	Not In Use	-	-	-	-	-	-	-	-
6	Mayfield Road - WB	12.0	12.0	8.0	4.6	2.7	70.0	50.0	55.0
7	Not In Use	-	-	-	-	-	1	-	-
8	Computer Phase	8.0	12.0	7.0	4.2	2.8	50.0	50.0	65.0
	System Control			TIME	(M-F)	PEAK	CYCLE L	ENGTH (s)	OFFSET (s)
	Yes				- 09:00	AM		20	31
	Semi-Actuated Mode			09:00 -	- 15:00	OFF	1	00	45
	No			15:00	- 19:30	PM	1	20	43

APPENDIX C

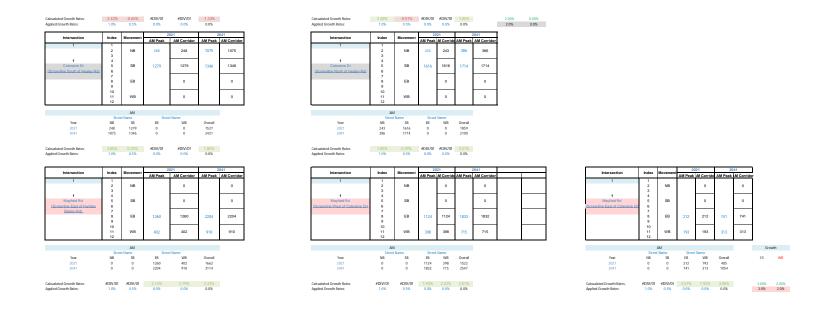
Background Developments

Triangle Lands Vehicle and Truck Trip Generation

Land Use	Description	Week	day AM Pea	k Hour	Week	day PM Pea	k Hour
Land Ose	Description	In	Out	Total	In	Out	Total
	Tria	ngle Lands	(Vehicle)				
ITE LUC 140 -	Auto Trip Rate (/employee)	0.23	0.09	0.32	0.11	0.20	0.31
Manufacturing	Total ITE Auto Trips	249	92	341	122	208	330
1066 Employees	External Auto Trips (100%)	249	92	341	122	208	330
	Tria	angle Lands	(Truck)				
ITE LUC 140 –	Truck Trip Rate (/employee)	0.02	0.01	0.03	0.02	0.03	0.05
Manufacturing	Total ITE Auto Trips	19	13	32	20	34	54
1066 Employees	External Truck Trips (100%)	19	13	32	20	34	54

Coleraine Drive & Mayfield Road Block Plan Vehicle and Truck Trip Generation

Land Use	Description	Weeko	day AM Pea	k Hour	Week	day PM Pea	k Hour
Land OSE	Description	ln	Out	Total	In	Out	Total
	Coleraine Drive and	l Mayfield R	oad Block P	lan (Vehicle	<u>:)</u>		
ITE LUC 140 –	Auto Trip Rate (/employee)	0.23	0.09	0.32	0.11	0.20	0.31
Manufacturing	Total ITE Auto Trips	140	52	192	69	117	186
598 Employees	External Auto Trips (100%)	140	52	192	69	117	186
	Coleraine Drive an	d Mayfield	Road Block	Plan (Truck)			
ITE LUC 140 –	Truck Trip Rate (/employee)	0.02	0.01	0.03	0.02	0.03	0.05
Manufacturing	Total ITE Auto Trips	11	7	18	11	19	30
598 Employees	External Truck Trips (100%)	11	7	18	11	19	30


APPENDIX D

Corridor Growth Calculations

Intersection

Intersection	Index	Movement		2021	2	2041
1	ndex 1 2	NB	AM Peak	AM Corridor	AM Peak	AM Corridor
1 Humber Station Rd	3 4 5	SB	542	542	730	730
(Screenine by Mayfield Rd)	6 7 8 9	EB		0		
	10 11 12	WB		0		
	Stre	AM et Name	Stre	et Name		
Year 2021 2041	NB 30 101	SB 542 730	EB 0 0	WB 0 0	Overall 572 831	
Calcualated Growth Rates: Applied Growth Rates:	3.51%	1.29%	#DIV/0!	#DIV/01	1.56%	
Intersection	Index	Movement	.1 :	2021		2041
1	1 2 3	NB	AM Peak	AM Corridor	AM Peak	AM Corridor
Healey Rd (Screenline west of Humber	4 5 6	SB		0		0
Station Rd)	7 8 9	EB	193	193	616	616
	10 11 12	WB	4	4	21	21
Year	Stre NB	AM et Name SB	Stre	et Name WB	Overall	
Year 2021 2041	NB 0 0	SB 0 0	193 616	WB 4 21	197 637	
cualated Growth Rates: illed Growth Rates:	#DIV/0! 0.0%	#DIV/0! 0.0%	3.43% 0.0%	4.05% 0.0%	3.45% 0.0%	
Intersection	Index	Movement	AM Peak	2021 AM Corridor	AM Peak	041 AM Corridor
1	1 2 3	NB		0		0
George Bolton Plowy (Screenline by Coleraine Dr.)	4 5 6 7	SB		0		0
	8 9 10	EB	797	797	0	0
	11	WB	12	12	7	7
Year 2021	Stre NB 0	AM et Name SB 0	Stre EB 797	et Name WB 12	Overall 809	
2041	0	0	0	7	7	
cualated Growth Rates: olied Growth Rates:	#DIV/0! 0.0%	#DIV/0! 0.0%	#DIV/0! 0.0%	-3.57% 0.0%	-572.86% 0.0%	
Intersection	Index	Movement	AM Peak	AM Corridor	AM Peak	AM Corridor
1	2 3 4	NB	1089	1089	1452	1452
Hwy 50 Screenline South of George Bolton Pkwy)	5 6 7 8	SB	1126	1126	1164	1164
	9 10 11	WB		0		0
	12 Stro	AM no Market		of Name	1	<u> </u>
Year 2021 2041	NB 1089 1452	st Name SB 1126 1164	EB 0 0	et Name WB 0 0	Overall 2215 2616	
			#DIV/0!	#DIV/01	0.77%	
	,	1	0.0%	0.0%	0.0%	2041
Intersection 1	Index 1 2	Movement	AM Peak	AM Corridor	AM Peak	AM Corridor
Coleraine Dr Screenline South of George	3 4 5	SB	1226	1226	1084	1084
Bolton Pkwy)	6 7 8 9	EB		0		0
	10 11 12	WB		0		0
Year	Stre NB	AM et Name SB	Stre EB	et Name WB	Overall	
2021 2041	1029 693	1226 1084	0	0	2255 1777	

	Intersection	Index	Movement					
	intersection	muex	Movement	AM Peak	M Corrido	AM Peak	M Corrido	r
	1	1						
		2	NB		0		0	
		3						
	1	4						
	George Bolton Pkwy	5	SB		0		0	
<u>(S</u>	Screenline at internal node)	6						
		7		_				
		8	EB	0	0	34	34	
		10						
		11	WB	0	0	53	53	
		12	WB			55	53	
<u></u>								
			M					
			Name	Street				*Assuming no growth along George Bolton Pkw
	Year	NB	SB	EB	WB	Overall		
	2021	0	0	0	0	0		
	2041	0	0	34	53	87		
	ualated Growth Rates:	#DIV/0!	#DIV/0!	5.00%	5.00%	5.00%		
Appli	lied Growth Rates:	0.0%	0.0%	0.0%	0.0%	0.0%		

APPENDIX E

Mayfield Widening Correspondences

Christy Leung

From: Kabanov, Serguei < serguei.kabanov@peelregion.ca>

Sent: August 28, 2023 4:36 PM

To: Christy Leung

Cc: Marzo, Christina; Sadek, Sandra

Subject: RE: Option 6 Lands: Mayfield Widening Timing

External Sender

Good Afternoon Christy,

I'm the Regional PM looking after Mayfield Road Widening, from Airport to Coleraine. Christina forwarded me your email with questions.

- 1. Mayfield Road widening, between Humber Station Road and Coleraine is scheduled for construction in 2026. The project will start at Airport so chances are we won't be doing the stretch you are concerned about until 2027 or later. The stretch from Coleraine to Highway 50 is a separate project and, as of right now, it is scheduled for late 2026 or early 2027. My colleague Sandra, copied on this email, is looking after this project.
- 2. I can confirm that the jogged intersection at Humber Station Road & Mayfield Road will be addressed with the widening of Mayfield.

If you have any further questions, please do not hesitate to reach out directly.

Serguei Kabanov, CD, CET, rcca Project Manager, Roads Design and Construction

From: Christy Leung < ChLeung@lea.ca>

Sent: August 28, 2023 2:48 PM

To: Marzo, Christina < christina.marzo@peelregion.ca>

Cc: Chris Sidlar < CSidlar@lea.ca>

Subject: Option 6 Lands: Mayfield Widening Timing

CAUTION: EXTERNAL MAIL. DO NOT CLICK ON LINKS OR OPEN ATTACHMENTS YOU DO NOT TRUST.

Hi Christina,

If you recall, the Region met with our office earlier this month to discuss the road improvements surrounding the Option 6 lands in Caledon. Further to that discussion, I wanted to confirm timing of the Mayfield Road widening between Humber Station Road and Highway 50. As per the Region's Long Range Transportation Plan, Mayfield is planned to widen by 2031. Given the observed construction activity along this stretch of the roadway, has timing of this improvement moved up in schedule?

Can you also confirm that the jogged intersection at Humber Station Road & Mayfield Road will be addressed with the widening of Mayfield?

Thanks,

Christy Leung, B.E.S.

Transportation Planner

LEA Consulting Ltd.

40 University Avenue, Suite 503 | Toronto, ON | M5J 1T1 T: 905 470 0015 ext. 330 E: ChLeung@lea.ca W: www.LEA.ca

We've Moved!

Our Downtown office has moved, please make note of our new address above.

This e-mail is confidential and intended solely for the use of the addressee(s) listed above.

Please notify the sender and delete all copies of this message together with any attached files if you have obtained this message in error.

LEA is not responsible for edited or reproduced versions of this digital data.

APPENDIX F

TTS Data

Fri Aug 19 2023 1452:25 GMT-0400 (Eastern Caulich Timel - Run Time: 2550ms	AMIN Files 92219454 0FF 0F Glave Delain Ton - Fee Tim 27 tos	
Cross Tabulation Query/Form - Trip - 2016 v1.1	Coss Tabalist Gary Fern. Tip. 2014 t1	
Rose: 2006 GTA zone of origin - gtable, orig Column: 2006 GTA zone of destination - gtable, dest	Non-Therapy annes of only- set any Common 2006 of Assert and monitoring- goods, dast Book 2006 of Assert and monitoring- goods, dast	
RowG: CalG(2017 3191) TalG:	RAIG (CRICKET 3191) TRIG.	
Filters: Start time of trip - start, filme in 0000-1000 and	Flanc Continued type and free in 8000+1000 and	
Trip purpose of destinals F and Primary travel mode of tri M P T	Top prepared destration F and From your and miscal or g-MM P T	
Trip 2016 Table	79,204	
1 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	State Stat	Ir 1 n Rd :

Fri Aug 18 2023 14:12:09 GMT-0400 (Eastern Daylight Time) - Run Time: 2690ms Cross Tabulation Query Form - Trip - 2016/11.1	Fri Aug 10 2023 14:12:44 GMT-0430 (Eastern Daylight Time) - Run Time: 2006ms Cross: Tabulation Query Form - Trip - 2016/v1.1	PM OUT							
Rose 2006 GTA zone of destination - glabit, dest Column: 2006 GTA zone of origin - glabit, orig	Rose Planning district of destination - pd, deet Column: 2006 GTA zone of origin - gtable, orig								
RowG. Col(q)2077 3191)	RowG. ColG(2007 3191)								
Telia:	To G: Films:								
Start time of trip - start, time in 1500-1900 and Trip purpose of origin - ; F	Start time of trip - start, time lin 1500-1900 and Trip purpose of origin - pur E								
and Primary travel mode of m M P T	and Primary travel mode of trip - M P T								
Trip 2016 Table:	Trip 2016 Table: Outbound Direction 1 Dist Route 1	Route 2	Route 3 Route 4 Route 5 Route 6	Route 7 Route 8 Route 1 Rout	te 2 Route 3		5 Route 6 Rou		
72 43	PD 1 of Toronto 63 0.01 Clarkway S PD 2 of Toronto 12 0 Clarkway S	Rouse 2	Rodie 3 Rodie 4 Rodie 5 Rodie 6	1% 0%	ie 2 Roule 3	Rouse 4 Rous	es Route o Rot	ne / Route 6	PM Out
169 21 154 17 160 21 160 47	PO 3 of Tourse 176 0.04 Clarkway S PO 6 of Tourse 42 0.01 Clarkway S PO 6 of Tourse 22 0.01 Clarkway S PO 8 of Tourse 13 0.0 arkway S PO 6 of Tourse 146 0.03 Clarkway S			4% 1% 0% 0% 3% 2% 1% 0%					N Coleraine Drive Hwy 50
100 47 123 24 128 23	PD to of Toronto 111 0.02 Clarkway S PD to of Toronto 44 0.01 Clarkway S			3% 2% 1%					S Clarkway Dr Hwy 50 E Healey Rd
122 24 178 23 179 23 220 17 229 25	FO HolToronio 14 0 Clarkway S FO HolToronio 38 0.01 Clarkway S Ostawa 21 0 Clarkway S	Albion N		0% 1% 0%	0%				W Mayfield Rd Healey Rd
201 15 201 7 206 13	East Gallimbury 28 0.005	Albion N Albion N	Coleraine N Hwy 50 S	0% 1% 1%	1% 19 0%	1%			
263 26 52 271 17 204 7	Moriton 70 0.005 Clarkway S King 31 0.005 Vaughan 271 0.005 Clarkway S 2009 44 0.005	Albion N	Hwy 50 S Coleraine N Hwy 50 S Mayfield W Healey W	3%	1% 19	1% 5 3%	1% 1%		
204 25 282 20 284 10	2,900,950 153 0.03 2904 53 0.01 2,900,94 241 0.02		Healey W Healey W Coleraine N Healey W		25	6	1% 1% 3% 1% 2% 1%		
385 8 386 8 401 85	2,100,170 178 0.015 2,100,170 178 0.015	Albion N	Coleraine N Healey W	Healey E Healey E Hwy 50 N	2%	6	1%	2% 0% 0% 2% 2%	
401 85 443 17 469 27 546 14	2,192,261 2,0165 2,192,261 241 0.02 2194 67 0.005 2197 16 0	Albion N	Coleraine N Healey W Healey W	Healey E Hwy 50 N Healey E Hwy 50 N Hwy 50 N	2% 21	6 6	1%	2% 2% 2%	
546 14 608 38 1180 21 2005 15 2054 11	2199 83 0.01 Brampton 1335 0.25		Heatey W Coleraine N Heatey W Mayfield W Mayfield W	3%	19	6	1% 0% 1% 25%		
2017 13 2000 21 2022 53 2024 30 2027 13	Haton Hills 88 0.01 Miles 109 0.0099 Clarkway S		Mayfield W Healey W Mayfield W Healey W				25% 3% 1% 1% 1% 1% 0%		
2004 30 2007 13 2007 32	Burington 32 0.005 Clarkway S Gometry 42 0.01 Clarkway S		Mayfield W Mayfield W Healey W	1% 0% 1% 1%			1%		
2027 322 2028 13 2029 12 2039 24 2132 16 2131 18 2241 22	Insisti 76 0.01 Bradord-West Guillimbury 17 0 Clark-Way S	Albion N Albion N Albion N Albion N		0%	1% 1% 0% 3% 3°				
2132 16 2133 18 2241 22	New Tecumenth 246 0.025 Adjain Tenorordo 152 0.015 Mono 42 0.01 East Garantino 21 0	Albion N	Coleraine N Healey W Healey W Healey W		3% 31 21	6	2% 1% 0%		
80 20 101 12 1 104 12 1 105 12 1 106 12 1 107 12 1 107 12 1 108 12 1 109 12	5356		Training W	22%	9% 119	5 4%	31% 16%	3% 4%	
2760 28 2009 44					100%				
2,100,153 153 2004 53 2,153,241 241 2,188,111 111									
3,190,178 178 Caledon 1462									
3.180,261 261 2.180,241 241 2814 67 2819 16 2819 83									
2027 65 2008 39									
2862 29 2867 12									
3,371,164 104									
2022 34 2023 13 2034 24									
2005 41 2009 63 2,000,165 165									
307 34 1 309 41 3 309 41 3 309 41 3 309 41 3 309 40 3 300 300 300 300 300 300 300 300 300									
3634 51 3642 14 3647 61									
348 14 366 14 366 18									
360 27 365 36 2015 23									
267 267 268,129 269 269 16									
2603 18 2606 6 2607 27									
2644 10 2644 48									
2671 19 2678 23 2666 28									
2000 8 2754 15 2756 21									
2074 12 4020 19 4084 32									
4190 86 4123 23 4159 55									
4100 15 4123 12 4125 6 6004 42									
8402,105 105 8403 46 8404 13									
8405 13 8415 42 8417 21									
8020 12 8020 14 8,503,407 107									
660 £1 660 14 660 17									
8285 45 8890 22 8895 33									
207 14 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6									
8663 68 5358									

APPENDIX G

LOS Definitions

LEVELS OF SERVICE FOR SIGNALIZED INTERSECTIONS: METHODOLOGY

Signalized intersection analyses contained in this report were carried out using methodology described in the *Highway Capacity Manual*, 2000 update, by the Transportation Research Board and implemented using Synchro 11 software.

Analyses of signalized intersections compare the volume of traffic passing through an intersection with the capacity of each of the intersection's approaches. Volumes can be either observed or estimated whereas an intersection's capacity is a function of its geometry, the number of lanes per approach, speeds, signal timing, and other considerations. The level of service is evaluated in terms of the average control delay (seconds) per vehicle, which is a measure of driver discomfort, frustration, fuel consumption, and lost travel time. Delay is a complex measure and is calculated as a function of a number of variables, including the quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group in question.

The criteria for each level of service are given below.

Level of Service	Features	Control Delay (sec/veh)
A	Very low control delay. Occurs when signal progression (i.e. coordination) is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not have to stop.	0.0 - 10.0
В	Occurs with good progression, short cycle length, or both. More vehicles stop than with LOS A.	10.1 – 20.0
С	Occurs with fair progression, longer cycle length, or both. Individual cycle failures may begin to appear. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.	20.0 – 35.0
D	The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high v/c ratios. Many vehicles have to stop. Individual cycle failures are noticeable (i.e. some vehicles require more than one cycle to make it through the intersection).	35.0 – 55.0
Е	Considered by many agencies to be the limit of acceptable delay. High delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent occurrences.	55.0- 80.0
F	Considered to be unacceptable to most drivers and often occurs with oversaturation. It may also occur at high v/c ratios below 1.0 with many individual cycle failures.	80.1 +

LEVELS OF SERVICE FOR UNSIGNALIZED INTERSECTIONS: METHODOLOGY

Unsignalized intersection analyses contained in this report were carried out using methodology described in the *Highway Capacity Manual* (2000 edition) by the Transportation Research Board and implemented using the Synchro 11 software.

Analyses of unsignalized intersections compare observed or estimated traffic volumes with the capacity of each of the intersection's approaches. The analysis derives an estimation of queue lengths and the resulting delays experienced by vehicles from the time they join a queue to the moment they cross the stop bar at the intersection. Queuing and delays at unsignalized approaches are a function of the volumes of all other conflicting movements and the characteristics of the intersection. Traffic volumes can be either observed or estimated while an intersection's capacity is a function of its geometry, lane configurations, speeds, and other operational considerations. The resulting statistic is termed "average total delay" for each approach and is measured in seconds per vehicle. The delay can then be assigned a letter grade, which provides a simple qualitative assessment of the Level of Service for any unsignalized intersection.

The Level of Service grading for unsignalized intersections is more sensitive than that used for signalized analyses: delays are more onerous at unsignalized intersections as drivers must remain attentive while waiting for acceptable conditions to complete their movement. As a result, the thresholds between grades are lower for unsignalized analyses.

Level of Service	Features	Average Total Delay (sec/veh)
A	Almost no delay occurs. Approaches appear clear and turns are made easily.	0.0 - 10.0
В	Short delays are experienced. Drivers find their movement becoming more restricted.	10.1 – 15.0
С	Longer delays occur. Operation of both the minor and major streets are generally stable but movements from the minor street become more difficult. This level is often used for urban intersection design standards.	15.1 – 25.0
D	Motorists encounter increasing traffic restrictions and substantial delays. Delays on the major street occur as turning traffic interferes with the flow of traffic. Traffic flows are approaching the capacity of the intersection.	25.1 - 35.0
Е	At level "E", capacity is reached. There are long queues of vehicles waiting upstream for the approach to clear. Delays to vehicles reach frustrating levels.	35.1- 50.0
F	Intersection saturation occurs as vehicle demand has exceeded the capacity. Drivers will often accept less than ideal gap opportunities; safety is compromised.	50.1 +

APPENDIX H

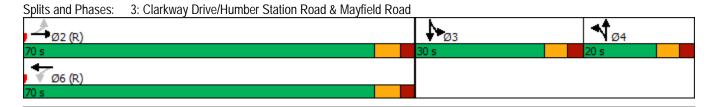
Existing Intersection Capacity Analysis

	•	→	•	•	←	•	4	†	/	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			↔			↔	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	4	499	19	73	210	4	6	16	31	72	162	4
Future Volume (vph)	4	499	19	73	210	4	6	16	31	72	162	4
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	4	537	20	78	226	4	6	17	33	77	174	4
Direction, Lane #	EB1	WB 1	NB 1	SB 1								
Volume Total (vph)	561	308	56	255								
Volume Left (vph)	4	78	6	77								
Volume Right (vph)	20	4	33	4								
Hadj (s)	0.02	0.08	-0.30	0.06								
Departure Headway (s)	5.6	6.0	6.8	6.5								
Degree Utilization, x	0.87	0.51	0.11	0.46								
Capacity (veh/h)	637	557	455	517								
Control Delay (s)	33.9	15.2	10.6	15.0								
Approach Delay (s)	33.9	15.2	10.6	15.0								
Approach LOS	D	С	В	С								
Intersection Summary												
Delay			23.8									
Level of Service			С									
Intersection Capacity Utiliza	tion		72.4%	IC	:U Level	of Service	!		С			
Analysis Period (min)			15									

	•	-	•	•	†	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Configurations		4		4	44	4
Traffic Volume (vph)	8	523	67	470	47	247
Future Volume (vph)	8	523	67	470	47	247
Lane Group Flow (vph)	0	582	0	564	177	267
Turn Type	Perm	NA	Perm	NA	NA	NA
Protected Phases		2		6	4	3
Permitted Phases	2		6			
Detector Phase	2	2	6	6	4	3
Switch Phase						
Minimum Initial (s)	12.0	12.0	12.0	12.0	8.0	8.0
Minimum Split (s)	27.3	27.3	27.3	27.3	26.0	27.5
Total Split (s)	70.0	70.0	70.0	70.0	20.0	30.0
Total Split (%)	58.3%	58.3%	58.3%	58.3%	16.7%	25.0%
Yellow Time (s)	4.6	4.6	4.6	4.6	4.2	4.2
All-Red Time (s)	2.7	2.7	2.7	2.7	2.8	2.8
Lost Time Adjust (s)		0.0		0.0	0.0	0.0
Total Lost Time (s)		7.3		7.3	7.0	7.0
Lead/Lag					Lag	Lead
Lead-Lag Optimize?					Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None
v/c Ratio		0.72		0.79	0.89	0.83
Control Delay		27.8		32.9	91.9	69.5
Queue Delay		0.0		0.0	0.0	0.0
Total Delay		27.8		32.9	91.9	69.5
Queue Length 50th (m)		106.1		109.9	44.4	63.3
Queue Length 95th (m)		153.1		164.5	#91.7	#101.1
Internal Link Dist (m)		912.9		1363.4	257.8	3037.3
Turn Bay Length (m)						
Base Capacity (vph)		812		716	200	354
Starvation Cap Reductn		0		0	0	0
Spillback Cap Reductn		0		0	0	0
Storage Cap Reductn		0		0	0	0
Reduced v/c Ratio		0.72		0.79	0.89	0.75

Cycle Length: 120

Actuated Cycle Length: 120


Offset: 31 (26%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	8	523	28	67	470	4	11	47	112	2	247	8
Future Volume (vph)	8	523	28	67	470	4	11	47	112	2	247	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.0	3.0	3.5	3.0	3.0	3.5	3.0	3.0	3.5	3.0
Total Lost time (s)		7.3			7.3			7.0			7.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		0.99			1.00			0.91			1.00	
Flt Protected		1.00			0.99			1.00			1.00	
Satd. Flow (prot)		1552			1583			1646			1846	
Flt Permitted		0.99			0.85			1.00			1.00	
Satd. Flow (perm)		1540			1360			1646			1846	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	8	545	29	70	490	4	11	49	117	2	257	8
RTOR Reduction (vph)	0	1	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	581	0	0	564	0	0	177	0	0	267	0
Heavy Vehicles (%)	13%	20%	25%	4%	20%	0%	18%	2%	3%	50%	1%	0%
Turn Type	Perm	NA		Perm	NA		Split	NA		Split	NA	
Protected Phases		2			6		4	4		3	3	
Permitted Phases	2			6								
Actuated Green, G (s)		63.2			63.2			14.6			20.9	
Effective Green, g (s)		63.2			63.2			14.6			20.9	
Actuated g/C Ratio		0.53			0.53			0.12			0.17	
Clearance Time (s)		7.3			7.3			7.0			7.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		811			716			200			321	
v/s Ratio Prot								c0.11			c0.14	
v/s Ratio Perm		0.38			c0.41							
v/c Ratio		0.72			0.79			0.89			0.83	
Uniform Delay, d1		21.6			23.0			51.9			47.9	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		5.4			8.6			33.8			16.6	
Delay (s)		26.9			31.5			85.7			64.4	
Level of Service		С			С			F			Е	
Approach Delay (s)		26.9			31.5			85.7			64.4	
Approach LOS		С			С			F			Е	
Intersection Summary												
HCM 2000 Control Delay			41.4	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.81									
Actuated Cycle Length (s)			120.0	Sı	um of lost	t time (s)			21.3			
Intersection Capacity Utiliza	tion		93.9%	IC	CU Level	of Service			F			
Analysis Period (min)			15									

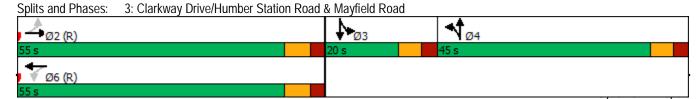
c Critical Lane Group

	•	→	•	•	←	•	4	†	<i>></i>	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	21	247	6	34	496	22	16	187	65	22	42	6
Future Volume (vph)	21	247	6	34	496	22	16	187	65	22	42	6
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (vph)	22	255	6	35	511	23	16	193	67	23	43	6
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	283	569	276	72								
Volume Left (vph)	22	35	16	23								
Volume Right (vph)	6	23	67	6								
Hadj (s)	0.02	-0.01	-0.10	0.03								
Departure Headway (s)	6.1	5.6	6.4	7.2								
Degree Utilization, x	0.48	0.89	0.49	0.14								
Capacity (veh/h)	553	629	526	445								
Control Delay (s)	14.8	37.7	15.5	11.4								
Approach Delay (s)	14.8	37.7	15.5	11.4								
Approach LOS	В	Е	С	В								
Intersection Summary												
Delay			25.6									
Level of Service			D									
Intersection Capacity Utiliza	ation		58.2%	IC	U Level	of Service)		В			
Analysis Period (min)			15									

	•	-	•	•	†	↓
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Configurations		4		4	4	4
Traffic Volume (vph)	10	527	52	645	245	62
Future Volume (vph)	10	527	52	645	245	62
Lane Group Flow (vph)	0	573	0	723	426	76
Turn Type	Perm	NA	Perm	NA	NA	NA
Protected Phases		2		6	4	3
Permitted Phases	2		6			
Detector Phase	2	2	6	6	4	3
Switch Phase						
Minimum Initial (s)	12.0	12.0	12.0	12.0	8.0	8.0
Minimum Split (s)	27.3	27.3	27.3	27.3	26.0	26.0
Total Split (s)	55.0	55.0	55.0	55.0	45.0	20.0
Total Split (%)	45.8%	45.8%	45.8%	45.8%	37.5%	16.7%
Yellow Time (s)	4.6	4.6	4.6	4.6	4.2	4.2
All-Red Time (s)	2.7	2.7	2.7	2.7	2.8	2.8
Lost Time Adjust (s)		0.0		0.0	0.0	0.0
Total Lost Time (s)		7.3		7.3	7.0	7.0
Lead/Lag					Lag	Lead
Lead-Lag Optimize?					Yes	Yes
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None
v/c Ratio		0.73		0.97	0.88	0.48
Control Delay		34.6		59.8	60.8	62.3
Queue Delay		0.0		0.0	0.0	0.0
Total Delay		34.6		59.8	60.8	62.3
Queue Length 50th (m)		118.3		~194.8	99.4	18.3
Queue Length 95th (m)		#199.1		#289.7	136.1	34.1
Internal Link Dist (m)		912.9		1363.4	257.8	3037.3
Turn Bay Length (m)						2220
Base Capacity (vph)		786		745	553	195
Starvation Cap Reductn		0		0	0	0
Spillback Cap Reductn		0		0	0	0
Storage Cap Reductn		0		0	0	0
Reduced v/c Ratio		0.73		0.97	0.77	0.39
		0.,0		0.77	J., ,	0.07

Cycle Length: 120

Actuated Cycle Length: 120


Offset: 43 (36%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 140

Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

09-05-2023 Page 4

	٠	→	•	•	←	•	•	†	/	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	10	527	19	52	645	4	59	245	109	0	62	12
Future Volume (vph)	10	527	19	52	645	4	59	245	109	0	62	12
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.0	3.0	3.5	3.0	3.0	3.5	3.0	3.0	3.5	3.0
Total Lost time (s)		7.3			7.3			7.0			7.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		1.00			1.00			0.96			0.98	
Flt Protected		1.00			1.00			0.99			1.00	
Satd. Flow (prot)		1653			1696			1744			1808	
Flt Permitted		0.98			0.91			0.99			1.00	
Satd. Flow (perm)		1629			1545			1744			1808	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	10	543	20	54	665	4	61	253	112	0	64	12
RTOR Reduction (vph)	0	1	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	572	0	0	723	0	0	426	0	0	76	0
Heavy Vehicles (%)	20%	13%	11%	2%	11%	0%	12%	2%	1%	0%	2%	0%
Turn Type	Perm	NA		Perm	NA		Split	NA			NA	
Protected Phases		2			6		4	4		3	3	
Permitted Phases	2			6								
Actuated Green, G (s)		56.5			56.5			33.4			8.8	
Effective Green, g (s)		56.5			56.5			33.4			8.8	
Actuated g/C Ratio		0.47			0.47			0.28			0.07	
Clearance Time (s)		7.3			7.3			7.0			7.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		766			727			485			132	
v/s Ratio Prot								c0.24			c0.04	
v/s Ratio Perm		0.35			c0.47			0.00			0.50	
v/c Ratio		0.75			0.99			0.88			0.58	
Uniform Delay, d1		25.9			31.6			41.4			53.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		6.5			32.1			16.3			6.0	
Delay (s)		32.5			63.7			57.7			59.8	
Level of Service		C			(2.7			E			Е	
Approach LOS		32.5 C			63.7			57.7			59.8	
Approach LOS		C			E			Е			E	
Intersection Summary			E0.4		011.0000	1	2 1					
HCM 2000 Control Delay			52.1	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.92			1.11			24.0			
Actuated Cycle Length (s)	1'		120.0			t time (s)			21.3			
Intersection Capacity Utiliza	ition		104.2%	IC	U Level	of Service	<u> </u>		G			
Analysis Period (min)			15									

c Critical Lane Group

APPENDIX I

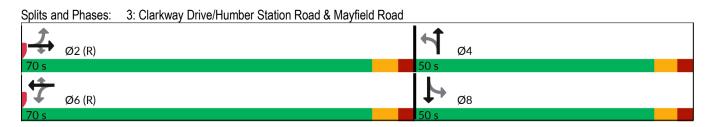
Future Background Intersection Capacity Analysis

	۶	→	•	•	—	•	†	-	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	†	7	*	ĵ.	*	ŧî	*	f)	
Traffic Volume (vph)	4	633	35	73	276	23	18	79	177	
Future Volume (vph)	4	633	35	73	276	23	18	79	177	
Lane Group Flow (vph)	4	681	38	78	301	25	57	85	194	
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	NA	Perm	NA	
Protected Phases		4		3	8		2		6	
Permitted Phases	4		4	8		2		6		
Detector Phase	4	4	4	3	8	2	2	6	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	5.0	5.0	8.0	8.0	5.0	5.0	
Minimum Split (s)	24.8	24.8	24.8	9.5	24.8	24.7	24.7	24.8	24.8	
Total Split (s)	65.0	65.0	65.0	25.0	90.0	30.0	30.0	30.0	30.0	
Total Split (%)	54.2%	54.2%	54.2%	20.8%	75.0%	25.0%	25.0%	25.0%	25.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	Lag	Lag	Lag	Lead						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes						
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
v/c Ratio	0.01	0.85	0.05	0.38	0.31	0.06	0.08	0.16	0.25	
Control Delay (s/veh)	16.0	41.5	2.2	17.4	16.0	22.6	8.3	28.4	28.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	16.0	41.5	2.2	17.4	16.0	22.6	8.3	28.4	28.2	
Queue Length 50th (m)	0.6	146.0	0.0	8.7	37.9	4.5	4.1	14.1	33.2	
Queue Length 95th (m)	2.4	176.6	3.6	13.6	46.2	12.5	15.0	29.6	58.4	
Internal Link Dist (m)		465.5			1349.5		1464.0		452.2	
Turn Bay Length (m)	30.0		30.0	60.0		30.0		30.0		
Base Capacity (vph)	412	929	765	351	1306	380	692	515	749	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.01	0.73	0.05	0.22	0.23	0.07	0.08	0.17	0.26	

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 65


	۶	→	•	•	—	•	1	†	~	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑	7	*	Þ		*	Þ		*	₽	
Traffic Volume (veh/h)	4	633	35	73	276	4	23	18	35	79	177	4
Future Volume (veh/h)	4	633	35	73	276	4	23	18	35	79	177	4
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1468	1870	1781	1810	1870	1468	1696	1900	1781	1824	1885	1824
Adj Flow Rate, veh/h	4	681	38	78	297	4	25	19	38	85	190	4
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	25	2	3	1	2	25	9	0	3	0	1	0
Cap, veh/h	383	754	608	173	886	12	469	251	502	617	816	17
Arrive On Green	0.40	0.40	0.40	0.04	0.48	0.48	0.44	0.44	0.44	0.44	0.44	0.44
Sat Flow, veh/h	846	1870	1510	1724	1841	25	1078	565	1131	1313	1839	39
Grp Volume(v), veh/h	4	681	38	78	0	301	25	0	57	85	0	194
Grp Sat Flow(s),veh/h/ln	846	1870	1510	1724	0	1866	1078	0	1696	1313	0	1878
Q Serve(g_s), s	0.4	41.0	1.8	3.1	0.0	12.0	1.8	0.0	2.3	4.8	0.0	7.7
Cycle Q Clear(g_c), s	3.0	41.0	1.8	3.1	0.0	12.0	9.5	0.0	2.3	7.1	0.0	7.7
Prop In Lane	1.00		1.00	1.00		0.01	1.00		0.67	1.00		0.02
Lane Grp Cap(c), veh/h	383	754	608	173	0	898	469	0	753	617	0	834
V/C Ratio(X)	0.01	0.90	0.06	0.45	0.00	0.34	0.05	0.00	0.08	0.14	0.00	0.23
Avail Cap(c_a), veh/h	468	943	761	398	0	1329	469	0	753	617	0	834
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	23.1	33.6	21.9	27.0	0.0	19.3	23.6	0.0	19.2	21.2	0.0	20.7
Incr Delay (d2), s/veh	0.0	10.2	0.0	1.8	0.0	0.2	0.2	0.0	0.2	0.5	0.0	0.7
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	11.4	0.3	0.6	0.0	2.2	0.3	0.0	0.5	0.8	0.0	1.7
Unsig. Movement Delay, s/veh		40.0	22.2	22.2		40 =			10.1	0.4 =		24.4
LnGrp Delay(d), s/veh	23.1	43.8	22.0	28.8	0.0	19.5	23.8	0.0	19.4	21.7	0.0	21.4
LnGrp LOS	<u>C</u>	D	C	С		В	С		В	С		<u>C</u>
Approach Vol, veh/h		723			379			82			279	
Approach Delay, s/veh		42.6			21.4			20.8			21.5	
Approach LOS		D			С			С			С	
Timer - Assigned Phs		2	3	4		6		8				
Phs Duration (G+Y+Rc), s		57.8	9.4	52.9		57.8		62.2				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5		4.5				
Max Green Setting (Gmax), s		25.5	20.5	60.5		25.5		85.5				
Max Q Clear Time (g_c+I1), s		11.5	5.1	43.0		9.7		14.0				
Green Ext Time (p_c), s		0.3	0.2	5.4		1.4		2.4				
Intersection Summary												
HCM 6th Ctrl Delay, s/veh			31.8									
HCM 6th LOS			С									

	٠	→	•	•	—	•	•	†	>	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	ተተተ	7	*	^	7	*	fə	*	ĵ.	
Traffic Volume (vph)	8	769	28	102	581	21	11	53	23	262	
Future Volume (vph)	8	769	28	102	581	21	11	53	23	262	
Lane Group Flow (vph)	8	801	29	106	605	22	11	265	24	281	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	NA	
Protected Phases		2			6			4		8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	6	6	6	4	4	8	8	
Switch Phase											
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	27.3	27.3	27.3	27.5	27.5	27.5	26.0	26.0	27.5	27.5	
Total Split (s)	70.0	70.0	70.0	70.0	70.0	70.0	50.0	50.0	50.0	50.0	
Total Split (%)	58.3%	58.3%	58.3%	58.3%	58.3%	58.3%	41.7%	41.7%	41.7%	41.7%	
Yellow Time (s)	4.6	4.6	4.6	4.6	4.6	4.6	4.2	4.2	4.2	4.2	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.8	2.8	2.8	2.8	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.3	7.3	7.3	7.3	7.3	7.3	7.0	7.0	7.0	7.0	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
v/c Ratio	0.01	0.26	0.03	0.27	0.29	0.02	0.11	0.61	0.21	0.76	
Control Delay (s/veh)	8.2	8.2	2.2	11.1	8.6	1.4	39.1	24.7	53.2	70.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	8.2	8.2	2.2	11.1	8.6	1.4	39.1	24.7	53.2	70.2	
Queue Length 50th (m)	0.6	25.5	0.0	9.4	28.3	0.0	2.3	26.5	5.9	71.9	
Queue Length 95th (m)	2.8	39.2	3.1	23.4	46.0	2.0	7.4	51.4	14.8	99.0	
Internal Link Dist (m)		1635.6			199.2			1951.8		1542.4	
Turn Bay Length (m)	150.0		105.0	150.0		115.0	75.0		105.0		
Base Capacity (vph)	447	3043	834	381	2082	1029	172	665	207	663	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.26	0.03	0.28	0.29	0.02	0.06	0.40	0.12	0.42	

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 60


	۶	→	•	•	+	•	1	†	~	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተተ	7	*	^	7	*	₽.		*	ĵ∍	
Traffic Volume (veh/h)	8	769	28	102	581	21	11	53	202	23	262	8
Future Volume (veh/h)	8	769	28	102	581	21	11	53	202	23	262	8
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1000	No	4.400	4=0.4	No	1010	4=00	No	4-0-	1000	No	1001
Adj Sat Flow, veh/h/ln	1639	1678	1468	1724	1648	1810	1568	1870	1767	1696	1885	1824
Adj Flow Rate, veh/h	8	801	29	106	605	22	11	55	210	24	273	8
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	13	15	25	7	17	1	18	2	4	9	1	0
Cap, veh/h	475	3078	836	437	2105	1031	124	71	271	116	380	11
Arrive On Green	0.67	0.67	0.67	0.67	0.67	0.67	0.21	0.21	0.21	0.21	0.21	0.21
Sat Flow, veh/h	700	4580	1244	626	3131	1534	921	340	1297	1010	1822	53
Grp Volume(v), veh/h	8	801	29	106	605	22	11	0	265	24	0	281
Grp Sat Flow(s),veh/h/ln	700	1527	1244	626	1566	1534	921	0	1637	1010	0	1876
Q Serve(g_s), s	0.6	8.3	0.9	9.7	9.4	0.6	1.4	0.0	18.3	2.8	0.0	16.7
Cycle Q Clear(g_c), s	10.0	8.3	0.9	18.1	9.4	0.6	18.1	0.0	18.3	21.1	0.0	16.7
Prop In Lane	1.00	00=0	1.00	1.00	0.40=	1.00	1.00		0.79	1.00		0.03
Lane Grp Cap(c), veh/h	475	3078	836	437	2105	1031	124	0	342	116	0	391
V/C Ratio(X)	0.02	0.26	0.03	0.24	0.29	0.02	0.09	0.00	0.78	0.21	0.00	0.72
Avail Cap(c_a), veh/h	475	3078	836	437	2105	1031	262	0	587	268	0	672
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	10.0	7.8	6.6	11.4	8.0	6.5	52.6	0.0	44.8	54.8	0.0	44.2
Incr Delay (d2), s/veh	0.1	0.2	0.1	1.3	0.3	0.0	0.3	0.0	3.8	0.9	0.0	2.5
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh	0.0	0.1	0.0	0.4	0.1	0.0	0.2	0.0	5.1	0.5	0.0	5.2
LnGrp Delay(d), s/veh	10.1	8.0	6.7	12.7	8.3	6.6	52.9	0.0	48.6	55.7	0.0	46.7
LnGrp LOS	10.1	6.0 A	0. <i>1</i>	12. <i>1</i> B	0.3 A	0.0 A	52.9 D	0.0	40.0 D	55.7 E	0.0	46.7 D
-	D	838	A	D	733	A	U	076	U		305	D
Approach Vol, veh/h		8.0			8.9			276 48.8				
Approach LOS								_			47.4	
Approach LOS		Α			Α			D			D	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		88.0		32.0		88.0		32.0				
Change Period (Y+Rc), s		7.3		7.0		7.3		7.0				
Max Green Setting (Gmax), s		62.7		43.0		62.7		43.0				
Max Q Clear Time (g_c+l1), s		12.0		20.3		20.1		23.1				
Green Ext Time (p_c), s		8.7		2.0		7.7		1.9				
Intersection Summary												
HCM 6th Ctrl Delay, s/veh			19.1									
HCM 6th LOS			В									

	٠	→	•	•	←	^	†	-	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	1	7	*	ĵ.	*	đ	*	ĵ.	
Traffic Volume (vph)	21	315	14	34	652	54	211	25	48	
Future Volume (vph)	21	315	14	34	652	54	211	25	48	
Lane Group Flow (vph)	22	325	14	35	695	56	293	26	55	
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	NA	Perm	NA	
Protected Phases		4		3	8		2		6	
Permitted Phases	4		4	8		2		6		
Detector Phase	4	4	4	3	8	2	2	6	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	5.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	24.8	24.8	24.8	9.5	24.8	24.7	24.7	24.7	24.7	
Total Split (s)	62.0	62.0	62.0	10.0	72.0	48.0	48.0	48.0	48.0	
Total Split (%)	51.7%	51.7%	51.7%	8.3%	60.0%	40.0%	40.0%	40.0%	40.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	Lag	Lag	Lag	Lead						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes						
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
v/c Ratio	0.17	0.43	0.02	0.09	0.81	0.10	0.35	0.06	0.06	
Control Delay (s/veh)	24.5	26.6	0.0	15.4	35.6	20.3	23.4	22.4	19.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	24.5	26.6	0.0	15.4	35.6	20.3	23.4	22.4	19.5	
Queue Length 50th (m)	3.6	59.3	0.0	4.6	142.4	12.3	67.5	3.6	6.6	
Queue Length 95th (m)	9.1	73.6	0.0	8.8	162.6	25.2	99.0	10.8	17.0	
Internal Link Dist (m)		465.5			1349.5		1464.0		452.2	
Turn Bay Length (m)	30.0		30.0	60.0		30.0		30.0		
Base Capacity (vph)	151	882	703	360	1040	545	836	404	847	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.15	0.37	0.02	0.10	0.67	0.10	0.35	0.06	0.06	

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60

	۶	→	•	•	—	•	•	†	~	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†	7	*	ĵ,		*	ĵ.		*	£	
Traffic Volume (veh/h)	21	315	14	34	652	22	54	211	73	25	48	6
Future Volume (veh/h)	21	315	14	34	652	22	54	211	73	25	48	6
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1824	1870	1724	1781	1885	1753	1696	1885	1781	1824	1870	1824
Adj Flow Rate, veh/h	22	325	14	35	672	23	56	218	75	26	49	6
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	0	2	7	3	1	5	9	1	3	0	2	0
Cap, veh/h	109	649	507	316	748	26	668	687	236	502	837	102
Arrive On Green	0.35	0.35	0.35	0.03	0.41	0.41	0.51	0.51	0.51	0.51	0.51	0.51
Sat Flow, veh/h	731	1870	1461	1696	1812	62	1223	1341	461	1059	1634	200
Grp Volume(v), veh/h	22	325	14	35	0	695	56	0	293	26	0	55
Grp Sat Flow(s),veh/h/ln	731	1870	1461	1696	0	1874	1223	0	1802	1059	0	1834
Q Serve(g_s), s	3.5	16.5	8.0	1.5	0.0	41.5	2.9	0.0	11.4	1.8	0.0	1.8
Cycle Q Clear(g_c), s	37.1	16.5	0.8	1.5	0.0	41.5	4.7	0.0	11.4	13.1	0.0	1.8
Prop In Lane	1.00		1.00	1.00		0.03	1.00		0.26	1.00		0.11
Lane Grp Cap(c), veh/h	109	649	507	316	0	774	668	0	923	502	0	939
V/C Ratio(X)	0.20	0.50	0.03	0.11	0.00	0.90	0.08	0.00	0.32	0.05	0.00	0.06
Avail Cap(c_a), veh/h	206	896	700	345	0	1054	668	0	923	502	0	939
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	53.9	31.0	25.9	24.1	0.0	32.9	15.9	0.0	17.1	20.9	0.0	14.7
Incr Delay (d2), s/veh	0.9	0.6	0.0	0.2	0.0	8.1	0.2	0.0	0.9	0.2	0.0	0.1
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	4.2	0.2	0.3	0.0	10.9	0.4	0.0	2.0	0.2	0.0	0.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	54.8	31.6	25.9	24.3	0.0	41.0	16.2	0.0	18.0	21.1	0.0	14.8
LnGrp LOS	D	С	С	С		D	В		В	С		<u>B</u>
Approach Vol, veh/h		361			730			349			81	
Approach Delay, s/veh		32.8			40.2			17.7			16.8	
Approach LOS		С			D			В			В	
Timer - Assigned Phs		2	3	4		6		8				
Phs Duration (G+Y+Rc), s		65.9	7.9	46.1		65.9		54.1				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5		4.5				
Max Green Setting (Gmax), s		43.5	5.5	57.5		43.5		67.5				
Max Q Clear Time (g_c+l1), s		13.4	3.5	39.1		15.1		43.5				
Green Ext Time (p_c), s		2.5	0.0	2.3		0.4		6.0				
Intersection Summary												
HCM 6th Ctrl Delay, s/veh			32.0									
HCM 6th LOS			С									

	٠	→	•	•	—	•	•	†	>	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	ተተተ	7	*	^	7	*	Þ	*	ĵ.	
Traffic Volume (vph)	10	704	19	135	847	42	59	277	11	66	
Future Volume (vph)	10	704	19	135	847	42	59	277	11	66	
Lane Group Flow (vph)	10	726	20	139	873	43	61	455	11	80	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	NA	
Protected Phases		2			6			4		8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	6	6	6	4	4	8	8	
Switch Phase											
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	27.3	27.3	27.3	27.3	27.3	27.3	26.0	26.0	26.0	26.0	
Total Split (s)	62.0	62.0	62.0	62.0	62.0	62.0	58.0	58.0	58.0	58.0	
Total Split (%)	51.7%	51.7%	51.7%	51.7%	51.7%	51.7%	48.3%	48.3%	48.3%	48.3%	
Yellow Time (s)	4.6	4.6	4.6	4.6	4.6	4.6	4.2	4.2	4.2	4.2	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.8	2.8	2.8	2.8	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.3	7.3	7.3	7.3	7.3	7.3	7.0	7.0	7.0	7.0	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
v/c Ratio	0.03	0.27	0.02	0.41	0.42	0.05	0.18	0.83	0.12	0.16	
Control Delay (s/veh)	14.8	13.9	2.2	21.2	16.1	4.6	29.5	49.4	32.8	31.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	14.8	13.9	2.2	21.2	16.1	4.6	29.5	49.4	32.8	31.2	
Queue Length 50th (m)	1.0	31.2	0.0	18.1	60.4	0.0	11.1	98.6	1.8	13.8	
Queue Length 95th (m)	4.5	48.3	2.3	43.8	93.2	6.2	19.7	123.0	6.4	25.1	
Internal Link Dist (m)		1635.6			199.2			1951.8		1542.4	
Turn Bay Length (m)	150.0		105.0	150.0		115.0	75.0		105.0		
Base Capacity (vph)	280	2676	801	336	2048	797	474	756	141	767	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.04	0.27	0.02	0.41	0.43	0.05	0.13	0.60	0.08	0.10	

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 60

	٠	→	•	•	—	•	•	†	~	/	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	7	^	7	*	fə.		7	₽.	
Traffic Volume (veh/h)	10	704	19	135	847	42	59	277	164	11	66	12
Future Volume (veh/h)	10	704	19	135	847	42	59	277	164	11	66	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1706	No	1660	1606	No	1652	1652	No	1767	1606	No	1001
Adj Sat Flow, veh/h/ln	1796 10	1737 726	1668 20	1696 139	1885 873	1653 43	1653 61	1885 286	1767 169	1696 11	1870 68	1824 12
Adj Flow Rate, veh/h Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	2	11	11	9	1	12	12	1	4	9	2	0.97
Cap, veh/h	327	2789	831	393	2107	824	363	325	192	100	453	80
Arrive On Green	0.59	0.59	0.59	0.59	0.59	0.59	0.29	0.29	0.29	0.29	0.29	0.29
Sat Flow, veh/h	585	4742	1413	648	3582	1401	1166	1111	656	849	1548	273
Grp Volume(v), veh/h	10	726	20	139	873	43	61	0	455	11	0	80
Grp Sat Flow(s), veh/h/ln	585	1581	1413	648	1791	1401	1166	0	1767	849	0	1821
Q Serve(g_s), s	1.1	8.9	0.7	15.9	15.9	1.6	4.9	0.0	29.4	1.5	0.0	3.9
Cycle Q Clear(g_c), s	17.1	8.9	0.7	24.9	15.9	1.6	8.8	0.0	29.4	30.9	0.0	3.9
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.37	1.00		0.15
Lane Grp Cap(c), veh/h	327	2789	831	393	2107	824	363	0	517	100	0	533
V/C Ratio(X)	0.03	0.26	0.02	0.35	0.41	0.05	0.17	0.00	0.88	0.11	0.00	0.15
Avail Cap(c_a), veh/h	327	2789	831	393	2107	824	517	0	751	213	0	774
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	18.1	12.0	10.3	18.1	13.5	10.5	34.7	0.0	40.4	55.2	0.0	31.4
Incr Delay (d2), s/veh	0.2	0.2	0.1	2.5	0.6	0.1	0.2	0.0	8.4	0.5	0.0	0.1
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	8.0	0.1	1.1	1.6	0.1	0.9	0.0	8.7	0.2	0.0	1.0
Unsig. Movement Delay, s/veh		10.0	10.1			10.0	212		10.0			24-
LnGrp Delay(d), s/veh	18.3	12.2	10.4	20.5	14.1	10.6	34.9	0.0	48.9	55.6	0.0	31.5
LnGrp LOS	В	В	В	С	В	В	С	540	D	<u>E</u>	0.1	<u>C</u>
Approach Vol, veh/h		756			1055			516			91	
Approach Delay, s/veh		12.3			14.8			47.2			34.4	
Approach LOS		В			В			D			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		77.9		42.1		77.9		42.1				
Change Period (Y+Rc), s		7.3		7.0		7.3		7.0				
Max Green Setting (Gmax), s		54.7		51.0		54.7		51.0				
Max Q Clear Time (g_c+l1), s		19.1		31.4		26.9		32.9				
Green Ext Time (p_c), s		7.2		3.7		10.2		0.4				
Intersection Summary												
HCM 6th Ctrl Delay, s/veh			21.7									
HCM 6th LOS			С									

APPENDIX J

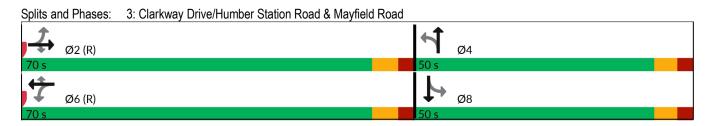
Future Total Intersection Capacity Analysis

	۶	→	•	•	-	•	†	-	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	↑	7	*	Tə	*	4	*	ĵ.	
Traffic Volume (vph)	4	633	63	116	276	35	18	79	183	
Future Volume (vph)	4	633	63	116	276	35	18	79	183	
Lane Group Flow (vph)	4	681	68	125	301	38	74	85	201	
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	NA	Perm	NA	
Protected Phases		4		3	8		2		6	
Permitted Phases	4		4	8		2		6		
Detector Phase	4	4	4	3	8	2	2	6	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	5.0	5.0	8.0	8.0	5.0	5.0	
Minimum Split (s)	24.8	24.8	24.8	9.5	24.8	24.7	24.7	24.8	24.8	
Total Split (s)	65.0	65.0	65.0	25.0	90.0	30.0	30.0	30.0	30.0	
Total Split (%)	54.2%	54.2%	54.2%	20.8%	75.0%	25.0%	25.0%	25.0%	25.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	Lag	Lag	Lag	Lead						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes						
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
v/c Ratio	0.01	0.85	0.10	0.55	0.29	0.11	0.11	0.18	0.29	
Control Delay (s/veh)	16.0	41.5	6.0	21.9	13.9	27.9	12.6	30.4	30.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	16.0	41.5	6.0	21.9	13.9	27.9	12.6	30.4	30.6	
Queue Length 50th (m)	0.6	146.0	1.8	13.7	36.2	6.6	3.6	14.5	35.6	
Queue Length 95th (m)	2.4	176.6	9.1	22.0	43.7	16.0	15.0	30.5	62.3	
Internal Link Dist (m)		465.5			1349.5		1464.0		452.2	
Turn Bay Length (m)	30.0		30.0	60.0		30.0		30.0		
Base Capacity (vph)	412	929	751	351	1306	330	617	464	685	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.01	0.73	0.09	0.36	0.23	0.12	0.12	0.18	0.29	

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 65

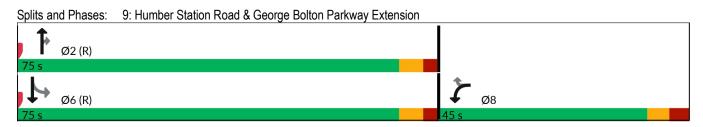

	۶	→	•	•	—	•	1	†	~	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑	7	*	Þ		*	Þ		*	₽	
Traffic Volume (veh/h)	4	633	63	116	276	4	35	18	51	79	183	4
Future Volume (veh/h)	4	633	63	116	276	4	35	18	51	79	183	4
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4.400	No	4==0	1=0.1	No	4.400	1000	No	1=10	1001	No	1001
Adj Sat Flow, veh/h/ln	1468	1870	1753	1781	1870	1468	1668	1900	1710	1824	1885	1824
Adj Flow Rate, veh/h	4	681	68	125	297	4	38	19	55	85	197	4
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	25	2	5	3	2	25	11	0	8	0	1	0
Cap, veh/h	402	755	600	204	923	12	433	182	528	573	780	16
Arrive On Green	0.40	0.40	0.40	0.06	0.50	0.50	0.42	0.42	0.42	0.42	0.42	0.42
Sat Flow, veh/h	846	1870	1485	1696	1841	25	1053	430	1246	1293	1841	37
Grp Volume(v), veh/h	4	681	68	125	0	301	38	0	74	85	0	201
Grp Sat Flow(s),veh/h/ln	846	1870	1485	1696	0	1866	1053	0	1676	1293	0	1878
Q Serve(g_s), s	0.3	41.0	3.4	5.0	0.0	11.5	2.9	0.0	3.2	5.1	0.0	8.3
Cycle Q Clear(g_c), s	0.3	41.0	3.4	5.0	0.0	11.5	11.2	0.0	3.2	8.3	0.0	8.3
Prop In Lane	1.00		1.00	1.00		0.01	1.00		0.74	1.00		0.02
Lane Grp Cap(c), veh/h	402	755	600	204	0	935	433	0	710	573	0	796
V/C Ratio(X)	0.01	0.90	0.11	0.61	0.00	0.32	0.09	0.00	0.10	0.15	0.00	0.25
Avail Cap(c_a), veh/h	487	943	749	392	0	1329	433	0	710	573	0	796
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	21.4	33.5	22.3	26.8	0.0	17.8	25.9	0.0	20.8	23.3	0.0	22.3
Incr Delay (d2), s/veh	0.0	10.0	0.1	3.0	0.0	0.2	0.4	0.0	0.3	0.5	0.0	0.8
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh	0.0	11.3	0.6	1.0	0.0	2.0	0.5	0.0	0.7	0.9	0.0	1.9
	21.4	43.6	22.4	29.8	0.0	18.0	26.3	0.0	21.1	23.9	0.0	23.1
LnGrp Delay(d), s/veh LnGrp LOS	21.4 C	43.0 D	22.4 C	29.0 C	0.0	10.0 B	20.3 C	0.0	21.1 C	23.9 C	0.0	23.1 C
				U	426	D	U	112			286	
Approach Vol, veh/h		753						22.9			23.3	
Approach LOS		41.5			21.4							
Approach LOS		D			С			С			С	
Timer - Assigned Phs		2	3	4		6		8				
Phs Duration (G+Y+Rc), s		55.3	11.7	53.0		55.3		64.7				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5		4.5				
Max Green Setting (Gmax), s		25.5	20.5	60.5		25.5		85.5				
Max Q Clear Time (g_c+I1), s		13.2	7.0	43.0		10.3		13.5				
Green Ext Time (p_c), s		0.4	0.3	5.5		1.4		2.4				
Intersection Summary												
HCM 6th Ctrl Delay, s/veh			31.5									
HCM 6th LOS			С									

	•	→	•	•	-	•	•	†	>	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	ተተተ	7	*	↑↑ 581	7	*	Þ	*	Þ	
Traffic Volume (vph)	85	769	28	102		45	11	91	29	278	
Future Volume (vph)	85	769	28	102	581	45	11	91	29	278	
Lane Group Flow (vph)	89	801	29	106	605	47	11	305	30	322	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	NA	
Protected Phases		2			6			4		8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	6	6	6	4	4	8	8	
Switch Phase											
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	27.3	27.3	27.3	27.5	27.5	27.5	26.0	26.0	27.5	27.5	
Total Split (s)	70.0	70.0	70.0	70.0	70.0	70.0	50.0	50.0	50.0	50.0	
Total Split (%)	58.3%	58.3%	58.3%	58.3%	58.3%	58.3%	41.7%	41.7%	41.7%	41.7%	
Yellow Time (s)	4.6	4.6	4.6	4.6	4.6	4.6	4.2	4.2	4.2	4.2	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.8	2.8	2.8	2.8	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.3	7.3	7.3	7.3	7.3	7.3	7.0	7.0	7.0	7.0	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
v/c Ratio	0.20	0.27	0.03	0.29	0.30	0.05	0.11	0.68	0.23	0.79	
Control Delay (s/veh)	11.1	9.7	2.6	13.1	10.2	3.0	36.1	34.9	45.0	63.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	11.1	9.7	2.6	13.1	10.2	3.0	36.1	34.9	45.0	63.7	
Queue Length 50th (m)	8.1	28.2	0.0	10.4	31.3	0.0	2.2	46.3	7.2	82.1	
Queue Length 95th (m)	19.9	43.1	3.4	25.8	50.5	5.2	7.1	71.5	17.2	110.7	
Internal Link Dist (m)		1635.6			199.2			1951.8		1542.4	
Turn Bay Length (m)	150.0		105.0	150.0		115.0	75.0		105.0		
Base Capacity (vph)	445	2919	801	362	1996	921	156	648	202	643	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.20	0.27	0.04	0.29	0.30	0.05	0.07	0.47	0.15	0.50	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 60


	۶	→	•	•	—	•	•	†	~	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^ ^	7	*	^	7	*	f)		*	ĵ∍	
Traffic Volume (veh/h)	85	769	28	102	581	45	11	91	202	29	278	31
Future Volume (veh/h)	85	769	28	102	581	45	11	91	202	29	278	31
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1710	No	1468	1724	No 1648	1696	1568	No 1056	1767	1010	No	1620
Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h	1710 89	1678 801	29	106	605	47	11	1856 95	1767 210	1810 30	1870 290	1639 32
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	8	15	25	7	17	9	18	3	4	1	2	13
Cap, veh/h	459	2954	803	417	2020	927	125	121	268	125	390	43
Arrive On Green	0.65	0.65	0.65	0.65	0.65	0.65	0.24	0.24	0.24	0.24	0.24	0.24
Sat Flow, veh/h	713	4580	1244	626	3131	1437	887	514	1137	1040	1655	183
Grp Volume(v), veh/h	89	801	29	106	605	47	11	0	305	30	0	322
Grp Sat Flow(s), veh/h/ln	713	1527	1244	626	1566	1437	887	0	1651	1040	0	1837
Q Serve(g_s), s	7.5	9.0	1.0	10.5	10.2	1.4	1.4	0.0	20.8	3.3	0.0	19.5
Cycle Q Clear(g_c), s	17.7	9.0	1.0	19.6	10.2	1.4	20.9	0.0	20.8	24.1	0.0	19.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.69	1.00		0.10
Lane Grp Cap(c), veh/h	459	2954	803	417	2020	927	125	0	389	125	0	433
V/C Ratio(X)	0.19	0.27	0.04	0.25	0.30	0.05	0.09	0.00	0.78	0.24	0.00	0.74
Avail Cap(c_a), veh/h	459	2954	803	417	2020	927	234	0	592	252	0	658
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.3	9.2	7.7	13.4	9.4	7.8	52.2	0.0	43.0	54.3	0.0	42.5
Incr Delay (d2), s/veh	0.9	0.2	0.1	1.5	0.4	0.1	0.3	0.0	3.9	1.0	0.0	2.5
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	0.2	0.0	0.6	0.3	0.1	0.2	0.0	5.7	0.6	0.0	5.9
Unsig. Movement Delay, s/veh				440					10.0			4= 0
LnGrp Delay(d), s/veh	14.2	9.4	7.8	14.8	9.8	7.9	52.5	0.0	46.8	55.3	0.0	45.0
LnGrp LOS	В	A	A	В	A	A	D	0.40	D	E	050	D
Approach Vol, veh/h		919			758			316			352	
Approach Delay, s/veh		9.8			10.3			47.0			45.9	
Approach LOS		Α			В			D			D	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		84.7		35.3		84.7		35.3				
Change Period (Y+Rc), s		7.3		7.0		7.3		7.0				
Max Green Setting (Gmax), s		62.7		43.0		62.7		43.0				
Max Q Clear Time (g_c+I1), s		19.7		22.9		21.6		26.1				
Green Ext Time (p_c), s		9.7		2.2		7.8		2.2				
Intersection Summary												
HCM 6th Ctrl Delay, s/veh			20.4									
HCM 6th LOS			С									

	•	•	†	/	>	1
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۴	*	1	7	*	^
Traffic Volume (vph)	46	29	82	139	79	293
Future Volume (vph)	46	29	82	139	79	293
Lane Group Flow (vph)	46	29	82	139	79	293
Turn Type	Prot	Perm	NA	Perm	Perm	NA
Protected Phases	8		2			6
Permitted Phases		8		2	6	
Detector Phase	8	8	2	2	6	6
Switch Phase						
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0
Minimum Split (s)	29.5	29.5	32.7	32.7	32.7	32.7
Total Split (s)	45.0	45.0	75.0	75.0	75.0	75.0
Total Split (%)	37.5%	37.5%	62.5%	62.5%	62.5%	62.5%
Yellow Time (s)	4.0	4.0	4.2	4.2	4.2	4.2
All-Red Time (s)	3.5	3.5	2.5	2.5	2.5	2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.5	7.5	6.7	6.7	6.7	6.7
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	C-Max	C-Max	C-Max	C-Max
v/c Ratio	0.27	0.19	0.05	0.11	0.08	0.19
Control Delay (s/veh)	54.8	19.9	2.9	1.0	3.2	3.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	54.8	19.9	2.9	1.0	3.2	3.2
Queue Length 50th (m)	10.7	0.0	2.8	0.0	2.4	9.6
Queue Length 95th (m)	23.1	9.6	9.3	6.8	9.9	28.1
Internal Link Dist (m)	339.3		1542.4			1464.0
Turn Bay Length (m)	30.0			30.0	50.0	
Base Capacity (vph)	516	409	1476	1186	953	1534
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.09	0.07	0.06	0.12	0.08	0.19
		•.	2.00		3.00	-

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 65

	•	•	†	~	-	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	۴	*	1	7	**	↑	
Traffic Volume (veh/h)	46	29	82	139	79	293	
Future Volume (veh/h)	46	29	82	139	79	293	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Nork Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1796	1525	1826	1724	1710	1885	
Adj Flow Rate, veh/h	46	29	82	139	79	293	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	21	5	7	8	1	
Cap, veh/h	157	119	1442	1154	887	1489	
Arrive On Green	0.09	0.09	0.79	0.79	0.79	0.79	
Sat Flow, veh/h	1710	1293	1826	1461	1061	1885	
Grp Volume(v), veh/h	46	29	82	139	79	293	
Grp Sat Flow(s),veh/h/ln	1710	1293	1826	1461	1061	1885	
Q Serve(g_s), s	3.0	2.5	1.2	2.7	2.1	4.6	
Cycle Q Clear(g_c), s	3.0	2.5	1.2	2.7	3.3	4.6	
Prop In Lane	1.00	1.00		1.00	1.00		
ane Grp Cap(c), veh/h	157	119	1442	1154	887	1489	
//C Ratio(X)	0.29	0.24	0.06	0.12	0.09	0.20	
Avail Cap(c_a), veh/h	534	404	1442	1154	887	1489	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	50.9	50.6	2.8	2.9	3.1	3.1	
ncr Delay (d2), s/veh	1.0	1.1	0.1	0.2	0.2	0.3	
nitial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.0	0.6	0.0	0.1	0.0	0.1	
Jnsig. Movement Delay, s/veh							
_nGrp Delay(d), s/veh	51.9	51.7	2.8	3.1	3.3	3.4	
nGrp LOS	D	D	Α	Α	Α	Α	
Approach Vol, veh/h	75		221			372	
Approach Delay, s/veh	51.8		3.0			3.4	
Approach LOS	D		Α			Α	
Fimer - Assigned Phs		2				6	8
Phs Duration (G+Y+Rc), s		101.5				101.5	18.5
Change Period (Y+Rc), s		6.7				6.7	7.5
Max Green Setting (Gmax), s		68.3				68.3	37.5
Max Q Clear Time (g_c+l1), s		4.7				6.6	5.0
Green Ext Time (p_c), s		1.3				2.8	0.3
" ,		1.0				2.0	0.0
ntersection Summary							
HCM 6th Ctrl Delay, s/veh			8.7				
HCM 6th LOS			Α				

Intersection						
Int Delay, s/veh	4.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	↑		*	7
Traffic Vol, veh/h	120	98	34	0	0	41
Future Vol, veh/h	120	98	34	0	0	41
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	-	_	-	30	-
Veh in Median Storage,	# -	0	0	_	0	-
Grade, %	" <u>-</u>	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	8	7	21	0	0	2
Mymt Flow	130	107	37	0	0	45
IVIVIIIL I IUW	130	107	31	U	U	40
	lajor1		Major2		/linor2	
Conflicting Flow All	37	0	-	0	404	37
Stage 1	-	-	-	-	37	-
Stage 2	-	-	-	-	367	-
Critical Hdwy	4.18	-	-	-	6.4	6.22
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	_	-	_	-	5.4	-
	2.272	-	_	_		3.318
	1536	-	_	0	606	1035
Stage 1	-	_	_	0	991	-
Stage 2	_	_	_	0	705	-
Platoon blocked, %		_	_		. 00	
	1536	_	_	_	551	1035
Mov Cap-1 Maneuver	-	_	_	_	551	-
Stage 1		_	_	_	902	_
	-	_			705	
Stage 2	-	-	-	-	105	-
Approach	EB		WB		SB	
HCM Control Delay, s/v	4.2		0		8.6	
HCM LOS					Α	
		EDI	EDT	MDT	NDI 4	0DL 0
Minor Lane/Major Mvmt		EBL	EBT	WBTS	BLn1	
Capacity (veh/h)		1536	-	-	-	1035
HCM Lane V/C Ratio		0.085	-	-	-	0.043
HCM Control Delay (s/ve	eh)	7.6	0	-	0	8.6
HCM Lane LOS	,	Α	Α	-	Α	Α
HCM 95th %tile Q (veh)		0.3	-	-	-	0.1
,						

Intersection						
Int Delay, s/veh	7.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	LDL			אטא	ODL	
Lane Configurations	00	4	₽	^	•	7
Traffic Vol, veh/h	98	0	0	0	0	34
Future Vol, veh/h	98	0	0	0	0	34
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	7	0	0	0	0	21
Mymt Flow	107	0	0	0	0	37
IVIVIIIL I IOW	107	U	U	U	U	JI
Major/Minor	Major1	N	Major2	N	/linor2	
Conflicting Flow All	1	0		0	-	1
Stage 1	-	-	_	-	-	_
Stage 2	_	_	_	_	_	_
Critical Hdwy	4.17		_	_	_	6.41
	4.17					0.41
Critical Hdwy Stg 1		-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	- 100
Follow-up Hdwy	2.263	-	-	-	-	3.489
Pot Cap-1 Maneuver	1589	-	-	-	0	1030
Stage 1		-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1589	-	-	-	-	1030
Mov Cap-2 Maneuver	-	_	_	_	_	-
Stage 1	_		_	_		_
	_		_		_	
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s/			0		8.6	
HCM LOS	v 1.4		U		Α	
I IOIVI LOS					А	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1589				1030
HCM Lane V/C Ratio		0.067				0.036
	(vob)		-	-		
HCM Control Delay (sa	ven)	7.4	0	-	-	8.6
HCM Lane LOS	,	Α	Α	-	-	Α
HCM 95th %tile Q (vel	۱)	0.2	-	-	-	0.1

	۶	→	•	•	—	•	†	-	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ř	1	7	*	ħ	×	đ	ሻ	f)	
Traffic Volume (vph)	21	315	27	55	652	90	211	25	51	
Future Volume (vph)	21	315	27	55	652	90	211	25	51	
Lane Group Flow (vph)	22	325	28	57	695	93	344	26	59	
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	NA	Perm	NA	
Protected Phases		4		3	8		2		6	
Permitted Phases	4		4	8		2		6		
Detector Phase	4	4	4	3	8	2	2	6	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	5.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	24.8	24.8	24.8	9.5	24.8	24.7	24.7	24.7	24.7	
Total Split (s)	62.0	62.0	62.0	10.0	72.0	48.0	48.0	48.0	48.0	
Total Split (%)	51.7%	51.7%	51.7%	8.3%	60.0%	40.0%	40.0%	40.0%	40.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	Lag	Lag	Lag	Lead						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes						
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
v/c Ratio	0.18	0.44	0.05	0.17	0.81	0.17	0.42	0.07	0.07	
Control Delay (s/veh)	25.5	28.1	1.3	16.7	35.6	20.6	22.4	22.6	19.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	25.5	28.1	1.3	16.7	35.6	20.6	22.4	22.6	19.8	
Queue Length 50th (m)	3.6	59.3	0.0	7.6	142.4	18.1	69.3	3.6	7.3	
Queue Length 95th (m)	9.2	73.6	1.7	12.9	162.6	32.1	97.4	10.9	18.1	
Internal Link Dist (m)		465.5			1349.5		1464.0		452.2	
Turn Bay Length (m)	30.0		30.0	60.0		30.0		30.0		
Base Capacity (vph)	147	882	656	326	1040	538	816	365	833	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.15	0.37	0.04	0.17	0.67	0.17	0.42	0.07	0.07	

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60

	۶	→	•	•	—	•	1	†	~	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑	7	*	Þ		*	Þ		*	ĵ₃	
Traffic Volume (veh/h)	21	315	27	55	652	22	90	211	122	25	51	6
Future Volume (veh/h)	21	315	27	55	652	22	90	211	122	25	51	6
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1001	No	1011	1000	No	4==0	1000	No	4=00	1001	No	1001
Adj Sat Flow, veh/h/ln	1824	1870	1611	1668	1885	1753	1682	1885	1739	1824	1841	1824
Adj Flow Rate, veh/h	22	325	28	57	672	23	93	218	126	26	53	6
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	0	2	15	11	1	5	10	1	6	0	4	0
Cap, veh/h	109	636	464	301	748	26	659	574	332	459	831	94
Arrive On Green	0.34	0.34	0.34	0.04	0.41	0.41	0.51	0.51	0.51	0.51	0.51	0.51
Sat Flow, veh/h	731	1870	1365	1588	1812	62	1208	1121	648	1011	1624	184
Grp Volume(v), veh/h	22	325	28	57	0	695	93	0	344	26	0	59
Grp Sat Flow(s), veh/h/ln	731	1870	1365	1588	0	1874	1208	0	1769	1011	0	1808
Q Serve(g_s), s	3.5	16.7	1.7	2.7	0.0	41.5	5.0	0.0	14.1	1.9	0.0	2.0
Cycle Q Clear(g_c), s	36.2	16.7	1.7	2.7	0.0	41.5	7.0	0.0	14.1	16.1	0.0	2.0
Prop In Lane	1.00	000	1.00	1.00	^	0.03	1.00	0	0.37	1.00	0	0.10
Lane Grp Cap(c), veh/h	109	636	464	301	0	774	659	0	906	459	0	926
V/C Ratio(X)	0.20	0.51	0.06	0.19	0.00	0.90	0.14	0.00	0.38	0.06	0.00	0.06
Avail Cap(c_a), veh/h	211	896	654	317	0	1054	659	1.00	906	459	1.00	926
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00 53.9	1.00 31.6	1.00 26.7	1.00 24.5	0.00	1.00 32.9	1.00 16.5	0.00	1.00 17.7	1.00 22.6	0.00	1.00 14.8
Uniform Delay (d), s/veh Incr Delay (d2), s/veh	0.9	0.6	0.1	0.3	0.0	8.1	0.4	0.0	1.2	0.2	0.0	0.1
Initial Q Delay(d3), s/veh	0.9	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.2	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	4.3	0.0	0.6	0.0	10.9	0.6	0.0	2.4	0.0	0.0	0.0
Unsig. Movement Delay, s/veh		4.5	0.5	0.0	0.0	10.3	0.0	0.0	2.4	0.5	0.0	0.5
LnGrp Delay(d), s/veh	54.8	32.3	26.7	24.8	0.0	41.0	17.0	0.0	18.9	22.8	0.0	14.9
LnGrp LOS	D D	32.3 C	20.7 C	24.0 C	0.0	41.0 D	17.0 B	0.0	10.9 B	22.0 C	0.0	14.3 B
Approach Vol, veh/h		375			752			437			85	
Approach Delay, s/veh		33.2			39.8			18.5			17.3	
Approach LOS		00.2 C			D D			В			17.3 B	
Timer - Assigned Phs		2	3	4		6		8				
Phs Duration (G+Y+Rc), s		65.9	8.8	45.3		65.9		54.1				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5		4.5				
Max Green Setting (Gmax), s		43.5	5.5	57.5		43.5		67.5				
Max Q Clear Time (g_c+I1), s		16.1	4.7	38.2		18.1		43.5				
Green Ext Time (p_c), s		3.2	0.0	2.5		0.4		6.0				
Intersection Summary												
HCM 6th Ctrl Delay, s/veh			31.5									
HCM 6th LOS			С									

	۶	→	•	•	←	•	^	†	>	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	ተተተ	7	*	^	7	*	f)	*	Þ	
Traffic Volume (vph)	45	704	19	135	847	54	59	295	31	114	
Future Volume (vph)	45	704	19	135	847	54	59	295	31	114	
Lane Group Flow (vph)	46	726	20	139	873	56	61	473	32	202	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	NA	
Protected Phases		2			6			4		8	
Permitted Phases	2		2	6		6	4		8		
Detector Phase	2	2	2	6	6	6	4	4	8	8	
Switch Phase											
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	27.3	27.3	27.3	27.3	27.3	27.3	26.0	26.0	26.0	26.0	
Total Split (s)	62.0	62.0	62.0	62.0	62.0	62.0	58.0	58.0	58.0	58.0	
Total Split (%)	51.7%	51.7%	51.7%	51.7%	51.7%	51.7%	48.3%	48.3%	48.3%	48.3%	
Yellow Time (s)	4.6	4.6	4.6	4.6	4.6	4.6	4.2	4.2	4.2	4.2	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.8	2.8	2.8	2.8	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.3	7.3	7.3	7.3	7.3	7.3	7.0	7.0	7.0	7.0	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
v/c Ratio	0.20	0.27	0.02	0.42	0.47	0.07	0.21	0.84	0.31	0.38	
Control Delay (s/veh)	19.0	14.8	2.3	22.6	17.8	4.5	29.3	49.1	48.4	42.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	19.0	14.8	2.3	22.6	17.8	4.5	29.3	49.1	48.4	42.6	
Queue Length 50th (m)	5.4	32.5	0.0	18.9	64.7	0.0	11.0	102.7	7.4	50.2	
Queue Length 95th (m)	16.0	49.7	2.3	45.2	99.5	7.3	19.7	127.8	18.7	72.9	
Internal Link Dist (m)		1635.6			199.2			1951.8		1542.4	
Turn Bay Length (m)	150.0		105.0	150.0		115.0	75.0		105.0		
Base Capacity (vph)	226	2613	783	326	1835	765	386	747	138	705	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.20	0.28	0.03	0.43	0.48	0.07	0.16	0.63	0.23	0.29	

Cycle Length: 120

Actuated Cycle Length: 120

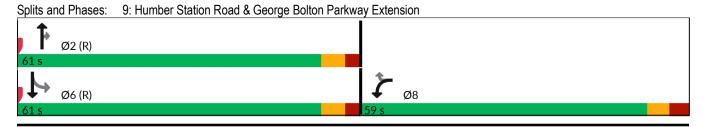
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

	•	→	•	•	—	•	•	†	~	/	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	7	^	7	*	fə.		7	f)	
Traffic Volume (veh/h)	45	704	19	135	847	54	59	295	164	31	114	81
Future Volume (veh/h)	45	704	19	135	847	54	59	295	164	31	114	81
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4544	No	4000	4000	No	1011	4050	No	4707	4000	No	1000
Adj Sat Flow, veh/h/ln	1511	1737	1668	1696	1752	1611	1653	1856	1767	1682	1841	1696
Adj Flow Rate, veh/h	46	726	20	139	873	56	61	304	169	32	118	84
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	22	11	11	9	10	15	12	3	4	10	4	9
Cap, veh/h	258	2666	795	373	1871	767	297	357	198	114	319	227
Arrive On Green	0.56	0.56	0.56	0.56	0.56	0.56	0.32	0.32	0.32	0.32	0.32	0.32
Sat Flow, veh/h	487	4742	1413	648	3328	1365	1043	1121	623	828	1000	712
Grp Volume(v), veh/h	46	726	20	139	873	56	61	0	473	32	0	202
Grp Sat Flow(s),veh/h/ln	487	1581	1413	648	1664	1365	1043	0	1743	828	0	1713
Q Serve(g_s), s	7.4	9.5	0.8	16.9	18.7	2.2	5.8	0.0	30.4	4.5	0.0	10.9
Cycle Q Clear(g_c), s	26.1	9.5	0.8	26.4	18.7	2.2	16.7	0.0	30.4	35.0	0.0	10.9
Prop In Lane	1.00	0000	1.00	1.00	1071	1.00	1.00	•	0.36	1.00	•	0.42
Lane Grp Cap(c), veh/h	258	2666	795	373	1871	767	297	0	555	114	0	546
V/C Ratio(X)	0.18	0.27	0.03	0.37	0.47	0.07	0.21	0.00	0.85	0.28	0.00	0.37
Avail Cap(c_a), veh/h	258	2666	795	373	1871	767	408	0	741	202	0	728
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	23.3	13.6	11.7	20.4	15.6	12.0	38.0	0.0	38.2	54.6	0.0	31.6
Incr Delay (d2), s/veh	1.5	0.3	0.1	2.8	0.8	0.2	0.3	0.0	7.3	1.3	0.0	0.4
Initial Q Delay(d3), s/veh	0.0	0.0 1.0	0.0	0.0 1.3	0.0 2.2	0.0	0.0 1.0	0.0	0.0 8.5	0.0	0.0	0.0 2.7
%ile BackOfQ(50%),veh/ln		1.0	0.1	1.3	2.2	0.2	1.0	0.0	0.0	0.7	0.0	2.1
Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh	24.8	13.8	11.7	23.2	16.4	12.2	38.4	0.0	45.5	55.9	0.0	32.0
LnGrp LOS	24.0 C	13.0 B	В	23.2 C	10.4 B	12.2 B	30.4 D	0.0	45.5 D	55.9 E	0.0	32.0 C
		792	В		1068	В	<u> </u>	534	<u> </u>	<u> </u>	234	
Approach Vol, veh/h Approach Delay, s/veh		14.4			17.1			44.7			35.3	
Approach LOS		14.4 B			В			44.7 D			33.3 D	
Approach LOS		D			D			U			U	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		74.8		45.2		74.8		45.2				
Change Period (Y+Rc), s		7.3		7.0		7.3		7.0				
Max Green Setting (Gmax), s		54.7		51.0		54.7		51.0				
Max Q Clear Time (g_c+l1), s		28.1		32.4		28.4		37.0				
Green Ext Time (p_c), s		7.4		3.8		10.3		1.3				
Intersection Summary												
HCM 6th Ctrl Delay, s/veh			23.5									
HCM 6th LOS			С									

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	↑	7	*	↑
Traffic Volume (vph)	138	84	329	65	37	89
Future Volume (vph)	138	84	329	65	37	89
Lane Group Flow (vph)	138	84	329	65	37	89
Turn Type	Prot	Perm	NA	Perm	Perm	NA
Protected Phases	8		2			6
Permitted Phases		8		2	6	
Detector Phase	8	8	2	2	6	6
Switch Phase						
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0
Minimum Split (s)	29.5	29.5	32.7	32.7	32.7	32.7
Total Split (s)	59.0	59.0	61.0	61.0	61.0	61.0
Total Split (%)	49.2%	49.2%	50.8%	50.8%	50.8%	50.8%
Yellow Time (s)	4.0	4.0	4.2	4.2	4.2	4.2
All-Red Time (s)	3.5	3.5	2.5	2.5	2.5	2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.5	7.5	6.7	6.7	6.7	6.7
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	C-Max	C-Max	C-Max	C-Max
v/c Ratio	0.64	0.31	0.24	0.07	0.06	0.06
Control Delay (s/veh)	62.0	12.1	3.2	0.9	8.1	7.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	62.0	12.1	3.2	0.9	8.1	7.3
Queue Length 50th (m)	32.9	0.0	10.0	0.1	3.1	7.5
Queue Length 95th (m)	51.9	14.0	24.0	m1.6	8.6	16.1
Internal Link Dist (m)	339.3		1542.4		0.0	1464.0
Turn Bay Length (m)	30.0		10 12.1	30.0	50.0	
Base Capacity (vph)	657	635	1352	921	594	1365
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.21	0.13	0.24	0.07	0.06	0.07
Noddocd V/O Natio	V.Z I	0.10	0.27	0.01	0.00	0.01


Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

m Volume for 95th percentile queue is metered by upstream signal.

12519-12712 Humber Station Rd FT (2029) - Sig.syn

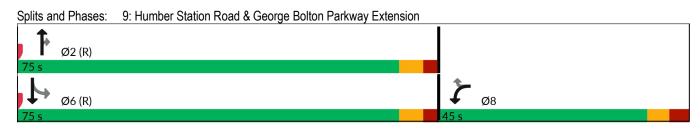
	•	•	†	-	>	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
ane Configurations	۴	7	1	7*	*	1	
Fraffic Volume (veh/h)	138	84	329	65	37	89	
Future Volume (veh/h)	138	84	329	65	37	89	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Nork Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1682	1682	1856	1497	1483	1870	
Adj Flow Rate, veh/h	138	84	329	65	37	89	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	10	10	3	23	24	2	
Cap, veh/h	176	156	1433	979	662	1444	
Arrive On Green	0.11	0.11	0.77	0.77	0.77	0.77	
Sat Flow, veh/h	1602	1425	1856	1268	833	1870	
Grp Volume(v), veh/h	138	84	329	65	37	89	
Grp Sat Flow(s),veh/h/ln	1602	1425	1856	1268	833	1870	
Q Serve(g_s), s	10.1	6.7	5.9	1.5	1.5	1.4	
Cycle Q Clear(g_c), s	10.1	6.7	5.9	1.5	7.4	1.4	
Prop In Lane	1.00	1.00		1.00	1.00		
ane Grp Cap(c), veh/h	176	156	1433	979	662	1444	
//C Ratio(X)	0.79	0.54	0.23	0.07	0.06	0.06	
Avail Cap(c_a), veh/h	687	612	1433	979	662	1444	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	52.1	50.5	3.8	3.3	4.8	3.3	
ncr Delay (d2), s/veh	7.5	2.9	0.4	0.1	0.2	0.1	
nitial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	3.3	1.8	0.1	0.0	0.0	0.0	
Jnsig. Movement Delay, s/veh							
_nGrp Delay(d), s/veh	59.6	53.4	4.2	3.4	5.0	3.4	
nGrp LOS	E	D	A	A	A	A	
Approach Vol, veh/h	222		394			126	
Approach Delay, s/veh	57.3		4.0			3.8	
Approach LOS	Е		Α			Α	
Fimer - Assigned Phs		2				6	8
Phs Duration (G+Y+Rc), s		99.3				99.3	20.7
Change Period (Y+Rc), s		6.7				6.7	7.5
Max Green Setting (Gmax), s		54.3				54.3	51.5
Max Q Clear Time (g_c+l1), s		7.9				9.4	12.1
Green Ext Time (p_c), s		3.0				0.9	1.1
ntersection Summary							
HCM 6th Ctrl Delay, s/veh			19.9				
ICIVI CUI CUI DEIAV. 3/VEII			10.0				

Intersection						
Int Delay, s/veh	5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	4	<u>₩</u>	וטוו	JDL 1	7
Traffic Vol, veh/h	56	46	1 00	0	0	122
Future Vol, veh/h	56	46	100	0	0	122
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	30	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	23	24	10	0	0	10
Mvmt Flow	61	50	109	0	0	133
	Major1		Major2		/linor2	
Conflicting Flow All	109	0	-	0	281	109
Stage 1	-	-	-	-	109	-
Stage 2	-	-	-	-	172	-
Critical Hdwy	4.33	-	-	-	6.4	6.3
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.407	-	-	-	3.5	3.39
Pot Cap-1 Maneuver	1360	_	_	0	713	923
Stage 1	-	_	_	0	921	-
Stage 2	_	_	_	0	863	_
Platoon blocked, %				U	000	
	1260	_	-		600	923
Mov Cap-1 Maneuver		-	-	-	680	
Mov Cap-2 Maneuver	-	-	-	-	680	-
Stage 1	-	-	-	-	879	-
Stage 2	-	-	-	-	863	-
Approach	EB		WB		SB	
HCM Control Delay, s/	/v 4.3		0		9.6	
HCM LOS					Α	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT S	SBLn1	SBLn2
Capacity (veh/h)		1360			-	
		0.045		_		0.144
HCM Lang V//C Datio			-		0	9.6
HCM Control Dolay (s)	(vob)	70				9.0
HCM Control Delay (s/	/veh)	7.8	0	-		
	,	7.8 A 0.1	0 A	- -	A	A 0.5

Intersection						
Int Delay, s/veh	8.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL			WDIX	ODL	ř
Traffic Vol, veh/h	46	0	1	0	0	100
Future Vol, veh/h	46	0		0	0	100
			0			
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	-
Veh in Median Storag	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	24	0	0	0	0	10
Mvmt Flow	50	0	0	0	0	109
Major/Minor	Major1		/oior?		/linor2	
Major/Minor	Major1		Major2			
Conflicting Flow All	1	0	-	0	-	1
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	4.34	-	-	-	-	6.3
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	2.416	-	-	-	-	3.39
Pot Cap-1 Maneuver	1489	-	-	-	0	1061
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1489	-	-	-	-	1061
Mov Cap-2 Maneuver	_	-	-	-	-	-
Stage 1	-	-	_	-	-	-
Stage 2	_	_	_	_	_	_
5 ta gt =						
Approach	EB		WB		SB	
HCM Control Delay, s	/v 7.5		0		8.8	
HCM LOS					Α	
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SRI n1
	TIC .					
Capacity (veh/h) HCM Lane V/C Ratio		1489	-	-		1061
	/, , a la \	0.034	-	-		0.102
HCM Control Delay (s	ven)	7.5	0	-	-	
HCM Lane LOS		A	Α	-	-	Α
HCM 95th %tile Q (ve	h)	0.1	-	-	-	0.3

APPENDIX K

Sensitivity Analysis


	•	•	†	_	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	↑	7	*	
Traffic Volume (vph)	46	29	82	139	79	293
Future Volume (vph)	46	29	82	139	79	293
Lane Group Flow (vph)	46	29	82	139	79	293
Turn Type	Prot	Perm	NA	Perm	Perm	NA
Protected Phases	8		2			6
Permitted Phases		8		2	6	
Detector Phase	8	8	2	2	6	6
Switch Phase						
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0
Minimum Split (s)	29.5	29.5	32.7	32.7	32.7	32.7
Total Split (s)	45.0	45.0	75.0	75.0	75.0	75.0
Total Split (%)	37.5%	37.5%	62.5%	62.5%	62.5%	62.5%
Yellow Time (s)	4.0	4.0	4.2	4.2	4.2	4.2
All-Red Time (s)	3.5	3.5	2.5	2.5	2.5	2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.5	7.5	6.7	6.7	6.7	6.7
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	C-Max	C-Max	C-Max	C-Max
v/c Ratio	0.27	0.19	0.05	0.11	0.08	0.19
Control Delay (s/veh)	54.8	19.9	2.9	1.0	3.2	3.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	54.8	19.9	2.9	1.0	3.2	3.2
Queue Length 50th (m)	10.7	0.0	2.8	0.0	2.4	9.6
Queue Length 95th (m)	23.1	9.6	9.3	6.8	9.9	28.1
Internal Link Dist (m)	339.3		1542.4			1464.0
Turn Bay Length (m)	30.0			30.0	50.0	
Base Capacity (vph)	516	409	1476	1186	953	1534
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.09	0.07	0.06	0.12	0.08	0.19

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Phs Duration (G+Y+Rc), s 101.5 101.5 18.5 Change Period (Y+Rc), s 6.7 6.7 7.5 Max Green Setting (Gmax), s 68.3 68.3 37.5 Max Q Clear Time (g_c+I1), s 4.7 6.6 5.0 Green Ext Time (p_c), s 1.3 2.8 0.3 Intersection Summary HCM 6th Ctrl Delay, s/veh 8.7		•	•	†	/	-	↓	
Traffic Volume (veh/h)	Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Traffic Volume (veh/h)	Lane Configurations	*	7	↑	7	*	^	
Initial Q (Qb), veh	Traffic Volume (veh/h)			82	139	79		
Ped-Bike Adj(A_pbT) 1.00 </td <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>293</td> <td></td>	. ,						293	
Parking Bus, Adj	, ,			0			0	
Work Zone On Approach No No No No Adj Sat Flow, veh/h/in 1796 1525 1826 1724 1710 1885 Adj Flow Rate, veh/h 46 29 82 139 79 293 Peak Hour Factor 1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Adj Sat Flow, veh/h/ln 1796 1525 1826 1724 1710 1885 Adj Flow Rate, veh/h 46 29 82 139 79 293 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 Percent Heavy Veh, % 2 21 5 7 8 1 1 Cap, veh/h 157 119 1442 1154 887 1489 Arrive On Green 0.09 0.09 0.79 0.79 0.79 0.79 Sat Flow, veh/h 1710 1293 1826 1461 1061 1885 Grp Volume(v), veh/h 46 29 82 139 79 293 Grp Sat Flow(s),veh/h/ln 1710 1293 1826 1461 1061 1885 Grp Volume(v), veh/h 3710 1293 1826 1461 1061 1885 Grp Sat Flow(s),veh/h/ln 1710 1293 1826 1461 1061 1885 Grp Sat Flow(s),veh/h/ln 1710 1293 1826 1461 1061 1885 Q Serve(g, s), s 3.0 2.5 1.2 2.7 2.1 4.6 Cycle Q Clear(g_c), s 3.0 2.5 1.2 2.7 3.3 4.6 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 157 119 1442 1154 887 1489 V/C Ratio(X) 0.29 0.24 0.06 0.12 0.09 0.20 Avail Cap(c_a), veh/h 534 404 1442 1154 887 1489 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.01 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.01 1.01 0.2 0.2 0.2 0.3 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.0 0.6 0.0 0.1 0.0 0.1 Unsig Movement Delay, s/veh LnGrp Delay (d), s/veh 51.8 3.0 3.4 Approach Vol, veh/h 75 221 372 Approach Delay, s/veh 51.8 3.0 3.4 Approach Vol, veh/h 75 221 372 Approach Delay, s/veh 51.8 3.0 3.4 Approach LOS D A A A A A A APProach Delay, s/veh 51.8 3.0 3.0 3.4 Approach Delay, s/veh 51.8 3.0 3.0 3.4 Approach Sole, s/eith 1.0 51.5 18.5 Change Period (Y+Rc), s 6.7 6.7 7.5 Change Period (Y+Rc), s 6.7 6.7 7.5 Max Green Setting (Gmax), s 68.3 37.5	. ,		1.00		1.00	1.00		
Adj Flow Rate, veh/h Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			4-0-		4=0.4	1=10		
Peak Hour Factor								
Percent Heavy Veh, % 2 21 5 7 8 1 Cap, veh/h 157 119 1442 1154 887 1489 Arrive On Green 0.09 0.09 0.79 0.79 0.79 0.79 Sat Flow, veh/h 1710 1293 1826 1461 1061 1885 Grp Volume(v), veh/h 46 29 82 133 79 293 Grp Sat Flow(s), veh/h/n 1710 1293 1826 1461 1061 1885 Q Serve(g_s), s 3.0 2.5 1.2 2.7 2.1 4.6 Cycle Q Clear(g_c), s 3.0 2.5 1.2 2.7 3.3 4.6 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 57 119 1442 1154 887 1489 V/C Ratio(X) 0.29 0.24 0.06 0.12 0.09 0.20 Avail Cap(c_a), veh/h 534 404 1442 1154 887 1489 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 50.9 50.6 2.8 2.9 3.1 3.1 Incr Delay (d2), siveh 1.0 1.1 0.1 0.2 0.2 0.3 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%), veh/ln 1.0 0.6 0.0 0.1 0.0 0.1 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 51.8 3.0 3.4 Approach Vol, veh/h 75 221 372 Approach Delay, s/veh 51.8 3.0 3.4 Approach LOS D A A A A A Approach Setting (Gmax), s 68.3 37.5 Max Green Setting (Ce+1I), s 4.7 6.6 5.0 Intersection Summary HCM 6th Ctrl Delay, s/veh								
Cap, veh/h Arrive On Green 0.09 0.09 0.79 0.79 0.79 0.79 0.79 0.79								
Arrive On Green 0.09 0.09 0.79 0.79 0.79 0.79 0.79 Sat Flow, veh/h 1710 1293 1826 1461 1061 1885 SGP Volume(v), veh/h 46 29 82 139 79 293 SGP Sat Flow(s), veh/h/ln 1710 1293 1826 1461 1061 1885 SGP Sat Flow(s), veh/h/ln 1710 1293 1826 1461 1061 1885 SGP Sat Flow(s), veh/h/ln 1710 1293 1826 1461 1061 1885 SGP Sat Flow(s), veh/h/ln 1710 1293 1826 1461 1061 1885 SGP SAT Flow(s), veh/h/ln 1710 1293 1826 1461 1061 1885 SGP SAT Flow(s), veh/h/ln 1710 1293 1826 1461 1061 1885 SGP SAT Flow(s), veh/h 1800 1.00 1.00 1.00 1.00 1.00 1.00 1.00	•						-	
Sat Flow, veh/h Grp Volume(v), veh/h 46 29 82 139 79 293 Grp Sat Flow(s),veh/h/ln 1710 1293 1826 1461 1061 1885 Q Serve(g_s), s 3.0 2.5 1.2 2.7 2.1 4.6 Cycle Q Clear(g_c), s 3.0 2.5 1.2 2.7 3.3 4.6 Prop In Lane 1.00								
Grp Volume(v), veh/h								
Grp Sat Flow(s), veh/h/ln 1710 1293 1826 1461 1061 1885 Q Serve(g_s), s 3.0 2.5 1.2 2.7 2.1 4.6 Cycle Q Clear(g_c), s 3.0 2.5 1.2 2.7 3.3 4.6 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 157 119 1442 1154 887 1489 V/C Ratio(X) 0.29 0.24 0.06 0.12 0.09 0.20 Avail Cap(c_a), veh/h 534 404 1442 1154 887 1489 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 HCM Platoon Ratio 1.00 1.0								
Q Serve(g_s), s 3.0 2.5 1.2 2.7 2.1 4.6 Cycle Q Clear(g_c), s 3.0 2.5 1.2 2.7 3.3 4.6 Prop In Lane 1.00 1.00 1.00 1.00								
Cycle Q Clear(g_c), s 3.0 2.5 1.2 2.7 3.3 4.6 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 157 119 1442 1154 887 1489 V/C Ratio(X) 0.29 0.24 0.06 0.12 0.09 0.20 Avail Cap(c_a), veh/h 534 404 1442 1154 887 1489 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 50.9 50.6 2.8 2.9 3.1 3.1 Incr Delay (d2), s/veh 1.0 1.1 0.1 0.2 0.2 0.3 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%), veh/ln 1.0 0.6 0.0 0.1 0.0 0.1 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 51.9 51.7 2.8 3.1 3.3 3.4 LnGrp Delay(d), s/veh 51.8 3.0 3.4 Approach Vol, veh/h 75 221 372 Approach Delay, s/veh 51.8 3.0 3.4 Approach LOS D A A A A A Approach LOS D A A A A Approach LOS D A A Timer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 6.7 6.7 7.5 Max Green Setting (Gmax), s 68.3 37.5 Max Q Clear Time (g_c+I1), s 4.7 6.6 5.0 Green Ext Time (p_c), s 1.3 1.87								
Prop In Lane								
Lane Grp Cap(c), veh/h 157 119 1442 1154 887 1489 V/C Ratio(X) 0.29 0.24 0.06 0.12 0.09 0.20 Avail Cap(c_a), veh/h 534 404 1442 1154 887 1489 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 50.9 50.6 2.8 2.9 3.1 3.1 Incr Delay (d2), s/veh 1.0 1.1 0.1 0.2 0.2 0.3 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%), veh/ln 1.0 0.6 0.0 0.1 0.0 0.1 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 51.9 51.7 2.8 3.1 3.3 3.4 LnGrp LOS D D A A A A A Approach Vol, veh/h 75 221 372 Approach Delay, s/veh 51.8 3.0 3.4 Approach LOS D A A A A Approach LOS D A A A A Approach LOS D A A A A Approach CoS D A A A A And A A Approach CoS D A A A A An A A Approach CoS D A A A A A An A A Approach CoS D A A A A A Approach CoS D A A A A A An A A A Approach CoS D A A A A A An A A A A A A A A A Approach CoS D A A A A A A A Approach CoS D A A A A A A A A Approach CoS D A A A A A A A A A A Approach CoS D A A A A A A A A A A A A A A A A A A				1.2			4.6	
V/C Ratio(X) 0.29 0.24 0.06 0.12 0.09 0.20 Avail Cap(c_a), veh/h 534 404 1442 1154 887 1489 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 50.9 50.6 2.8 2.9 3.1 3.1 Incr Delay (d2), s/veh 1.0 1.1 0.1 0.2 0.2 0.3 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%),veh/ln 1.0 0.6 0.0 0.1 0.0 0.1 Undright Delay (d3), s/veh 51.9 51.7 2.8 3.1 3.3 3.4 LnGrp Delay(d50%),veh/ln 1.0 0.6 0.0 0.1 0.0 0.1 Undright Delay (by Sych 51.9 51.7 2.8 3.1 3.3 3.4 <td></td> <td></td> <td></td> <td>1110</td> <td></td> <td></td> <td>1400</td> <td></td>				1110			1400	
Avail Cap(c_a), veh/h 534 404 1442 1154 887 1489 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 50.9 50.6 2.8 2.9 3.1 3.1 Incr Delay (d2), s/veh 1.0 1.1 0.1 0.2 0.2 0.3 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d50%), veh/ln 1.0 0.6 0.0 0.1 0.0 0.1 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 51.9 51.7 2.8 3.1 3.3 3.4 LnGrp LOS D D A A A A A Approach Vol, veh/h 75 221 372 Approach Delay, s/veh 51.8 3.0 3.4 Approach LOS D A A A A Approach LOS D A A A A Approach LOS D A A A A Approach Using Period (Y+Rc), s Change Period (Y+Rc), s Change Period (Y+Rc), s Max Green Setting (Gmax), s Max Q Clear Time (g_c+I1), s Green Ext Time (p_c), s Intersection Summary HCM 6th Ctrl Delay, s/veh 8.7								
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								
Distream Filter(I)								
Uniform Delay (d), s/veh 50.9 50.6 2.8 2.9 3.1 3.1 Incr Delay (d2), s/veh 1.0 1.1 0.1 0.2 0.2 0.3 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.0 0.6 0.0 0.1 0.0 0.1 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 51.9 51.7 2.8 3.1 3.3 3.4 LnGrp LOS D D A A A A A A A A A A A A A A A A A								
ncr Delay (d2), s/veh 1.0 1.1 0.1 0.2 0.2 0.3 nitial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 1.0 0.6 0.0 0.1 0.0 0.1 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 51.9 51.7 2.8 3.1 3.3 3.4 LnGrp LOS D D A A A A Approach Vol, veh/h 75 221 372 Approach Delay, s/veh 51.8 3.0 3.4 Approach LOS D A A A Approach LOS D A A A Approach LOS D A A A A Approach LOS D A A A A Approach LOS D A A A A Approach Setting (G+Y+Rc), s 101.5 101.5 18.5 Change Period (Y+Rc), s 6.7 6.7 7.5 Max Green Setting (Gmax), s 68.3 68.3 37.5 Max Q Clear Time (g_c+11), s 4.7 6.6 5.0 Green Ext Time (p_c), s 1.3 2.8 0.3 Intersection Summary HCM 6th Ctrl Delay, s/veh 8.7	,							
Initial Q Delay(d3), s/veh 0.0 <								
Wile BackOfQ(50%),veh/ln 1.0 0.6 0.0 0.1 0.0 0.1 Unsig. Movement Delay, s/veh 51.9 51.7 2.8 3.1 3.3 3.4 LnGrp LOS D D A A A A Approach Vol, veh/h 75 221 372 Approach Delay, s/veh 51.8 3.0 3.4 Approach LOS D A A A Phs Duration (G+Y+Rc), s 101.5 101.5 18.5 Change Period (Y+Rc), s 6.7 6.7 7.5 Max Green Setting (Gmax), s 68.3 68.3 37.5 Max Q Clear Time (g_c+I1), s 4.7 6.6 5.0 Green Ext Time (p_c), s 1.3 2.8 0.3								
Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 51.9 51.7 2.8 3.1 3.3 3.4 LnGrp LOS D D A A A A A A A A A A A A A A A A A								
Angr Delay(d), s/veh 51.9 51.7 2.8 3.1 3.3 3.4 Angr Delay(d), s/veh 75 221 372 Approach Vol, veh/h 75 221 372 Approach Delay, s/veh 51.8 3.0 3.4 Approach LOS D A A A A A A A A A A A A A A A A A A			0.0	0.0	0.1	0.0	U. I	
Approach Vol, veh/h 75 221 372 Approach Delay, s/veh 51.8 3.0 3.4 Approach LOS D A A A A A A Approach LOS D A A A A A A A A A A A A A A A A A A			51.7	2.8	3.1	3 3	3.4	
Approach Vol, veh/h 75 221 372 Approach Delay, s/veh 51.8 3.0 3.4 Approach LOS D A A A Fimer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 101.5 101.5 18.5 Change Period (Y+Rc), s 6.7 6.7 7.5 Max Green Setting (Gmax), s 68.3 68.3 37.5 Max Q Clear Time (g_c+l1), s 4.7 6.6 5.0 Green Ext Time (p_c), s 1.3 2.8 0.3 Intersection Summary HCM 6th Ctrl Delay, s/veh 8.7								
Approach Delay, s/veh 51.8 3.0 3.4 Approach LOS D A A A Fimer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 101.5 101.5 18.5 Change Period (Y+Rc), s 6.7 6.7 7.5 Max Green Setting (Gmax), s 68.3 68.3 37.5 Max Q Clear Time (g_c+I1), s 4.7 6.6 5.0 Green Ext Time (p_c), s 1.3 2.8 0.3 Intersection Summary HCM 6th Ctrl Delay, s/veh 8.7	<u> </u>		U					
Approach LOS D A A Fimer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 101.5 101.5 18.5 Change Period (Y+Rc), s 6.7 6.7 7.5 Max Green Setting (Gmax), s 68.3 68.3 37.5 Max Q Clear Time (g_c+l1), s 4.7 6.6 5.0 Green Ext Time (p_c), s 1.3 2.8 0.3 Intersection Summary HCM 6th Ctrl Delay, s/veh 8.7								
Firmer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 101.5 101.5 18.5 Change Period (Y+Rc), s 6.7 6.7 7.5 Max Green Setting (Gmax), s 68.3 68.3 37.5 Max Q Clear Time (g_c+l1), s 4.7 6.6 5.0 Green Ext Time (p_c), s 1.3 2.8 0.3 Intersection Summary HCM 6th Ctrl Delay, s/veh 8.7								
Phs Duration (G+Y+Rc), s 101.5 101.5 18.5 Change Period (Y+Rc), s 6.7 6.7 7.5 Max Green Setting (Gmax), s 68.3 68.3 37.5 Max Q Clear Time (g_c+I1), s 4.7 6.6 5.0 Green Ext Time (p_c), s 1.3 2.8 0.3 Intersection Summary HCM 6th Ctrl Delay, s/veh 8.7		U						
Change Period (Y+Rc), s 6.7 7.5 Max Green Setting (Gmax), s 68.3 37.5 Max Q Clear Time (g_c+l1), s 4.7 6.6 5.0 Green Ext Time (p_c), s 1.3 2.8 0.3 Intersection Summary HCM 6th Ctrl Delay, s/veh 8.7	<u> </u>							
Max Green Setting (Gmax), s 68.3 37.5 Max Q Clear Time (g_c+l1), s 4.7 6.6 5.0 Green Ext Time (p_c), s 1.3 2.8 0.3 Intersection Summary HCM 6th Ctrl Delay, s/veh 8.7								
Max Q Clear Time (g_c+l1), s 4.7 6.6 5.0 Green Ext Time (p_c), s 1.3 2.8 0.3 Intersection Summary HCM 6th Ctrl Delay, s/veh	· ,							
Green Ext Time (p_c), s 1.3 2.8 0.3 ntersection Summary HCM 6th Ctrl Delay, s/veh 8.7								
Intersection Summary HCM 6th Ctrl Delay, s/veh 8.7								
HCM 6th Ctrl Delay, s/veh 8.7	Green Ext Time (p_c), s		1.3				2.8	0.3
ICM 6th Ctrl Delay, s/veh 8.7	ntersection Summary							
• •				8.7				
10M btn LOS A	HCM 6th LOS			Α				

4.3						
FRI	FRT	WRT	WRR	SBI	SBR	
LUL			VVDIX) N		
120		34	0	0		
		-				
-	-	_	-		-	
e# -						
- -						
92						
100	101	- 01		U	70	
Major1		Major2				
37	0	-	0	351	19	
-	-	-	-	37	-	
-	-	-	-	314	-	
4.26	-	-	-	6.8	6.94	
-	-	-	-	5.8	-	
-	-	-	-	5.8	-	
2.28	-	-	-	3.5	3.32	
1529	-	-	-	626	1055	
-	-	-	-	987	-	
-	-	-	-	720	-	
	-	-	-			
1529	-	-	-	570	1055	
	-	_	-	570	_	
_	-	_	-		_	
_	_	_	_		_	
		1=				
/v 4.2		0		8.6		
				Α		
nt	FRI	ERT	\\/\RT	WRD	SRI n1	SRI n2
IIL			VVDI	WDR		
			-	-		1055
/ In \						0.042
/ven)						8.6
1. \						A
n)	0.3	-	-	-	-	0.1
	120 120 0 Free 92 8 130 Major1 37 4.26 2.28 1529 1529 EB	EBL EBT 120 98 120 98 0 0 0 Free Free - None - 0 92 92 8 7 130 107 Major1 N 37 0 4.26 2.28 - 1529	EBL EBT WBT 120 98 34 0 0 0 0 Free Free Free - None e, # - 0 0 92 92 92 8 7 21 130 107 37 Major1 Major2 37 0 4.26 2.28 1529 1529 1529	EBL EBT WBT WBR 120 98 34 0 120 98 34 0 0 0 0 0 0 Free Free Free Free - None - None	EBL EBT WBT WBR SBL 120 98 34 0 0 120 98 34 0 0 0 0 0 0 0 0 0 0 0 0 - None - None - 30 e, # - 0 0 - 0 92 92 92 92 92 8 7 21 0 0 130 107 37 0 0 0 130 107 37 0 0 37 0 - 0 351 - - - 37 0 0 Major1 Major2 Minor2 Minor2 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL EBT WBT WBR SBL SBR

Intersection						
Int Delay, s/veh	7.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		44	† 1>			7
Traffic Vol. veh/h	98	0	0	0	0	34
Future Vol, veh/h	98	0	0	0	0	34
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	_	-
Veh in Median Storage	.# -	0	0	-	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	7	0	0	0	0	21
Mymt Flow	107	0	0	0	0	37
IVIVIIIL I IOW	101	U	U	U	U	JI
	Major1		//ajor2		/linor2	
Conflicting Flow All	1	0	-	0	-	1
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	4.24	-	-	-	-	7.32
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	2.27	-	-	-	-	3.51
Pot Cap-1 Maneuver	1585	-	_	-	0	1024
Stage 1	-	-	-	-	0	_
Stage 2	_	_	_	-	0	-
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	1585	_	_	_	_	1024
Mov Cap-2 Maneuver	-	_	_	_	_	-
Stage 1	_			_		
Stage 2	_	_	_	_	_	_
Olaye Z	-	_	-	_	-	<u>-</u>
Approach	EB		WB		SB	
	v 7.4		0		8.6	
HCM Control Delay, s/v	v 7.4				Α	
HCM Control Delay, s/v	V 7.4					
	V 1.4				Α	
HCM LOS		ED!	FDT	WDT		CDI ~4
HCM LOS Minor Lane/Major Mvm		EBL	EBT	WBT	WBR	
Minor Lane/Major Mvm Capacity (veh/h)		1585	-	-	WBR :	1024
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	t	1585 0.067	-	-	WBR S	1024 0.036
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s/	t	1585 0.067 7.4	- - 0	- - -	WBR S	1024 0.036 8.6
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	veh)	1585 0.067	-	-	WBR S	1024 0.036

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	↑	7	*	↑
Traffic Volume (vph)	138	84	329	65	37	89
Future Volume (vph)	138	84	329	65	37	89
Lane Group Flow (vph)	138	84	329	65	37	89
Turn Type	Prot	Perm	NA	Perm	Perm	NA
Protected Phases	8		2			6
Permitted Phases		8		2	6	
Detector Phase	8	8	2	2	6	6
Switch Phase						
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0
Minimum Split (s)	29.5	29.5	32.7	32.7	32.7	32.7
Total Split (s)	59.0	59.0	61.0	61.0	61.0	61.0
Total Split (%)	49.2%	49.2%	50.8%	50.8%	50.8%	50.8%
Yellow Time (s)	4.0	4.0	4.2	4.2	4.2	4.2
All-Red Time (s)	3.5	3.5	2.5	2.5	2.5	2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.5	7.5	6.7	6.7	6.7	6.7
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	C-Max	C-Max	C-Max	C-Max
v/c Ratio	0.64	0.31	0.24	0.07	0.06	0.06
Control Delay (s/veh)	62.0	12.1	3.2	0.9	8.1	7.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	62.0	12.1	3.2	0.9	8.1	7.3
Queue Length 50th (m)	32.9	0.0	10.0	0.1	3.1	7.5
Queue Length 95th (m)	51.9	14.0	24.0	m1.6	8.6	16.1
Internal Link Dist (m)	339.3		1542.4		0.0	1464.0
Turn Bay Length (m)	30.0		10 12.1	30.0	50.0	
Base Capacity (vph)	657	635	1352	921	594	1365
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.21	0.13	0.24	0.07	0.06	0.07
Noddocd V/O Natio	V.Z I	0.10	0.27	0.01	0.00	0.01

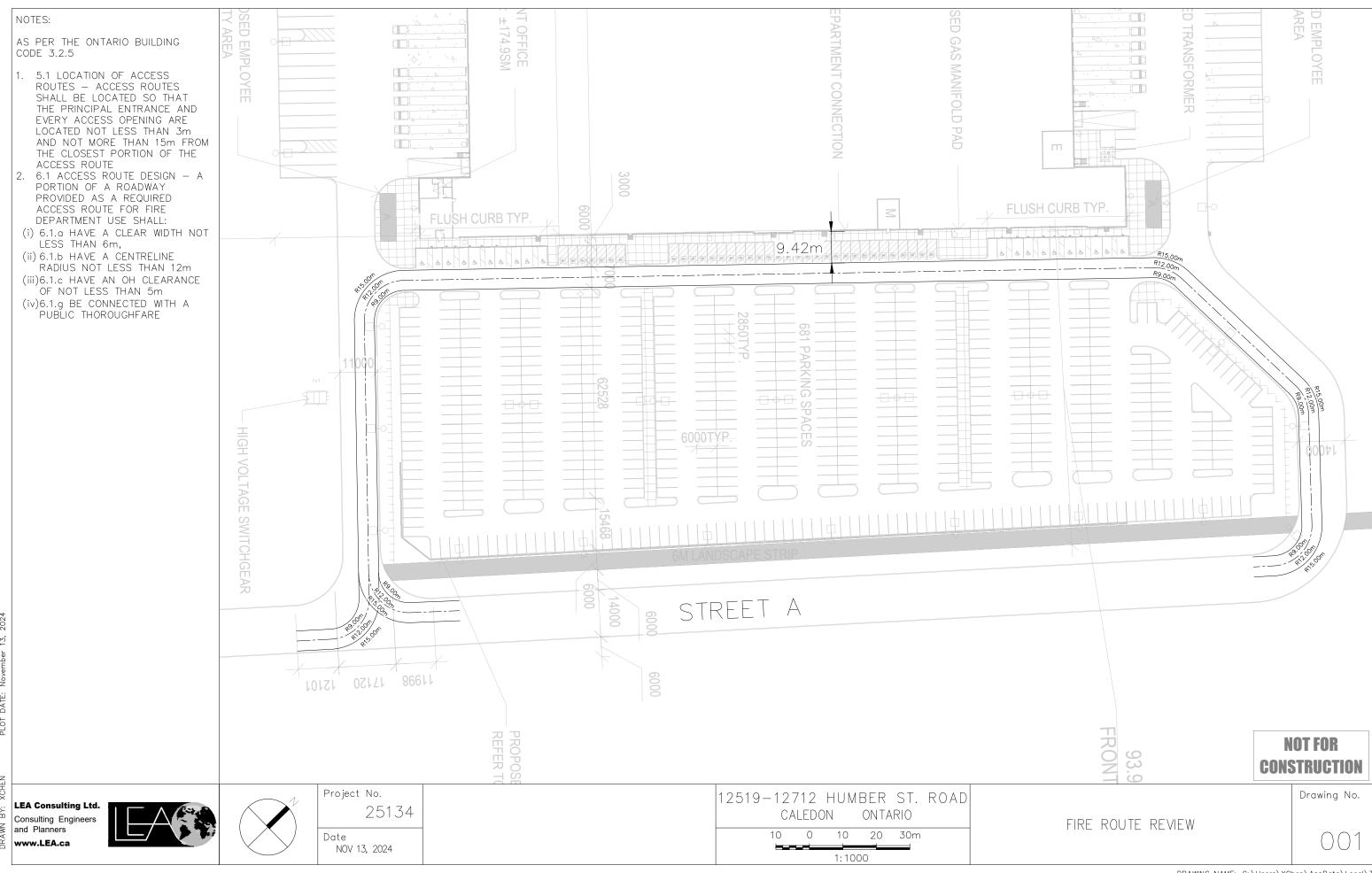
Cycle Length: 120 Actuated Cycle Length: 120

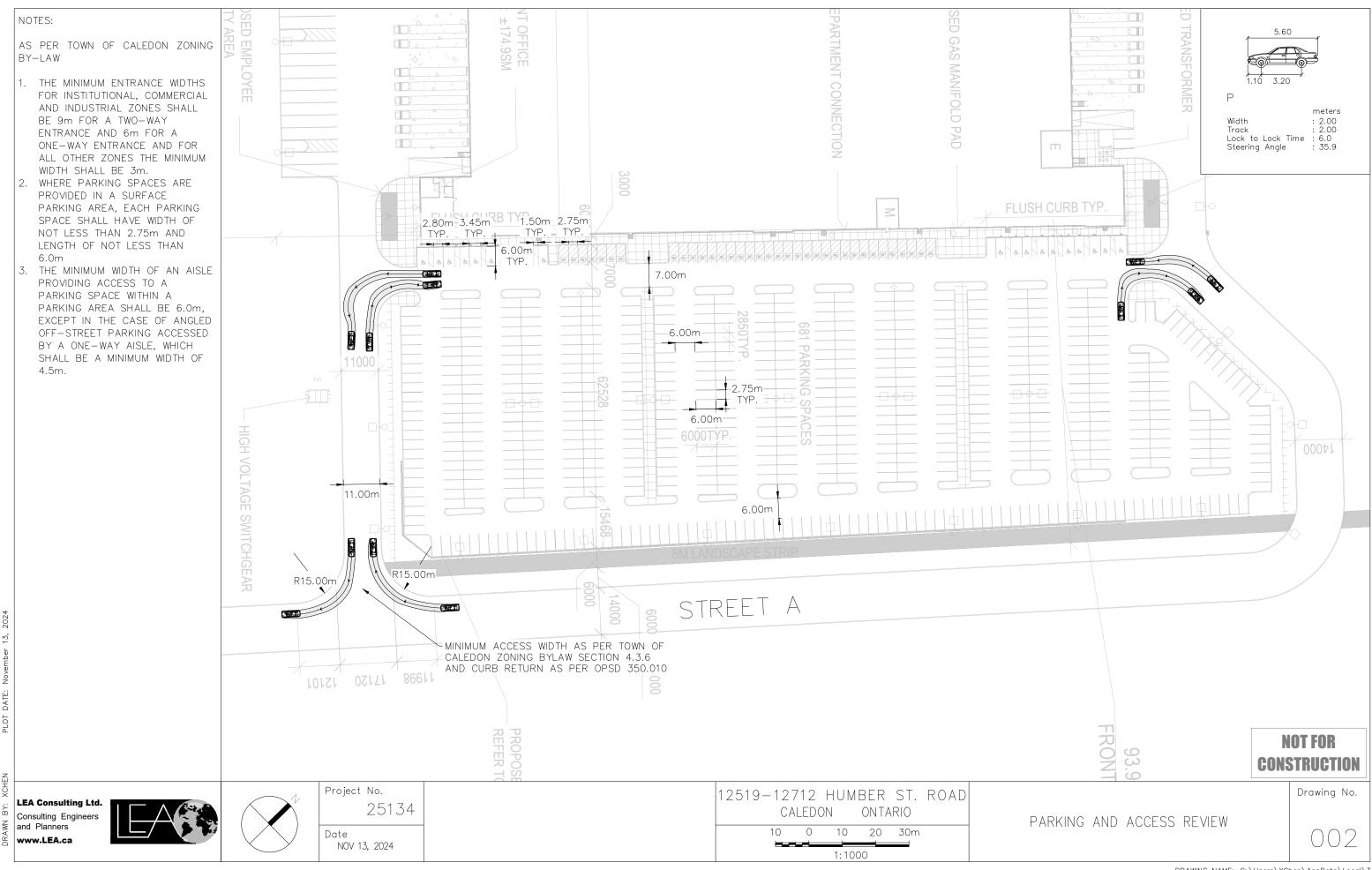
Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

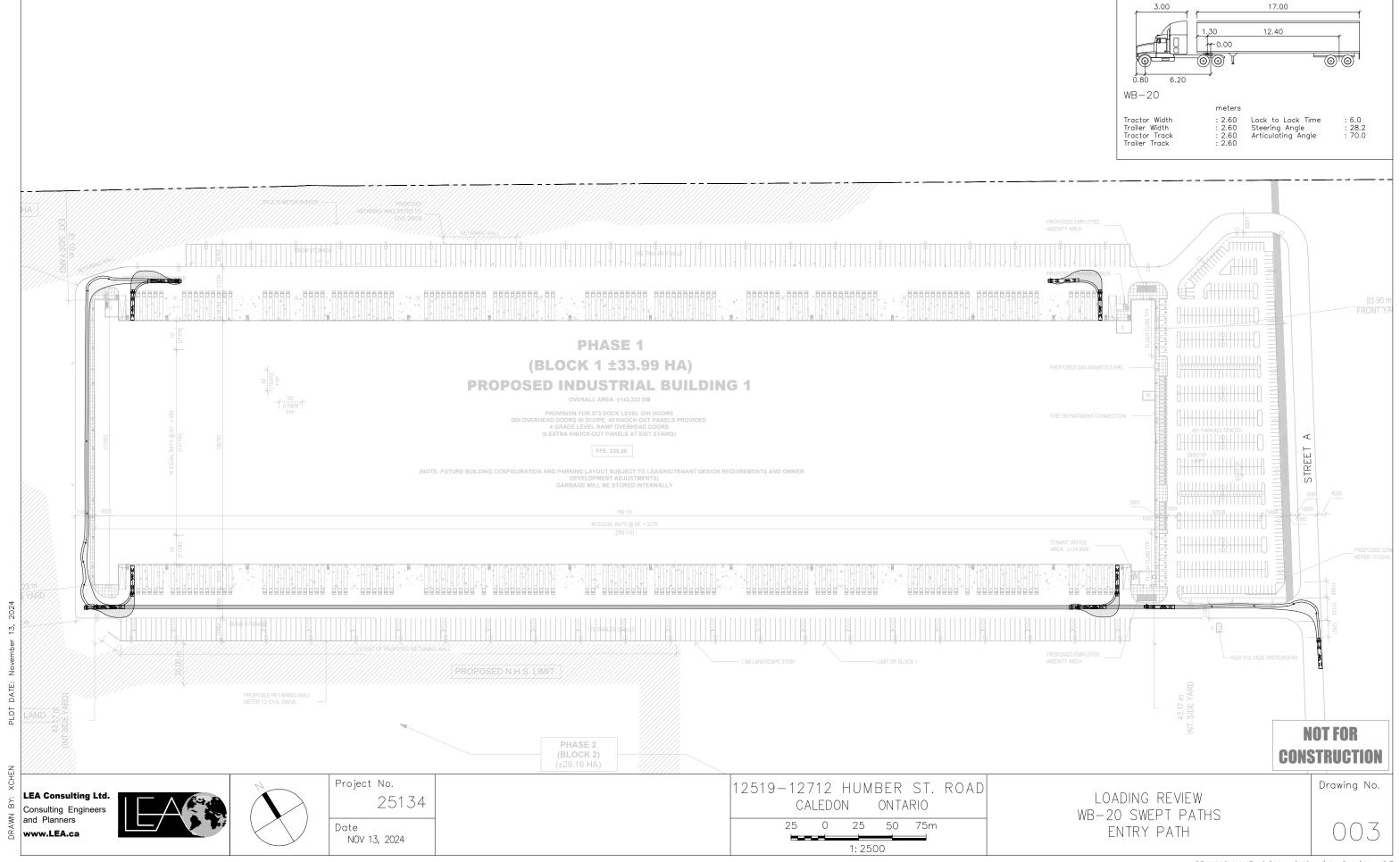
Natural Cycle: 65

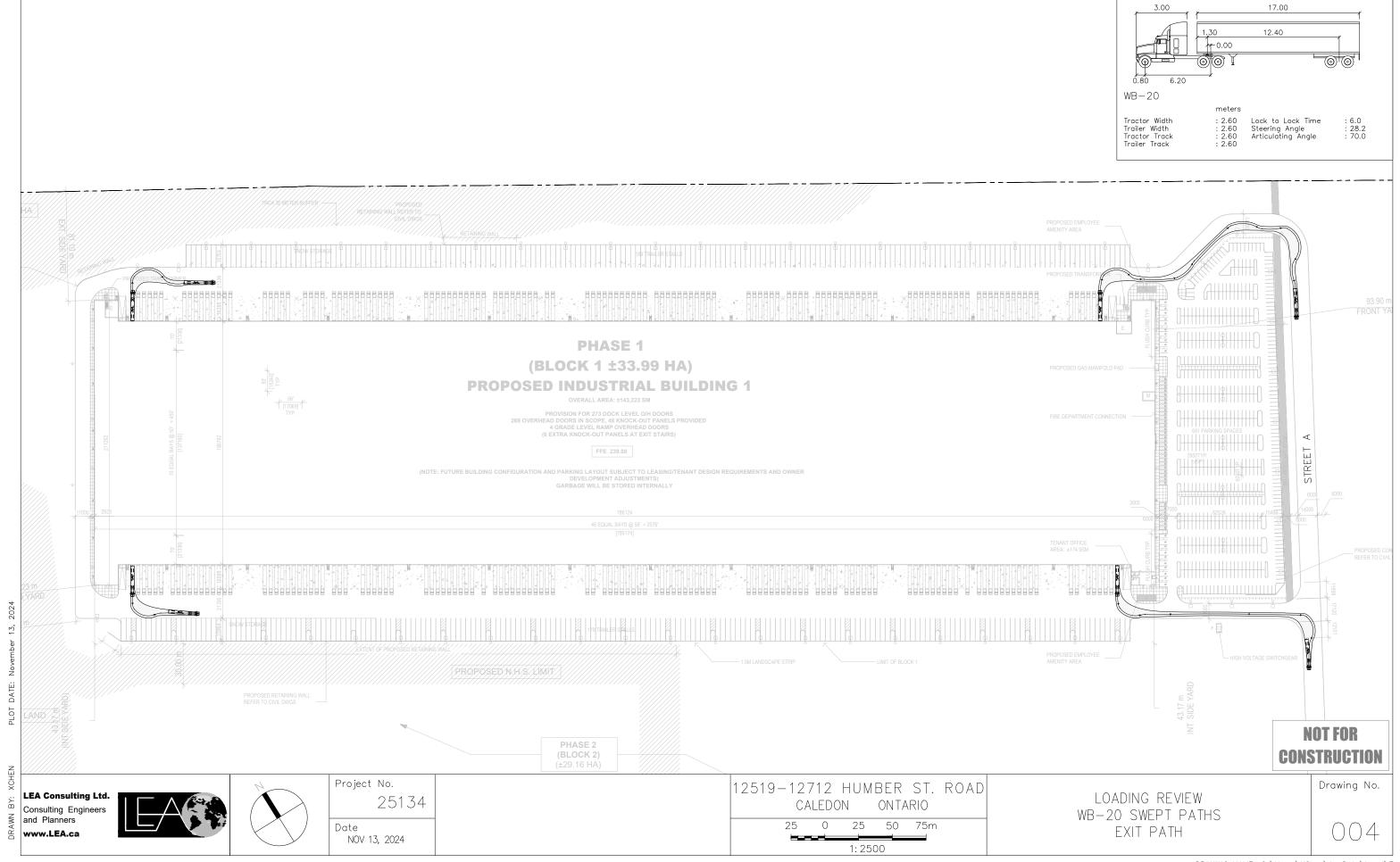
Control Type: Actuated-Coordinated

m Volume for 95th percentile queue is metered by upstream signal.


Movement WBL WBR NBT NBR SBL SBT
Lane Configurations 7 7 7 7
Traffic Volume (veh/h) 138 84 329 65 37 89
Future Volume (veh/h) 138 84 329 65 37 89
Initial Q (Qb), veh 0 0 0 0
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00
Work Zone On Approach No No No
Adj Sat Flow, veh/h/ln 1682 1682 1856 1497 1483 1870
Adj Flow Rate, veh/h 138 84 329 65 37 89
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00
Percent Heavy Veh, % 10 10 3 23 24 2
Cap, veh/h 176 156 1433 979 662 1444
Arrive On Green 0.11 0.11 0.77 0.77 0.77
Sat Flow, veh/h 1602 1425 1856 1268 833 1870
Grp Volume(v), veh/h 138 84 329 65 37 89
Grp Sat Flow(s), veh/h/ln 1602 1425 1856 1268 833 1870
Q Serve(g_s), s 10.1 6.7 5.9 1.5 1.5 1.4
Cycle Q Clear(g_c), s 10.1 6.7 5.9 1.5 7.4 1.4
Prop In Lane 1.00 1.00 1.00
Lane Grp Cap(c), veh/h 176 156 1433 979 662 1444
V/C Ratio(X) 0.79 0.54 0.23 0.07 0.06 0.06
Avail Cap(c_a), veh/h 687 612 1433 979 662 1444
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00
Jpstream Filter(I) 1.00 1.00 1.00 1.00 1.00
Uniform Delay (d), s/veh 52.1 50.5 3.8 3.3 4.8 3.3
ncr Delay (d2), s/veh 7.5 2.9 0.4 0.1 0.2 0.1
nitial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0
%ile BackOfQ(50%),veh/ln 3.3 1.8 0.1 0.0 0.0 0.0
Jnsig. Movement Delay, s/veh
_nGrp Delay(d), s/veh 59.6 53.4 4.2 3.4 5.0 3.4
nGrp LOS E D A A A A
Approach Vol, veh/h 222 394 126
Approach Delay, s/veh 57.3 4.0 3.8
pproach LOS E A A
Fimer - Assigned Phs 2 6 8
Phs Duration (G+Y+Rc), s 99.3 99.3 20.7
Change Period (Y+Rc), s 6.7 7.5
Max Green Setting (Gmax), s 54.3 51.5
Max Q Clear Time (g_c+l1), s 7.9 9.4 12.1
Green Ext Time (p_c), s 3.0 0.9 1.1
ntersection Summary
HCM 6th Ctrl Delay, s/veh 19.9
HCM 6th LOS B


Intersection							
Int Delay, s/veh	4.9						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		414	† 1>		۴	7	
Traffic Vol, veh/h	56	46	100	0	0	122	
Future Vol, veh/h	56	46	100	0	0	122	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	_	-	-	-	30	-	
Veh in Median Storage,	.# -	0	0	_	0	_	
Grade, %	_	0	0	_	0	_	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	23	24	10	0	0	10	
Mymt Flow	61	50	109	0	0	133	
WWW.	UI	- 00	100		- 0	100	
Major/Minor N	/lajor1		Major2		/linor2		
Conflicting Flow All	109	0	-	0	256	55	
Stage 1	-	-	-	-	109	-	
Stage 2	-	-	-	-	147	-	
Critical Hdwy	4.56	-	-	-	6.8	7.1	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.43	-	-	-	3.5	3.4	
Pot Cap-1 Maneuver	1338	-	_	-	716	975	
Stage 1	-	-	-	-	909	-	
Stage 2	-	_	_	_	871	-	
Platoon blocked, %		_	_	_			
Mov Cap-1 Maneuver	1338	_	_	_	682	975	
Mov Cap-2 Maneuver	-	_	_	_	682	-	
Stage 1	_	_	_	_	866	_	
Stage 2	_	_	_	_	871	_	
Olaye 2		_			071		
Approach	EB		WB		SB		
HCM Control Delay, s/v	4.3		0		9.3		
HCM LOS					Α		
Minantana/Maria Ma		EDI	EDT	MOT	MDD	ODL 4 (מים בי
Minor Lane/Major Mvmt	L	EBL	EBT	WBT	WRK :	SBLn1	
Capacity (veh/h)		1338	-	-	-	-	975
HCM Lane V/C Ratio		0.045	-	-	-	-	0.136
HCM Control Delay (s/v	/eh)	7.8	0.1	-	-	0	9.3
HCM Lane LOS		Α	Α	-	-	Α	Α
HCM 95th %tile Q (veh))	0.1	-	-	-	-	0.5


Intersection							
Int Delay, s/veh	8.3						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
	LDL			אטוי	JDL		
Lane Configurations	46	41	↑	0	٥	100	
Traffic Vol, veh/h	46	0	0	0	0	100	
Future Vol, veh/h	46	0	0	0	0	100	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	-	-	
Veh in Median Storage	•	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	24	0	0	0	0	10	
Mvmt Flow	50	0	0	0	0	109	
Major/Minor Major1 Major2 Minor2							
Conflicting Flow All	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	viajuiz -	0	-	1	
Stage 1	-	-	-	-	-	-	
Stage 2	4.50	-	-	-	-	- 7 1	
Critical Hdwy	4.58	-	-	-	-	7.1	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2		-	-	-	-	-	
Follow-up Hdwy	2.44	-	-	-	-	3.4	
Pot Cap-1 Maneuver	1474	-	-	-	0	1057	
Stage 1	-	-	-	-	0	-	
Stage 2	-	-	-	-	0	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1474	-	-	-	-	1057	
Mov Cap-2 Maneuver	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Ammaaah	ED		\A/D		CD		
Approach	EB		WB		SB		
HCM Control Delay, sa	v 7.5		0		8.8		
HCM LOS					Α		
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBI n1	
Capacity (veh/h)		1474	-	-		1057	
HCM Lane V/C Ratio						0.103	
	(vob)	0.034	-	-			
HCM Long LOS	ven)	7.5	0	-	-		
HCM Lane LOS	-\	Α	Α	-	-	A	
HCM 95th %tile Q (vel	11)	0.1	-	-	-	0.3	


APPENDIX L

Functional Design Review

