

Phase Two Environmental Site Assessment Mayfield Golf Course Redevelopment – South Lands Caledon, Ontario

GEMTEC Project: 101987.001

Submitted to:

Mayfield Golf Course Inc. 3190 Steeles Avenue East, Suite 300 Markham, Ontario L3R 1G9

Phase Two Environmental Site Assessment Mayfield Golf Course Redevelopment – South Lands Caledon, Ontario

> April 22, 2024 GEMTEC Project: 101987.001

GEMTEC Consulting Engineers and Scientists Limited 44 Cedar Pointe Drive Barrie, ON, Canada L4N 5R7

April 22, 2024

File: 101987.001 - Rev0

Mayfield Golf Course Inc. 3190 Steeles Avenue East, Suite 300 Markham, Ontario L3R 1G9

Attention: Vimal Patel

Re: Phase Two Environmental Site Assessment Mayfield Golf Course Redevelopment – South Lands, Caledon, Ontario

Enclosed is GEMTEC Consulting Engineers and Scientists Limited's Phase Two Environmental Site Assessment (ESA) report for the above-noted project. The Phase Two ESA and reporting were based on the original scope of work presented in our proposal dated June 8, 2023. This report was prepared by Curtis Moorhouse, B.Sc. and reviewed by Sherry Eaton, M.Sc., P.Geo., PMP, QP_{ESA}.

We trust this information is sufficient for your current needs. If you have any questions or require further information, please contact the undersigned.

ØWSL

Curtis Moorhouse, B.Sc. Environmental Scientist

Sherry Eaton, M.Sc., P.Geo., PMP, QP_{ESA} Senior Environmental Consultant

CM/SE/cb/sv

\Lucid\Drawings and Files\Projects\101900\101987.001\Deliverables\Reports\Phase II ESA (S Parcel)\101987.001_RPT_Phase Two ESA_Mayfield South Lands_2024-04-22 _Rev0.docx

ii

EXECUTIVE SUMMARY

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by Mayfield Golf Course Inc. (Mayfield) to carry out a Phase Two Environmental Site Assessment (ESA) for the property referred to as the "South Lands" located south of the Mayfield Golf Course in Caledon, Ontario (referred to as the Site and/or Phase Two ESA Property). The South Lands does not have a civic address of its own and it is located directly south of the golf course located at 12580 and 12552 Torbram Road in Caledon, Ontario. It is understood that this Phase Two ESA is required in support of the proposed residential development of the South Lands as part of the proposed redevelopment of the golf course.

GEMTEC previously completed a Phase One ESA for the Site, the results of which were documented in the report titled *"Phase One Environmental Site Assessment, Mayfield Golf Course Redevelopment Site – Southern Parcel, Caledon, Ontario",* dated June 8, 2023. Based on the findings of the Phase One ESA, GEMTEC completed this Phase Two ESA investigation.

On December 1, 2023, fourteen hand-dug test pits, noted as TP23-1 to TP23-14, were advanced at the Site to a depth of 0.15 metres below ground surface (m bgs). Soil samples collected from each test pit were submitted for analysis of metals, including hydride-forming metals, pH; and organochlorine pesticides (OCPs).

Soil results were compared to Ministry of the Environment, Conservation, and Parks (MECP) Table 1 Full Depth Background Site Condition Standards (SCS) for agricultural or other property use.

The Phase Two ESA did not identify the presence of any exceedances of the Table 1 SCS.

Based on the results of the soil samples submitted as part of this Phase Two ESA, no exceedances of the applicable site conditions standard were identified in association with soil at the Site. Based on these findings, no further investigation is considered necessary.

TABLE OF CONTENTS

EXECU	ITIVE SUMMARY	III
1.0 IN	ITRODUCTION	1
1.1 1.2 1.3	Site Description Current and Proposed Future Uses Applicable Site Condition Standards	1
2.0 BA	ACKGROUND INFORMATION	3
2.1 2.2 Pha	Physical Setting Past Investigations ase One Environmental Site Assessment	3
3.0 SC	COPE OF THE INVESTIGATION	6
3.1 3.2 3.3 3.4 3.5	Overview of the Site Investigation Media Investigated Phase One ESA Conceptual Site Model Deviations from Sampling and Analysis Plan Impediments	7 7 8
4.0 IN	VESTIGATION METHOD	9
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	General Test Pits Soil: Sampling Soil: Field Screening Groundwater: Monitoring Well Installation Sediment: Sampling Laboratory Analytical Program Residue Management Procedures Quality Assurance / Quality Control Program	
	EVIEW AND EVALUATION	
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Geology Groundwater: Elevations and Flow Direction Groundwater: Hydraulic Gradients Soil Texture Soil: Field Screening Soil: Quality Groundwater: Quality	12 12 12 12 12
5.8	Sediment: Quality	13

5.9	Quality Assurance and Quality Control Results	13
6.0	PHASE TWO CONCEPTUAL SITE MODEL	14
6.1	Property Description and History	14
6.2	Previous Investigation	16
6.3	Potentially Contaminating Activities	17
6.4	Areas of Potential Environmental Concern	19
6.5	APEC 1 – Potential Pesticide Use	21
6.6	Subsurface Structures and Utilities	21
6.7	Physical Setting	21
6.8	Site Condition Standards	
6.9	Contaminated Media	23
6.1	0 Contaminants Exceeding Applicable Standards at the Site	23
6.1	1 Description of Areas of Contamination on the Property	24
6.1	2 Potential Influence of Utilities on Contaminant Migration	24
6.1	3 Contaminant Migration	24
6.1	4 Meteorological and Climatic Considerations	24
6.1	5 Potential Exposure Pathways and Receptors	24
7.0	CONCLUSIONS	24
8.0	REFERENCES	24
9.0	LIMITATION OF LIABILITY	25
10.0	CLOSURE	26

LIST OF APPENDICES

APPENDIX A	Figures and Tables
APPENDIX B	Sampling and Analysis Plan
APPENDIX C	Record of Test Pits and Grain Size Curves
APPENDIX D	Laboratory Certificates of Analysis

1.0 INTRODUCTION

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by Mayfield Golf Course Inc. (Mayfield) to carry out a Phase Two Environmental Site Assessment (ESA) for the property referred to as the "South Lands" located south of the Mayfield Golf Course in Caledon, Ontario (referred to as the Site and/or Phase Two ESA Property). The South Lands does not have a civic address of its own and it is located directly south of the golf course located at 12580 and 12552 Torbram Road in Caledon, Ontario. It is understood that this Phase Two ESA is required in support of the proposed residential development of the South Lands as part of the proposed redevelopment of the golf course.

GEMTEC previously completed a Phase One ESA for the Site, the results of which were documented in the report titled *"Phase One Environmental Site Assessment Mayfield Golf Course Redevelopment Site – Southern Parcel, Caledon, Ontario",* dated June 8, 2023. Based on the findings of the Phase One ESA, GEMTEC completed this Phase Two ESA investigation. This Phase Two ESA was completed in general accordance with the requirements for Phase Two ESAs as defined in Part VII and Schedule E of Ontario Regulation 153/04 (O.Reg. 153/04).

The Site's approximate boundaries and location are provided on Figure A.1, Appendix A.

1.1 Site Description

The Site has an area of approximately 51 acres and located south of the Mayfield Golf Course in Caledon, Ontario. Based on the available aerial photographs, the Phase Two Property has been used as an agricultural field since at least 1946. A ravine and creek are present in the central portion of the Site. Historical land use in the study area was predominantly agricultural. Mayfield Golf Course is located adjacent to the Site to the northwest.

The legal description of the Site consists of:

s/s Torbram Road, Caledon East: Part Lot 19 Con 5 & EHS Chinguacousy as in VS22285.
 PIN 14347-0069 (LT).

The Site is presently owned by Tullamore Industrial GP Limited. The contact person for the Site at the time of this reporting is Ema Pereira with Geranium.

The Site location and Site features are shown on Figure A.1 and Figure A.2, Appendix A.

1.2 Current and Proposed Future Uses

Currently the Phase Two Property is used for agricultural purposes. The proposed future use is residential usage as part of the proposed redevelopment of the adjacent golf course.

1

1.3 Applicable Site Condition Standards

The analytical results of the samples collected for this Phase Two ESA were compared to the Table 1 Full Depth Background Site Condition Standards (hereinafter referred to as the Table 1 SCS) for agricultural or other property use as presented in the MECP document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011. The applicable site condition standards were selected based on the following rationale:

- The Site is currently used for agricultural purposes. The proposed future land use is residential.
- Groundwater in the vicinity of the Site is used for potable purposes. Based on a due diligence geotechnical and hydrogeological assessment¹ carried out at the adjacent golf course, groundwater ranged in depth from 0.9 m to 5.5 m below ground surface (m bgs). The depth to the water table at the Site is anticipated to be similar to that at the adjacent golf course.
- Based on visual observations made during the field program, the predominant soil type was sandy silt which is inferred to be fine-textured. A grain size determination completed as part of this Phase Two ESA investigation on native soil at TP23-6 indicated the soil to be fine-textured. Additionally, grain size analyses carried out as part of the 2023 Geotechnical and Hydrogeological Report indicated soil at the site to be fine to medium textured. Medium and fine textured soil is defined by Section 42(1) of O. Reg.153/04 as "soil that contains 50 per cent or more by mass of particles that are smaller than 75 micrometres in mean diameter".
- An unevaluated wetland was identified in the southern corner of the Site, and ponds were identified northwest of the Site on Mayfield Golf Course based on a review of Ontario Base Mapping. Based on this, these unevaluated wetlands and ponds were considered an area of potential natural significance. The ravine and stream in the centre of the Site, as well as an approximate 160 m radius around the stream, are considered part of the Natural Heritage System (MNR, 2022).
- The City of Caledon's zoning by-law for the Site consists as agricultural for the fields and an Environmental Policy Area (EPA) zone for the ravine in the centre of the Site. As the Site is within an area of natural significance and/or adjacent to one, the Phase Two Property would meet the conditions of an environmentally sensitive site, as described in Section 41. As a result, and to provide a degree of conservatism, the Table 1 SCS were selected as applicable to the entire Site.
- The pH of soil at the Site is greater than 5 and less than 9.

¹ "Due Diligence Geotechnical and Hydrogeological Assessment Report, Mayfield Golf Course Redevelopment, Caledon, Ontario", dated July 25, 2023, prepared by GEMTEC for Geranium (2023 Geotechnical and Hydrogeological Assessment).

• Test pits were advanced to a depth of 0.15 m bgs and bedrock was not encountered. Boreholes were advanced to depths of 7.8 to 8.1 m bgs as part of the 2023 Geotechnical and Hydrogeological Investigation and bedrock was not encountered.

2.0 BACKGROUND INFORMATION

This section presents the background conditions of the Phase Two Property including a description of the physical setting and a summary of past investigations conducted.

The objectives of the Phase Two ESA were to obtain information about environmental conditions in the soil on, in or under the Site. The objectives of this Phase Two ESA were achieved by:

- Developing an understanding of the geological conditions at the Phase Two Property.
- Conducting field sampling for all contaminants of concern (COCs) associated with the area of potential environmental concern (APEC) identified in the Phase One ESA.

2.1 Physical Setting

The Site has a relatively flat topography with a ravine in the central portion. The Site is at an elevation of approximately 233 to 267 metres above sea level. A stream is present in the ravine in the central portion of the Site. Overburden soil in the general area is primarily characterized as clay to silt-textured till. There are also deposits of clay, silt, sand, gravel and may contain organic remains along the watercourse. Bedrock geology consists of shale, limestone, dolostone, and/or siltstone of the Queenston Formation.

Groundwater flow often reflects topographic features and typically flows toward nearby lakes, rivers, and wetland areas. Based on the topography of the area, it is expected that local groundwater flow direction is to the centre of the Site, toward the ravine. As groundwater was not identified as a media of concern, no groundwater monitoring was conducted as part of this Phase Two ESA.

No provincially significant wetlands (PSWs) were identified on the Site or within the study area. As noted above, an area of natural and scientific interest (ANSI) was identified within the study area, to the northwest of the Site. The ravine and stream, as well as an approximate 160 m radius around the stream, are considered part of the Natural Heritage System (MNR, 2022). The City of Caledon's zoning by-law identifies the on-Site ravine as an EPA zone. In the southern corner of the Site, there is an unevaluated wetland as well as observed woodlands on the west, south and east adjacent properties (MNR, 2022).

2.2 Past Investigations

Phase One Environmental Site Assessment

GEMTEC conducted a Phase One ESA titled "Phase One Environmental Site Assessment Mayfield Golf Course Redevelopment Site – Southern Parcel, Caledon, Ontario", dated June 8, 2023, to assess the likelihood of soil and/or groundwater contamination resulting from historical or present activities at the Site and surrounding area. This included a review of available historical information on the Site and surrounding area, interviews with persons familiar with the Site and a Site reconnaissance. Based on this review, one potentially contaminating activity (PCA) was identified resulting in one area of potential environmental concern (APEC) at the Site.

Figure A.3, Appendix A indicates the location of the PCA and Figure A.4, Appendix A indicates the location of the APEC. The APEC identified in the Phase One ESA is summarized in the table below.

This report was prepared by the Qualified Person and will be relied upon for the Phase Two investigation.

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
APEC 1 – Site has historically been used for agricultural purposes.	On the north and south fields.	40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	On-Site	Metals, OCP	Soil

Notes:

Metals - metals parameters as per O.Reg. 153/04 including hydride forming metals (antimony, arsenic, selenium)

OCP – Organochlorine Pesticides

3.0 SCOPE OF THE INVESTIGATION

3.1 Overview of the Site Investigation

The Phase Two ESA investigation activities were completed on December 1, 2023 and included the following tasks:

- **Health and Safety Plan**: Preparation of a Health and Safety Plan for internal and subcontractor use prior to initiating any field work at the Site.
- Utility Clearances: Coordination of utility clearances was not conducted as the scope of work involved only collecting soil samples from shallow hand dug holes which would not affect any underground utilities.
- **Sampling and Analysis Plan (SAP)**: Preparation of a SAP to document the purpose, rationale, number and location of samples to be recovered as part of the Phase Two investigation. A copy of the SAP is provided in Appendix B.
- Test Pits: The test pitting program included using a decontaminated shovel to dig fourteen test pits throughout the Site. The test pits were used to collect grab samples (identified as TP23-1 to TP23-14). The rationale for the selected location of the test pits is provided in the SAP provided in Appendix B. The locations of the test pits are provided in Figure A.5, Appendix A.
- **Soil Sampling**: Soil samples were collected on December 1, 2023, from the hand dug test pits. Selected soil samples were submitted for chemical analysis of one or more of the following:
 - Metals, including hydride-forming metals;
 - o pH; and/or
 - Organochlorine pesticides (OCPs)
- **Groundwater Monitoring and Sampling**: Groundwater was not identified as a media of concern and therefore groundwater sampling was not part of the scope of work for this Phase Two investigation.
- **Reporting**: GEMTEC compiled and assessed the field and laboratory results from the above noted activities into this report.

The Phase Two investigation was carried out in general accordance with GEMTEC's standard operating procedures, which conform to the requirements of O. Reg. 153/04. The data from the Phase Two ESA investigation completed by GEMTEC at the Site were incorporated into a single Phase Two ESA report.

There were no impediments or access limitations that in the opinion of the Qualified Person (QP) would affect the conclusions of this Phase Two ESA report.

3.2 Media Investigated

To address the potential environmental issues identified in the Phase One ESA, the Phase Two ESA field program included sampling of soil at the Site. Groundwater and sediment were not identified as a media of concern in association with the Site. The SAP outlines the rationale for the field investigation activities carried out at the Site and the associated methodologies used to meet the objectives of this Phase Two ESA.

3.3 Phase One ESA Conceptual Site Model

The following key features (as required by O.Reg. 153/04) are presented in Figures A.1, A.2, A.3 and A.4:

- Existing buildings and structures;
- Water bodies and areas of natural significance located in the Phase One Study Area;
- Drinking water wells on the Phase One Property;
- Roads (including names) within the Phase One Study Area;
- Uses of properties adjacent to the Phase One Property; and,
- Location of identified PCAs in the Phase One Study Area (including any storage tanks).

The following describes the Phase One ESA CSM based on the information obtained and reviewed as part of this Phase One ESA:

- The Phase One property is legally described as s/s Torbram Road, Caledon East: Part Lot 19 Con & EHS Chinguacousy as in VS22285. PIN 14347-0069 (LT) and is approximately 51 acres in size.
- At the time of the Site reconnaissance, no buildings or structures were present on-Site. Historical records suggest the Site has not previously been developed. The property currently consists of a vacant and/or agricultural field in the north and south portions of the Site with a ravine and stream in the central portion.
- Based on the review of the historical records obtained as part of this assessment, the Site was crown land prior to 1869. No records were found between 1869 to 1946 other than the chain of title abstract that shows the names of the owners of the Site. Based on an aerial photograph from 1946, the Site was used for agricultural purposes on the north and south fields. The Site has continued to be used for agricultural purposes. No evidence of on-site buildings or structures were identified based on the information obtained as part of this Phase One ESA. Based on the prior agricultural use of the Site and the identification of this use as a potentially contaminating activity, the first developed use (based on the definition in O.Reg. 153/04), is considered to be 1946 (the first year for which records confirm the Site was used for agricultural purposes). Based on the interview, it was unknown if pesticides are currently or were historically used on-Site.

7

- The surrounding properties include agricultural, rural residential, undeveloped, and/or commercial land uses, as illustrated in Figure A.1, in Appendix A.
- The nearby developed properties are serviced with hydro. Based on the rural nature of the area, nearby properties likely rely on private water wells and septic systems. Water well records were noted for the properties to the north and east of the Site. The Site is currently not serviced.
- The Site is at an elevation of approximately 233 m to 267 metres above sea level. Based on Site observations, the Site is relatively flat with a ravine in the central portion.
- Surficial soil conditions are primarily characterized as clay to silt-textured till. There are also deposits of clay, silt, sand, gravel and may contain organic materials along the watercourse.
- Bedrock geology consists of shale, limestone, dolostone, and/or siltstone of the Queenston Formation. Based on water well records for the area of the Site, shale bedrock was encountered at a depth of 15 m bgs.
- An area of natural and scientific interest was identified within the study area, to the northwest (MNR, 2017). There is a ravine and stream in the centre of the Site. The ravine and stream, as well as an approximate 160 m radius around the stream, are considered part of the Natural Heritage System (MNR, 2022). In the southern corner of the Site, there is an unevaluated wetland as well as observed woodlands on the west, south and east adjacent properties (MNR, 2022). The east and western portions of the Site are zoned agricultural, and the ravine area is zoned EPA.
- Based on the topography of the area, shallow groundwater direction is interpreted to be in the direction of the ravine.
- As summarized above, the Phase One ESA identified the following APEC in association with the Site:
 - APEC 1 Site has historically been used for agricultural purposes with the potential for the application of pesticides. Contaminants of Potential Concern (COPCs) include metals and organochlorine pesticides (OCP) with the potential for impacts in soil.

3.4 Deviations from Sampling and Analysis Plan

A SAP is provided in Appendix B. The SAP outlines the rationale for the field investigation activities carried out at the Site and the associated methodologies used to meet the objectives of this Phase Two ESA. The SAP covers the activities undertaken during the Phase Two ESA. The procedures described in the SAP were followed with no modifications.

3.5 Impediments

No physical impediments to the Phase Two ESA investigation were encountered. Access to the Phase Two Property was not denied or restricted.

8

4.0 INVESTIGATION METHOD

4.1 General

The following sections describe the field investigation methodology employed during the Phase Two ESA. The field work was conducted on December 1, 2023.

Prior to initiating the field work, GEMTEC developed and implemented Site-specific protocols to protect the health and safety of its employees through the preparation of a Site-specific Health and Safety Plan. GEMTEC did not complete public or private utility clearances as the shallow hand-dug holes would not affect any utilities if any.

4.2 Test Pits

On December 1, 2023, fourteen hand-dug test pits (TP23-1 to TP23-14) were advanced to a maximum depth of 0.15 m bgs. Test pit locations are provided in Figure A.5, Appendix A. A description of the quality assurance/quality control measures taken to minimize the potential for cross-contamination between sampling locations is provided in Section 5.12.

Test pits TP23-1 to TP23-14 were advanced by GEMTEC using a decontaminated shovel to dig shallow test holes to collect grab samples. The soil samples were logged in the field noting subsurface and the test pit locations are provided in Figure A.5, Appendix A.

4.3 Soil: Sampling

Soil samples collected from the test pits were split in the field into two components. One component was placed into laboratory-prepared container with minimal headspace and stored in a cooler for potential laboratory analysis. The second component was placed inside a plastic bag for field screening, consisting of the soil description, and noting the presence of any staining, odour and/or debris.

A gas detector (RKI Eagle 1) calibrated to 1,650 parts per million (ppm) hexane was used to measure the total combustible gas concentrations in the headspace in the sealed plastic bag.

As per the SAP, soil samples at each sampling location were selected for laboratory analysis based on the field headspace screening measurements, visual observations (e.g., staining, discoloration and/or free product, if any), and olfactory observations (if any). Soil samples were submitted to the analytical laboratory under chain-of-custody procedures. A summary of the soil samples submitted for analysis is provided in Table A.1 in Appendix A.

Geologic descriptions, visual and olfactory observations, and results of field headspace measurements are presented on the Record of Test Pits in Appendix C.

4.4 Soil: Field Screening

Field measurements of sample headspace concentration were made using the following equipment:

Equipment	Parameters Detected	Detection Limit	Precision	Accuracy	Calibration Standard
RKI Eagle 1	Combustible gas	0-50,000 ppm	NA	±5%	Hexane (1,650 ppm)

The RKI Eagle 1 was calibrated daily prior to field use.

The results of soil headspace screening measurements are provided in the Record of Test Pits in Appendix C.

4.5 Groundwater: Monitoring Well Installation

As groundwater was not identified as a media of concern associated with the APECs, no groundwater monitoring was carried out as part of this investigation.

4.6 Sediment: Sampling

As sediment was not identified as a media of concern associated with the APECs, no sediment samples were collected as part of this investigation.

4.7 Laboratory Analytical Program

The contact information for the analytical laboratory is as follows:

• AGAT Laboratories (AGAT), 5835 Coopers Avenue, Mississauga, ON L4Z 1Y2. (Linda Berthelet, 613-225-8618).

The analytical laboratory is accredited in accordance with the International Standard ISO/IEC 17025 (CALA) (General Requirement for the Competence of Testing and Calibration Laboratories, May 5, 2005, as amended) and the standards for proficiency testing developed by the Standards Council of Canada, the Canadian Association for Laboratory Accreditation or another accreditation body accepted by the MECP.

4.8 Residue Management Procedures

All residues produced during the investigation, if any, were deposited onsite.

4.9 Quality Assurance / Quality Control Program

GEMTEC's quality assurance program for environmental investigations was implemented to ensure that analytical data obtained by the investigation were valid and representative. The quality assurance program included the following measures:

- The use of standard operating procedures for all field investigation activities.
- The collection of field duplicate samples at a minimum frequency of one duplicate for every ten samples.
- Initial calibration of field equipment was performed at the start of each field day, with a daily check of calibration, as needed, using a standard of known concentration.
- Soil was handled and stored in accordance with the sample collection and preservation requirement of the MECP "Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.I of the Environmental Protection Act", July 1, 2011. Samples were collected directly into pre-cleaned, laboratory-supplied sample containers with the appropriate preservative for the analyte group. Upon collection, samples were placed in insulated coolers with ice for storage and transport to the analytical laboratory under chain-of-custody.
- Dedicated sampling equipment and clean disposable Nitrile[™] gloves were used at each sampling location to prevent cross-contamination. All non-dedicated sampling equipment (e.g., shovel) was decontaminated between sampling locations. Sampling equipment in contact with soil, groundwater, or sediment was cleaned by mechanical means; washed with a phosphate-free, laboratory-grade detergent (e.g., Alconox powder) and, if necessary, an appropriate desorbing wash solution; and thoroughly rinsed with analytefree water.
- Detailed field records documenting the methods and circumstances of collection for each field sample were prepared at the time of sample collection. Each sample was assigned a unique sample identification number recorded in the field notes, along with the date and time of sample collection, the sample matrix, and the requested analyses.
- The submission of samples to the analytical laboratory in accordance with standard chain of custody procedures.

Below is a summary of the primary and duplicate samples.

Date	Media	Sample ID	Duplicate ID
December 1, 2023	Soil	TP23-4 SA1	DUP 1
December 1, 2023	Soil	TP23-14 SA1	DUP 2

5.0 REVIEW AND EVALUATION

This section of the report presents a review and evaluation of the results of the sampling activities conducted as part of the Phase Two ESA.

5.1 Geology

The soil conditions encountered during the test pitting program are presented in the Record of Test Pits provided in Appendix C.

Reworked native soil was encountered in all test pit locations. The reworked material is predominantly comprised of sandy silt, with some organics. All test pits were terminated in the sandy silt at a depth of 0.15 m bgs.

5.2 Groundwater: Elevations and Flow Direction

As groundwater was not identified as a media of concern associated with the APECs, no groundwater monitoring was carried out as part of this investigation.

5.3 Groundwater: Hydraulic Gradients

As groundwater was not identified as a media of concern associated with the APECs, no groundwater monitoring was carried out as part of this investigation.

5.4 Soil Texture

Based on soil conditions encountered in the test pits and a grain size analysis of soil collected from TP23-6 SA1, the soil is considered fine to medium textured. The results for this analysis are provided on the Certificate of Analysis in Appendix D. Additionally, grain size analyses carried out as part of the 2023 Geotechnical and Hydrogeological Report indicated soil at the site to be fine to medium textured. A copy of the grain size curves from this report are provided in Appendix C.

5.5 Soil: Field Screening

Headspace vapour measurements were conducted on the soil samples collected from each of the grab samples collected on Site. Headspace readings ranged from 25 ppm to 40 ppm and are generally not considered indicative of environmental contamination in light of the overall observations and results. The results of headspace vapour measurements are presented on the Record of Test Pits in Appendix C.

5.6 Soil: Quality

Table A.1, Appendix A provides a summary of the soil samples submitted for analysis and the associated test parameters. The analytical results of soil samples are presented in Tables A.2, Appendix A. Laboratory Certificates of Analysis for the soil samples are included in Appendix D.

Soil sampling was completed on December 1, 2023. The soil samples were submitted to AGAT for analysis of one or more of the following parameters: metals (including hydride-forming metals), OCPs, pH and/or grain size.

A summary of the number of soil samples analyzed and the number of soil samples exceeding the Table 1 SCS is provided below:

Parameter	Number of soil samples analyzed (including duplicates)	Number of soil samples exceeding the Table 1 Standards
Metals (including hydride- forming metals)	16 (14 plus two duplicate)	0
OCPs	16 (14 plus two duplicate)	0
рН	16 (14 plus two duplicate)	0

5.7 Groundwater: Quality

No groundwater monitoring / testing was completed as part of this investigation.

5.8 Sediment: Quality

No sediment samples were collected as part of this investigation.

5.9 Quality Assurance and Quality Control Results

The quality assurance assessment of the field duplicate sample results was conducted according to the MECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", March 9, 2004 (amended in July 2009 and effective as of July 1, 2011) ("Analytical Protocol").

To determine the precision of the analytical methods and field sampling procedures, blind duplicate samples were collected during soil sampling. Precision is determined by the relative percent difference ("RPD") between the duplicate and original samples and was calculated as follows:

Where

 $RPD = \frac{|x_1 - x_2|}{x_m}$ x₁ initial sample results x₂ duplicate sample results x_m mean of x₁, x₂

The analytical results of the primary and duplicate soil samples indicated a satisfactory correlation between the primary and duplicate samples and were within the 30% recommended control limit in the Analytical Protocol.

The quality of the analytical results is further supported by analytical laboratory's internal quality assurance program that includes laboratory blanks, spikes, surrogates and duplicate samples.

All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47(3). A certificate of analysis or analytical report has been received for each sample submitted for analysis and is provided in Appendix D.

Accordingly, the analytical data generated during the investigation are valid and representative and may be used in this Phase Two ESA without further qualification.

6.0 PHASE TWO CONCEPTUAL SITE MODEL

The Phase Two ESA conceptual site model (CSM) is presented in the following sections.

The Phase Two CSM was prepared in general accordance with Schedule E, Part V, Table 1, Section 6, Sub-heading (x) of Ontario Regulation 153/04 (O. Reg. 153/04) and is described in the text below and in the following figures:

- Figure A.1 Site Location
- Figure A.2 Phase Two Property and Phase One Study Area
- Figure A.3 Potentially Contaminating Activities
- Figure A.4 Areas of Potential Environmental Concern
- Figure A.5 Test Pit Locations
- Figure A.6 Soil Analytical Results Metals, Hydride-Forming Metals, OCPs, and pH

6.1 Property Description and History

The Site has an area of approximately 51 acres and located south of the Mayfield Golf Course in Caledon, Ontario. The Site does not have a civic address of its own and it is located directly south of the golf course located at 12580 and 12552 Torbram Road in Caledon, Ontario.

At the time of the Site reconnaissance, no buildings or structures were present on-Site. Historical records suggest the Site has not previously been developed. The property currently consists of a vacant and/or agricultural field in the north and south portions of the Site with a ravine and stream in the central area of the Site.

The surrounding properties include agricultural, rural residential, undeveloped, and/or commercial land uses, as illustrated in Figure A.1, in Appendix A. The nearby developed properties are serviced with hydro. Based on the rural nature of the area, nearby properties likely rely on private

water wells and septic systems. Water well records were noted for the properties to the north and east of the Site. The Site is currently not serviced.

No provincially significant wetlands (PSWs) were identified on the Site or within the study area. As noted above, an area of natural and scientific interest (ANSI) was identified within the study area, to the northwest of the Site. The ravine and stream, as well as an approximate 160 m radius around the stream, are considered part of the Natural Heritage System (MNR, 2022). The City of Caledon's zoning by-law identifies the on-Site ravine as an EPA zone. In the southern corner of the Site, there is an unevaluated wetland as well as observed woodlands on the west, south and east adjacent properties (MNR, 2022).

The Phase Two Property and associated Phase One ESA study area are shown on Figure A.1, Appendix A and site features are shown on Figure A.2, Appendix A.

Mayfield Golf Course – South Lands – Phase One Property Information							
Legal Description	s/s Torbram Road, Caledon East: Part Lot 19 Con 5 & EHS Chinguacousy as in VS22285						
PIN	14347-0069 (LT)						
Phase One Property Owner	Tullamore Industrial GP Limited						

Pertinent identification information for the Site is provided below:

A summary of the current and past uses, based on the information reviewed as part of the 2023 Phase One ESA, is provided below:

Mayfield Golf Course – South Lands									
Year	Name of Owner	Description of Property Use	Property Use	Other Observations from Aerial Photographs, Fire Insurance Plans, etc.					
Prior to 1869	Crown	Undeveloped	Agricultural or other use	No FIP, aerial photograph or city directory coverage for this portion of the Site or properties within the Phase One Study Area for this time period.					
1869 – 1895	John Ewing	Undeveloped	Agricultural or other use	No FIP, aerial photograph or city directory coverage for this portion of the Site or properties within the Phase One Study Area for this time period.					

Mayfield Golf Course – South Lands							
Year	Name of Owner	Description of Property Use	Property Use	Other Observations from Aerial Photographs, Fire Insurance Plans, etc.			
1895 – 1927	John Cowton	Undeveloped	Agricultural or other use	No FIP, aerial photograph or city directory coverage for this portion of the Site or properties within the Phase One Study Area for this time period.			
1927 – 1930	William J. G. Montgomery, Sr	Undeveloped	Agricultural or other use	No FIP, aerial photograph or city directory coverage for this portion of the Site or properties within the Phase One Study Area for this time period.			
1930 – 1959	William J. G. Montgomery, Jr	Undeveloped	Agricultural or other use	Aerial photographs were not available before 1946. Aerial photos from 1946 and 1951 show that the Site was used for agricultural purpose and has a stream running through the centre of the property. No buildings are apparent on-Site.			
1959 – 1966	Thomas Jackson	Undeveloped	Agricultural or other use	The aerial photo from 1964 shows no significant changes to the property.			
1966 -2021	IO Investments Limited	Undeveloped	Agricultural or other use	Aerial photos from 1974, 1988, and 2021 show no significant changes to the property.			
2021- Present	Tullamore Industrial GP Limited	Undeveloped	Agricultural or other use	No aerial photos of the property have been taken since 2021. Site reconnaissance and interview indicate no significant changes to the property.			

As noted above, the Phase Two Property is currently owned by Tullamore Industrial GP Limited.

6.2 **Previous Investigation**

The following lists the previous reports available for the Site. The Phase One ESA formed the basis for completing this Phase Two ESA.

• "Phase One Environmental Site Assessment, Mayfield Golf Course Redevelopment Site – Southern Parcel, Caledon, Ontario", prepared by GEMTEC, dated June 8, 2023.

6.3 Potentially Contaminating Activities

The potentially contaminating activities (PCAs) identified via the Phase One ESA are summarized in Table below. Figure A.3 indicates the location of the PCAs.

PCA ID	Type of PCA	Address / Location	Distance from Phase One Property	Information source	PCA Description	Rationale
F #40	Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	On-Site	On-Site	Site Interview Site Recon	Site has historically been used for large scale agricultural purposes.	Yes Based on potential for historical pesticide applications to the Site for agricultural purposes.

Site Recon – Site Reconnaissance

6.4 Areas of Potential Environmental Concern

The area of potential environmental concern (APEC) identified based on the PCAs and as set out in the Phase One ESA are summarized in the table below. Figure A.4 indicates the location of the APEC.

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
APEC 1 – Site has historically been used for agricultural purposes.	On the north and south fields.	40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	On-Site	Metals, OCP	Soil

Notes:

Metals - metals parameters as per O.Reg. 153/04 including hydride forming metals (antimony, arsenic, selenium) OCP – Organochlorine Pesticides

6.5 APEC 1 – Potential Pesticide Use

Based on the Phase One ESA, the Site has historically been used for agricultural purposes since at least 1946 and is currently still an active field. Based on this, pesticides and herbicides may have been applied to the areas of the Site that were used for agricultural purposes. The COPCs are metals and OCP in soil.

This APEC was investigated as part of this Phase Two ESA via the advancement of fourteen test pits (TP23-1 to TP23-14). The test pits were located in the areas of the Site that are currently and were historically used for agricultural purposes. The test pits were advanced to a depth of 0.15 m bgs. During sampling, there was no evidence of staining or odour. A total of sixteen surface soil samples (fourteen plus two duplicates) were collected from the test pits and were submitted for analysis of metals, including hydride-forming metals, OCPs and pH. Based on a comparison to the applicable standards, no exceedances were identified.

6.6 Subsurface Structures and Utilities

There are no subsurface structures or buried utilities at the Site.

6.7 Physical Setting

Topography

The Phase One Property is at an elevation of approximately 233 to 267 metres above sea level. Based on Site observations, the Site is relatively flat with a ravine in the central portion.

Stratigraphy

In general, the subsurface soil conditions encountered in the test pits advanced as part of this Phase Two ESA (TP23-1 to TP23-14) generally consisted of reworked native soil comprised of sandy silt with some organics from surface to 0.15 m bgs. The native soil extended beyond the depth of investigation in all test pit locations.

Overburden soil in the general area is primarily characterized as clay to silt-textured till. There are also deposits of clay, silt, sand, gravel and may contain organic remains along the watercourse. Bedrock geology consists of shale, limestone, dolostone, and/or siltstone of the Queenston Formation.

Depth to Bedrock

No bedrock was encountered during the investigation. Based on water well records for the area of the Site, shale bedrock is present at approximately 15 m bgs.

Hydrogeological Characteristics

Groundwater flow often reflects topographic features and typically flows toward nearby lakes, rivers, and wetland areas. Based on the topography of the area, it is expected that local groundwater flow direction is towards the ravine located in centre of the Site. As groundwater was not identified as a media of concern, no groundwater monitoring was conducted as part of this Phase Two ESA.

Depth to Groundwater

As groundwater was not identified as a media of concern associated with the APECs, no groundwater monitoring was carried out as part of this investigation.

Based on the 2023 Geotechnical and Hydrogeological Assessment carried out at the adjacent golf course, groundwater ranged in depth from 0.9 m to 5.5 m bgs. The depth to the water table at the Site is anticipated to be similar to that at the adjacent golf course.

Environmentally Sensitive Areas

No provincially significant wetlands (PSWs) were identified on the Site or within the study area. An area of natural and scientific interest (ANSI) was identified within the study area, to the northwest of the Site. The ravine and stream, as well as an approximate 160 m radius around the stream, are considered part of the Natural Heritage System (MNR, 2022). The City of Caledon's zoning by-law identifies the on-Site ravine as an EPA zone. In the southern corner of the Site, there is an unevaluated wetland as well as observed woodlands on the west, south and east adjacent properties (MNR, 2022).

Shallow Soil Property or Water Body

The Site is not considered a shallow soil property as there is approximately 15 m of overburden soil in the area of the Site. A stream is present in the central area of the Site.

Imported Soil

No soil is known to have been imported to the Site.

6.8 Site Condition Standards

The analytical results of the samples collected for this Phase Two ESA were compared to the Table 1 Full Depth Background Site Condition Standards (hereinafter referred to as the Table 1 SCS) for agricultural or other property use as presented in the MECP document *"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act"*, dated April 15, 2011. The applicable site condition standards were selected based on the following rationale:

- The Site is currently used for agricultural purposes. The proposed future land use is residential.
- Groundwater in the vicinity of the Site is used for potable purposes. Based on a due diligence geotechnical and hydrogeological assessment carried out at the adjacent golf course, groundwater ranged in depth from 0.9 m to 5.5 m below ground surface (m bgs). The depth to the water table at the Site is anticipated to be similar to that at the adjacent golf course.
- Based on visual observations made during the field program, the predominant soil type was sandy silt which is inferred to be fine-textured. A grain size determination completed as part of this Phase Two ESA investigation on native soil at TP23-6 indicated the soil to be fine-textured. Additionally, grain size analyses carried out as part of the 2023 Geotechnical and Hydrogeological Report indicated soil at the site to be fine to medium textured. Medium and fine textured soil is defined by Section 42(1) of O. Reg.153/04 as "soil that contains 50 per cent or more by mass of particles that are smaller than 75 micrometres in mean diameter".
- An unevaluated wetland was identified in the southern corner of the Site, and ponds were identified northwest of the Site on Mayfield Golf Course based on a review of Ontario Base Mapping. Based on this, these unevaluated wetlands and ponds were considered an area of potential natural significance. The ravine and stream in the centre of the Site, as well as an approximate 160 m radius around the stream, are considered part of the Natural Heritage System (MNR, 2022).
- The City of Caledon's zoning by-law for the Site consists as agricultural for the fields and an Environmental Policy Area (EPA) zone for the ravine in the centre of the Site. As the Site is within an area of natural significance and/or adjacent to one, the Phase Two Property would meet the conditions of an environmentally sensitive site, as described in Section 41. As a result, and to provide a degree of conservatism, the Table 1 SCS were selected as applicable to the entire Site.
- The pH of soil at the Site is greater than 5 and less than 9.
- No bedrock was encountered during the investigation. Based on water well records for the area of the Site, shale bedrock is approximately 15 m bgs in the area.

6.9 Contaminated Media

Based on the findings of this Phase Two ESA, no contaminated media (i.e. soil) was identified. As stated above, groundwater and sediment were not identified as a media of concern in association with the identified APEC, so no groundwater or sediment sampling was carried out as part of this Phase Two ESA.

6.10 Contaminants Exceeding Applicable Standards at the Site

As noted above, no elevated concentrations were observed with respect to the applicable Table 1 SCS for the Site.

6.11 Description of Areas of Contamination on the Property

Based on the findings of this Phase Two ESA, no contaminated areas (i.e. soil) were identified.

6.12 Potential Influence of Utilities on Contaminant Migration

There are no subsurface structures or buried utilities at the Site. Given the conditions encountered during test pitting and the lab results, as well as the absence of utilities, migration of contaminants at the Site is not considered applicable.

6.13 Contaminant Migration

As stated above, the findings of this Phase Two ESA identified no contaminated media (i.e. soil) on Site. Based on this, no contamination migration is anticipated to occur on Site.

6.14 Meteorological and Climatic Considerations

As no exceedances were identified in soil, meteorological and climatic conditions are not anticipated to have included contaminants at the site.

6.15 Potential Exposure Pathways and Receptors

As stated above, the findings of this Phase Two ESA identified no contaminated media (i.e. soil) on Site. Based on this, no exposure pathways or receptors for contaminated media are expected to be present on Site.

7.0 CONCLUSIONS

The Phase Two ESA investigated the APEC identified in the Phase One ESA conducted by GEMTEC.

Based on the results of the soil samples submitted as part of this Phase Two ESA, no exceedances of the applicable site conditions standard were identified. Based on these findings, no further investigation is considered necessary.

8.0 **REFERENCES**

Ontario Ministry of the Environment (MOE). Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act. April 15, 2011.

Ontario Ministry of Natural Resources and Forestry (MNR). Make a Map: Natural Heritage Areas. Accessed June 2023.

Ontario Regulation 153/04: Records of Site Condition

Phase One Environmental Site Assessment Mayfield Golf Course Redevelopment Site – Southern Parcel, Caledon, Ontario", dated June 8, 2023, prepared by GEMTEC for Mayfield Golf Course Inc.

9.0 LIMITATION OF LIABILITY

This report was prepared for the exclusive use of Mayfield Golf Course Inc. (Mayfield). This report may not be relied upon by any other person or entity without the express written consent of GEMTEC and Mayfield. Nothing in this report is intended to provide a legal opinion. Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. GEMTEC accepts no responsibility for damages, if any, suffered by any third party (other than as noted above) as a result of decisions made or actions based on this report.

The investigation undertaken by GEMTEC with respect to this report and any conclusions or recommendations made in this report reflect the best judgements of GEMTEC based on the site conditions observed during the investigations undertaken at the date(s) identified in the report and on the information available at the time the report was prepared. This report has been prepared for the application noted and it is based, in part, on visual observations made at the site, subsurface investigations at discrete locations and depths and laboratory analyses of specific chemical parameters and material during a specific time interval, all as described in the report. Unless otherwise stated, the findings contained in this report cannot be extrapolated or extended to previous or future site conditions, portions of the site that were unavailable for direct investigation, subsurface locations on the site that were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Chemical parameters other than those addressed by the investigation described in this report may exist in soil and groundwater elsewhere on the site.

This report provides a professional opinion and therefore no warranty is expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

Should new information become available during future work, including excavations, borings or other studies, GEMTEC should be requested to review the information and, if necessary, reassess the conclusions presented herein.

10.0 CLOSURE

The undersigned Qualified Person confirms that he/she was responsible for conducting and/or supervising this Phase Two ESA and the associated findings and conclusions.

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report, please do not hesitate to contact our office.

Regards,

GEMTEC Consulting Engineers and Scientists Limited

ronhouse

Curtis Moorhouse, B.Sc. Environmental Scientist

0 P B SHERRY L. EATON aL PRACTISING MEMBER Sept. 25 2024

Sherry Eaton, M.Sc., P.Geo., PMP, QP_{ESA} Senior Environmental Consultant

APPENDIX A

Figures and Tables

Report to: Mayfield Golf Course Inc. GEMTEC Project: 101987.001 (April 22, 2024)

Folder: N:\Projects\101900\101987.001\Drafting\1. Drawings\ESA TWO R0\101987_001_PhaseOneESA_Steeles_R0_2023_06_05\

	KEY PLAN 1:70,000					
A Management	Mayfield Golf Club Tullamore					
11/1	Banty's Roost Golf and Country Club					
	Pontram Rai Vino					
And the second second	Mayfield					
	Legend					
Sec. and	WETLAND					
100	WATERBODY					
	250 METERS SURROUNDING SITE BOUNDARY					
and the second se	NOTES: 1. Coordinate system: NAD83/ UTM zone 17N. 2. Geographic dataset source: Ontario GeoHub. 3.Contains information licensed under the Open Government Licence – Ontario. 4. Service Layer Credits: World Imagery: Peel Region, Maxar Light Grey Canvas Background: Province of Ontario, Esri Canada, Esri, TomTom, Garmin, SafeGraph, Geo Technologies, Inc, METI/NASA, USGS, EPA, NPS, USDA, NRCan, Parks Canada					
all and	Scale: 1:5,250					
	Meters 0 50 100 200 300 400					
	Drawing SITE LOCATION					
	Client: MAYFIELD GOLF COURSE INC.					
	Project PHASE TWO ENVIRONMENTAL SITE ASSESSMENT MAYFIELD GOLF COURSE REDEVELOPMENT SITE - SOUTH LANDS, CALEDON, ONTARIO					
	Drwn By: C.R. Chkd By: C.M.					
	Project No. 101987.001 Revision No. 0					
	Date APRIL 2024 FIGURE A.1					
and the second second	GENTEC CONSULTING ENGINEERS AND SCIENTISTS GONSULTING ENGINEERS AND SCIENTISTS GONSULTING ENGINEERS AND SCIENTISTS GONSULTING ENGINEERS AND SCIENTISTS GENTEC CONSULTING ENGINEERS AND SCIENTISTS GENTEC CONSULTING ENGINEERS AND SCIENTISTS					

Folder: N:\Projects\101900\101987.001\Drafting\1. Drawings\ESA TWO R0\101987_001_PhaseOneESA_Steeles_R0_2023_06_05\

Legend

- WATERCOURSE

WETLAND

WATERBODY

BOUNDARYSITE_250BUFFER

SUBJECT SITE

NOTES:

1. Coordinate system: NAD83/ UTM zone 17N.

2. Geographic dataset source: Ontario GeoHub.

3.Contains information licensed under the Open Government Licence – Ontario.

4. Service Layer Credits: World Imagery: Peel Region, Maxar

Scale:							
1:5,250							
					Meters		
0	50	100	200	300	400		
Drawing PHASE TWO PROPERTY							
AND PHASE TWO STUDY AREA							
Client:							
MAYFIELD GOLF COURSE INC.							
Project							
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT MAYFIELD GOLF COURSE REDEVELOPMENT SITE - SOUTH LANDS, CALEDON, ONTARIO							
Drwn By	:	C.R.		Chkd By: C.M.			
Project N	^{lo.} 1	01987.0	01	Revision No. 0			
Date	A	PRIL 20)24	FIGURE A	2		
GENTEC Consulting Engineers AND SCIENTISTS GENTEC Consulting Engineers AND SCIENTISTS GENTEC Consulting Engineers Consulting Engineers							

Folder: N:\Projects\101900\101987.001\Drafting\1. Drawings\ESA TWO R0\101987_001_PhaseOneESA_Steeles_R0_2023_06_05\

Legend

- WATERCOURSE
- WETLAND
- WATERBODY
- 250 METERS SURROUNDING SITE BOUNDARY
- SUBJECT SITE

PCA NOTES:

1: #40 Pesticides (including Herbicides, Fungicides and anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications - Site has historically been used for agricultural purposes.

NOTES:

1. Coordinate system: NAD83/ UTM zone 17N.

2. Geographic dataset source: Ontario GeoHub.

 $\label{eq:contains} \mbox{information licensed under the Open Government Licence - Ontario.}$

4. Service Layer Credits: World Imagery: Peel Region, Maxar

Scale:							
1:5,250							
		Meters					
0 50	100 200	300 400					
Drawing							
POTENTIALLY CONTAMINATING ACTIVITIES							
Client:							
MAYFIELD GOLF COURSE INC.							
Project							
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT							
MAYFIELD GOLF COURSE REDEVELOPMENT SITE - SOUTH LANDS,							
CALEDON, ONTARIO							
Drwn By:	C.R.	Chkd By: C.M.					
Project No.	101987.001	Revision No. 0					
Date	APRIL 2024	FIGURE A.3					
GENTEC 6695 Millcreek DR #7, Mississauga, ON L5N 5M4 T: (416) 347-7427							
	CONSULTING ENGINEER	graeme.skinner@gemtec.ca					

Folder: N:\Projects\101900\101987.001\Drafting\1. Drawings\ESA TWO R0\101987_001_PhaseOneESA_Steeles_R0_2023_06_05\

Legend

WATERBODY

- WATERCOURSE

SUBJECT SITE

APEC 1

APEC NOTES:

1: Site has historically been used for agricultural purposes.

NOTES:

1. Coordinate system: NAD83/ UTM zone 17N.

2. Geographic dataset source: Ontario GeoHub.

3.Contains information licensed under the Open Government Licence – Ontario.

4. Service Layer Credits: World Imagery: Peel Region, Maxar, Microsoft

0		
Scale:		
1:3,250		
		Meters
0	50 100	150 200 250
Drawing		
AREAS C	OF POTENTIAL EN	VIRONMENTAL CONCERN
Client:		
	MAYFIELD GOL	F COURSE INC.
Project		
PH	ASE TWO ENVIRONME	ENTAL SITE ASSESSMENT
MAYFIELD	GOLF COURSE REDEV	/ELOPMENT SITE - SOUTH LANDS,
	CALEDON	I, ONTARIO
Drwn By:	C.R.	Chkd By: C.M.
Project No.	-	Revision No.
110,000,110.	101987.001	Revision No. 0
Date	APRIL 2024	FIGURE A.4
-	OFATT	- 6695 Millcreek DR #7,
	GEMTE	Mississauga, ON L5N 5M4
-	CONSULTING ENGINEER	graeme.skinner@gemtec.ca
	AND SCIENTISTS	5 05

Projects/101900/101987.001\Drafting\1. Drawings\ESA TWO

LEGEND

🕂 Test Pit

WaterBody

- Watercourse

APEC 1

SUBJECT SITE

APEC NOTES:

1: Site has historically been used for agricultural purposes.

NOTES:

- 1. Coordinate system: NAD83/ UTM zone 1#N.
- 2. Geographic dataset source: Ontario GeoHub.
- 3. Contains information licensed under the Open Government Licence Ontario.
- 4. Service Layer Credits: World Imagery: Peel Region, Maxar, Microsoft

Scale:						
1:3,250						
1.0,200		_				Meters
0	30	60	120	1	80	240
÷		00	120		100	240
Drawing						
		Т	EST PIT L	OCATI	ONS	
				.00,		
Client:						
		MAYF	IELD GOL	F COU	RSE	INC.
				• • • •		
Project						
,	рην		ENVIRONM			SESSMENT
MAVEI						TE - SOUTH LANDS,
			CALEDON			TE - SOUTH LANDS;
			UALLOUN			
Drwn By	:	C.I	5	Chkd By	<i>'</i> :	C.M.
		0.1	٦.	-		C.IVI.
Project N	۱o.	101987	001	Revision	n No.	0
		101907	.001			0
Date		APRIL	2024		FIG	URE A.5
		/	2024		1.0	
11	~	0.5			30	Steacie Drive
6	1	GH	EMTE	- (-	wa, ON, K2K 2A9
		OL		-0		(613) 836-1422
		Course	TING ENGINEER			ww.gemtec.ca
		AND SCI		15	otta	wa@gemtec.ca

Sample ID: TP23-1 SA1			Sample ID: TP23-2 SA1
Date Sampled (mm/dd/yyyy): 12/01/2023		R	Date Sampled (mm/dd/yyyy): 12/01/2023
Sample Depth (mbgs): 0.00 - 0.15			Sample Depth (mbgs): 0.00 - 0.15
Parameters Sampled Metals, OCP, pH			Parameters Sampled Metals, OCP, p
		Contraction of the second seco	r arameters Sampled Metals, OCI, p
Sample ID: TP23-4 SA1	DUP 1		Sample ID: TP23-3 SA1
Date Sampled (mm/dd/yyyy): 12/01/2023	12/01/2023		Date Sampled (mm/dd/yyyy): 12/01/2023
Sample Depth (mbgs): 0.00 - 0.15	0.00 - 0.15		Sample Depth (mbgs): 0.00 - 0.15
Parameters Sampled Metals, OCP, pH	Metals, OCP, pH		Parameters Sampled Metals, OCP, p
Sample ID: TP23-7 SA1		TP23-1	Sample ID: TP23-5 SA1
Date Sampled (mm/dd/yyyy): 12/01/2023			Date Sampled (mm/dd/yyyy): 12/01/2023
Sample Depth (mbgs): 0.00 - 0.15	1		Sample Depth (mbgs): 0.00 - 0.15
Parameters Sampled Metals, OCP, pH	SOp 14 3	ТР23-2	Parameters Sampled Metals, OCP, p
Sample ID: TP23-9 SA1		23-4	
Date Sampled (mm/dd/yyyy): 12/01/2023			
Sample Depth (mbgs): 0.00 - 0.15			
Parameters Sampled Metals, OCP, pH		TP23-5	23-3
arameters campled interais, oor, pri	TP23-7		
A CALL AND A	ALC DE ALCONT	TP23-6	
		\sim	
	P23-9	\sim	
	P23-9		
	P23-9	TP23-8	Sample ID: TP23-6 SA1
	P23-9 TP23-10	TP23-8	Sample ID: TP23-6 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023
Тр23-12		TP23-8	Date Sampled (mm/dd/yyyy): 12/01/2023
- Alexandre		TP23-8	Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15
TP23-12	TP23-10		Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15
TP23-12			Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15
TP23-12	TP23-10		Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample ID: TP23-8 SA1
TP23-12	TP23-10 TP23-1 P23-13		Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample ID: TP23-8 SA1
TP23-12 TP23-12 T Sample ID: TP23-12 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023	TP23-10		Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample ID: TP23-8 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15
TP23-12 TP23-12 TE Sample ID: TP23-12 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15	TP23-10 TP23-1 P23-13 TP23-14		Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):Date Sampled0.00 - 0.15Parameters SampledMetals, OCP, pSample ID:TP23-8 SA1Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):Sample Depth (mbgs):0.00 - 0.15Parameters SampledMetals, OCP, p
TP23-12 TP Sample ID: TP23-12 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH	TP23-10 TP23-1 P23-13 TP23-14		Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):0.00 - 0.15Parameters SampledMetals, OCP, pSample ID:TP23-8 SA1Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):0.00 - 0.15Parameters SampledMetals, OCP, pSample ID:TP23-10 SA1
TP23-12 TE Sample ID: TP23-12 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH Sample ID: TP23-13 SA1	TP23-10 TP23-1 P23-13 TP23-14		Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample ID: TP23-8 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample ID: TP23-10 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023
TP23-12 TP23-12 T Sample ID: TP23-12 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled (mm/dd/yyy): 0.00 - 0.15 Sample ID: TP23-13 SA1 Date Sampled (mm/dd/yyy): 12/01/2023	TP23-10 TP23-1 P23-13 TP23-14		Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):0.00 - 0.15Parameters SampledMetals, OCP, pSample ID:TP23-8 SA1Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):0.00 - 0.15Parameters SampledMetals, OCP, pSample ID:TP23-10 SA1Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):Sample ID:TP23-10 SA1Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):Sample Depth (mbgs):0.00 - 0.15
TP23-12 Tr Sample ID: TP23-12 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH Sample ID: TP23-13 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15	TP23-10 TP23-13 TP23-14		Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):0.00 - 0.15Parameters SampledMetals, OCP, pSample ID:TP23-8 SA1Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):0.00 - 0.15Parameters SampledMetals, OCP, pSample ID:TP23-10 SA1Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):Sample ID:TP23-10 SA1Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):Sample Depth (mbgs):0.00 - 0.15
TP23-12 Tr Sample ID: TP23-12 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH Sample ID: TP23-13 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15	TP23-10 TP23-13 TP23-14		Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):0.00 - 0.15Parameters SampledMetals, OCP, pSample ID:TP23-8 SA1Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):0.00 - 0.15Parameters SampledMetals, OCP, pSample ID:TP23-10 SA1Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):Sample ID:TP23-10 SA1Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):Sample Depth (mbgs):0.00 - 0.15
TP23-12 T Sample ID: TP23-12 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH Sample ID: TP23-13 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH	TP23-10 TP23-13 TP23-14		Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample ID: TP23-8 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample ID: TP23-10 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample ID: TP23-10 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p
TP23-12 Tr Sample ID: TP23-12 SA1 Date Sampled (mm/dd/yyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH Sample ID: TP23-13 SA1 Date Sampled (mm/dd/yyy): 12/01/2023 Sample ID: TP23-13 SA1 Date Sampled (mm/dd/yyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH	TP23-10 TP23-13 TP23-14 TP23-14 DUP 2		Date Sampled (mm/dd/yyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample ID: TP23-8 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample ID: TP23-10 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample ID: TP23-10 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p
TP23-12 TP23-12 Sample ID: TP23-12 SA1 Date Sampled (mm/dd/yyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH Sample ID: TP23-13 SA1 Date Sampled (mm/dd/yyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH Sample Depth (mbgs): 0.01 - 0.15 Parameters Sampled Metals, OCP, pH	TP23-10 TP23-13 TP23-14 TP23-14 DUP 2 12/01/2023		Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample ID: TP23-8 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample ID: TP23-10 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, p Sample ID: TP23-11 SA1 Date Sampled (mm/dd/yyyy): 12/01/2023
TP23-12 T Sample ID: TP23-12 SA1 Date Sampled (mm/dd/yyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH Sample ID: TP23-13 SA1 Date Sampled (mm/dd/yyy): 12/01/2023 Sample Depth (mbgs): 0.00 - 0.15 Parameters Sampled Metals, OCP, pH	TP23-10 TP23-13 TP23-14 TP23-14 DUP 2		Date Sampled (mm/dd/yyy):12/01/2023 Sample Depth (mbgs):0.00 - 0.15Parameters SampledMetals, OCP, pSample ID:TP23-8 SA1 Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):Date SampledMetals, OCP, pSample ID:TP23-10 SA1 Date Sampled (mm/dd/yyyy):12/01/2023 Sample ID:Sample ID:TP23-10 SA1 Date Sampled (mm/dd/yyyy):12/01/2023 Sample Depth (mbgs):0.00 - 0.15 Date Sampled (mm/dd/yyyy):Sample Depth (mbgs):0.00 - 0.15 Metals, OCP, pSample Depth (mbgs):0.00 - 0.15 Metals, OCP, pSample Depth (mbgs):0.00 - 0.15 Metals, OCP, p

LEGEND

Test Pit Meets Table 1 Standards

WaterBody

- Watercourse

SUBJECT SITE

SAMPLE NOTES:

1. Samples were compared to the Table 1 Full Depth Background Site Condition Standards (SCS) for Agricultural or Other Property Use.

2. Metals - metals parameters as per O.Reg. 153/04 including hydride forming metals (antimony, arsenic, selenium)

3. OCP – Organochlorine Pesticides

MAP NOTES:

- 1. Coordinate system: NAD83/ UTM zone 17N.
- 2. Geographic dataset source: Ontario GeoHub.
- 3. Contains information licensed under the Open Government Licence Ontario.
- 4. Service Layer Credits: World Imagery: Peel Region, Maxar

Scale:						
1:5,000						
				Meters		
0 4	5 90	180	270	360		
Drawing	SO	IL ANALYT	ICAL RES	JLTS -		
		METALS	, OCP & PI	4		
Client:						
	MAYF	IELD GOLF	COURSE	INC.		
Project						
		ENVIRONME				
MAYFIEL	D GOLF COL			SITE - SOUTH LANDS,		
		CALEDON,	ONTARIO			
Drwn By:	C.I	२.	Chkd By: C.M.			
Project No	^{5.} 101987	.001	Revision No. 0			
Date	APRIL	2024	FIG	GURE A.6		
1	0		0	32 Steacie Drive		
	🗕 (🕂	MTE	• Ott	awa, ON, K2K 2A9		
			10	el: (613) 836-1422		
		TING ENGINEERS		www.gemtec.ca tawa@gemtec.ca		
	AND SCI	ENTISTS		analogenneenea		

TABLE A.1 SUMMARY OF SOIL SAMPLES SUBMITTED FOR ANALYSIS Mayfield Golf Course Redevelopment - South Lands, Caledon, Ontario

Location ID	Sample ID	Date	Sample Depth (mbgs)	Headspace Screening Result (HEX, ppm)	Soil Description	Analyses Completed
TP23-1	TP23-1 SA1	01-Dec-23	0.00 - 0.15	35	Sandy silt, some organics	Metals, OCP, pH
TP23-2	TP23-2 SA1	01-Dec-23	0.00 - 0.15	30	Sandy silt, some organics	Metals, OCP, pH
TP23-3	TP23-3 SA1	01-Dec-23	0.00 - 0.15	25	Sandy silt, some organics	Metals, OCP, pH
TP23-4	TP23-4 SA1	01-Dec-23	0.00 - 0.15	35	Sandy silt, some organics	Metals, OCP, pH
	DUP 1	01-Dec-23	0.00 - 0.15		Sandy silt, some organics	Metals, OCP, pH
TP23-5	TP23-5 SA1	01-Dec-23	0.00 - 0.15	40	Sandy silt, some organics	Metals, OCP, pH
TP23-6	TP23-6 SA1	01-Dec-23	0.00 - 0.15	40	Sandy silt, some organics, trace gravel	Metals, OCP, pH
TP23-7	TP23-7 SA1	01-Dec-23	0.00 - 0.15	25	Sandy silt, some organics	Metals, OCP, pH
TP23-8	TP23-8 SA1	01-Dec-23	0.00 - 0.15	35	Sandy silt, some organics, trace gravel	Metals, OCP, pH
TP23-9	TP23-9 SA1	01-Dec-23	0.00 - 0.15	50	Sandy silt, some organics	Metals, OCP, pH
TP23-10	TP23-10 SA1	01-Dec-23	0.00 - 0.15	45	Sandy silt, some organics	Metals, OCP, pH
TP23-11	TP23-11 SA1	01-Dec-23	0.00 - 0.15	40	Sandy silt, some organics	Metals, OCP, pH
TP23-12	TP23-12 SA1	01-Dec-23	0.00 - 0.15	40	Sandy silt, some organics	Metals, OCP, pH
TP23-13	TP23-13 SA1	01-Dec-23	0.00 - 0.15	50	Sandy silt, some organics	Metals, OCP, pH
TP23-14	TP23-14 SA1	01-Dec-23	0.00 - 0.15	35	Sandy silt, some organics	Metals, OCP, pH
	DUP 2	01-Dec-23	0.00 - 0.15	-	Sandy silt, some organics	Metals, OCP, pH

Notes:

m bgs = metres below ground surface

OCP = organochlorine pesticides

metals = O.Reg. 153/04 metals and hydride forming metals

ppm = parts per million

			Laboratory	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT	AGAT
				TP23-1 SA1	TP23-2 SA1	TP23-3 SA1	TP23-4 SA1	Dup-1	TP23-5 SA1	TP23-6 SA1	TP23-7 SA1	TP23-8 SA1	TP23-9 SA1	TP23-10 SA1	TP23-11 SA1	TP23-12 SA1	TP23-13 SA1	TP23-14 SA1	Dup-2
			Sample ID					(Duplicate of											(Duplicate of
Contaminants of Concern	MECP Table 1 Agri or	MDL						TP23-4 SA1)											TP23-14 SA1)
	Other Property Use		Sample Depth	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs	0.0-0.15 m bgs
			Lab ID	5511166	5511167	5511168	5511169	5511180	5511170	5511171	5511172	5511173	5511174	5511175	5511176	5511177	5511178	5511179	5511181
			Sampling Date	12/01/2023	12/01/2023	12/01/2023	12/01/2023	12/01/2023	12/01/2023	12/01/2023	12/01/2023	12/01/2023	12/01/2023	12/01/2023	12/01/2023	12/01/2023	12/01/2023	12/01/2023	12/01/2023
			Units																
Metals and Hydride-Forming M	letals - Soil																		
Antimony	1	0.8	µg/g	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic Barium	11 210	2.0	µg/g	4 101	5 86.2	3 82.7	5 84	4 84.9	4 86.6	3 79.9	4 72	4 63.2	5 91.8	4 81.9	3 55.2	4 82.5	4 83	4 101	4 104
Beryllium	2.5	0.5	hð\ð	101	0.9	0.7	0.9	0.9	0.9	0.8	0.8	0.7	91.0	0.9	0.6	0.9	0.9	101	104
Boron	36	5	µg/g	10	10	<5	8	9	8	8	8	7	10	9	<5	7	10	10	11
Cadmium	1	0.5	µg/g	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5
Chromium	67	5	µg/g	30	26	24	26	28	27	25	24	21	29	26	18	26	25	29	31
Cobalt	19	0.8	hð/ð	11.6	11.6	8.2	11.1	11.3	8.5	9.3	9.7	7.4	9.6	8.6	6.8	8.4	8.4	9.7	10.1
Copper	62	1.0	µg/g	17 17	20.9	14.6	17	16.8	16.3 15	18 14	18.9	16.8	19.2	19.1 14	14.7 11	15 14	22.2 15	16.4	17.4
Lead Molybdenum	45	0.5	hð\d hð\d	0.5	0.5	16 <0.5	16 <0.5	21 <0.5	15 <0.5	14 <0.5	14	12 <0.5	14 <0.5	<0.5	<0.5	14 <0.5	<0.5	15 <0.5	16 <0.5
Nickel	37	1	μg/g	24	23	18	22	22	20	20	20	17	21	20	15	19	21	21	22
Selenium	1.2	0.8	µg/g	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	0.5	0.5	µg/g	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	1	0.5	µg/g	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	1.9 86	0.50	µg/g	0.71 43.8	0.65	0.63	0.63	0.62	0.71 39.5	0.59	0.64	< 0.50	0.78 43.8	0.76	0.58	0.66 38.3	0.98	0.87	0.9
Vanadium Zinc	290	2.0	hð\ð	43.8	38.2 95	33 72	39.8 87	40.5 85	39.5 81	34.5 77	37.4 72	32.8 56	43.8 93	83	27.1 53	38.3	35.8 86	42.7 80	46 82
Other Regulated Parameters -		0	P9/9	01	00	12	01	00	01		12	00	00	00	00		00	00	02
pH @25°C	Surface Soil: 5-9 Subsurface Soil: 5-11	NS	pH Units	6.87	6.98	6.87	6.64	6.67	6.56	7.09	6.53	6.84	7.42	7.01	7	6.78	6.71	6.82	6.6
Organochlorine Pesticides -So	il						•			•									
Aldrin	0.05	0.005	µg/g	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005
A-Chlordane	NS	0.005	µg/g	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
G-Chlordane	NS	0.005	µg/g	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Chlordane op-DDD	0.05 NS	0.007	hð\ð	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
pp-DDD	NS	0.005	µg/g	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
Total DDD	0.05	0.007	µg/g	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
o,p-DDE	NS	0.005	µg/g	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005
pp-DDE	NS	0.005	µg/g	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total DDE	0.05	0.007	µg/g	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005
op-DDT pp-DDT	NS NS	0.005	µg/g ug/g	<0.007 <0.005	<0.007 <0.005	< 0.007	<0.007 <0.005	<0.007 <0.005	< 0.007	< 0.007	<0.007 <0.005	<0.007	< 0.007	<0.007 <0.005	<0.007 <0.005	<0.007 <0.005	< 0.007	<0.007	<0.007
Total DDT	0.078	0.007	µg/g	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005
Dieldrin	0.05	0.005	µg/g	<0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	<0.007
Heptachlor	0.05	0.005	μg/g	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005
Heptachlor Epoxide	0.05	0.005	µg/g	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	0.01	0.005	µg/g	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Hexachlorobutadiene	0.01	0.01	µg/g	<0.005	<0.005 <0.005	<0.005	< 0.005	<0.005 <0.005	< 0.005	<0.005	<0.005 <0.005	<0.005	<0.005	<0.005 <0.005	<0.005	<0.005 <0.005	<0.005 <0.005	< 0.005	<0.005 <0.005
Hexachlorocyclohexane Gamma- Hexachloroethane	0.01	0.005	µg/g µg/g	<0.005	< 0.005	<0.005	<0.005 <0.007	<0.005	<0.005 <0.007	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005
Endosulfan I	NS	0.005	µg/g	< 0.005	<0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	<0.007	< 0.007	< 0.007	< 0.007	<0.007	< 0.007	< 0.007	<0.007
Endosulfan II	NS	0.005	µg/g	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
Endosulfan	0.04	0.005	µg/g	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005
Endrin	0.04	0.005	hð\ð	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
Methoxychlor	0.05	0.005	µg/g	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01

Notes: MDL - Method Detection Limit or Reporting Limit 'mbgs' - Metres Below Ground Surface 'NS' - No Standard 'NA' - Not Analyzed <' - Non-Detect Sample MECP Table 1 SCS: Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 1: Full Depth Background Site Condition Standards, Agriculture or Other Property Use with Coarse and Fine textured soils (MECP, 2011). Yellow Highlight - Exceeds MECP Table 1 SCS

APPENDIX B

Sampling and Analysis Plan

Report to: Mayfield Golf Course Inc. GEMTEC Project: 101987.001 (April 22, 2024)

File: 101987.001

November 29, 2023

Attention: Field Staff

Re: Sampling and Analysis Plan Mayfield Golf Course Redevelopment Site – South Lands, Caledon, Ontario

OBJECTIVE

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by Mayfield Golf Course Inc. to carry out a Phase Two Environmental Site Assessment (ESA) of the property referred to as the "South Lands" located south of the Mayfield Golf Course in Caledon, Ontario. The South Lands does not have a civic address of its own and it is located directly south of the golf course located at 12580 and 12552 Torbram Road in Caledon, Ontario. It is understood that the Phase Two ESA is required in support of the proposed residential development of the South Lands as part of the proposed redevelopment of the golf course.

The intent of the current investigation is to examine for potential soil impacts at the Site in association with the areas of potential environmental concern (APECs) identified via the recent Phase One ESA.

BACKGROUND

GEMTEC previously completed a Phase One ESA for the Site, the results of which were documented in the report titled *"Phase One Environmental Site Assessment Mayfield Golf Course Redevelopment Site – Southern Parcel , Caledon, Ontario",* dated June 8, 2023. Based on the findings of the Phase One ESA, GEMTEC has prepared this SAP. The Phase One ESA identified one APEC, as outlined below.

Area of Potential Environmental Concern	Location of APECs on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-Site or off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
APEC 1 – Site has historically been used for agricultural purposes.	On the north and south fields	#40: Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On-Site	Metals, OCP	Soil

Notes:

Metals - metals parameters as per O.Reg. 153/04 including hydride forming metals (antimony, arsenic, selenium) OCP – Organochlorine Pesticides

GENERAL REQUIREMENTS

- Follow standard operating procedures. All work is to be completed assuming a Record of Site Condition will be required;
- Complete a Daily Log for every day of field work. Use standard field forms;
- Pick up ice before sampling and keep samples on ice;
- Clean disposable Nitrile[™] gloves will be used at each sampling location to prevent crosscontamination;
- All non-dedicated sampling equipment (e.g., shovel) will be decontaminated between sampling locations. Sampling equipment in contact with soil, groundwater, or sediment will be cleaned with a brush; washed with a laboratory-grade detergent solution (e.g., phosphate-free AlcoNox) and thoroughly rinsed with analyte-free water.
- Please let the Project manager know if the schedule is going off-track.

TEST PIT SAMPLING

- Using a shovel, dig a shallow test pit to a depth of 0.15 m (6 inches) below ground surface (bgs) at each of the locations shown on the attached figure.
- Collect a sample representative of the soil from ground surface to 0.15 m bgs. Split the sample into two components one for field screening and one for submission to the lab.
- Screen soil samples for field evidence of potential impact, including odour, visible staining, and debris.
- Select soil samples from the test pits will be submitted for laboratory chemical analysis based on a 5 to 7 day turn around time. The number of samples to be submitted is summarized in the table below. Based on observations and field screening completed during the investigation, additional samples may be recommended for laboratory testing.
- Testing locations will be documented using GPS methods.
- Record soil stratigraphy and observations on soil type, presence/absence of debris and passive odour on "Field Log Test Pit".
- Collect samples using a decontaminated shovel/clean gloved hand and make notes of visual characterization (soil type, odour, staining);
- The table below provides a summary of the sampling and analytical program. Submit samples to AGAT Laboratory following the chain of custody procedures provided below.

Test Pit Sample ID	Rationale	Sample depth (metres)	Soil Analysis for samples submitted	Duplicate Soil Samples
TP23-1		0.0 to 0.15		
TP23-2		0.0 to 0.15		
TP23-3		0.0 to 0.15		
TP23-4		0.0 to 0.15		2 duplicates for Metals, OCPs and pH (any location)
TP23-5		0.0 to 0.15	Submit 1 sample	
TP23-6		0.0 to 0.15	from each test pit (14 total) for Metals, OCPs and pH *Submit 1 of the 14	
TP23-7	APEC 1 – Site has historically been used	0.0 to 0.15		
TP23-8	for agricultural	0.0 to 0.15		
TP23-9	purposes.	0.0 to 0.15	samples additionally for	
TP23-10		0.0 to 0.15	grain size analysis	
TP23-11		0.0 to 0.15		
TP23-12		0.0 to 0.15		
TP23-13		0.0 to 0.15		
TP23-14		0.0 to 0.15		

CHAIN-OF-CUSTODY

- Prior to any sample submission to the laboratory, please send a copy/ picture of the chainof-custody to Curtis and Sherry for review.
- Relevant project and invoice details for the chain-of-custody are noted in Table below.

Chain-of-Custody Item	Information
Analytical Laboratory	AGAT Laboratories, 5835 Coopers Ave, Mississauga, ON L4Z 1Y2
Generic Site Condition Standards	MECP, Table 1, Agric/Other
Use Record of Site Condition analytical procedures	yes

Regular (5-7 days)
nerry.eaton@gemtec.ca/ is.moorhouse@gemtec.ca

MANAGEMENT OF INVESTIGATION DERIVED WASTE

• Waste soil to be discharged to the ground surface on-Site (reuse to fill in test pits after sampling).

SPECIAL INSTRUCTIONS

- Please prepare a field log for all the test pits.
- At the end of the field program, scan all project related notes and place in job folder as soon as possible. Scan field notes at resolution and contrast settings that ensure the scanned documents are easily legible.
 - Save field notes (including daily logs, field forms, field logs, calibration records, and chain of custody documents)
 - Sort pages in the .pdf document by form type and in chronological order with daily logs at the front to simplify review.
 - Send the field note package to Curtis and Sherry for review and comment.

APPENDIX C

Record of Test Pits Grain Size Curves

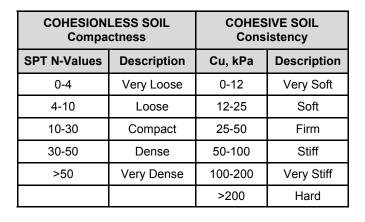
Report to: Mayfield Golf Course Inc. GEMTEC Project: 101987.001 (April 22, 2024)

ABBREVIATIONS AND TERMINOLOGY USED ON RECORDS OF BOREHOLES AND TEST PITS

	SAMPLE TYPES
AS	Auger sample
CA	Casing sample
CS	Chunk sample
BS	Borros piston sample
GS	Grab sample
MS	Manual sample
RC	Rock core
SS	Split spoon sampler
ST	Slotted tube
то	Thin-walled open shelby tube
TP	Thin-walled piston shelby tube
WS	Wash sample

PENETRATION RESISTANCE

Standard Penetration Resistance, N


The number of blows by a 63.5 kg (140 lb) hammer dropped 760 millimetres (30 in.) required to drive a 50 mm split spoon sampler for a distance of 300 mm (12 in.). For split spoon samples where less than 300 mm of penetration was achieved, the number of blows is reported over the sampler penetration in mm.

Dynamic Penetration Resistance

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive a 50 mm (2 in.) diameter 60° cone attached to 'A' size drill rods for a distance of 300 mm (12 in.).

WH	Sampler advanced by static weight of hammer and drill rods
WR	Sampler advanced by static weight of drill rods
РН	Sampler advanced by hydraulic pressure from drill rig
РМ	Sampler advanced by manual pressure

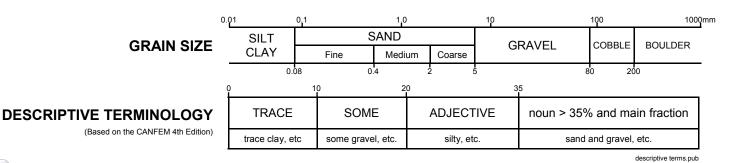
	SOIL TESTS
w	Water content
PL, w _p	Plastic limit
LL, w_L	Liquid limit
С	Consolidation (oedometer) test
D _R	Relative density
DS	Direct shear test
Gs	Specific gravity
М	Sieve analysis for particle size
MH	Combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	Organic content test
UC	Unconfined compression test
Y	Unit weight

BOULDER

PIPE WITH BENTONITE

SCREEN WITH SAND

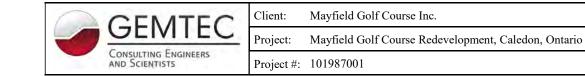
SAND



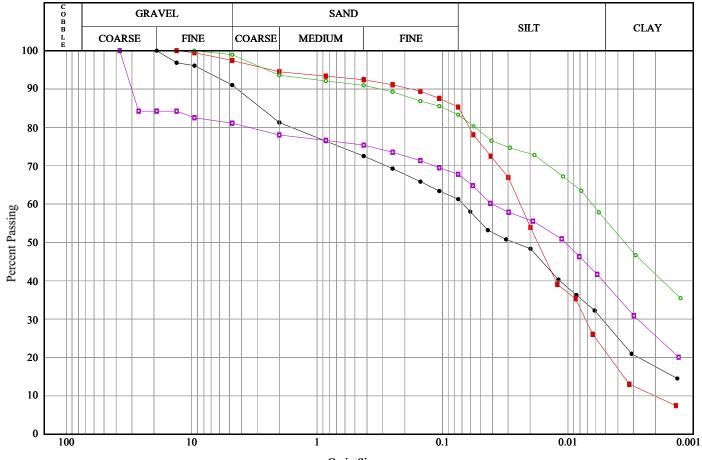
SILT

ORGANICS

 ∇ GROUNDWATER LEVEL


Record of Test Pits Phase Two ESA, Mayfield Golf Course Redevelopment South Lands, Ontario

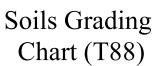

TEST PIT ID	DEPTHS (mbgs)	SAMPLE DATE	SOIL DESCRIPTION	SAMPLE DEPTH (mbgs)	SAMPLE ID	Headspace Readings (ppm) (combustible vapours)	Parameters Analysed
TP23-1	0.0 - 0.15	2023/12/01	SANDY SILT, some organics, brown, moist	0.0 - 0.15	TP23-1 SA1	35	Metals, OCPs, pH
TP23-2	0.0 - 0.15	2023/12/01	SANDY SILT, some organics, brown, moist	0.0 - 0.15	TP23-2 SA1	30	Metals, OCPs, pH
TP23-3	0.0 - 0.15	2023/12/01	SANDY SILT, some organics, brown, moist	0.0 - 0.15	TP23-3 SA1	25	Metals, OCPs, pH
TP23-4	0.0 - 0.15	2023/12/01	SANDY SILT, some organics, brown, moist	0.0 - 0.15	TP23-4 SA1 DUP 1	35	Metals, OCPs, pH
TP23-5	0.0 - 0.15	2023/12/01	SANDY SILT, some organics, brown, moist	0.0 - 0.15	TP23-5 SA1	40	Metals, OCPs, pH
TP23-6	0.0 - 0.15	12/1/2023	SANDY SILT, some organics, trace gravel, brown, moist	0.0 - 0.15	TP23-6 SA1	40	Metals, OCPs, pH, Grain Size
TP23-7	0.0 - 0.15	12/1/2023	SANDY SILT, some organics, brown, moist	0.0 - 0.15	TP23-7 SA1	25	Metals, OCPs, pH
TP23-8	0.0 - 0.15	12/1/2023	SANDY SILT, some organics, trace gravel, brown, moist	0.0 - 0.15	TP23-8 SA1	35	Metals, OCPs, pH
TP23-9	0.0 - 0.15	12/1/2023	SANDY SILT, some organics, brown, moist	0.0 - 0.15	TP23-9 SA1	50	Metals, OCPs, pH
TP23-10	0.0 - 0.15	12/1/2023	SANDY SILT, some organics, brown, moist	0.0 - 0.15	TP23-10 SA1	45	Metals, OCPs, pH
TP23-11	0.0 - 0.15	12/1/2023	SANDY SILT, some organics, brown, moist	0.0 - 0.15	TP23-11 SA1	40	Metals, OCPs, pH
TP23-12	0.0 - 0.15	12/1/2023	SANDY SILT, some organics, brown, moist	0.0 - 0.15	TP23-12 SA1	40	Metals, OCPs, pH
TP23-13	0.0 - 0.15	12/1/2023	SANDY SILT, some organics, brown, moist	0.0 - 0.15	TP23-13 SA1	50	Metals, OCPs, pH
TP23-14	0.0 - 0.15	12/1/2023	SANDY SILT, some organics, brown, moist	0.0 - 0.15 0.0 - 0.15	TP23-14 SA1 DUP 2	35	Metals, OCPs, pH

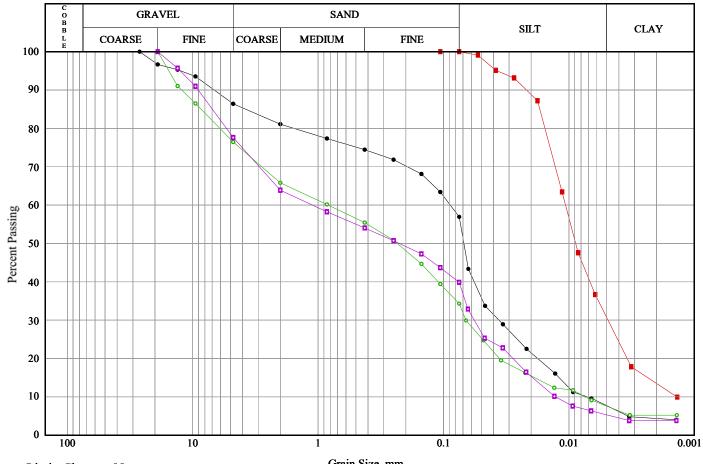

Project Number: 101987.001 Test Pit Locations: See Figure A.5

Metals: Metals including hydride-forming metals OCPs: Organochlorine Pesticides

ppm: parts per million

Limits Shown: None


Line Symbol	Sample			Borehole/ Sample Test Pit Number		-	Depth			% Cob.+ Gravel		% ind	% Sil		% Clay						
	(CL-ML) Sandy SILTY CLAY to CLAYEY SILT TILL	o BH23-		BH23-02		BH23-02		A-06		4.6-5.0		9.0	29	9.7	32.	4	28.9				
	(ML) Sandy SILT	BH23-		BH23-02		BH23-02		SA-10		10.7-10.8		2.5	12	2.2	63.	9	21.4				
o	(CL) SILTY CLAY	BH23-		-05	SA	A-0 8		7.6-8.1		1.0		5.7 27		5	55.8						
0	(CL) Gravelly sandy SILTY CLAY TILL	Η	BH23-		BH23-06D		SA-08			7.6-8.0	1	18.9		13.3		6	39.2				
Line Symbol	CanFEM Classification	USCS Symbol				D ₁	0	D ₁₅		D ₃₀	D ₅₀	D	60	D	85	% :	5-75µm				
•	Clayey sand and silt, trace gravel	N	N/A		- 0.00			0.01	0.03	0.	07	2.	78		32.4						
	Clayey silt, some sand, trace gravel	N/A		/A 0.0		0.00		0.01	0.02	0.	02	0.	07		63.9						
o	Silty clay, some sand, trace gravel	N/A		/A									0.00	0.	01	0.	10		27.5		
	Silty clay, some gravel, some sand	C	CL		JL		L		L		-			0.00	0.01	0.	04	26.	.95		28.6



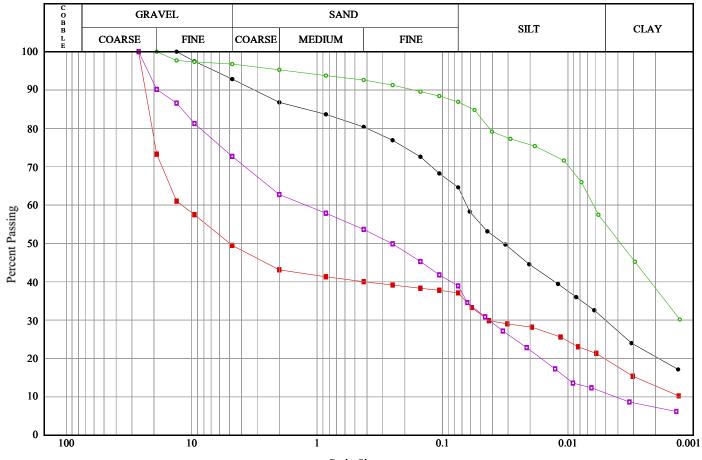
t: Mayfield Golf Course Inc.

Project: Mayfield Golf Course Redevelopment, Caledon, Ontario

Project #: 101987001

Limits Shown: None	e
--------------------	---

Grain S	bize,	mm
---------	-------	----


Line Symbol	Sample	Borehole/ Test Pit	Sample Number	Depth	% Cob.+ Gravel	% Sand	% Silt	% Clay
	(ML) Gravelly Sandy SILT	BH23-06D	SA-11	12.2-12.5	13.6	29.5	49.2	7.7
	(ML) SILT	BH23-10D	SA-08	7.6-8.1	0.0	0.0	69.3	30.7
_	(SM) Gravelly SILTY SAND	BH23-12	SA-04	2.3-2.6	23.6	42.2	26.7	7.6
	(SM) Gravelly SILTY SAND	BH23-12	SA-07	6.1-6.2	22.4	37.8	34.6	5.3

Line Symbol	CanFEM Classification	USCS Symbol	D ₁₀	D ₁₅	D ₃₀	D ₅₀	D ₆₀	D ₈₅	% 5-75µm
- _	Sandy silt, some gravel , trace clay	N/A	0.01	0.01	0.04	0.07	0.09	3.78	49.2
	Clayey silt, trace sand	N/A	0.00	0.00	0.00	0.01	0.01	0.02	69.3
o	Gravelly silty sand, trace clay	N/A	0.01	0.02	0.07	0.23	0.83	8.57	26.7
0	Gravelly silty sand, trace clay	N/A	0.01	0.02	0.06	0.23	1.11	6.97	34.6

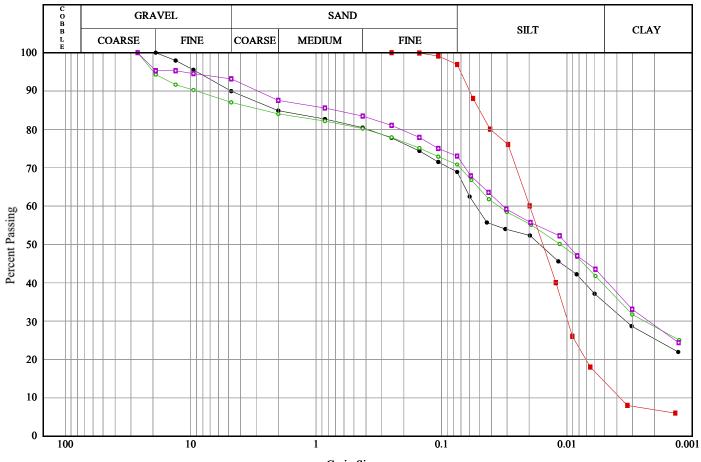
Client: Mayfield Golf Course Inc.

Project: Mayfield Golf Course Redevelopment, Caledon, Ontario Soils Grading Chart (T88)

Limits Shown: None

Grain	Size,	mm
-------	-------	----

Line Symbol	Sample		Boreh Test		Sample Number		- 1		% Co Gra						% Clay										
	(CL-ML) Sandy SILTY CLAY t CLAYEY SILT TILL	0	BH23 17D/S		SA		1	6.1-6.6	7.	2	28	.2	34.	7	30.0										
	(GM/GP) Sandy SILTY GRAVEL T	TILL	ILL BH23		5A-11		1	2.2-12.4	50	.5	12	.4	17.	3	19.8										
o	(CL) SILTY CLAY		BH23-		SA	A- 07		6.1-6.6	3.	3.2		.8 31		9	55.1										
0	(SM) Gravelly SILTY SAND		BH23	8-19	19 SA-09		9.1-9.4		27	.3	33.8		28.	0	11.0										
Line Symbol	CanFEM Classification		USCS Symbol						0	D ₁₅		D ₃₀	D ₅₀	De	60	D	35	% 5	5-75µm						
	Clayey sand and silt, trace gravel	CL	L-ML -					0.01	0.03	0.0)6	1.2	23	,	34.7										
	Gravel, some sand, some silt, some clay	N	N/A		N/A		J/A					0.04	4.97	12.	01 21		.98 17.		17.3						
— •—	Silty clay, trace gravel, trace sand	(CL		CL		CL		CL		CL		CL		-				0.00	0.0)1	0.0	06		31.9
	Gravel and sand and silt, some clay	[CL N/A		0.00		0.00		0.00					T											



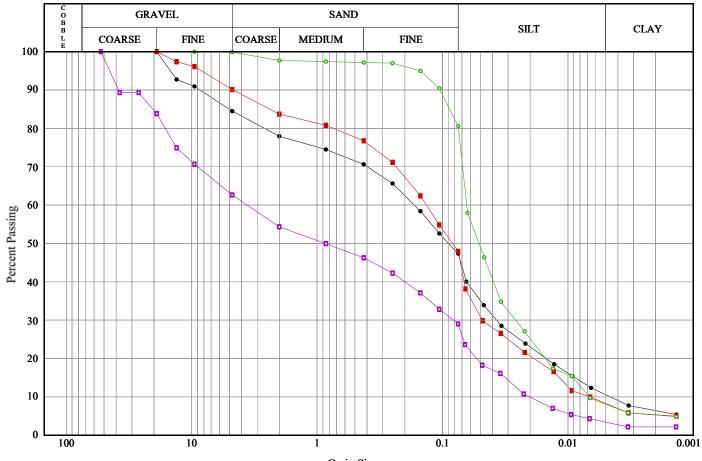
t: Mayfield Golf Course Inc.

101987001

oject: Mayfield Golf Course Redevelopment, Caledon, Ontario

Soils Grading Chart (T88)

Limits Shown: Non	e
-------------------	---


Grain Size, mm

Line Symbol	Sample		Borehole/ Samp Test Pit Num		-	Depth	% Co Gra		% Sand	% Sil		% Clay												
•	(CL) Sandy SILTY CLAY TILL	- BH	BH23-20		BH23-20		\-0 7	6.1-6.6	10	.0	21.1	34.	.1	34.8										
_	(ML) SILT	BH2	BH23-21D		H23-21D		\-0 8	7.6-8.1	0.	0	3.1	82.	.8	14.1										
o	(CL) Sandy SILTY CLAY		H23- D/S	SA	SA-07 6.1-6.6 12.9		.9	16.2	31.	.6	39.2													
	(CL) Sandy SILTY CLAY TILL	,	BH23- 23D/S		\- 07	6.1-6.6	6.	8	20.2	32.	.1	40.9												
Line Symbol	CanFEM Classification	USCS Symbol	D,	10	D ₁₅	D ₃₀	D ₅₀	D ₆	0 I	85	% 5-	-75µm												
•	Clayey sand and silt, some gravel	CL	CL			0.00	0.02	0.0	5 2	.04	3.	4.1												
	Silt, some clay, trace sand	N/A	J/A 0.0		0.00		0.01	0.01	0.02	0.0	2 0).05		2.8										
o	Silty clay, some gravel, some sand	N/A	¥			0.00	0.01	0.0	4 2	.63	3	1.6												
0	Sandy silty clay, trace gravel	CL	CL		CL		L		L		L		L					0.00	0.01	0.0	3 0	.70	32	2.1

Mayfield Golf Course Inc.

Project: Mayfield Golf Course Redevelopment, Caledon, Ontario Soils Grading Chart (T88)

Limits Shown: None

Line Symbol	Sample	Borehole/ Test Pit	Sample Number	Depth	% Cob.+ Gravel	% Sand	% Silt	% Clay
	(SM/ML) Gravelly SAND and SILT	BH23-23D	SA-09	9.1-9.2	15.5	37.2	36.8	10.5
	(SM/ML) SAND and SILT	BH23-26	SA-10	10.7-10.8	9.9	42.2	39.7	8.3
o	(ML) Sandy SILT	BH23- 28D/S	SA-08	7.6-8.1	0.1	19.3	72.5	8.1
	(SM/GM) SILTY SAND and GRAVEL	BH23-28D	SA-11	12.2-12.7	37.4	33.6	25.6	3.4

Line Symbol	CanFEM Classification	USCS Symbol	D ₁₀	D ₁₅	D ₃₀	D ₅₀	D ₆₀	D ₈₅	% 5-75µm
	Sand and silt, some gravel, some clay	N/A	0.00	0.01	0.04	0.09	0.17	5.02	36.8
	Sand and silt, trace gravel, trace clay	N/A	0.01	0.01	0.05	0.08	0.13	2.38	39.7
o	Silt, some sand, trace gravel, trace clay	N/A	0.01	0.01	0.03	0.05	0.06	0.09	72.5
0	Sandy silty gravel, trace clay	N/A	0.02	0.03	0.08	0.86	3.61	20.38	25.6

APPENDIX D

Laboratory Certificates of Analysis

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS 1102 - 44 CEDAR POINTE DRIVE BARRIE, ON L4N 5R7 705-795-5079 ATTENTION TO: Curtis Moorhouse PROJECT: 101987.001 (12) AGAT WORK ORDER: 23T099977 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor DATE REPORTED: Dec 12, 2023 PAGES (INCLUDING COVER): 15 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Nember of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 23T099977 PROJECT: 101987.001 (12) 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Curtis Moorhouse

SAMPLED BY:

			0.105	j. 100(011)	- Metais (ii	iona anng my		'/						
DATE RECEIVED: 2023-12-01								I	DATE REPORTED: 2023-12-12					
		-	CRIPTION: PLE TYPE: SAMPLED:	TP23-1 SA1 Soil 2023-12-01	TP23-2 SA1 Soil 2023-12-01	TP23-3 SA1 Soil 2023-12-01	TP23-4 SA1 Soil 2023-12-01	TP23-5 SA1 Soil 2023-12-01	TP23-6 SA1 Soil 2023-12-01	TP23-7 SA1 Soil 2023-12-01	TP23-8 SA1 Soil 2023-12-01			
Parameter	Unit	G/S	RDL	5511166	5511167	5511168	5511169	5511170	5511171	5511172	5511173			
Antimony	µg/g	1	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8			
Arsenic	µg/g	11	1	4	5	3	5	4	3	4	4			
Barium	µg/g	210	2.0	101	86.2	82.7	84.0	86.6	79.9	72.0	63.2			
Beryllium	µg/g	2.5	0.5	1.0	0.9	0.7	0.9	0.9	0.8	0.8	0.7			
Boron	µg/g	36	5	10	10	<5	8	8	8	8	7			
Cadmium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Chromium	µg/g	67	5	30	26	24	26	27	25	24	21			
Cobalt	µg/g	19	0.8	11.6	11.6	8.2	11.1	8.5	9.3	9.7	7.4			
Copper	µg/g	62	1.0	17.0	20.9	14.6	17.0	16.3	18.0	18.9	16.8			
Lead	µg/g	45	1	17	17	16	16	15	14	14	12			
Molybdenum	µg/g	2	0.5	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Nickel	µg/g	37	1	24	23	18	22	20	20	20	17			
Selenium	µg/g	1.2	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8			
Silver	µg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Thallium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Uranium	µg/g	1.9	0.50	0.71	0.65	0.63	0.63	0.71	0.59	0.64	<0.50			
Vanadium	µg/g	86	2.0	43.8	38.2	33.0	39.8	39.5	34.5	37.4	32.8			
Zinc	µg/g	290	5	81	95	72	87	81	77	72	56			

O. Reg. 153(511) - Metals (Including Hydrides) (Soil)

Certified By:

CHARTERED NIVINE BASILY

Basil

AGAT WORK ORDER: 23T099977 PROJECT: 101987.001 (12) 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Curtis Moorhouse

SAMPLED BY:

O. Reg. 153(511) - Metals (Including Hydrides) (Soil)													
DATE RECEIVED: 2023-12-01								DATE REPORTED: 2023-12-12					
Parameter	Unit	-	CRIPTION: PLE TYPE: SAMPLED: RDL	TP23-9 SA1 Soil 2023-12-01 5511174	TP23-10 SA1 Soil 2023-12-01 5511175	TP23-11 SA1 Soil 2023-12-01 5511176	TP23-12 SA1 Soil 2023-12-01 5511177	TP23-13 SA1 Soil 2023-12-01 5511178	TP23-14 SA1 Soil 2023-12-01 5511179	Dup-1 Soil 2023-12-01 5511180	Dup-2 Soil 2023-12-01 5511181		
Antimony	µg/g	1	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8		
Arsenic	µg/g	11	1	5	4	3	4	4	4	4	4		
Barium	µg/g	210	2.0	91.8	81.9	55.2	82.5	83.0	101	84.9	104		
Beryllium	µg/g	2.5	0.5	1.0	0.9	0.6	0.9	0.9	1.0	0.9	1.0		
Boron	µg/g	36	5	10	9	<5	7	10	10	9	11		
Cadmium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Chromium	µg/g	67	5	29	26	18	26	25	29	28	31		
Cobalt	µg/g	19	0.8	9.6	8.6	6.8	8.4	8.4	9.7	11.3	10.1		
Copper	µg/g	62	1.0	19.2	19.1	14.7	15.0	22.2	16.4	16.8	17.4		
Lead	µg/g	45	1	14	14	11	14	15	15	21	16		
Molybdenum	µg/g	2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Nickel	µg/g	37	1	21	20	15	19	21	21	22	22		
Selenium	µg/g	1.2	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8		
Silver	µg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Thallium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Uranium	µg/g	1.9	0.50	0.78	0.76	0.58	0.66	0.98	0.87	0.62	0.90		
√anadium	µg/g	86	2.0	43.8	38.8	27.1	38.3	35.8	42.7	40.5	46.0		
Zinc	µg/g	290	5	93	83	53	77	86	80	85	82		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T1 S AG

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 23T099977 PROJECT: 101987.001 (12) 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Curtis Moorhouse

SAMPLED BY:

					• • •	•					
DATE RECEIVED: 2023-12-01								I	DATE REPORT	ED: 2023-12-12	
		SAMPLE DES	CRIPTION:	TP23-1 SA1	TP23-2 SA1	TP23-3 SA1	TP23-4 SA1	TP23-5 SA1	TP23-6 SA1	TP23-7 SA1	TP23-8 SA1
		SAMPLE TYPE:		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:	2023-12-01	2023-12-01	2023-12-01	2023-12-01	2023-12-01	2023-12-01	2023-12-01	2023-12-01
Parameter	Unit	G/S	RDL	5511166	5511167	5511168	5511169	5511170	5511171	5511172	5511173
pH, 2:1 CaCl2 Extraction	pH Units		NA	6.87	6.98	6.87	6.64	6.56	7.09	6.53	6.84
		SAMPLE DES	CRIPTION:	TP23-9 SA1	TP23-10 SA1	TP23-11 SA1	TP23-12 SA1	TP23-13 SA1	TP23-14 SA1	Dup-1	Dup-2
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:	2023-12-01	2023-12-01	2023-12-01	2023-12-01	2023-12-01	2023-12-01	2023-12-01	2023-12-01
Parameter	Unit	G/S	RDL	5511174	5511175	5511176	5511177	5511178	5511179	5511180	5511181
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.42	7.01	7.00	6.78	6.71	6.82	6.67	6.60

O. Reg. 153(511) - ORPs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T1 S AG

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5511166-5511181 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil). SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 23T099977 PROJECT: 101987.001 (12)

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Curtis Moorhouse

SAMPLED BY:

Particle Size by Sieve (Wet)										
DATE RECEIVED: 2023-12-01	DATE RECEIVED: 2023-12-01 DATE REPORTED: 2023-12-12									
	5	SAMPLE DES	CRIPTION:	TP23-6 SA1						
		SAM	PLE TYPE:	Soil						
	DATE SAMPLED:			2023-12-01						
Parameter	Unit	G/S	RDL	5511171						
Sieve Analysis - 75 µm (retained)	%		NA	21.20						
Sieve Analysis - 75 µm (passing)	%		NA	78.80						
Soil Texture (Toronto)				Fine						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T1 S AG

5511171 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Value reported is the amount of sample passing through or retained on sieve after wash with water and represents proportion by weight particles smaller or larger than indicated sieve size.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 23T099977 PROJECT: 101987.001 (12)

O. Reg. 153(511) - OC Pesticides (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Curtis Moorhouse

SAMPLED BY:

DATE RECEIVED: 2023-12-01								DATE REPORTED: 2023-12-12					
		SAMPLE DES	CRIPTION:	TP23-1 SA1	TP23-2 SA1	TP23-3 SA1	TP23-4 SA1	TP23-5 SA1	TP23-6 SA1	TP23-7 SA1	TP23-8 SA1		
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		
		DATE S	SAMPLED:	2023-12-01	2023-12-01	2023-12-01	2023-12-01	2023-12-01	2023-12-01	2023-12-01	2023-12-01		
Parameter	Unit	G/S	RDL	5511166	5511167	5511168	5511169	5511170	5511171	5511172	5511173		
Hexachloroethane	µg/g	0.01	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
Gamma-Hexachlorocyclohexane	µg/g	0.01	0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005		
Heptachlor	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005		
Aldrin	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005		
Heptachlor Epoxide	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005		
Endosulfan I	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005		
Endosulfan II	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005		
Endosulfan	µg/g	0.04	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005		
Alpha-Chlordane	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005		
gamma-Chlordane	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005		
Chlordane	µg/g	0.05	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		
op'-DDE	ug/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
pp'-DDE	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005		
DDE	µg/g	0.05	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		
op'-DDD	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005		
pp'-DDD	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
DDD	µg/g	0.05	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		
op'-DDT	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005		
pp'-DDT	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005		
DDT (Total)	µg/g	0.078	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		
Dieldrin	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
Endrin	µg/g	0.04	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
Methoxychlor	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005		
Hexachlorobenzene	µg/g	0.01	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
Hexachlorobutadiene	µg/g	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
Moisture Content	%		0.1	29.7	29.2	29.1	26.0	29.7	24.8	23.2	25.6		
wet weight OC	g		0.005	10.3	10.2	10.6	10.4	10.4	10.4	10.5	10.4		
Surrogate	Unit	Acceptab	le Limits										
тсмх	%	50-1	40	81	74	79	87	81	86	75	84		
Decachlorobiphenyl	%	50-1	40	90	94	87	90	108	109	107	105		

Certified By:

teus

AGAT WORK ORDER: 23T099977 PROJECT: 101987.001 (12) 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Curtis Moorhouse

SAMPLED BY:

O. Reg. 153(511) - OC Pesticides (Soil)

DATE RECEIVED: 2023-12-01

DATE REPORTED: 2023-12-12

Certified By:

AGAT WORK ORDER: 23T099977 PROJECT: 101987.001 (12)

O. Reg. 153(511) - OC Pesticides (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Curtis Moorhouse

SAMPLED BY:

DATE RECEIVED: 2023-12-01								DATE REPORTED: 2023-12-12						
			CRIPTION: PLE TYPE: SAMPLED:	TP23-9 SA1 Soil 2023-12-01	TP23-10 SA1 Soil 2023-12-01	TP23-11 SA1 Soil 2023-12-01	TP23-12 SA1 Soil 2023-12-01	TP23-13 SA1 Soil 2023-12-01	TP23-14 SA1 Soil 2023-12-01	Dup-1 Soil 2023-12-01	Dup-2 Soil 2023-12-01			
Parameter	Unit	G/S	RDL	5511174	5511175	5511176	5511177	5511178	5511179	5511180	5511181			
Hexachloroethane	µg/g	0.01	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
Gamma-Hexachlorocyclohexane	µg/g	0.01	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005			
Heptachlor	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005			
Aldrin	µg/g	0.05	0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
Heptachlor Epoxide	µg/g	0.05	0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005			
Endosulfan I	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
Endosulfan II	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
Endosulfan	µg/g	0.04	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
Alpha-Chlordane	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
gamma-Chlordane	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
Chlordane	µg/g	0.05	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007			
op'-DDE	ug/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005			
pp'-DDE	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
DDE	µg/g	0.05	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	< 0.007	< 0.007			
op'-DDD	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
pp'-DDD	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005			
DDD	µg/g	0.05	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007			
op'-DDT	µg/g		0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005			
pp'-DDT	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
DDT (Total)	µg/g	0.078	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	< 0.007	<0.007			
Dieldrin	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
Endrin	µg/g	0.04	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005			
Methoxychlor	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
Hexachlorobenzene	µg/g	0.01	0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005			
Hexachlorobutadiene	µg/g	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
Moisture Content	%		0.1	31.0	31.6	26.2	27.4	27.7	28.6	28.6	30.4			
wet weight OC	g		0.005	10.3	10.2	10.9	10.2	10.3	10.2	10.3	10.3			
Surrogate	Unit	Acceptab	ole Limits											
тсмх	%	50-	140	80	83	81	78	88	85	87	85			
Decachlorobiphenyl	%	50-	140	99	102	112	93	101	117	94	110			

Certified By:

teurs

AGAT WORK ORDER: 23T099977 PROJECT: 101987.001 (12) 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Curtis Moorhouse

DATE REPORTED: 2023-12-12

SAMPLED BY:

O. Reg. 153(511) - OC Pesticides (Soil)

DATE RECEIVED: 2023-12-01

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T1 S AG Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5511166-5511181 Results are based on the dry weight of the soil.

DDT total is a calculated parameter. The calculated value is the sum of op'DDT and pp'DDT.

DDD total is a calculated parameter. The calculated value is the sum of op'DDD and pp'DDD.

DDE total is a calculated parameter. The calculated value is the sum of op'DDE and pp'DDE.

Endosulfan total is a calculated parameter. The calculated value is the sum of Endosulfan I and Endosulfan II.

Chlordane total is a calculated parameter. The calculated value is the sum of Alpha-Chlordane and Gamma-Chlordane.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 101987.001 (12)

SAMPLING SITE:

AGAT WORK ORDER: 23T099977 ATTENTION TO: Curtis Moorhouse SAMPLED BY:

Soil Analysis

RPT Date: Dec 12, 2023		1	DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery	1 1 10	ptable nits	Recovery	Lie	eptable nits
						Value	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - Metals (Inc	luding Hydrides) (Soil)													
Antimony	5511166 5511166	<0.8	<0.8	NA	< 0.8	70%	70%	130%	108%	80%	120%	111%	70%	130%
Arsenic	5511166 5511166	4	4	NA	< 1	107%	70%	130%	106%	80%	120%	110%	70%	130%
Barium	5511166 5511166	101	104	2.9%	< 2.0	107%	70%	130%	105%	80%	120%	103%	70%	130%
Beryllium	5511166 5511166	1.0	1.1	NA	< 0.5	119%	70%	130%	109%	80%	120%	120%	70%	130%
Boron	5511166 5511166	10	10	NA	< 5	93%	70%	130%	99%	80%	120%	102%	70%	130%
Cadmium	5511166 5511166	<0.5	<0.5	NA	< 0.5	80%	70%	130%	102%	80%	120%	101%	70%	130%
Chromium	5511166 5511166	30	30	0.0%	< 5	117%	70%	130%	99%	80%	120%	123%	70%	130%
Cobalt	5511166 5511166	11.6	11.6	0.0%	< 0.8	111%	70%	130%	106%	80%	120%	107%	70%	130%
Copper	5511166 5511166	17.0	17.2	1.2%	< 1.0	104%	70%	130%	101%	80%	120%	101%	70%	130%
Lead	5511166 5511166	17	17	0.0%	< 1	104%	70%	130%	96%	80%	120%	94%	70%	130%
Molybdenum	5511166 5511166	0.5	<0.5	NA	< 0.5	103%	70%	130%	104%	80%	120%	103%	70%	130%
Nickel	5511166 5511166	24	24	0.0%	< 1	114%	70%	130%	106%	80%	120%	106%	70%	130%
Selenium	5511166 5511166	<0.8	<0.8	NA	< 0.8	101%	70%	130%	102%	80%	120%	117%	70%	130%
Silver	5511166 5511166	<0.5	2.7	NA	< 0.5	102%	70%	130%	104%	80%	120%	98%	70%	130%
Thallium	5511166 5511166	<0.5	<0.5	NA	< 0.5	107%	70%	130%	106%	80%	120%	97%	70%	130%
Uranium	5511166 5511166	0.71	0.71	NA	< 0.50	105%	70%	130%	103%	80%	120%	98%	70%	130%
Vanadium	5511166 5511166	43.8	45.6	4.0%	< 2.0	118%	70%	130%	100%	80%	120%	113%	70%	130%
Zinc	5511166 5511166	81	82	1.2%	< 5	115%	70%	130%	106%	80%	120%	114%	70%	130%
Comments: NA Signifies Not App Duplicate NA: results are under t		e calculated	d.											
O. Reg. 153(511) - ORPs (Soil)													
pH, 2:1 CaCl2 Extraction	5518053	4.86	4.85	0.2%	NA	103%	80%	120%						
Comments: NA signifies Not Applicable. pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.														

O. Reg. 153(511) - ORPs (Soil) pH, 2:1 CaCl2 Extraction 5511181 5511181 6.60 6.76 2.3% NA 102% 80% 120%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Particle Size by Sieve (Wet)

Sieve Analysis - 75 µm (retained)	5511171 5511171	21.20	22.48	5.9%	NA	100%	75%	125%
Sieve Analysis - 75 µm (passing)	5511171 5511171	78.80	77.52	1.6%	NA			

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 15

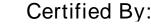
AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 101987.001 (12)

SAMPLING SITE:


AGAT WORK ORDER: 23T099977

ATTENTION TO: Curtis Moorhouse

SAMPLED BY:

Soil Analysis (Continued)

						•		•							
RPT Date: Dec 12, 2023			DUPLICATE				REFEREN	NCE MATERIAL		METHOD BLANK SPIKE		MATRIX SPIKE		KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 101987.001 (12)

SAMPLING SITE:

AGAT WORK ORDER: 23T099977 ATTENTION TO: Curtis Moorhouse SAMPLED BY:

Trace Organics Analysis

RPT Date: Dec 12, 2023		DUPLICATE			REFERENCE MATERIAL		METHOD BLANK SPIKE			MAT	MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - OC Pesticides	(Soil)														
Hexachloroethane	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	98%	50%	140%	95%	50%	140%	86%	50%	140%
Gamma-Hexachlorocyclohexane	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	90%	50%	140%	80%	50%	140%	89%	50%	140%
Heptachlor	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	109%	50%	140%	97%	50%	140%	105%	50%	140%
Aldrin	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	93%	50%	140%	90%	50%	140%	88%	50%	140%
Heptachlor Epoxide	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	87%	50%	140%	94%	50%	140%	87%	50%	140%
Endosulfan I	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	104%	50%	140%	88%	50%	140%	102%	50%	140%
Endosulfan II	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	88%	50%	140%	89%	50%	140%	98%	50%	140%
Alpha-Chlordane	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	92%	50%	140%	91%	50%	140%	86%	50%	140%
gamma-Chlordane	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	98%	50%	140%	86%	50%	140%	99%	50%	140%
op'-DDE	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	87%	50%	140%	103%	50%	140%	103%	50%	140%
pp'-DDE	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	115%	50%	140%	89%	50%	140%	100%	50%	140%
op'-DDD	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	98%	50%	140%	93%	50%	140%	112%	50%	140%
pp'-DDD	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	82%	50%	140%	80%	50%	140%	87%	50%	140%
op'-DDT	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	111%	50%	140%	104%	50%	140%	109%	50%	140%
pp'-DDT	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	92%	50%	140%	101%	50%	140%	84%	50%	140%
Dieldrin	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	88%	50%	140%	88%	50%	140%	82%	50%	140%
Endrin	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	84%	50%	140%	86%	50%	140%	87%	50%	140%
Methoxychlor	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	88%	50%	140%	101%	50%	140%	98%	50%	140%
Hexachlorobenzene	5511181	5511181	< 0.005	< 0.005	NA	< 0.005	103%	50%	140%	103%	50%	140%	97%	50%	140%
Hexachlorobutadiene	5511181	5511181	< 0.01	< 0.01	NA	< 0.01	109%	50%	140%	96%	50%	140%	90%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

ug

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 12 of 15

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 101987.001 (12)

AGAT WORK ORDER: 23T099977 **ATTENTION TO: Curtis Moorhouse**

	ATTENTION TO:								
SAMPLING SITE:		SAMPLED BY:							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Soil Analysis		L							
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS						
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE						
Sieve Analysis - 75 µm (retained)	INOR-93-6065	Modified from ASTM D1140-17	SIEVE						
Sieve Analysis - 75 µm (passing)	INOR-93-6065	Modified from ASTM D1140-17	SIEVE						

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 101987.001 (12)

AGAT WORK ORDER: 23T099977 ATTENTION TO: Curtis Moorhouse

SAMPLING SITE:		SAMPLED BY:						
PARAMETER AGAT S.O.P		LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Trace Organics Analysis								
Hexachloroethane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Gamma-Hexachlorocyclohexane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Heptachlor	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Aldrin	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Heptachlor Epoxide	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Endosulfan I	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Endosulfan II	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Endosulfan	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	CALCULATION					
Alpha-Chlordane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
gamma-Chlordane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Chlordane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	CALCULATION					
op'-DDE	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
pp'-DDE	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
DDE	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
op'-DDD	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
pp'-DDD	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
DDD	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	CALCULATION					
op'-DDT	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
pp'-DDT	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
DDT (Total)	ORG-91-5113	modified from EPA 3570, 3620C & 8081B	CALCULATION					
Dieldrin	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Endrin	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Methoxychlor	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Hexachlorobenzene	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Hexachlorobutadiene	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
тсмх	ORG-91-5112	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Decachlorobiphenyl	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD					
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE					

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 101987.001 (12)

AGAT WORK ORDER: 23T099977 ATTENTION TO: Curtis Moorhouse SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
wet weight OC	ORG-91-5113	BALANCE					

civil geotechnical environmental structural field services materials testing

civil géotechnique environnement structures surveillance de chantier service de laboratoire des matériaux