REPORT ON

PRELIMINARY HYDROGEOLOGICAL INVESTIGATION PROPOSED DEVELOPMENT Caledon Station

&

Argo King I & II BOLTON, ONTARIO

FOR:

Draft Plan of Subdivision (21T-22001) and for Amendment for the Zoning By-Law (RZ 2022-0002)

Draft Plan of Subdivision (21T-22002), Zoning By-Law (RZ 2022-0003)

Draft Plan of Subdivision (PRE-2023-0080)

PREPARED FOR:

Caledon Community Partners c/o Glen Schnarr & Associates

Project No: 20-169-100

Date: June 11, 2024

DS CONSULTANTS LTD.

6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca Project: 20-169-104 – Hydrogeological Investigation Proposed Development – Caledon Station Argo King I & II, Caledon (Bolton)

June 11, 2024

ii

Liz Hurst
Caledon Community Partners
c/o Glen Schnarr & Associates
700-10 Kingsbridge Garden Circle
Mississauga, ON, L5R 3K6

Via email: lizh@gsai.ca

20-169-104

RE: Hydrogeological Investigation – Caledon Station (Caledon Station (Argo Macville I, Argo Macville II, Argo Macville V, Argo Humber Station, Humberking (I) Developments & Humberking (IV) Developments) & Argo King I & II, Caledon (Bolton), ON

DS Consultants Limited (DS) was retained by Caledon Community Partners to complete a Hydrogeological Investigation on the Argo Macville I, Argo Macville II, Argo Macville III, Argo Macville V, Argo Humber Station, Humberking (I) Developments & Humberking (IV) Developments, herein referred to as Caledon Station, and 7675 King Steet, Bolton, here in referred to as Argo King I & II. These sites are portions of a greater study area completed for the Bolton Option 3 Landowner's group. The Caledon Station and ARGO Humber Station lands include the development of approximately 107.19 hectares (ha) and 5.61 ha of land situated on The Gore Road and Humber Station Road in Bolton, ON, respectively. Argo King I & II lands include the development of approximately 8.7 ha of land situated south of King Street, approximately 400 m east from the Gore Road. The area is primarily agricultural with some residential lots. The proposed development of these lands includes residential and mixed-use land uses, open spaces, parks, trails, commercial uses, the Bolton GO Station, natural heritage features and areas designated for stormwater management (SWM Ponds). The development will also include the construction of roadways including storm and sanitary sewer and water distribution infrastructure.

This Hydrogeological Investigation provides an overview of the existing geological and hydrogeological conditions at the Site and surrounding area and provides an assessment of hydrogeological constraints and potential impacts of the proposed development on local groundwater resources. A significant aim of the study is to provide mitigation measures to reduce or eliminate the impacts of development on local water resources, groundwater users, and the natural environment. It also includes an estimation of construction dewatering requirements and groundwater permanent drainage conditions.

If needed, the results of this investigation can be used in support of an application for a Category 3 Permit to Take Water (PTTW) or an Environmental Activity Sector Registry (EASR) for construction dewatering from the Ministry of the Environment, Conservation and Parks (MECP) and discharge permitting from the Town of Caledon.

Based on the results of our investigation, the following conclusions and recommendations are presented:

1. The Site is located within the Main Humber sub watershed part of the larger Humber River watershed. The surface water and drainage setting at the Site comprises a total of eight (8) wetlands within the

Caledon Station and three (3) wetlands within the Argo King I & II development, which are incorporated into the tributaries of the Humber River and ultimately flow into Lake Ontario. Relief across the Site ranges from approximately 281 masl in the northwest corner of the Site to 262.0 masl in the southwest corner of the Site. The study area is characterized as having moderate drainage, which is directed overland into various streams on the Site.

- 2. The Site is situated within the South Slope Physiographic Region of Southern Ontario (Chapman and Putnam, 1984), and lies within a Drumlinized Till Plain Physiographic Landform. Surficial geology mapping made available by the Ontario Geological Survey (2010) indicates that the study area is covered entirely by Halton till. There are some glacial deposits of sand and gravel to the west of the site and modern alluvial deposits of silt, sand, and gravel to the east along tributaries to the Humber River. The overburden in the vicinity of the site is clayey silt to sandy silt till deposits (Halton till).
- 3. Based on the MECP water well records search, there are ninety-eight (98) water wells within 500 meters of the Site. Forty-nine (49) water wells are noted as domestic and/or livestock supply wells, five (5) water wells were noted for commercial use, two (2) wells were noted for industrial use, and two (2) wells were noted for municipal use. All other remaining wells are either abandoned, not in use or monitoring/test hole wells. Private domestic and commercial water supply wells are drilled into sandy aquifers confined under clay till. The depths of these wells range from 7.5 to 63.4 mbgs. It is recommended that a private door-to-door water well survey be completed within a 500 m radius of the Site to confirm private use of groundwater in the study area.
- 4. To assess soil and groundwater conditions at the Site, DS used sixteen (16) exploratory boreholes advanced during the geotechnical investigations at the Caledon Station Site carried out in July 2020 which included thirteen (13) monitoring wells (MWs). Three (3) boreholes were advanced April 22nd, 2021, in which two (2) MWs were installed. Between August 19th and September 7th, 2022, forty-two (42) exploratory boreholes were advanced in which twenty-three (23) MWs were installed. Between June 19th and June 21st, 2019. Between June 23rd and July 4th, 2023, eight (8) exploratory boreholes were advanced within the southwestern quadrant of the Site which included seven (7) monitoring wells. Between June 19th and June 21st, 2019, seven (7) boreholes were advanced at the Argo I & Argo II Site in which four (4) MWs were installed. Between October 13th and October 17th nine (9) boreholes were advanced in which five (5) MWs installed. Monitoring wells were constructed with two (2) inch PVC casing and a 1.5 m or 3.0 m length of screen installed at varying depths ranging from 4.0 to 21.0 meters below ground surface (mbgs).
- 5. Based on the subsurface investigation, the stratigraphic setting of the Site comprises of topsoil/fill /disturbed native materials underlain by native soil deposits. The native soil deposits at the Site includes clayey silt till to silty clay till (Halton till) to depths ranging from 1.5 m to 11.3 mbgs, which in turn is underlain by silt/sandy silt/silty sand (Newmarket till) extending to the maximum depth of investigation. Modern alluvium deposits consisting of sand and gravel were encountered in the southeast corner of the Site. Bedrock was not encountered during the subsurface investigation.

- 6. **DS** implemented a groundwater monitoring program at the Caledon Station Site in August 2020 on bi-monthly basis and at Argo King I & II in October 2022 on a monthly basis to assess long-term groundwater fluctuations. Groundwater was found in monitoring wells at depths ranging from 255.2 to 277.16 mbgs at the Caledon Station Site and from 255.8 to 261.0 masl at the Argo King I & II Site throughout their respective monitoring periods. Artesian conditions were encountered within the northeaster quadrant of the Argo King I & II Site and the southwestern quadrant of the Caledon Station Site. Groundwater outlets to surface streams at the southwest and southeast limits of the Sites. Continuous groundwater monitoring at the Site indicates groundwater levels in the monitoring wells have generally gradually declined during the late summer to the fall monitoring period, and then increasing throughout the winter peaking in mid spring.
- 7. Single Well Response Tests (SWRTs) were completed by DS in nine (9) monitoring wells on August 6th and 7th, 2020 and in eighteen (18) monitoring wells between November 1st and November 3rd, 2022 at the Caledon Station Site and SWRTs were completed in nine (9) monitoring wells between June 2019 and October 2022 at Argo King I & II, and at six (6) monitoring wells in at the Caledon Station Site at the Speirs property in July 2023 to estimate hydraulic conductivity (K) for the representative geological units in which the wells were screened. The hydraulic conductivity values between the sites ranged from 2.9 x 10⁻¹⁰ m/sec within the low permeably clay silt till to 4.0 x 10⁻⁵ m/sec within the highly permeable sand.
- 8. In-situ infiltration testing was conducted by **DS** field personnel on September 2nd, 2020. The testing was completed at a depth of 0.5m and 1.5 m mbgs at ten monitoring well locations (BH20-1, BH20-2 and BH20-5 through BH20-16). Based on the test results, the site primarily consists of a low permeable silty clay till with a measured infiltration rate ranging from about 16 to 38 mm/hr with an average of 26 mm/hr. One test location at (BH20-16 southeast corner of the Site) with sand and gravel deposits, produced an infiltration rate of 108 mm/hr. Soils with infiltration rates over 15 mm/hr are considered suitable for Soakaways, infiltration trenches and chambers (TRCA, 2010).
- 9. Five (5) unfiltered groundwater samples were collected from select monitoring well locations (BH22-13 BH22-17 and BH22-32), on November 3rd, 2023, and from BH23-1 on July 17th, 2023, and PW1 on August 14th, 2023, from the Caledon Station Site and two (2) unfiltered groundwater samples were collected from BH22-1 and BH22-5 on October 26th, 2022, from Argo King I & II. Groundwater quality results were compared to parameters limits outlined in the Peel Region Sanitary and Storm Sewer Discharge By-Law 53-2010 and the Provincial Water Quality Objectives (PWQO) for surface water to assess the suitability of discharge to the Region's sewer system and nearby surface water features. Based on the results of the analytical testing, Total Suspended Solids (TSS) and manganese exceeded at most locations in addition to phosphorus and zinc exceedance detected at the Argo King I & II Site at BH22-1. Multiple exceedances were reported against PWQO standards. Pre-treatment of the pumped water will be required prior to discharging into a natural surface water feature.

- 10. DS collected two (2) non-filtered surface water samples on October 24, 2020, from the Caledon Station Site; one (1) from the surface water stream in the southwest corner of the Site (Surface Station: SG W2-1); and one (1) sample from the surface water stream in the southeast corner of the Site (Surface Station: SG W8-1). The baseline water quality samples were compared against the PWQO standards. Based on the results of the analytical testing, the water quality exceeded the PWQO criteria for various metal parameters and phosphorus.
- 11. **DS** commenced continuous pre-construction monitoring at the Site including the onsite wetlands on the Caledon Station and Argo King I & II Sites to determine the interaction between surface and groundwater. The continuous pre-construction surface water and groundwater monitoring program of the Caledon Station and Argo King I & II Sites are currently underway. The findings from the data collected to-date are from during the August 2020 to May of 2024 and October 2022 to May 2024 monitoring periods.
- 12. Based on the monitoring during the August to October period in 2020, all wetlands at the Site appear to be ephemeral features. The monitoring program to-date generally indicated an upward shallow groundwater gradient at Wetlands 1 through 3, and Wetland 8, and a downward shallow groundwater gradient at Wetlands 4 through 7 within the Caledon Station Site. The monitoring program to date at the Argo King I & II Site generally indicated an upward gradient at wetland 1 and a downward gradient for wetlands 2 and 3.
- 13. Results of the Site water balance show a decrease in annual infiltration (96,414 m³/year), from predevelopment to post-development conditions. The effects are the result of increased impervious areas replacing pervious areas of the Site. Considering the high groundwater elevations across the Site, lot level mitigation was considered the best approach for improving infiltration in the post-development condition. The current LID plan includes connecting about 11.2 ha of impervious surfaces with 24.3 ha of pervious area to maximize infiltration potential. Additionally, Silva Cells is utilized road ROWs and parks. The post-development with mitigation infiltration deficit is reduced to 34,803 m³/yr from pre-development conditions.
- 14. Changes to wetland catchment size directly affect the volume and timing of stormwater contributions to downgradient features. A Wetland Water Balance Risk Evaluation following TRCA guidelines (TRCA, Nov 2017) showed there is high risk to wetlands W1 to W6 as a result of reduced catchment size. In order to understand the effects of the reduced catchment area and evaluate the magnitude of actual hydrological changes, a wetland water balance is currently being completed by Urbantech using a continuous model. The results of the ongoing pre-construction wetland monitoring program undertaken by DS will be used in conjunction with the continuous model to assess the actual risks to the wetlands. Based on the findings of the water balance results, a wetland mitigation plan will be developed.
- 15. It is understood that the provided site grading plan and the design of the four (4) storm water management ponds are currently preliminary and the proposed site servicing plan and the

architectural drawings with the final basement floor slab elevations of all structures to be constructed below grade have not been finalized at this stage. DS made numerous assumptions, as outlined in Section 6.0 of this report, in support of the groundwater seepage assessment during the construction period. The requirements for dewatering/control during the construction period is as follows:

- 15.0 Medium Density Residential Blocks 346,830 L/day (incl. 50% safety factor on anticipated seepage rates and contribution from a 2-year storm) per block;
- 15.1 Townhouse and Single Detached Units 186,705 L/day (incl. 50% safety factor on anticipated seepage rates and contribution from a 2-year storm) per unit;
- 15.2 Site Servicing (Developmental Site area / Newmarket Till) 15,500 L/day (incl. 50% safety factor on anticipated seepage rate and contribution from a 2-year storm) per unit trench segment;
- 15.3 Storm Water Management Pond 2A 236,500-445,000 L/day (incl. 50% safety factor on anticipated rate; and contribution from a 10 mm storm event). Further investigation is required to determine whether the upper unit and lower unit are hydraulically connected.; and
- 15.4 Interim Storm Water Management Pond 240,500 L/day (incl. 50% safety factor on anticipated rate; and contribution from a 10 mm storm event)
- 16. All low-rise residential blocks, institutional and commercial zones are not anticipated to require any permanent groundwater drainage control as they are expected to be constructed with a water-proofing membrane. The proposed SWM pond designs will require permanent groundwater control. Based on preliminary designs provided to DS. The requirements for dewatering/control during the construction period is as follows:
 - 16.0 Storm Water Management Pond 2A 10,500-189,000 L/day (incl. 50% safety factor on anticipated rate). It is important to note that the safe excavation depth established near SMW Pond 2A was estimated to be approximately 3 mbgs (Elev. 259 masl). Two (2) pump tests are recommended within the SWM Pond 2A footprint, one (1) in the upper silty clay to clayey silt till (aquitard) zone and one (1) in the lower sandy silt to silty sand (aquifer) zone to determine whether the two (2) units are hydraulically connected.; and
 - 16.1 Interim Storm Water Management Pond 45,000 L/day (incl. 50% safety factor on anticipated rate)
- 17. In August 2023, aquifer pumping tests were conducted on the pumping wells PW at the proposed SWM Pond 1 location and PW2 at the proposed SWM Pond 2B location to provide indications of the quantity of water available from each single well and to calculate the aquifer hydraulic coefficients (Transmissivity and Storativity).

- 17.0 From the data gathered and analyzed at PW1 and PW2, calculated Transmissivity values were 40.3 m²/day (2,700 igpd/ft.) and 2.5 m²/day (165 igpd/ft.), respectively.
- 17.1 The total volumetric pumping rate to control groundwater from the aquifer during construction is estimated to be approximately 365 L/min or 525,600 L/day (525.6 m³/day) and 29 L/min or 41,760 L/day (41.8 m³/day) for SWM Pond 1 and SWMP Pond 2B, respectively.
- 17.2 The zone of influence (Ro) of pumping during construction will extend until boundary flow conditions are reached and sufficient water inputs are equal to the discharge rate due to pumping. The estimated Ro ranges from 2 for a 30m x 2m site servicing trench to up to 121m at SWM Pond 2A.
- 18. The proposed SWM Ponds (SWM Ponds 1 & 2B) will require permanent groundwater control. This is required to prevent hydrostatic pressure from up-lift to the base of the pond. Based on pump test results for SWM Pond 1 and SWM Pond 2B, the estimated permanent drainage with a 50% safety factor is 565,920 L/day and 41,040 L/day, respectively.
- 19. During the construction period, the requirements to obtain any water taking permits (EASR/PTTW) will depend on the ownership structure of the Site and the staging for development. It is anticipated that an EASR Posting will likely be required, however if the construction dewatering rates exceed 400,000 L/day on any given day, a PTTW Registration with the MECP will be required. Based on the construction dewatering values for SWM Ponds 1 & 2A, a PTTW will be required.
- 20. During the post-construction period, the anticipated permanent drainage flows for SWM Ponds 1 & 2A are expected to be greater than 50,000 L/day. Given that the estimated permanent drainage flows are expected to be greater than the MECP threshold of 50,000 L/day, a long-term PTTW will be required in support of permanent groundwater control for the SWM Ponds should design details corroborate the assumptions made in this assessment.
- 21. A discharge permit may be required from the Toronto and Region Conservation Authority (TRCA), Region of Peel and/or Town of Caledon if the water is to be discharged to a nearby/on-site surface water body as a result of construction dewatering. A discharge and monitoring plan will need to be prepared prior to obtaining a discharge approval from the TRCA, Peel Region and/or Town of Caledon. Based on the results of the groundwater analytical testing pre-treatment of the pumped water will be required to ensure compliance with the Peel Region sewer use by-law/PWQO criteria prior to discharging into the sewer system or natural surface water features.

 Region's approval required
- 22. During the post-construction period, a sewer discharge agreement with the local upper and/or lower tier municipality may be required prior to any discharging operations into the municipal sewer system.
- 23. Dewatering activities adjacent to the on-site wetland features has the potential to lower the groundwater and/or surface water levels in the wetlands. Once a groundwater dewatering system is set up at the Site, daily and weekly monitoring should be implemented to assess the groundwater

conditions such as water levels, measurement of discharge flow, discharge water quality and any adverse impacts as a result of dewatering, if any.

24. In conformance with Regulation 903 of the Ontario Water Resources Act, the decommissioning of any dewatering system and monitoring wells should be carried out by a licensed contractor under the supervision of a licensed water well technician.

Should you have any questions regarding these findings, please do not hesitate to contact the undersigned.

DS Consultants Ltd.

Prepared By:

Dorothy Santos, M.Sc. Project Manager

Scott Watson, B.A.T. GeoBase Solution (GBS) Ltd. Reviewed By:

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

Table of Contents

1.0	INTRO	DUCTION	1
	1.1	Purpose	1
	1.2	Scope of Work	1
2.0	PREVIO	OUS STUDIES	2
	2.1	Headwater Drainage Feature Assessment: In Support of the Bolton Residential Expansion	
	2.1	Study (Aquafor Beech Ltd., 2014)	
	2.2	Preliminary Geotechnical Investigation, Proposed Residential Subdivision, Bolton Option 3	
	۷.۷	Lands, Bolton, Ontario (DS Consultants Limited, 2020)	
	2.3	A Report to HumberKing (I) Developments Limited and HumberKing (IV) Developments	د
	2.3	Limited, A Geotechnical Investigation for Proposed Mixed-Use Development, King Street	
		and Humber Station Road, Town of Caledon (Soil Engineers Ltd., 2021).	1
	2.4	Draft- A Report to HumberKing (I) Developments Limited and HumberKing (IV)	4
	2.4		
		Developments Limited, Hydrogeological Assessment, Proposed Mixed Use Development	_
	2.5	King Street and Humber Station Road, Town of Caledon (Soil Engineers Ltd. 2022)	5
	2.5	Revised Report on Preliminary Geotechnical Investigation Proposed Residential	_
	2.6	Development 7675 King Street Argo King I & II, Bolton, ON (DS Consultants Limited, 2024)	
	2.6	Revised Report on Preliminary Geotechnical Investigation Proposed Development Caledon	
		Station, Bolton, ON (DS Consultants Limited, 2024).	6
	2.7	Updated Preliminary Geotechnical Comments and Recommendations Proposed SWM	_
		Ponds, Caledon Station Subdivision, Caledon, Ontario (DS Consultants Limited, 2024)	
3.0	FIELD I	INVESTIGATION	7
4.0	PHYSIC	CAL SETTING	8
	4.1 Pł	nysiography and Drainage	8
	4.2	Geology	
	4.2.1	Quaternary Geology	
	4.3	Hydrogeology	
	4.3.1	Local Groundwater Use	
	4.3.2	Groundwater Conditions	
	4.3.3	Hydraulic Conductivity	
	4.3.4	In-Situ Infiltration Testing	
	4.3.5	Groundwater Quality	
	4.3.6	Surface Water Conditions	
	4.3.7	Surface Water Quality	
5.0		WATER BALANCE	
		2-development Water Balance	
	5.2	Post-development Water Balance	
	5.3	Site Water Balance Results	32

	5.4	Post-development Water Balance (With Mitigation)	33
6.0	FEAT	JRE BASED WATER BALANCE	33
	6.1	Pre-development Sub catchments	33
	6.2	Post-Development Subcatchments	34
	6.3	Wetland Water Balance Risk Evaluation	
	6.3.1	Impervious Cover Score	35
	6.3.2	Change in Catchment Size	35
	6.4	Wetland Water Balance	36
	6.4.1	Existing Conditions	36
	6.4.2	Proposed Development	37
7.0	CONS	TRUCTION DEWATERING & PERMANENT GROUNDWATER CONTROL	37
	7.1	Estimation of Flow Rate – Medium Density Residential Blocks, Low-Rise Development	38
	7.2	Estimation of Flow Rate – Townhouse & Single Detached Units	
	7.3	Estimation of Flow Rate – Site Servicing	
	7.4	Estimation of Flow Rate – Storm Water Management Ponds	
	7.5	Permanent Drainage (Long-term Discharge) - Medium Density Residential Blocks,	
		Townhouse & Single Detached Units	42
	7.6	Permanent Drainage (Long-term Discharge) – Storm Water Management Ponds (SWM)	
		& Interim SWMP)	
	7.7	Pumping Test Program	43
	7.7.1	PW1 Pumping Test Results	
	7.7.1.1	PW1 Step Test (Mogg Type)	44
	7.7.1.2	PW1 Drawdown and Recovery Test	44
	7.7.2	PW2 Pumping Test Results	44
	7.7.2.1	PW2 Drawdown and Recovery Test	44
	7.7.3	Pumping Test Interpretation	45
	7.8	Conceptual Construction Groundwater Control (SWMP 1 & 2B)	45
	7.8.1	Conceptual Groundwater Control Requirements	45
	7.8.2	Conceptual Groundwater Control Model	45
	7.8.3	Total Conceptual Construction Dewatering Requirements	46
	7.9	Temporary Conceptual Groundwater Control Model	46
	7.10	Zone of Influence	47
7.11	Perma	nent Groundwater Control (SWM Ponds 1 & 2B)	47
	7.11.1	Permanent Drainage Conceptual Groundwater Control Model	47
	7.12	Permit Requirements	48
	7.12.1	Environmental Activity and Sector Registry (EASR) / Permit to Take Water (PTTW)	
		Application	48
	7.12.2	Discharge Permits (Construction Dewatering and Permanent Drainage)	48
8.0	POTEN	TIAL IMPACTS	49
	8.1	Local Groundwater Use	49

			_
8	3.2	Surface Water Features4	.9
8	3.3	Point of Discharge and Groundwater Quality5	1
8	3.4	Source Protection Area5	1
8	3.5	Highly Vulnerable Aquifer5	2
8	3.6	Wellhead Protection Area5	2
8	3.7	Intake Protection Zone5	2
	3.8	Well Decommissioning	
9.0	MONIT	ORING AND MITIGATION5	2
10.0	LIMIT	ATIONS5	5
11.0	REFER	ENCES5	6
TABLE	ES		
Table	1	Groundwater and Surface Water Levels, Caledon Station	
Table	2	Groundwater and Surface Water Levels, Argo King I & II	
Table	3	Channel Transect Flow, Caledon Station	
Table	4	Channel Transect Flow, Argo King I & II	
Table	5	Summary of Stratigraphic Conditions (in-Text)	
Table	6	Summary of Hydraulic Conductivity (K) Test Results (in-Text)	
Table	7	Summary of Test Pits and Estimated Soil Infiltration Rates (in-Text)	
Table	8	Parameters in Groundwater Exceeding the Peel Region Bylaw Discharge Criteria (in-Text)	
Table	9	Parameters in Groundwater Exceeding MECP PWQO Guidelines (in-Text)	
Table	10	Parameters in Surface Water Exceeding PWQO (in-Text)	
Table	11	Existing Condition – Infiltration Factors (in-Text)	
Table	12	Summary of Pre-Development Water Balance (in-Text)	
Table	13	Summary of Pre- and Post-Development Site Water Balance (w/o Mitigation) (in-Text)	
Table	14	Impervious Cover Score – Probability and Magnitude of Hydrological Change (in-Text)	
Table	15	Changes to Catchment Size – Probability and Magnitude of Hydrological Change (in-Text)	
Table	16	Pre-Development Conditions (in-Text)	
Table	17	Estimated Construction Dewatering SWM Pond Flow Rates (in-Text)	
Table	18	Estimated Permanent Drainage SWM Pond Flow Rates (in-Text)	
Table	19	Construction Dewatering Parameters & Volumes (SWM Pond 1 & 2B) (in-Text)	
Table	20	Summary of Estimated Zones of Influence (in-Text)	
Table	21	Permanent Drainage Parameters & Volumes (SWM Pond 1 & 2B) (in-Text)	
Table	22	Monitoring and Mitigation Plan (in-Text)	

FIGURES

Site Location Plan
Surficial Geology Map
MECP WWR and PTTW Map
Borehole and Instrumentation Location Plan
Geological Cross-Section A-A'
Geological Cross-Section B-B'
Geological Cross-Section C-C'
Geological Cross-Section D-D'
Geological Cross-Section E-E'
Groundwater Flow Map
Pre-Development Conceptual Model – Site Water Balance
Post-Development Conceptual Model – Site Water Balance
Pre-Development Land Use & Wetland Catchment Map

APPENDICES

Appendix A	Headwater Drainage Map (Aquafor, 2014)
Appendix B	Borehole Logs
Appendix C	MECP Water Well Record Summary
Appendix D	Hydraulic Conductivity Analysis
Appendix E	PW1 Pumping Test Analysis
Appendix F	PW2 Pumping Test Analysis
Appendix G	Groundwater Control Model for Construction Dewatering & Permanent Drainage (SWMP 1)
Appendix H	Groundwater Control Model for Construction Dewatering Permanent Drainage (SWMP 2B)
Appendix I	Certificates of Analysis Reports
Appendix J	Site Hydrographs
Appendix K	Water Balance Calculations

1.0 INTRODUCTION

DS Consultants Limited (DS) was retained by Caledon Community Partners to complete a Hydrogeological Investigation on the Argo Macville I, Argo Macville II, Argo Macville III, Argo Macville V, Argo Humber Station, Humberking (I) Developments & Humberking (IV) Developments, herein referred to as Caledon Station, and 7675 King Steet, Bolton, here in referred to as Argo King I & II. These sites are portions of a greater study area completed for the Bolton Option 3 Landowner's group.

The Caledon Station and ARGO Humber Station lands include the development of approximately 107.19 ha and 5.61 ha of land, respectively, situated on The Gore Road and Humber Station Road in Bolton, ON. Argo King I & II lands include the development of approximately 8.7 ha of land situated south of King Street, approximately 400 m east from the Gore Road. The Site locations are shown in **Figure 1**. The area is primarily agricultural with some residential lots. The proposed development of these lands includes residential and mixed-use land uses, open spaces, parks, trails, commercial uses, the Bolton GO Station, natural heritage features and areas designated for stormwater management (SWM Ponds). The development will also include the construction of roadways including storm and sanitary sewer and water distribution infrastructure.

This hydrogeological investigation includes characterization of existing geological, hydrogeological and hydrologic conditions of the Site and local features including eight (8) wetland units within the Caledon Station property boundary, and three (3) wetland units within the Argo King I & II property boundary. The investigation provides an assessment of opportunities and constraints including potential impacts on local groundwater resources. A significant aim of the study is to provide mitigation measures to reduce or eliminate the impacts of development on local water resources, groundwater users, and the natural environment. The study also provides an estimation of construction dewatering requirements and groundwater permanent drainage conditions.

1.1 Purpose

The purpose of this investigation is to characterize groundwater conditions over the study area and provide construction dewatering estimates and recommendations for design and mitigation measures to reduce or eliminate impacts of development on local water resources. The investigation will inform a water balance study to help define potential risks to the wetlands features within the Site. This investigation also includes an assassessment of dewatering requirements and provides recommendations for the obtaining the necessary permits prior to construction such as a Permit to Take Water (PTTW) or registry on the Environmental Activity Sector Registry (EASR) from the Ministry of Environment and Conservation and Parks (MECP).

1.2 Scope of Work

The scope of work for this investigation includes:

(i) Drilling and installation of monitoring wells, piezometers, and stream flow monitoring instrumentation;

DS Consultants Ltd. October 2023

- (ii) Collecting and interpreting available reports and data including the MECP Water Well Records (WWR), geotechnical, hydrogeological and environmental studies completed at the Site;
- (iii) In-situ hydraulic conductivity testing
- (iv) Field work including a test well drilling program consisting of two (2) pumping wells (PW1 & PW2);
- (v) Pumping tests conducted at the two (2) pumping wells to estimate aquifer hydraulic coefficients (Transmissivity and Storativity);
- (vi) Estimation of temporary groundwater flow rate during the construction phases;
- (vii) Estimation of permanent drainage volumes to the underfloor of the building following construction;
- (viii) Assessing groundwater quantity and quality to evaluate discharge options;
- (ix) Stream water level and flow monitoring including seasonal fluctuation;
- (x) Water quality assessment for surface water and groundwater;
- (xi) Site water balance assessment;
- (xii) Feature based water balance assessment;
- (xiii) Wetland water balance assessment;
- (xiv) Data analyses and report preparation, and;
- (xv) Review and response to agency comments.

2.0 PREVIOUS STUDIES

DS reviewed the following previous studies during our background review:

- "Headwater Drainage Feature Assessment: In Support of the Bolton Residential Expansion Study",
 by Aquafor Beech Ltd., dated June 16. 2013, File No.: 65473
- "Preliminary Geotechnical Investigation, Proposed Residential Subdivision, Bolton Option 3 Lands, Bolton, Ontario", by DS Consultants Ltd., dated September 4, 2020, File No.: 20-169-100
- "A Report to Humberking (I) Developments Limited and Humberking (IV) Developments Limited, A
 Geotechnical Investigation for Proposed Mixed-Use Development, King Street and Humber Station
 Road, Town of Caledon", prepared by Soil Engineers Ltd., dated December 2021, File No. 2108-S069
- "Draft- A Report to Humberking (I) Developments Limited and Humberking (IV) Developments
 Limited, Hydrogeological Assessment, Proposed Mixed Use Development King Street and Humber
 Station Road, Town of Caledon", prepared by Soil Engineers Ltd., dated December 2022, File No.
 2108-W069
- "Updated Preliminary Geotechnical Comments and Recommendations Proposed SWM Ponds, Caledon Station Subdivision, Caledon Ontario," by DS Consultants Ltd., dated May 31st, 2024. File No. 20-169-104.

A brief summary of the findings from each investigation/report is provided in the following sections.

2.1 Headwater Drainage Feature Assessment: In Support of the Bolton Residential Expansion Study (Aquafor Beech Ltd., 2014)

Aquafor Beech Limited (Aquafor) completed a *Headwater Drainage Feature Assessment* (2014) in support of the BRES Study being carried out by the Town of Caledon. The objectives of the investigation included delineation of Headwater Drainage Features (HDF) within the Caledon Station Site. The study identified and classified a total of four (4) HDFs as summarized below:

- Headwater Drainage Feature-1 (HDF-1) is located in the eastern portion of the Site and consists of fifteen (14) stream reaches (1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i, 1j, 1k, 1l, 1m and 1n);
- Headwater Drainage Feature-2 (HDF-2) is located along the eastern boundary of the Site and consists of two (2) stream reaches (2a and 2b);
- Headwater Drainage Feature-3 (HDF-3) is located within the western portion of the Site and consists of seven (7) stream reaches (3a, 3b, 3c, 3d, 3e, 3f and 3g); and,
- Headwater Drainage Feature-4 (HDF-4) is located along the western property boundary of the Site
 and consists of three (3) stream reaches (4a, 4b and 4c). Stream reach 4b is noted to be an existing
 pond.

The Headwater Drainage Map by Aquafor (2014) is provided in **Appendix A**.

2.2 Preliminary Geotechnical Investigation, Proposed Residential Subdivision, Bolton Option 3 Lands, Bolton, Ontario (DS Consultants Limited, 2020)

A Preliminary Geotechnical Investigation was completed by DS Consultants Ltd., for the greater site, Bolton Option 3 Lands. The investigation involved advancing a total of sixteen (16) boreholes to depths ranging from 6.7 m to 11.3 mbgs. Groundwater monitoring wells were installed in thirteen (13) borehole locations (BH20-1, BH20-2, BH20-3, BH20-4, BH20-5, BH20-6, BH20-7, BH20-9, BH20-11, BH20-12, BH20-14, BH20-15 and BH20-16) to permit monitoring of groundwater levels at the Site.

Based on the subsurface investigation completed at the Site, the Site was underlain by a surficial layer of topsoil, fill and/or disturbed native materials to depths of 0.8 mbgs, which in turn was underlain by native soils extending to the full depth of investigation. The native soils at the Site comprised of clayey silt/silty clay till material underlain by a lower cohesionless silt to sandy silt and silty sand deposits. Bedrock was not encountered to the full depth of investigation.

The clayey silt till was encountered under the fill layer in all borehole locations except BH20-4 and extended to depths ranging from 1.5 m to 7.7 mbgs and to the termination depth in Boreholes BH20-6, BH20-7, BH20-10, BH20-14 and BH20-15. The clayey silt to silty clay layer contained sand seams and trace to some amounts of sand, gravel and cobbles. The unit was noted to be moist to very moist and wet at the bottom of some borehole locations. The soil was generally found to be brown to grey in colour.

The lower cohesionless silt to sandy silt and silty sand deposits was found underlying the clayey silt to silty clay deposits in Boreholes BH20-1 to BH20-3, BH20-5, BH20-8, BH20-9, BH20-11 to BH20-13 and BH20-16 and extended to the full depth of investigation. This unit contained layers of sand and gravel/gravelly sand materials in the location of Borehole BH20-16 at various depths ranging from 1.5 m to 6.2 mbgs. The unit was noted to be moist to wet and brown to grey in colour.

The investigation involved equipping thirteen (13) borehole locations with 50 mm diameter monitoring wells to permit the monitoring of groundwater levels at the Site. On-completion groundwater levels were collected and noted to range from 2.3 m to 9.1 mbgs. Groundwater levels in the monitoring wells were measured in August 2020 and ranged from 0.2 m to 6.8 mbgs (Elev. 260.4 masl to 275.7 masl). Monitoring Well BH20-7 was found to be dry.

2.3 A Report to Humberking (I) Developments Limited and Humberking (IV) Developments Limited, A Geotechnical Investigation for Proposed Mixed-Use Development, King Street and Humber Station Road, Town of Caledon (Soil Engineers Ltd., 2021).

A Geotechnical Investigation was completed by Soil Engineers Ltd., for the northeast and northwest quadrant of King Street and Humber Station Road in the Town of Caledon. The investigation involved advancing a total of eighteen (18) boreholes to a depth of 6.6 mbgs. Groundwater monitoring wells were installed in eight (8) borehole locations (BH1, BH4, BH5, BH6, BH8, BH14, BH16 and BH18) to permit monitoring of groundwater levels at the Site.

Based on the subsurface investigation completed at the Site, the Site was underlain by a surficial layer of topsoil, fill and/or disturbed native materials, which in turn was underlain by native soils extending to the full depth of investigation. The native soils at the Site comprised of silty clay/sandy till material underlain by a lower cohesionless sand and sandy silt deposits. Bedrock was not encountered to the full depth of investigation.

The clayey silt till was encountered under the fill layer in all borehole locations and extended to the maximum explored depths except for BH18. In BH18 a dense cohesionless sandy silt layer was encountered in 2.9 mbgs and extending to 5.6 mbgs underlain by sand extending to the maximum explored depth of the borehole.

The investigation involved equipping eight (8) borehole locations with 50 mm diameter monitoring wells to permit the monitoring of groundwater levels at the Site. On-completion groundwater levels were collected, and all boreholes were noted as dry, except for BH17 where groundwater was found at 6.1 mbgs (260.1 masl).

2.4 Draft- A Report to Humberking (I) Developments Limited and Humberking (IV) Developments Limited, Hydrogeological Assessment, Proposed Mixed Use Development King Street and Humber Station Road, Town of Caledon (Soil Engineers Ltd. 2022).

A Hydrogeological Investigation was completed by Soil Engineers Ltd., at the development site located at King Street and Humber Station Road in the Town of Caledon. The investigation involved the use of the eight (8) monitoring wells advanced as part of the Geotechnical Investigation by Soil Engineers Ltd. In 2021 to permit monitoring of groundwater levels at the Site. The following findings are summarized below:

- The site is within the till plains within the south slope physiographic region of Southern Ontario and is underlain by the Halton Till. The Site lies within Humber River Watershed and Main Humber Subwatershed.
- Groundwater levels were measured on October 21, November 4 and on November 16, 2021, with
 a maximum groundwater fluctuation of 1.67 m. Groundwater levels ranged from 1.308 to 4.93
 mbgs (241.60to 243.67 masl). Monitoring wells in BH1 and BH4 were dry throughout the monitoring
 period. The groundwater flow direction was inferred to flow in an easterly and southeasterly
 direction.
- Six (6) Single Well Response Tests were completed to determine the yield capacity and flow of groundwater for the ground water-bearing subsurface. Estimated hydraulic conductivity (k) values ranged from 4.2×10^{-8} to 2.5×10^{-6} m/s.
- Construction dewatering for the underground basement structures and for the installation of the associated underground services and storm water management infrastructure were estimated.
 - The maximum estimated dewatering rate for a housing structure (west of Humber Station Road) ranged from 26,663.4 to 84,317.2 L/day with a 3x safety factor for 25 x 13 m for proposed housing structures with a permitter of 88m;
 - The maximum estimated dewatering rate for an excavation of 175 x 150m (west of Humber Station Road) ranged from 196,945.8 to 622,797.2 L/day with a 3x safety factor for the proposed housing structures with a permitter of 88m;
 - For a 50m site servicing trench the estimated maximum dewatering rate ranged from 8,298.0 to 26,240.7 L/day.

2.5 Revised Report on Preliminary Geotechnical Investigation Proposed Residential Development 7675 King Street Argo King I & II, Bolton, ON (DS Consultants Limited, 2024).

A Revised Preliminary Geotechnical Investigation was completed by DS Consultants Ltd., for the development located at 7675 King Street, Bolton, ON (Argo King I & II). The investigation involved advancing a total of seventeen (17) boreholes to depths ranging from 6.5 m to 11.3 mbgs. Groundwater monitoring wells were installed in twelve (12) borehole locations (BH19-1, BH19-3 to BH19-7, BH22-1, BH22-5, and

BH22-7 to BH22-9)) to permit monitoring of groundwater levels at the Site. Detailed subsurface conditions are provided in section 4.2.3 of this report.

2.6 Revised Report on Preliminary Geotechnical Investigation Proposed Development Caledon Station, Bolton, ON (DS Consultants Limited, 2024).

A Revised Preliminary Geotechnical Investigation was completed by DS Consultants Ltd., for the development Caledon Station (Argo Macville I, Argo Macville II, Argo Macville III, Argo Macville V, Argo Humber Station, Humberking (I) Developments & Humberking (IV) Developments), in connection with a preliminary framework plan to establish the Macville Community Secondary Plan area, located at The Gore Road and King Street in Bolton, ON. The investigation involved advancing a total of sixty-nine (69) boreholes across the Site to depths ranging from 4.0 m to 21.9 mbgs. Groundwater monitoring wells were installed in forty-five (45) borehole locations to permit monitoring of groundwater levels at the Site. Detailed subsurface conditions are provided in section 4.2.3 of this report.

2.7 Updated Preliminary Geotechnical Comments and Recommendations Proposed SWM Ponds, Caledon Station Subdivision, Caledon, Ontario (DS Consultants Limited, 2024)

An updated Preliminary Geotechnical letter was completed by DS Consultants Ltd. to provide comments and recommendations for the proposed SWM Ponds at the Site. The following findings are summarized below:

- SWMP 1: Based on seasonal high groundwater levels (March 2023), and the proposed bottom elevation of SWMP 1 (261 masl), the hydrostatic pressure at the base of the clay liner will be high and would cause uplift stability issues. Under-line drainage is required to reduce the uplift hydrostatic pressure at the base of the liner. The clay liner used is assumed to be 1 m. However, without an under-drainage system, the clay liner would need to be significantly thicker (7.6 m) to reduce the hydrostatic pressure at the base of the liner.
- SWMP 2A: The proposed bottom elevation of SWM 2A is 259 masl. Based on the subsurface investigation silty clay to clayey silt till extended to approximately 15.3 mbgs and is underlain by a cohesionless deposit of watering bearing sandy silt to silty sand which extended to the maximum explored depth within the SWM Pond footprint (21.9 mbgs). Artesian conditions were encountered within the monitoring well (BH23-1) screened within the cohesionless deposit. The save excavation depths (SEDs) based on the subsurface investigation within the SWM Pond footprint ranged from 3.0 to 6.0 mbgs. A liner and under-line drainage to protect against uplift would not be required if the SWM Pond is to extend to the SED limit.
- SWMP 2B: The water levels are near the ground surface, and the proposed bottom elevation of SWMP 2B is 256 masl. The prevailing subsurface deposits in the boreholes within the vicinity of the SWMP 2B consisted of clayey silt to silty clay till which will serve as an appropriate clay liner, and a liner is not considered necessary for SWMP 2B. Additional boreholes are recommended to confirm that a liner and under-line drainage to protect against uplift would not be required.

3.0 FIELD INVESTIGATION

To assess soil and groundwater conditions at the Site, DS used sixteen (16) exploratory boreholes advanced during the geotechnical investigations at the Caledon Station Site carried out in July 2020 which included thirteen (13) monitoring wells (MWs) installed at borehole locations BH20-1 through BH20-7, BH20-9, BH20-11 through BH20-12, and BH20-14 through BH20-16. Three (3) boreholes were advanced April 22nd, 2021. Two (2) MWs installed in boreholes BH21-1 and BH21-2. Between August 19th and September 7th, 2022, forty-two (42) exploratory boreholes were advanced. Twenty-three (23) MWs were installed at borehole locations BH22-1, BH22-3, BH22-5, BH22-10, BH22-11, BH22-13 through BH22-15, BH22-17, BH22-20, BH22-22, BH22-25, BH22-27 through BH22-29, BH22-33, BH22-35, BH22-36A, BH22-39A, BH22-40, BH22-40A, and BH22-42. Between June 23rd and July 4th, 2023, eight (8) exploratory boreholes were advanced within the southwestern quadrant of the Site. Seven (7) MWs were installed at borehole locations BH23-1, BH23-1A, BH23-2, BH23-4, BH23-5, BH23-7 and BH23-8.

Between June 19th and June 21st, 2019, seven (7) boreholes were advanced at the Argo I & Argo II Site in which four (4) MWs were installed at borehole locations BH19-1, and BH19-3 through BH19-7. Between October 13th and October 17th, 2019, nine (9) boreholes were advanced in which five (5) MWs installed in boreholes BH22-1, BH22-5, and BH22-7 through BH22-9.

The borehole and monitoring well locations are as shown in **Figure 4A**. The detailed subsurface conditions are provided in the boreholes logs in **Appendix B**. MWs were constructed in accordance with O.Reg. 903, with 2-inch PVC casing and a 1.5 m or 3.0 m length of screen. Screens were installed at varying depths ranging from 4.0 to 21.0 mbgs.

Monitoring wells were developed before use to allow for groundwater level monitoring, hydraulic conductivity testing, and to assess groundwater quality. Monitoring wells were developed before use to allow for groundwater level monitoring, hydraulic conductivity testing, and to assess groundwater quality. Thirty-six (36) single well response tests (SWRTs) were completed by performing a rising head test to estimate hydraulic conductivity values of the overburden at the Site.

Test holes PW1 and PW2 were advanced between July 6th and July 10th, 2023, to a depth ranging from 15.2 to 21.3 mbgs. **Appendix A** shows the Driller's description of the test holes and the well construction features of the pumping wells. The overburden material in PW1 consisted of silty clay to sandy silt overlying a fine sand unit extending to the maximum borehole depth. The overburden in PW2 generally consisted of silty clay to clayey silt till extending to the maximum explored depth. The Drillers' logs and field observations were used in the design for a 150 mm (6 inch) diameter wells.

The well screen assembly consisted of 150 mm diameter, 20 slot PVC screens installed from 9.1 to 21.3 mbgs (30 to 70 ft) in PW1 and from 7.6 to 13.7 mbgs in PW2. The static water level measured on August 11th, 2023, in PW1 was 3.4 mbgs. The water was above ground surface on August 24th, 2023, in PW2. **Appendix A** features the test hole log and well design of the Pumping Wells.

Five (5) unfiltered groundwater samples were collected from the Caledon Station Site and two (2) unfiltered groundwater samples were collected from the Argo King I & II Site. Groundwater quality results were

compared to parameters limits outlined in the Peel Region Sanitary and Storm Sewer Discharge By-Law 53-2010 and the Provincial Water Quality Objectives (PWQO) for surface water to assess the suitability of discharge to the Region's sewer system and nearby surface water features as part of the hydrogeological investigation.

Two (2) unfiltered surface water samples were collected from the Caledon Station Site for comparison of water quality against the PWQO to assess baseline water quality conditions at the Site prior to commencing construction activities.

4.0 PHYSICAL SETTING

Available topographic maps, environmental, geotechnical, and hydrogeological reports, and the Ontario Geological Survey were used to develop an understanding of the physical setting of the study area. The borehole logs from all investigations at the site as well as the Ministry of the Environment, Conservation and Parks Water Wells Records (MECP WWRs) used to interpret the geological and hydrogeological conditions at the Site.

4.1 Physiography and Drainage

The Site is located within a physiographic region of Southern Ontario known as the South Slope and within a physiographic landform feature known as the Drumlinized Till Plain (Chapman and Putnam, 1984). The South Slope physiographic region lies between the Oak Ridges Moraine in the north and the Peel Plain in the south. Much of the land surface topography and geology in southern Ontario was formed during the most recent glaciation period, known as the Wisconsin Glaciation, which was accompanied by various meltwater lakes and channels. The Pleistocene deposits present in the Caledon and Brampton area are associated with the advancing and retreating of this ice sheet. The South Slope consists of low-lying till plains, with undulating to gently rolling terrain and incised valleys around larger creeks and rivers. The South Slope has a gently, but steady slope to the southeast towards Lake Ontario, which results in overall good drainage.

The study area generally comprises of two main aquifers. The deeper aquifer is the Scarborough Aquifer Complex usually at depths greater than 40 or shallower sections of sand and silty sand associated with the Thorncliffe Aquifer complex. A second localized shallower aquifer consists of discontinuous sand lenses within the Halton till or the upper sandy silt of the ORM Aquifer Complex at depths up to 20 mbgs. The Scarborough Aquifer complex is overlain by the Newmarket and Halton till aquitards that also sandwich the ORM Aquifer Complex, therefore displaying he piezometric surface of a confined aquifer system, varying between 5 and 20 mbgs (Bolton Residential Expansion Study Background Environmental Study, 2014).

The Site is located within the Main Humber subwatershed, part of the larger Humber River Watershed. There are numerous headwater drainage features located within the Site (Section 4.3.5). The closest surface watercourse to the Site is the Humber River, located approximately 1 km east of the Site. The topography within the Site is gently rolling with a general slope towards the south/southeast. The study area is characterized as having a moderate drainage and is directed overland into various streams on the Site.

4.2 Geology

The following presents a brief description of regional and site geology based on the review of available information and site-specific soil investigations.

4.2.1 Quaternary Geology

The surficial geology at the Site and in the surrounding area is predominantly comprised of clay to silt-textured silt (Ontario Geological Survey, 2010). A pocket of surficial ice-contact stratified deposits consisting of sand and gravel with minor amounts of clay, silt and till are present west of the Site. There are modern alluvial deposits consisting of clay, silt, sand and gravel deposits present along the Humber River and its tributaries in the east. An illustration of surficial geology for the Site and surrounding area is provided in **Figure 2B.**

4.2.2 Bedrock Geology

Available published mapping indicates that bedrock in the area predominantly comprises of shale and minor limestone part of the Queenston Formation (MNDM Map 2544 Bedrock Geology of Ontario). Bedrock was not encountered as part of the borehole drilling program within the Caledon Station Site area. Based on the MECP water well records, there are ten (10) water well records which were reportedly completed into bedrock. The thickness of the overburden generally ranged from 24.7 mbgs to 75.0 mbgs, based on nine (9) well records (MECP WWR No. 4903854, 7275497, 4906470, 4908193, 4908194, 4904437, 4905615, 7267796, and 4907399). There is one (1) well record (MECP WWR No. 4905839) located approximately 490 northeast of the Site with a reported depth to bedrock of 11.0 mbgs. This well record is located within the valley lands of the Humber River, and for this reason the ground surface elevation of the well is likely significantly lower than surface elevations across the Site.

4.2.3 Site Geology

The stratigraphic setting of the Sites was interpreted from the soil encountered during the current subsurface investigation. In summary, the Sites are underlain by a surficial layer of topsoil / fill / disturbed native material, which in turn was underlain by native soil deposits extending to the full depth of investigation. The native soil deposits at the Site comprised of clayey silt till to silty clay till (Halton Till), which in turn was underlain by silt to sandy silt/sandy silt deposits. Bedrock was not encountered during the subsurface investigation.

The stratigraphic conditions encountered at the Sites during the current subsurface investigations were generally consistent with the findings from the previously completed Preliminary Geotechnical Investigation (Sections 2.4 and 2.5).

The stratigraphic conditions encountered in the boreholes are in detail summarized below.

Table 5: Summary of Stratigraphic Conditions

Caledon Station	Argo King I & II
Topsoil/Fi	ill/Disturbed Native
Topsoil: 200-550 mm encountered in all BHs	Topsoil: 200-350 mm encountered in BHs except for BH19-5
Earth fill/disturbed native material was encountered at all BH locations and extended to a maximum depth of 2.3 mbgs.	Earth fill/disturbed native material was encountered at all BH locations and extended to a maximum depth of 1.5 mbgs.
Fill/disturbed native material consist of sandy silt to clayey silt with trace grave and trace amounts of topsoil/organics	Fill/disturbed native material consist of clayey silt to silty clay with trace topsoil and organics
Halton Till Deposits (Clayey Silt Till to Silty Clay Till)
Glacial Till- clayey silt to silty clay with trace amounts of sand and gravel was encountered in all BHs except for BH20-4, BH22-6, BH22-7, BH22-9, BH22-1 and BH22-13.	Glacial Till- clayey silt to silty clay was encountered in all BHs
Occasional wet silt/sand seams	Range from 2.1 to 11.3 mbgs and to borehole termination depth in CH19-1, BH19-2, BH19-5, BH19-8, BH22-4 to BH22-6 and BH22-8
Range from 1.5 to 15.3 mbgs and to borehole termination depth in BH20-6, BH20-10, BH20-15, BH22-14, BH22-16, BH22-17, BH22-19, BH22-20, BH22-21, BH22-24, BH22-34, BH22-37, BH22-38 through BH22-41 and BH23-4	
Newmarket Till (Silt/Sandy Silt/ Silty Sand)
Silt/sandy silt/silty sand was encountered in all BHs except for BH20-6, BH20-10, BH20-15, BH21- 1, BH21-3, BH22-34 and BH23-4 underlying the Halton Till or Fill	Silt/sandy silt/silty sand was encountered in all BHs except for BH19-2, BH19-8, BH22-4 to BH22-6 and BH22-8

Range from 1.0 to 12.2 mbgs between BHs BH21-2, BH22-24, BH22-30, BH22-31 and BH22-36, BH23-7 and BH23-8 to the maximum explored depth in all other encountered BHs.	Ranged from 4.8 to 11.3 mbgs. The deposits were water bearing and present in a loose to dense state.
Sand	, Sand & Gravel
A sand/sand and gravel unit were encountered in BHs BH22-2, BH22-4, BH22-29, BH22-30 extending to depths of 4.6 to 12.2 and to the maximum explored depth in BH22-30, BH23-7 and BH23-8	Not encountered

The location of the boreholes and monitoring wells is provided in **Figure 4**. The borehole logs are provided in **Appendix B**. Geological Cross-Sections A-A' to F-F', which depict the stratigraphic setting at the Site are provided in **Figures 5A to 5H**.

4.3 Hydrogeology

The hydrogeology at the Site was evaluated using the on-site monitoring wells, piezometers, and staff gauges installed by DS, local domestic wells and existing hydrogeological and environmental reports for the area.

4.3.1 Local Groundwater Use

As part of the hydrogeological study, DS completed a search of the Ministry of the Environment, Conservation and Parks (MECP) Water Well Record (WWR) database for both sites. Based on the MECP water well records search, there are ninety-eight (98) water wells within 500 meters of the two Sites. Forty-nine (49) water wells are noted as domestic and/or livestock supply wells, five (5) water wells were noted for commercial use, two (2) wells were noted for industrial use, and two (2) wells were noted for municipal use. All other remaining wells are either abandoned, not in use or monitoring/test hole wells. Private domestic and commercial water supply wells are drilled into sandy aquifers confined under clay till. The depths of these wells range from 7.5 to 63.4 mbgs. Domestic water supply records exist for wells drilled between the dates of January 1957 to June 2016. The water well record summary is included **in Appendix C. Figure 3** shows the MECP water well location plan.

It is recommended that a door-to-door private water well survey be completed within a 500 m radius of the Site to confirm the use of groundwater for private servicing in the study area.

There are zero (0) records of permit to take water (PTTW) within 1 km of the site.

4.3.2 Groundwater Conditions

DS implemented a groundwater monitoring program at the Caledon Station Site in August 2020 on bimonthly basis and at Argo King I & II in October 2022 on a monthly basis. Monitoring programs began with a Site visit to collect groundwater levels to assess long-term groundwater fluctuations. Currently, the monitoring has been conducted from August 2020 to May 2024 at the Caledon Station Site and from October 2022 to May 2024 at Argo King I & II and will be ongoing until August 2024. **Figure 4** shows the monitoring well locations. **Table 1** and **Table 2** presents a summary of the measured groundwater level elevations in all monitoring wells and piezometers.

Caledon Station

Throughout the study area, groundwater levels were found to range between 255.2 masl (BH20-7) and 277.16 masl (BH22-1) in the proposed developmental area, which represent the groundwater levels within the overburden at the Site. Based on the groundwater elevation contours, the direction of groundwater flow is generally expected to be in a southeasterly direction. Flow diverges across the site to the south and east into their respective tributaries of the Humber River. The average hydraulic gradient flowing west to east is estimated to be 0.007 m/m. The average hydraulic gradient from the north to the south is estimated to be approximately 0.010 m/m. Groundwater outlets to surface streams at the southwest and southeast limits of the site. The Inferred groundwater maps are provided in **Figure 6**.

Continuous water level monitoring was conducted on four (4) monitoring well at BH20-5, BH20-7, BH20-12 and BH20-16 since August 2020 and from an additional eight (8) MWs at BH20-1, BH20-9, BH20-11, BH22-13, BH22-22, BH22-29, BH22-26, BH22-42, since September-November 2022. Continuous monitoring was completed using a fixed interval pressure and temperature data recording device (Levelogger™) which was corrected for atmospheric pressure from a central location on the site.

Based on continuous and manual monitoring, the water levels in the monitoring wells have not varied significantly during the current monitoring period. The groundwater levels in the monitoring wells have generally gradually declined during the late summer to the fall monitoring period, and then increasing throughout the winter peaking in mid spring. Groundwater levels in MWs increased following precipitation events. Season variation ranged from 0.9 m (BH20-12) to 3.8 m (BH20-11) during the monitoring period.

The hydrographs for the continuous groundwater monitoring are provided in Appendix J.

Argo King I & II

Throughout the study area, groundwater levels were found to range between 255.8 masl (BH22-7) and 261.0 masl (BH22-5) in the proposed developmental area, which represent the groundwater levels within the overburden at the Site. Groundwater levels in MWs BH19-1, BH19-3, BH19-4, BH19-5, BH22-1, BH22-5 and BH22-9 were generally above the ground surface. Water levels in BH22-7, occasionally rose above the ground surface. The water levels in monitoring wells BH19-1, BH19-3, and BH22-5 gradually increased above the ground surface in the winter (January 2023) and remained elevated for the remainder of the monitoring period. Based on the groundwater elevation contours, the direction of groundwater flow is generally

expected to be in a southwesterly direction. Flow diverges across the site to the south and west into their respective tributaries of the Humber River. The average estimated hydraulic gradient flowing west to east is estimated to be 0.002 m/m. The average estimated hydraulic gradient from the north to the south is estimated to be approximately 0.002 m/m. Groundwater outlets to surface streams at the southwest and southeast limits of the site. A groundwater elevation contour and flow map are provided in **Figure 6**.

Continuous water level monitoring was conducted at three (3) MWs at BH19-7, BH22-5 and BH22-7. Continuous monitoring was completed using a fixed interval pressure and temperature data recording device (LeveloggerTM) which was corrected for atmospheric pressure from a central location on the site.

Based on continuous and manual monitoring, the water levels in the monitoring wells have not varied significantly during the current monitoring period, with the exception of an increase of water levels above the ground surface for the above noted monitoring wells. The groundwater levels generally increased following major precipitation events.

The hydrographs for the continuous groundwater monitoring are provided in Appendix J.

4.3.3 Hydraulic Conductivity

Single Well Response Tests (SWRTs) were completed by DS in nine (9) monitoring wells on August 6^{th} and 7^{th} , 2020, in eighteen (18) monitoring wells between November 1^{st} and November 3^{rd} , 2022 at the Caledon Station Site, in nine (9) monitoring wells between June 2019 and October 2022 at Argo King I & II, and at six (6) monitoring wells in at the Caledon Station Site at the Speirs property in July 2023 to estimate hydraulic conductivity (K) for the representative geological units in which the wells were screened. SWRTs were completed by performing a rising head test (slug test) using a bailer to remove water from the well. A data logger was placed at the bottom of the wells to monitor recovery. Hydraulic conductivity (k) values were calculated using the Bouwer and Rice method. **Table 6** presents a summary of the hydraulic conductivity (K) results for the representative geological units. The hydraulic conductivity values between the sites ranged from 2.9×10^{-10} m/sec within the low permeably clay silt till to 4.0×10^{-5} m/sec within the highly permeable sand. The hydraulic testing results are provided in **Appendix D**.

Table 6: Summary of Hydraulic Conductivity (K) Test Results

Well ID	Screen Interval (masl) Screened Formation		K- Value(m/s)
		Caledon Station	
BH20-1	272.2 m to 273.7 m	Silt	7.3 x 10 ⁻⁷
BH20-5	264.0 m to 275.5 m	Silty sand	5.3 x 10 ⁻⁷
BH20-6	262.5 m to 264.0 m	Clayey silt till, sand seams	1.4 x 10 ⁻⁷
BH20-9	266.5 m to 268.0 m	Silty clay till, some sand	3.2 x 10 ⁻⁶
BH20-11	3H20-11 261.0 m to 262.5 m Silt, some sand		5.2 x 10 ⁻⁸
BH20-12	258.9 m to 260.4 m	Silt	6.0 x 10 ⁻⁷
BH20-14	257.4 m to 258.9 m	Silty Clay Till	7.3 x 10 ⁻⁷
BH20-15	255.1 m to 256.6 m	Clayey Silt Till	7.4 x 10 ⁻⁹

BH20-16	258.1 m to 259.6 m	Silty Sand	1.5 x 10 ⁻⁸
BH22-1	271.4 m to 274.5	Silty Clay to Clayey Silt Till & Sandy Silt	3.0 x 10 ⁻⁶
BH22-3	268.6 m to 271.6	Sandy Silt Till	2.8 x 10 ⁻⁷
BH22-5	272.2 m to 275.2	Sandy Silt & Silt	4.3 x 10 ⁻⁸
BH22-10	260.8 m to 263.8	Sandy Silt to Silty Sand	3.0 x 10 ⁻⁷
BH22-13	264.1 m to 267.1 m	Sandy Silt	1.6 x 10 ⁻⁶
BH22-14	259.4 m to 262.4 m	Silty Clay to Clayey Silt Till	2.9 x 10 ⁻¹⁰
BH22-17	261.5 m to 264.5 m	Silty Clay to Clayey Silt Till	1.2 x 10 ⁻⁸
BH22-20	258.8 m to 261.8 m	Silty Clay to Clayey Silt Till	1.0 x 10 ⁻⁸
BH22-22	260.2 m to 263.2 m	Silty Clay to Clayey Silt Till	1.8 x 10 ⁻⁸
BH22-25	260.3 m to 263.3 m	Silty Sand	3.6 x 10 ⁻⁷
BH22-27	259.0 m to 262.0 m	Sandy Silt	1.9 x 10 ⁻⁶
BH22-28	260.3 m to 263.3 m	Sandy Silt	3.4 x 10 ⁻⁶
BH22-29	259.8 m to 262.8 m	Sand	6.7 x 10 ⁻⁶
BH22-32	253.1 m to 256.1 m	Sandy Silt	5.4 x 10 ⁻⁶
BH22-33	257.5 m to 260.5 m	Sandy Gravel & Silty Sand to Sandy Silt	4.6 x 10 ⁻⁶
BH22-36	257.8 m to 260.8 m	Native, Sandy Silt and Silty Clay Till	5.3 x 10 ⁻⁹
BH22-40	256.4 m to 259.4 m	Silty Clay Till	1.1 x 10 ⁻⁹
BH22-42	259.1 m to 262.1 m	Silty Clay Till & Sand	2.5 x 10 ⁻⁹
BH23-1 (deep)	239.6 m to 246.2 m	Sandy Silt to Silty Sand	4.0 x 10 ⁻⁶
BH23-1			
(shallow)	252.4 m to 255.4 m	Silty Clay to Clayey Silt Till	5.4 x 10 ⁻⁹
BH23-2	259.7 m to 265.7 m	Silt and Sandy Silt to Silty Sand	5.9 x 10 ⁻⁷
BH23-4	261.1 m to 264.2 m	Silty Clay to Clayey Silt Till	4.9 x 10 ⁻⁹
BH23-5	257.9 m to 260.9 m	Sandy Silt to Silty Sand	2.4 x 10 ⁻⁵
BH23-8	262.0 m to 265.0 m	Sandy Silt to Silty Sand and Sand	6.6 x 10 ⁻⁷
		Argo King I & II	
BH19-1	255.7 m to 257.2	Sand & Clayey Silt Till	9.9 x 10 ⁻⁷
BH19-3	253.7 m to 255.2	Clayey Silt Till and Sandy Silt Till	1.1 x 10 ⁻⁷
BH19-4	256.6 m to 258.1 m	Silty Sand	4.1 x 10 ⁻⁵
BH19-5	254.6 m to 256.1 m	Sandy Silt Till	1.9 x 10 ⁻⁸
BH19-6	253.3 m to 254.8 m	Sandy Silt Till	1.0 x 10 ⁻⁷
BH19-7	254.2 m to 255.7 m	Sandy Silt Till	2.4 x 10 ⁻⁷
BH22-5	251.5 m to 254.5 m	Silty Clay Till	5.5 x 10 ⁻⁸
BH22-7	246.7 m to 249.7 m	Clayey Silt Till	3.8 x 10 ⁻⁹
BH22-8	250.3 m to 253.3 m	Silty Clay to Clayey Silt Till	8.0 x 10 ⁻⁹

4.3.4 In-Situ Infiltration Testing

In-situ infiltration testing was conducted by DS field personnel on September 2nd, 2020. The testing was completed in the location of monitoring wells (BH20-1, BH20-2, BH20-5, BH20-6, BH20-9, BH20-11 and BH20-15) as shown below in **Table 7**, to provide a preliminary field assessment of infiltration rates of surficial soils across the Site. Testing was completed following the guidelines outlined in the Low Impact

Development (LID) Stormwater Management Planning and Design Guide for Stormwater Infiltration, 2010 (Appendix C Site Evaluation and Soil Testing Protocol).

To estimate the infiltration rate of soils in the test locations, **DS** completed in-situ infiltration testing at a depth of 0.5m and 1.5 mbgs. The testing included the use of a constant head infiltrometer which operates using the Marriott Bottle principal, whereby a shallow ponded head of water is maintained at a constant depth within an augured borehole. The steady-state flow of water into the subsurface soil following saturated conditions is regarded as the field saturated hydraulic conductivity (K_{fs}) rate respective of the depth of the head utilized. The results of the infiltration testing are summarized below in **Table 7**.

Table 7: Summary of Test Pits and Estimated Soil Infiltration Rates

Test Location	Test Depth (mbgs)	Soil Type	Water Head	Steady State Rate of Water Level Change (cm/min)	K _{fs} (cm/sec)	Infiltration Rate (mm/hr)
BH20-1	0.5	Sandy Silt	0.05 m	0.34	3.20E-05	34.1
DU50-1	1.5	Silty Clay	0.05 m	0.03	2.82E-06	17.8
BU20.2	0.5	Sandy Silt	0.05 m	0.28	2.63E-05	32.4
BH20-2	1.5	Silty Clay	0.05 m	0.02	1.88E-06	16.0
BH20-5	0.5	Sandy Silt	0.05 m	0.20	1.88E-05	29.6
ВП20-5	1.5	Silty Clay	0.05 m	0.04	3.76E-06	19.2
BU20 6	0.5	Silty Clay	0.05 m	0.11	1.03E-05	25.2
BH20-6	1.5	Silty Clay	0.05 m	0.02	1.88E-06	16.0
BU20 0	0.5	Silty Clay	0.05 m	0.08	7.52E-06	23.1
BH20-9	1.5	Silty Clay	0.05 m	0.03	2.82E-06	17.8
DU20 11	0.5	Silty Clay	0.05 m	0.48	4.51E-05	37.4
BH20-11	1.5	Silty Clay	0.05 m	0.04	3.76E-06	19.2
DU20 45	0.5	Silty Clay	0.05 m	0.40	3.76E-05	35.6
BH20-15	1.5	Silty Clay	0.05 m	0.06	5.64E-06	21.4

Notes:

Based on the results of the infiltration testing, the site primarily consists of a low permeable silty clay till with a measured infiltration rate ranging from about 16 to 38 mm/hr with an average of 25 mm/hr. Soils with infiltration rates over 15 mm/hr are considered suitable for Soakaways, infiltration trenches and chambers (TRCA, 2010).

For the purpose of calculating design infiltration rates for on-site LID measures, Table C2 in the "Low Impact Development Stormwater Management Planning and Design Guide" (Appendix C), was used to determined safety correction factors for each of the test pit locations. The safety factors are applied to the measured infiltration rates of soils for each location to address heterogeneity of the soils. The calculated safety correction factors and the design infiltration rates for each location was determined to be 2.5. As a result of applying the safety correction factors, an infiltration rate ranging from about 6 to 15 mm/hr (average 10 mm/hr), can be considered for design purposes at the tested locations within the silty clay soils. A design infiltration rate of 43 mm/hr was calculated for the tested location within the sand and gravel deposits.

⁻mbgs- meters below ground surface

⁻Infiltration Rate approximated from Kfs using calculations provided in Figure C1 of Appendix C - Site Evaluation and Soil Testing Protocol (Low Impact Development (LID) Stormwater Management Planning and Design Guide for Stormwater Infiltration, 2010)

Continued water level monitoring at all locations is recommended to ensure a minimum of 1 m clearance between the top of the seasonally high-water table and the bottom of any infiltration measure.

4.3.5 Groundwater Quality

Five (5) unfiltered groundwater samples were collected from select monitoring well locations (BH22-13 BH22-17 and BH22-32), on November 3rd, 2023, and from BH23-1 on July 17th, 2023, and PW1 on August 14th, 2023, from the Caledon Station Site and two (2) unfiltered groundwater samples were collected from BH22-1 and BH22-5 on October 26th, 2022, and from PW2 on August 14th, 2024, from Argo King I & II. Samples were collected to assess groundwater quality. The samples were placed in pre-cleaned laboratory supplied vials and/or bottles provided with analytical test group-specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted to SGS Laboratories in Lakefield, Ontario. SGS is certified by the Canadian Association of Laboratory Accreditation Inc. (CALA) and the Canadian Standard Association (CSA). Groundwater quality results were compared to parameters limits outlined in the Peel Region Sanitary and Storm Sewer Discharge By-Law 53-2010 and the Provincial Water Quality Objectives (PWQO) for surface water to assess the suitability of discharge to the Region's sewer system and nearby surface water features as part of the hydrogeological investigation. **Table 8** and **Table 9** presents a summary of exceeded parameters.

Table 8: Parameters in Groundwater Exceeding the Peel Region Bylaw Discharge Criteria

				Caledon Station					Argo King I & II	
Parameter	Unit	Storm Guideline limit	Sanitary Guideline limit	BH22- 13	BH22- 17	BH22- 32	BH23-1	PW1	BH22-1	BH22-5
Total Suspended Solids (TSS)	mg/L	15	350	<u>492</u>	169	32	139	3	<u>38,300</u>	94
Manganese	mg/L	0.05	5	0.132	0.101	0.0462	0.0849	0.0449	2.17	0.148
Phosphorus	mg/L	0.4	10	0.011	0.098	0.073	0.129	0.006	3.12	0.171
Zinc	mg/L	0.04	3	<0.002	0.0006	0.004	0.012	0.023	0.057	0.019

Note: 0.00- Exceeded Storm Bylaw 0.00- Exceeded Sanitary Bylaw

Table 9: Parameters in Groundwater Exceeding MECP PWQO Guidelines

				Caledon Station					Argo King I & II		
Parameter	Unit	Guideline limit	BH22-13	BH22-17	BH22-32	BH23-1	PW1	BH22-1	BH22-5		
Arsenic	mg/L	0.005	0.001	0.0009	<0.0002	0.0012	0.0004	0.072	0.0061		
Cadmium	mg/L	0.0001	<0.00003	0.000013	0.000005	0.000014	0.000004	0.000178	0.000024		
Cobalt	mg/L	0.0009	0.000676	0.00106	0.000342	0.00108	0.000365	0.0125	0.00314		
Copper	mg/L	0.001	0.0005	0.0025	0.0011	0.0042	0.0024	0.0266	0.0056		
Lead	mg/L	0.005	<0.00009	0.00108	0.00043	0.00157	<0.00009	0.018	0.00155		

Phosphorous	mg/L	0.01	0.011	0.098	0.073	0.129	0.006	3.12	0.171
Zinc	mg/L	0.02	<0.002	0.006	0.004	0.012	0.023	0.057	0.0019
4AAP-Phenolics	mg/L	0.001	0.003	0.002	<0.002*	<0.002*	<0.002*	<0.002*	<0.002*

^{0.00 -} Exceeds PWQO parameter

4.3.6 Surface Water Conditions

Caledon Station

The surface water and drainage setting at the Site comprises a total of eight (8) wetlands (Wetland 1, 2, 3, 4, 5, 6, 7 and 8), which are incorporated into the tributaries of the Humber River and ultimately flow into Lake Ontario. All accessible wetlands at the Site were instrumented with surface stations consisting of staff gauges and associated nested piezometer set.

A continuous pre-construction surface water and groundwater monitoring program of the Site is currently underway, and this report includes the findings from the data collected to-date during the August 2020 to May 2024 monitoring period. All staff gauges installed within the wetlands at the Site have been instrumented with a LeveloggerTM to allow for continuous monitoring at every 15-minute interval. The monitoring program includes a Site visit on an every bi-monthly basis to retrieve the water level data from the LeveloggerTM and to collect manual readings within all surface stations and monitoring wells at the Site.

As discussed in Section 2.1, Aquafor (2014) completed a *Headwater Drainage Feature Assessment* of the Site and delineated the four (4) Headwater Drainage Features (HDFs) and their associated reaches at the Site. The surface stations are installed within the delineated drainage reaches at the Site.

The location of the wetlands is provided in **Figure 4B**. A discussion on the surface water conditions at all surface stations is provided below.

Wetland 1 and 2

Wetlands 1 and 2 are located within the southwestern corner of the Site along The Gore Road and within the Headwater Drainage Feature HDF-4. Due to accessibility constraints, Wetland 1 could not be instrumented with a surface station to permit monitoring within the wetland. Wetland 2 was equipped with a staff gauge, SG W2-1, and a nested piezometer set, W2-PZS and W2-PZD within Reach 4a. The shallow and deep nested piezometers were installed to depths of 1.1 m (Elev. 260.5 masl) and 2.0 m (259.5 masl) below existing ground surface, respectively. Staff gauge SG W2-1 was instrumented with a datalogger to allow for continuous monitoring of surface water levels and was installed within the low point of the wetland where it exits/outlets from the Site. The ground surface elevation at the location of staff gauge SG W2-1 is approximately 261.3 masl. Piezometer W2-PZD was instrumented with a datalogger in September 2022 to allow for continuous monitoring of shallow groundwater levels. The ground surface elevation at the location of W2-PZD is approximately 261.4 masl.

^{* -} Result exceeds detection limit

During the continuous monitoring of staff gauge SG W2-1 in Wetland 2, the Reach 4a channel has generally remained dry during late spring & summer monitoring periods (May to September from 2020 to 2024 monitoring period, with some flow observed following precipitation events. This flow was noted to diminish into dry conditions within 1-2 days after the cessation of the storm event. Ponding of surface water is also observed at the staff gauge intermittently during the year due to its location surrounded by thick vegetation which impeded flow resulting in higher water levels. Increased flows were recorded between 2020 to 2024 in the winter and early spring generally between the months of November and March indicative of flows primarily sourced from strong precipitation events and snow melt, with maximum flow rate of 660,096 L/day measured in May 2022.

The groundwater monitoring in the nested piezometer indicate that the shallow and deep piezometer water levels are generally slightly above the base of the Reach 4a channel during the current monitoring period. The water level in the shallow piezometer was found to be approximately 0.1 m to 0.2 m above the base of the Reach 4a channel, with the exception of December 2020, May 2022 and March 2023 where the shallow piezometer water levels were below the base of the Reach 4a. The water level in the deep piezometer was found to be above the base of Reach 4a to maximum of 0.37 m above the base of the Reach 4a channel observed in April 2021. The shallow groundwater gradient at the location of Reach 4a was found to be upward during the current monitoring period with the exception of monitoring events in September to October 2020, and September 2022 showcasing a downward gradient; with an upward gradient generally ranging from 0.42 in the spring (April 2021) to 0.04 m/m in the Fall (November 2022), and a downward gradient ranging from -0.03 m/m in the Fall (December 2020) to -0.01 in the Summer (July 2022).

The flow observed in the monitoring data for the Reach 4a channel after precipitation events and in the Winter may potentially be as a result of the low permeability surficial silty clay till soils precluding the free infiltration of storm water into the ground. This allows for the saturation of the near surficial soils creating perched groundwater conditions, which in turn further reduces the soil infiltration rates and allows for increased surface runoff along the Reach 4a channel. Nearby Monitoring Well BH20-7 indicates the deep groundwater level to be measured at 1.1 m below existing grade (Elev. 261.7 masl) during highest point in the current monitoring period. For this reason, groundwater is not considered to be recharging the Reach 4a channel. There is also a potential for recharging of the surface water in the Reach 4a channel from the up-gradient Reach 4b (pond) and 4c of HDF-4. Given that the primary source of flow in the Reach 4a channel during the current monitoring period is determined to be from precipitation events, this channel is considered an ephemeral feature.

The hydrographs for Wetlands 1 and 2 are provided in **Appendix J**.

Wetland 3

Wetland 3 is located within the southwestern portion of the Site and within the Headwater Drainage Feature HDF-3. The wetland was equipped with a staff gauge, SG W3-1 and a nested piezometer set, W3-PZS and W3-PZD within Reach 3c of HDF-3. The shallow and deep nested piezometers were installed to depths of 1.0 m (Elev. 269.9 masl) and 1.9 m (269.1 masl) below existing ground surface, respectively. Staff gauge SG W3-1 was instrumented with a datalogger to allow for continuous monitoring of surface water

levels and was installed within the low point of the wetland at approximate ground surface elevation of 270.7 masl. Wetland 4 is located downstream of this wetland location with respect to surface water flow.

During the continuous monitoring of staff gauge SG W3-1 in Wetland 3, Reach 3c has generally remained dry during the 2020 through 2024 monitoring period, with very minimal response to precipitation events. Based on the reach's headwater characteristics in the early stage of forming its source from the catchment area, intermittent flow was recorded in Reach 3c, and diminished into dry conditions within the same day. Peak flow was recorded on May 2022 as 21,168 L/day. The manual groundwater monitoring in the nested piezometer indicate that the shallow and deep piezometer water levels are generally below the base of Reach 3c but have risen above the base of the Reach 3c from April to November 2021, peaking in June 2021 and gradually decreasing to below the base of Reach 3c in January 2022. Water levels have generally remained below or near the base the reach of Reach 3c for the remainder of the monitoring period, except for monitoring events which occurred in March 2022 fallowing a major precipitation event, where the deep piezometer water level rose above the base of Reach 3c and sporadically increases above the Reach of 3c from January to July 2023 and from December 2023 to May 2024. The water level in the shallow piezometer was found to range between approximately 0.05 m to 0.82 m below the base of Reach 3c throughout the monitoring period rising above the base of Reach 3c in the spring ranging approximately between 0.07 to 1.0 m above the base of Reach 3c. The water level in the deep piezometer was found to be approximately 0.02 m to 1.2 m below the base of Reach 3c throughout the monitoring period rising in the winter to above the bed of Reach 3c to approximately 0.04 m to 0.19 m above the base of Reach 3c. The shallow groundwater gradient at the location of Reach 3c was found to be generally upward during the current monitoring period with the exception for the monitoring period of June to September 2021, November 2022, and February 2024 where the gradient shifts downward; with an upward gradient generally ranging from 0.51 in the spring (March 2022) to 0.00 m/m in the Summer (July 2023), and a downward gradient ranging from -0.69 m/m in the Summer (June 2021) to -0.01 in the Winter (February 2024).

Reach 3c is located within tiled agricultural cropland without a discernable channel (Aquafor, 2014). The short-lived flow observed in the monitoring data for Reach 3c following precipitation is not considered to be a prevalent flow due to the absence of a defined channelized morphology at this location. Further, shallow groundwater levels recorded in the nested piezometers for the monitoring period April through September 2021, from January to July 2023, and from December 2023 to May 2024 are above the base of Reach 3c, suggesting contributions to the feature from groundwater during the spring through the fall period, and later through the winter to the spring/summer period (2023 & 2024). Flow observed in May 2022 and January 2022 are likely the result of precipitation/melt events as the shallow groundwater levels are considerably below the base of Reach 3c. Given that Reach 3c had some minor response to precipitation events, the feature is considered ephemeral.

The hydrograph for Wetland 3 is provided in **Appendix J**.

Wetland 4

Wetland 4 is located within the southwestern corner of the Site, east of Wetland 2 within the Headwater Drainage Feature HDF-3. Wetland 4 was equipped with a staff gauge, SG W4-1, and a nested piezometer

set, W4-PZS and W4-PZD within the Reach 3a channel. The shallow and deep nested piezometers were installed to depths of 0.6 m (Elev. 260.7 masl) and 1.6 m (259.5 masl) below existing ground surface, respectively. Staff gauge SG W4-1 was instrumented with a datalogger to allow for continuous monitoring of surface water levels and was installed within the low point of the wetland where it exits/outlets from the Site. The ground surface elevation at the location of staff gauge SG W4-1 is approximately 261.0 masl. The stations were removed in May 2021 due to road construction and reinstalled in August 2022. The ground surface elevation at the re-installed location of the staff gauge SG W4-1 is approximately 260.8 masl. The shallow and deep re-installed nested piezometers were installed to depths of 0.7 m (Elev. 260.5 masl) and 1.7 m (259.5 masl) below existing ground surface, respectively.

During the continuous monitoring of staff gauge SG W4-1 in Wetland 4, the Reach 3a channel has generally remained dry during the August to October 2022 monitoring period, with very minimal response to precipitation events. Intermittent flow was recorded in Reach 3a, diminishing into dry conditions within the same day. Water levels gradually increased in December 2022 and remained above the Reach of 3a throughout the monitoring period.

A peak of 0.7 m (261.6 masl) above the base of the reach with corresponding flow of 307,584 L/day was measured in February 2024. Peak flow was measured on July 2023 (1,674,864 L/day) when the water level was approximately 0.2m above the base of the reach. The manual groundwater monitoring in the nested piezometer indicate that the shallow and deep piezometer water levels were below the base of Reach 3a at the onset of monitoring (September 2020) increasing above the base of Reach 3a until April 2021 when the station was removed. The station was reinstalled in August of 2022. Water levels in the nested piezometers were below the base of Reach 3c throughout the fall of 2022, increasing in the winter to above the reach in January 2023 where water levels were sustained for the remainder of the monitoring period, apart from the September 2023 monitoring event. There is generally a downward gradient at the location, with a maximum magnitude of 0.25 m/m (April 2021). An upward gradient is recorded between January 2023 until the remainder of the monitoring period apart from September 2023 monitoring event. There is no data available for the summer periods of 2022, however, a general relationship based on the available early spring and summer 2023 data would indicate a shift from downward gradient to upgradient, indicative of recharge conditions shifting to discharge conditions.

All up-gradient reaches (3b, 3c, 3d, 3e, 3f and 3g) in HDF-3 are located within tile agricultural cropland without discernible channels (Aquafor, 2014). For this reason, based on the current data, recharge of surface flows for Reach 3a from up-gradient reaches in HDF-3 is not considered to be likely. Given that the shallow groundwater levels recorded in the nested piezometers during the current monitoring period are generally below the base of Reach 3a, there is no contribution to the feature from groundwater during the late summer and fall period. Given that Reach 3a had some minor response to precipitation events, it is considered an ephemeral feature. Further monitoring will be required to confirm the seasonal fluctuations and to confirm the surface/groundwater interaction dynamics.

The hydrograph for Wetland 4 is provided in **Appendix J**.

Wetland 5 and 6

Wetlands 5 and 6 are located near the southern boundary of the Site along King Street, east of Wetland 4 within the Headwater Drainage Feature HDF-3. Both wetlands are equipped with a single staff gauge, SG W5-1, and a nested piezometer set, W5-PZS and W5-PZD within Reach 3g. The shallow and deep nested piezometers were installed to depths of 0.8 m (Elev. 260.5 masl) and 1.8 m (259.4 masl) below existing ground surface, respectively. Staff gauge SG W5-1 was instrumented with a datalogger to allow for continuous monitoring of surface water levels and was installed within the low point of the wetland where it exits/outlets from the Site. The ground surface elevation at the location of staff gauge SG W5-1 is approximately 261.1 masl. The stations were removed in May 2021 due to road construction and reinstalled in August 2022. The ground surface elevation at the re-installed location of the staff gauge SG W5-1 is approximately 260.9 masl. The shallow and deep re-installed nested piezometers were installed to depths of 0.8 m (Elev. 260.5 masl) and 1.6 m (259.6 masl) below existing ground surface, respectively.

During the continuous monitoring of staff gauge SG W5-1, the Reach 3g channel has generally remained dry during the monitoring period, with minimal flow observed following precipitation events. This flow was noted to diminish into dry conditions within 1-2 days after the cessation of the storm event. The surface water levels and flow in SG W5-1 was intermittent throughout the monitoring period and observed to be strong during the late winter period and early spring period, with flows dissipating with time until dry conditions persist starting in late spring 2021 and 2023. A steep increase in water levels is observed during late winter months (February), likely the result of snow melt, where a peak of 0.4 m (261.5 masl) above the reach base was observed in March 2023 with a corresponding peak flow as a result of snow melt was 385,776 L/day. The groundwater monitoring in the nested piezometers indicate the following:

- The water level in the shallow piezometer was consistently above the base of the Reach 3g throughout the entire monitoring period apart from October 2020. A gradual increase in water level is observed in late fall during October (2020, 2022 & 2023) and remained at elevated levels until late spring (2021 and 2023) based on the current available data. A peak water level of 0.35 m (261.4 masl) above the reach base was observed during April 2021 and was 0.013 m (261.08 masl) below the reach base at one occurrence during October 2020. Responses to precipitation in W5-PZS were low to moderate.
- The water level in the deep piezometer followed the same general trend as the shallow piezometer and was consistently above the base of the Reach 3g throughout most of the monitoring period from September 2020 to June 2023. The water level is observed to be close the reach base during late fall (2020 and 2022) and gradually increases and remains elevated till late spring (2021 and 2023). The water level was observed to fall below the base of Reach 3g in June 2023 reaching a maximum of 0.51 m below the reach to an approximate elevation of 260.3 masl in September 2023. Water levels gradual increase to the base of the reach throughout the remainder of the monitoring period. A peak in the water level was noted to be 0.33 m (261.2 masl) in March 2023. Responses to precipitation in W5-PZD were low to moderate.

The shallow groundwater gradient at the location of Reach 3g was found to be downward during most of the monitoring period; with a rise in the gradient from 0.019 m/m to 1.1 m/m between September and October 2020. The downward gradient remains persistent during 2020 to 2021 monitoring period, however,

the gradient reverses to and upward gradient during 2022 to 2023 monitoring period, indicating a change towards greater ground water inputs into the reach. Furthermore, the deep piezometer water levels were consistently above the streambed and shallow piezometer water levels during the 2022 and 2023 monitoring events, indicating groundwater contribution.

The flow observed in the monitoring data for the Reach 3g channel after precipitation events may potentially be as a result of the low permeability surficial silty clay till soils precluding the free infiltration of storm water into the ground. This allows for the saturation of the near surficial soils creating perched groundwater conditions, which in turn further reduces the soil infiltration rates and allows for increased surface runoff along the Reach 3g channel. Based on the monitoring of Wetland 5 and 6 during the late summer and fall monitoring period, groundwater was not considered a source for contributions to surface water flow in Reach 3g. Groundwater levels observed in the shallow piezometer at the elevation of the Reach 3g streambed is considered to be perched groundwater conditions. All up-gradient reaches (3f and 3g) in HDF-3 are located within tile agricultural cropland without discernible channels (Aquafor, 2014). For this reason, based on the current data, recharge of surface water flows for Reach 3g from up-gradient reaches in HDF-3 is not considered to be likely. Given that the primary source of flow in the Reach 3g channel during the current monitoring period is determined to be from precipitation events, this channel is considered an ephemeral feature. Further monitoring will be required to confirm the seasonal fluctuations and to confirm the surface/groundwater interaction dynamics.

The hydrographs for Wetlands 5 and 6 are provided in Appendix J.

Wetland 7

Wetland 7 is located within the southeastern portion of the Site, north of Wetland 8 and within the Headwater Drainage Feature HDF-1. The wetland was equipped with a staff gauge, SG W7-1 and a nested piezometer set, W7-PZS and W7-PZD within Reach 1d of HDF-1. The shallow and deep nested piezometers were installed to depths of 1.1 m (Elev. 269.9 masl) and 1.8 m (269.1 masl) below existing ground surface, respectively. An additional staff gauge SG W7-2 was installed on the upstream end of the wetland within Reach 1e. Staff gauge SG W7-1 was instrumented with a datalogger to allow for continuous monitoring of surface water levels and was installed within the local low point of the wetland at its upstream location. Piezometer W7-PZD was instrumented with a datalogger in September 2022 to allow for continuous monitoring of shallow groundwater levels. The ground surface elevation at the location of staff gauge SG W7-1 is approximately 265.3 masl.

During the continuous monitoring of staff gauge SG W7-1 in Wetland 7, both Reach 1d and Reach 1e have consistently remained dry in the summer periods during the 2020 to 2023 period. Generally, the surface water levels in the staff gauge remained dry during summer periods and gradually increases during late fall and early winter in which the water levels remain elevated throughout the winter until late spring, where a gradual recession is noted until dry conditions are once again reached in the summer. The surface water levels observed in the staff gauge during late spring and early summer is accompanied by ponding, where elevated surface water levels were sustained long after seasonal spring melt and precipitation events, which in turn subsequently feeds into southern limits of Reach 1e. Peak surface water levels were observed 0.52

m (265.827 masl) above the base of the reach with peak flow of 250,128 L/day recorded in March 2023. Staff gauge SG W7-1 did not display any response to precipitation events apart from a major precipitation event in September 2021.

The water levels in the shallow and deep piezometers had similar seasonal trends and were observed to be consistently above the base of the reach throughout the monitoring period, apart from the summer to late fall in June to November 2022 and intermittent monitoring events during 2020 and 2021. Both piezometers remained dry during early fall season (2020 to 2023) and remain dry till the end of fall, following a steep increase in water levels remaining elevated until late spring. The water levels peak in March with peak water levels were recorded in March 2023 of 0.5 m (265.8 masl) above reach base for W7-PZD, and 0.47 m (265.77 masl) above reach base for W7-PZS. Responses to precipitation in the piezometers were low to moderate.

All up-gradient reaches (1e, 1f, 1k, 1l, 1m and 1n) are located in tiled agricultural croplands without discernable channels. For this reason, there is likely no surface water recharge from any upstream reaches in HDF-1. Further, the dry conditions indicate that there is no surface water and groundwater interaction during the August to October period. There is a slight upward gradient observed during the winter of 2021 and 2023 and spring period of 2023 indicating slight contributions of ground water inputs into the reach. At this stage, Reach 1d is considered a non-perennial surface water feature.

The hydrograph for Wetland 7 is provided in **Appendix J**.

Wetland 8

Wetland 8 is located in the southeastern portion of the Site along Humber Station Road and within the Headwater Drainage Feature HDF-1. Wetland 8 was equipped with a staff gauge, SG W8-1, and a nested piezometer set, W8-PZS and W8-PZD within the Reach 1a channel. The shallow and deep nested piezometers were installed to depths of 0.8 m (Elev. 262.8 masl) and 1.7 m (261.9 masl) below existing ground surface, respectively. Staff gauge SG W8-1 was instrumented with a datalogger to allow for continuous monitoring of surface water levels and was installed within the low point of the wetland where it exits/outlets from the Site. The ground surface elevation at the location of staff gauge SG W8-1 is approximately 263.4 masl. Piezometer W8-PZD was instrumented with a datalogger in September 2022 to allow for continuous monitoring of shallow groundwater levels.

During the continuous monitoring of staff gauge SG W8-1 in Wetland 8, the Reach 1a channel has sustained flow for the majority of the monitoring period with increased response to precipitation events. The flow in the Reach 1a channel was noted to become dry at the end of September and transitioning into the October 2020 period and throughout the summer periods of 2021, 2022 and 2023 periods when there were no large precipitation events. Reach 1a channel did not display much response to any storm events for most of the monitoring period, however, there was a noticeable relationship to larger precipitation events during the dry periods in the summer and fall season of 2021 and 2022 and winter of 2023, corresponding to steep rises and gradual recessions in the water levels following precipitation events. Surface water levels tended to rise during late fall (2020 to 2023) and in the early winter during 2022, where they stay elevated until late spring where dry conditions persist there after. Peak surface water levels were recorded during March of 2022 and 2023 at 0.31 m (263.6 masl) above the reach base and peak flow of 6,885,648 L/day during

March 2023. The groundwater monitoring in the nested piezometers indicate the following:

- The water level in the shallow piezometer was consistently above the reach base throughout the monitoring period apart from a few occurrences in the summer and fall when it fell below the base with dry conditions observed in October 2020 and June 2021. The water level tends to rise in the early fall period (2020 to 2022) and peaked at 0.3 m (263.6 masl) above the reach base in March 2023. Responses to precipitation in W8-PZS was low to moderate.
- The groundwater in the deep piezometer is generally consistent with the trend of the shallow piezometer and remains above the reach base throughout from September 2020 to May 2022 from where water levels fall slightly below the reach and gradually increase above the base of the reach in January 2023 remaining above the base of the reach. The water levels dip below the base of the reach in the summer of 2023 and gradually increase above the base of the reach until the current monitoring period. Dry conditions observed in June 2021. The water levels rise during early fall and gradually increase and peak during late winter and spring, where they gradually decrease during late spring (2020 to 2023). The water levels reach a peak water level of 0.26 m (263.8 masl) above reach base in March 2023. Responses to precipitation in W8-PZD was low to moderate.

The shallow groundwater gradient at the location of Reach 1a was found to be upward throughout the monitoring period, however, with the exception of monitoring events in June 2021, January 2023 to May 2024, where a downward gradient is observed, indicating a mixed relationship of ground water recharge conditions and contributions into the reach.

Up-gradient Reaches 1d, 1e, 1f, 1g, 1i, 1j, 1k, 1l, 1m and 1n are located within tile agricultural cropland without discernable channels (Aquafor, 2014). Further, upstream Reaches 1b and 1c comprise of a well-defined channel, which may allow for flow of surface water downgradient into Reach 1a. Reach 1h also has a reported well-defined channel, however connectivity with Reach 1a is lost as a result of the absence of a channel along the intermediary Reach 1g (Aquafor, 2014). It is likely that surface water flows carried from Reach 1b and 1c allows for recharge to Reach 1a following precipitation events and/or at times of high groundwater tables. Based on the groundwater elevation contours (**Figure 6**), the deeper groundwater level in the area of Reach 1a during the current monitoring period is expected to be approximately 262.0 masl to 263.0 masl. Given that monitoring from the nested piezometer indicated an upward shallow groundwater gradient for majority of the monitoring period, it is likely that surface water flows in Reach 1a may receive contribution from groundwater. For this reason, Reach 1a is likely an intermittent surface water feature.

The hydrograph for Wetland 8 is provided in **Appendix J**.

Argo King I & II

The surface water and drainage setting at the Site comprises a total of three (3) wetlands (Wetland 1, 2 and 3), which are incorporated into the tributaries of the Humber River and ultimately flow into Lake Ontario. All accessible wetlands at the Site were instrumented with surface stations consisting of staff gauges and associated nested piezometer set.

A continuous pre-construction surface water and groundwater monitoring program of the Site is currently underway, and this report includes the findings from the data collected to-date from the October 2022 to May 2024 monitoring period. All staff gauges installed within the wetlands at the Site have been instrumented with a LeveloggerTM to allow for continuous monitoring at every 15-minute interval. The monitoring program includes a Site visit on monthly basis to retrieve the water level data from the LeveloggerTM and to collect manual readings within all surface stations and monitoring wells at the Site.

The location of the wetlands is provided in Figure 4.

A discussion on the surface water conditions at all surface stations is provided below.

Wetland 1

Wetland 1 is located within the eastern portion of the Site along a tributary of Lindsay Creek. Wetland 1 was equipped with a staff gauges, SG1-1, SG1-2, and SG1-3 with a nested piezometer set, PZ1-1S and PZ1-1D; PZ1-2S and PZ1-2D; and PZ1-3S and PZ1-3D. The shallow piezometers for PZ1-1S, PZ1-2S, and PZ1-3S were installed to depths of 0.9 m (Elev. 258.0 masl), 1.1 m (Elev. 255.7 masl) and 1.2 m (256.9 masl) below existing ground surface, respectively. The deep piezometers for PZ1D, PZ2D, and PZ3D were installed to depths of 1.9 m (Elev. 257.0 masl), 2.0 m (Elev. 254.9 masl) and 1.9 m (256.2 masl) below existing ground surface, respectively. All staff gauge and deep piezometer locations were instrumented with a datalogger to allow for continuous monitoring of surface water levels and shallow groundwater levels. The ground surface elevation at the location of staff gauges (SG1 to SG3) ranges from 259.4 to 260.5 masl.

During the continuous monitoring of staff gauge SG1 through SG3 in Wetland 1, the channel was dry during the beginning of the monitoring period in the fall (October to November 2022). Water levels gradually increased above the base of the channel in December and remained above the base of the channel until Fall of 2023 at SG1-1 & SG1-2, gradually increasing above the base of the channel throughout the winter months and remained elevated for the remainder of the monitoring period. SG1-3 water levels gradually decreased to the base of the channel and rapidly increased in the winter (December 2023) and remained elevated until May 2024. This is likely the response to some major precipitation events. Moderate increases during this time frame (December 2023 to May 2024) were also observed at SG1-1. Peak water level and flow recorded in March 2023 at SG1-2 of 0.1 m above the base of the channel (Elev. 257.0 masl) and 2,790,720 L/day, respectively. No flow was observed from the October 2022 through February 2023, September 2023, December 2023 and May 2024 monitoring periods. The channel had minimal to moderate response to precipitation events, diminishing to baseline conditions within 1-2 days after the cessation of the storm event.

The manual groundwater monitoring in the nested piezometer indicates that the shallow and deep piezometer water levels were generally below the base of the channel during the current monitoring period. The water level in the shallow piezometers were found to range from 4.1 mbgs (256.44 masl) at SG1-2 to 1.2 mbgs (258.82 masl) at SG1-1. The water level in the deep piezometer was found to range from 3.9 mbgs (256.64 masl) at SG1-2 to 0.87 mbgs (259.18) at SG1-1. The shallow groundwater gradient at the location of Wetland 1 was generally found to be upward for the current monitoring period, apart from November to December 2022 and August to September 2023 at SG1-1, August 2023 at SG1-2, and May 2024 at SG1-3.

The hydrographs for Wetland 1 are provided in Appendix J.

Wetland 2

Wetland 2 is located within the central portion of the Site. The wetland was equipped with a staff gauge, SG2 and a nested piezometer set, PZ2S and PZ2D. The shallow and deep nested piezometers were installed to depths of 1.2 m (Elev. 258.7 masl) and 2.0 m (258.0 masl) below existing ground surface, respectively. Staff gauge SG2 was instrumented with a datalogger to allow for continuous monitoring of surface water levels and at approximate ground surface elevation of 259.9 masl.

During the continuous monitoring of staff gauge SG2 in Wetland 2, the channel was dry during the beginning of the monitoring period in the fall (October to December 2022). Water levels gradually increased above the base the channel in January but decrease to dry conditions until December 2023 from where water levels slightly decrease above the base of the channel and remain elevated for the remainder of the monitoring period. Peak water level was recorded in May 2024 of 0.47 m above the base of the channel (Elev. 261.7 masl). No flow was recorded for the current monitoring period. The channel had minimal to moderate response to precipitation events, diminishing into baseline conditions within 1-2 days after the cessation of the storm event.

The manual groundwater monitoring in the nested piezometer indicates that the shallow and deep piezometer water levels were generally below the base of the channel with water levels gradually increasing throughout the Winter to late Spring and decreasing in the Fall. The water level in the shallow piezometers were found to range from 2.5 mbgs (258.8 masl) to 1.2 mbgs (260.0 masl). The water level in the deep piezometer was found to range between 2.6 mbgs (258.7 masl) to 1.2 mbgs (260.0 masl). The shallow groundwater gradient at the location of Wetland 2 was generally found to be downward for the current monitoring period.

The hydrograph for Wetland 2 is provided in **Appendix J**.

Wetland 3

Wetland 3 is located along the eastern boundary of the property. Wetland 3 was equipped with a staff gauge, SG3, and a nested piezometer set, PZ3S and PZ3D. The shallow and deep nested piezometers were installed to depths of 1.4 m (Elev. 257.9 masl) and 2.1 m (2572 masl) below existing ground surface, respectively. Staff gauge SG3 was instrumented with a datalogger to allow for continuous monitoring of surface water levels and was installed within the low point of the wetland where it exits/outlets from the Site. The ground surface elevation at the location of staff gauge SG3 is approximately 259.2 masl.

During the continuous monitoring of staff gauge SG3 in Wetland 3, the channel has generally remained dry during the current monitoring period, apart from monitoring events in December 2022, February-March 2023 and from December 2023 for the remainder of the monitoring period where water levels remain slightly above or at the base of the channel. Peak water levels were recorded in February 2023 at 0.1 m above the base of the channel. Peak flow was recorded in March 2023 of 761,400 L/day. No flow was observed for the October 2022 to February 2023 and from May 2023 to May 2024 monitoring periods.

The manual groundwater monitoring in the nested piezometer indicate that the shallow and deep piezometer water levels were generally below the base of the channel. The water level in the shallow piezometer was found to range from 2.6 mbgs (257.9 masl) to 1.2 mbgs (259.3 masl). The water level in the deep piezometer was found to range 2.9 mbgs (257.6 masl) to 1.2 mbgs.(259.29 masl). The shallow groundwater gradient at the wetland location was found to be downward during the current monitoring period, apart from the December 2023 monitoring period.

The hydrograph for Wetland 3 is provided in **Appendix J**.

4.3.7 Surface Water Quality

DS collected two (2) non-filtered surface water samples on October 24, 2020, from the Caledon Station Site; one (1) from the surface water stream in the southwest corner of the Site (Surface Station: SG W2-1); and one (1) sample from the surface water stream in the southeast corner of the Site (Surface Station: SG W8-1). The samples were placed in pre-cleaned laboratory supplied vials and/or bottles provided with analytical test group-specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The surface water samples were submitted to SGS Laboratories in Lakefield, Ontario. SGS is certified by the Canadian Association of Laboratory Accreditation Inc. (CALA) and the Canadian Standard Association (CSA). The samples were analyzed for general chemistry parameters, total suspended solids and dissolved oxygen against PWQO standards to establish baseline conditions as part of the Hydrogeological Investigation. **Table 10** presents a summary of exceeded parameters.

Table 10: Parameters in Surface Water Exceeding the PWQO

				Caledor	Station
Parameter Exceeded	Unit	Sample Location	Guideline limit	Concentration (SG W2-1)	Concentration (SG W8-1)
Aluminum	ug/L	Surface stream	75	2,610	2,400
Aluminum	ug/L	Surface stream	0.015	0.034	0.096
(dissolved)					
Arsenic	ug/L	Surface stream	5	12.0	1.0
Cobalt	ug/L	Surface stream	0.9	1.86	1.87
Copper	ug/L	Surface stream	5	6.9	3.2
Iron	ug/L	Surface stream	300	36,800	4,300
Phosphorus	ug/L	Surface stream	0.01	1.93	0.358
Zinc	ug/L	Surface stream	20	24	19

Bold – parameter exceeds the PWQO standards.

Based on the analytical testing results, both surface water samples exceeded the PWQO for various parameters.

The certificate of analysis report is provided in **Appendix E.**

5.0 SITE WATER BALANCE

To understand and compare existing hydrologic conditions, a Thornthwaite site water balance was

completed. The Thornthwaite water balance (Thornthwaite, 1948; Mather, 1978; 1979) is an accounting type method used to analyze the allocation of water among various components of the hydrologic cycle. Inputs to the model are monthly temperature, Site latitude, precipitation, and stormwater run-on. Outputs include monthly potential and actual evapotranspiration, evaporation, water surplus, total infiltration, and total runoff. For ease of calculation, a spreadsheet model was used for the computation.

When precipitation (P) occurs, it can either runoff (R) through the surface water system, infiltrate (I) to the water table, or evaporate/evapotranspiration (ET) from the earth's surface and vegetation. The sum of R and I is termed as the water surplus (S). When long-term averages of P, R, I and ET are used, there is no net change in groundwater storage (ST). Annually, however, there is a potential for small changes in ST. The annual water budget can be stated as P = ET + R + I + ST and the components are discussed below.

Precipitation (P)

Based on the 30-year average for the Toronto Pearson Airport Climate Station in Ontario, the average precipitation for the area is about 786 mm/year for the period between 1981 and 2010. Also, the average monthly temperature from this station has been used. The monthly distribution of precipitation is presented in **Table K-1**, **Appendix K**.

Storage (St)

Groundwater storage (ST) of native soils for the existing Site was estimated using values of Water Holding Capacity (mm) of respective land use and soil types identified in Table 3.1 of the Storm Water Management (SWM) Planning & Design Manual (MOE, March 2003). The land uses, soil types and respective water holding capacities chosen to represent existing conditions at the Site include the following with their respective water holding capacity applied to March for monthly calculations:

- Pasture/Shrubs, Silty Clay Soils 200 mm
- Moderately Rooted Crop, Silty Clay Soils 150 mm
- Urban Lawns, Pervious Development 75 mm

Using the procedures outlined in the SWM Planning & Design Manual for the above land use and soil type, the annual change in storage is zero (0).

Evapotranspiration (Et)

Monthly Potential Evapotranspiration (PET) is estimated using monthly temperature data and is defined as a water loss from a homogeneous vegetation-covered area that never lacks water (Thornthwaite,1948; Mather, 1978). In the Thornthwaite water balance model, PET is calculated using the Hamon equation (Hamon, 1061);

PET Hamon = 13.97 * d * D2 * Wt

Where:

d = the number of days in the month

D = the mean monthly hours of daylight in units of 12 hours

Wt = a saturated water vapour density term = 4.95 * e0.627/100

T = the monthly mean temperature in degrees Celsius

The calculated Actual Evapotranspiration (AET) is based on PET and changes in ST (Δ ST). Where there is not enough P to satisfy PET, a reduction in ST occurs. As a result, volumes of AET are less than PET. Also, it is assumed that evaporation will occur and will amount to approximately 15% of the total precipitation for an impervious cover.

Precipitation Surplus (S)

Precipitation surplus is calculated as P–ET. For pervious areas, ET is considered AET and for impervious areas, ET is evaporation.

Infiltration (I) and Runoff (R)

For pervious areas, precipitation surplus has two components in the Thornthwaite model: a runoff component (overland flow that occurs when soil moisture capacity is exceeded) and an infiltration component. The accumulation of infiltration factors for topography, soil types and cover as prescribed in Table 3.1 of the SWM Planning & Design Manual give infiltration factors for existing conditions on the Site as shown below in **Table 11**. The runoff component calculated in the pre-development model is the remaining volume of precipitation surplus following AET, ET, and infiltration. For existing agricultural areas with tile drainage, there is expected to be a significant reduction in infiltration.

Total Infiltration Land uses / soil types Topography Soil Cover **Factor** 0.15 Pasture & Shrubs / Clay Loam 0.1 0.15 0.4 **Moderately Rooted Crop / Clay Loam** 0.1 0.15 0.1 0.35 **Tile Drained Moderately Rooted** 0.05 0.05 0.05 0.15 Crop / Clay Loam **Urban Lawns / Clay Loam** 0.1 0.15 0.05 0.3

Table 11 - Existing Conditions – Infiltration Factor

5.1 Pre-development Water Balance

The Site boundary used for the water balance has a total area of 188.7 ha and is predominantly comprised of landscaped/vegetated areas with only 2.0% of the total Site area comprising of existing buildings and asphalt/paved hard surfaces. **Figure 7** shows the pre-development conceptual model considered for establishing current hydrologic conditions. To predict outputs of the pre-development water balance, various inputs were entered into the Thornthwaite model including monthly precipitation and temperature, site latitude, water holding capacity values for native soils and factors of infiltration. Various inputs and outputs of the model are summarised below.

The average annual precipitation rate for the area is approximately 786 mm/year. In the pervious area of the Site, the PET is estimated to be 605 mm/year, which is approximately 77% of the total annual precipitation rate. Based on the monthly distribution of soil storage for all pervious areas of the Site characteristic of silty clay soils, the resulting annual AET rate for each pervious area will be as follows:

Pasture/Shrubs – 551.6 mm/year

- Moderately Rooted Crop 533.9 mm/year
- Urban Lawn 501.8 mm/year

There will not be any evapotranspiration from the existing impervious area of the Site however a loss of 15% from all incoming precipitation and surface runoff due to evaporation is accounted for in the water balance model. All water surplus in the existing impervious area of the Site will convert into surface runoff.

Based on the above, the resulting annual evapotranspiration, infiltration and runoff volumes for each area of the Site during the pre-development period is summarized in **Table 12** below.

ET Volume AET Volume Runoff Volume Infiltration Land Uses / Soil Types (m³/year) (m³/year) Volume (m³/year) (m³/year) 105,407 Pasture & Shrubs / Clay Loam NIL 17,917 26,875 Moderately Rooted Crop / 623,703 NIL 103,100 191,471 Clay Loam **Tile Drained Moderately** NIL 207,421 14,695 83,269 Rooted Crop / Clay Loam 8,702 **Urban Lawns / Clay Loam** NIL 51,215 20,306 **Impervious Areas** 4,383 NIL NIL 24,838 144,413 321,921 Total 3,734 987,746

Table 12 – Summary of Pre-Development Water Balance

The detailed calculations are provided in Table K-2, Appendix K.

5.2 Post-development Water Balance

A post-development water balance was completed to predict hydrologic changes to the Site as a result of proposed conditions. The conceptual model considered for establishing proposed hydrologic conditions is provided in **Figure 8.** Ten (10) separate drainage areas are shown with boundaries and imperviousness provided by Urbantech as reported in the Functional Servicing Report (FSR) for the Caledon Station Secondary Plan (Urbantech, June 2024).

To predict outputs of the post-development water balance, the same elements of the 30-year average weather data and site latitude inputs were used. Various inputs and outputs of the post-development model are described in detail below. The detailed calculations are presented in **Table K-3**, **Appendix K**.

PRECIPITATION (P)

Based on the 30-year average for the Toronto Pearson Airport Climate Station, the average precipitation for the area is about 786 mm/year for the period between 1981 and 2010. Also, the average monthly temperature from this station has been used. The monthly distribution of precipitation is presented in **Table K-1**, **Appendix K.**

STORAGE (ST)

Groundwater storage (ST) of native soils for the post-development scenario was estimated using the values of soil moisture holding capacity or respective land use and soil types identified in Table 3.1 of the Storm

Water Management (SWM) Planning and Design Manual (MOE, March 2003). The land uses, soil types and respective water holding capacities chosen to represent existing conditions at the Site including the following with their respective water holding capacity applied to March for monthly calculations:

- Pasture/Shrubs, Silty Clay Soils 200 mm
- Urban Lawns/Landscaped, Previous Development 75 mm

Similar to the pre-development conditions, using the procedures outlined in the SWM Planning & Design Manual for each land use, the annual change in storage is 0. The monthly distribution of ST for each of the land use/soil types is presented in **Table K-1**, **Appendix K**.

EVAPORATION / EVAPOTRANSPIRATION (ET)

The proposed plans for development during the post-construction period will result in an increase in the total impervious hard surfaces across the Site. The total impervious area following the proposed plans for development is approximately 1,333,864 m², or about 71% of the total area. In the impervious areas, it is assumed that only evaporation will occur and will amount to approximately 15% of the total precipitation. Considering a total annual precipitation of 786 mm/year, evaporation is estimated at 118 mm. On this basis, the total annual volume of evaporation is estimated at 157,263 m³/year. The detailed calculations for evaporation are included in **Table K-3, Appendix K**.

For post-development pervious areas, monthly PET is estimated using the same inputs and calculations described in the pre-development model respective of land use and soil moisture holding capacity. In the post-development scenario, annual AET is 53,535 m³/year for the pasture/shrubs area and 228,934 m³/year for the pervious landscape/development area of the Site. The monthly distribution of Post-development AET and detailed calculations are presented in **Table K-3, Appendix K**.

PRECIPITATION SURPLUS (S)

For post-development pervious surfaces at the site, precipitation surplus is calculated as the difference between precipitation and actual evapotranspiration (P–AET), which is summarized below for each of the post-development pervious catchment areas:

- Pasture/Shrubs 234.4 mm/year
- Pervious Landscaped 284.2 mm/year

For Impervious surfaces at the site, surplus is P-ET where ET is estimated at 15% of P. The resulting precipitation surplus is about 668 mm/year. The more detailed calculations are included in **Table K-3**, **Appendix K**.

INFILTRATION (I)

The same accumulation of infiltration factors for topography, soil types and cover as prescribed in Table 3.1 of the SWM Planning & Design Manual were used give infiltration factors for post-development conditions.

Considering the infiltration factors used, the total volume of Infiltration (I) estimated for post-development conditions of each pervious areas of the Site is summarized below:

- Pasture/Shrubs 9,100 m³/year
- Previous Landscaped 38,900 m³/year

On this basis, the resulting infiltration during the post-construction period is estimated to be 48,000 m³/year. The more detailed calculations are presented in **Table K-3**, **Appendix K**.

RUNOFF (R)

The runoff component calculated in the post-development model is a combination of the remaining volume of precipitation surplus for both pervious and impervious areas. The total volume of runoff (R) estimated for the post-development conditions of the pervious areas is summarized below:

- Pasture/Shrubs 13,649 m³/year
- Pervious Landscaped 981,922 m³/year

All precipitation water over impervious hard surfaces will convert into surface runoff after accounting for evaporative losses. On this basis, the resulting surface runoff during the post-construction period is estimated to be 995,571 m³/year.

The more detailed calculations are presented in Table K-3, Appendix K.

5.3 Site Water Balance Results

Based on the results of the pre-development and post-development water balance completed, the proposed development is expected to produce a decrease in annual infiltration of 96,414 m³/year and an increase in annual runoff of 648,812 m³/year. The effects are the result of increased impervious areas replacing pervious areas of the Site. The analysis is summarised in **Table K-5**, **Appendix K.**

A summary of the results from the pre- and post-development water balance without mitigation is provided in **Table 13** below:

Table 13 - Summary of Pre- and Post-Development Site Water Balance (without Mitigation)

	Pre-Development	Post-Development	Change
ET (m³/year)	4,383	157,263	-152,879
AET (m³/year)	987,746	282,468	705,278
Infiltration (m³/year)	144,413	48,000	96,414
Runoff (m³/year)	346,759	995,571	-648,812

Note: (-ve value implies a net gain)

5.4 Post-development Water Balance (With Mitigation)

Groundwater elevations across the Site are high and present a challenge for mitigating infiltration deficits. With this in mind, best efforts have been made to reduce the infiltration deficit using lot level, passive Low Impact Development (LID) measures. The location and design of the LIDs are provided in the FSR (Urbantech, June 2024). The mitigation was entered into the post-development water balance to assess the effectiveness at addressing infiltration deficits. The following mitigation considered.

Connected Impervious and Pervious Surfaces

Considering the high groundwater elevations across the Site, lot level mitigation was considered the best approach for improving infiltration in the post-development condition. The current LID plan includes connecting about 11.2 ha of impervious surfaces with 24.3 ha of pervious area to maximize infiltration potential. The areas considered include impervious roofs and paved areas to rear yards and pervious areas of parks, channels and SWM ponds from Catchments 101, 102, 104, 105, 106, Channels, Pond 2A and Pond 2B. Stormwater generated from the impervious areas contribute to the pervious area during precipitation events and is made available for evapotranspiration, infiltration and runoff. The result is increased evapotranspiration and surplus available for infiltration and runoff. The effectiveness of connecting the impervious areas is estimated to provide and infiltration benefit of 6,467 m³/yr. Detailed calculations are presented in **Table K-4**, **Appendix K**.

Silva Cells

The Silva Cell is a patented modular suspended pavement system that holds unlimited amounts of lightly compacted soil while supporting traffic loads. That soil serves to provide stormwater treatment and storage for on-site infiltration. Areas considered as contributing catchments for the Silva Cells includes approximately 5.2 ha impervious area and about 5.1 ha pervious area, from road ROWs and parks in Catchment 101, 102, 103, 104, 105 and 106. The Silva Cells are designed to capture a 25mm storm event for each respective catchment. As a result, it is expected that the Cells are capable of storing and infiltrating a maximum of 90% annual rainfall depth. The effectiveness of the Silva Cells is estimated to provide an infiltration benefit of 41,947 m³/yr. Detailed calculations are presented in **Table K-4, Appendix K**.

The mitigated water balance is summarized in **Table K-5, Appendix K**. With mitigation, the post-development infiltration deficit is reduced to 34,803 m³/yr from pre-development conditions.

It should be noted that the detailed design of the LID facilities at the Site during the post-construction period have not been finalized. Changes or additions to the LID plan should include a revised water balance. Please refer to the above-referenced Functional Service Report (FSR) by Urbantech (June 2024) for further information regarding the LIDs under consideration.

6.0 FEATURE BASED WATER BALANCE

6.1 Pre-development Sub catchments

Pre-development catchment mapping showing topographical drainage divides and wetland catchments

were provided by Urbantech (2021) to document existing drainage patterns across the site and determine which areas are within the catchments of wetlands W1 through W9. The mapping was completed to inform the proposed functional servicing for the development. Wetland and constraints mapping was provided by Beacon. The Pre-Development catchment map is presented in **Figure 9**.

The pre-development mapping shows catchments for 9 wetland units including W1 through W9. Catchments for wetlands W1 to W6 includes west areas of the Site which drain south across King Rd. Each of these catchments are limited to within the Site boundaries with exception to some ditch and road runoff from the east side of The Gore Rd. The largest subcatchment is mapped draining directly into W7 and includes approximately 75.9 ha of upgradient area which runs onto the Site via HDF WHT6-E. The drainage feature appears to be captured within a collector pipe which is observed to transect the Site from the north boundary to somewhere between wetland W7 and W8. The entire catchment area within the Site is currently tile drained. Flow exists the Site at wetland W8 via a culvert across Humber Station Road approximately 30m north of the southeast corner of the Site. Wetland catchment W9 is located east of the Site and the CP Rail. The wetland is not within the Sites boundaries however there is a small portion of the catchment within the proposed development area.

6.2 Post-Development Subcatchments

Post-development wetland catchments were provided by Urbantech to document proposed changes to existing drainage patterns for wetland catchments W1 to W6. The Post-Development Catchment Map is provided in Drawings 501 to 503 in Functional Servicing Report (Urbantech 2023). Based on the post-development wetland catchments provided, changes to catchment boundaries for Wetland 1 to 6 include area reductions of about 48 to 87%. The post development boundaries are limited to the wetland / constraint's boundaries with exception to about 90 residential lots which are proposed to drain uncontrolled into the wetland features. The uncontrolled drainage includes runoff from pervious back yards and half of the roof area which includes roof leaders discharging to backyards. A summary of changes to catchment size and imperviousness is provided in **Appendix G, Table G-6**.

Wetlands W7 and W8 are proposed to be relocated and so were not included in the post-development water balance assessment. It should be noted that the external run-on from HDF WHT6-E which is currently conveyed to wetlands W7/W8 via a drainage pipe is proposed it be redirected toward the relocated features to provide runoff contributions as required. Wetland W9 was also not included in the water balance assessment as it is located off Site and was not accounted for in the post-development catchment mapping.

6.3 Wetland Water Balance Risk Evaluation

To aid in determining the level of risk and evaluation requirements for the study, an assessment was completed using the Wetland Water Balance Risk Evaluation guidelines provided by the Toronto and Region Conservation Authority (TRCA, Nov 2017). The guideline provides criteria used to evaluate the magnitude of potential hydrological impact on a wetland. The criteria include:

- The proportion of impervious cover in the catchment of the wetland that would result from the proposal;
- ii) The degree of change in the size of the wetland catchment;

- iii) Water taking from, or discharge to, surface water bodies or aquifers directly connected to the wetland, and;
- iv) The impact on locally significant recharge areas.

Considering the above criteria, increases to impervious cover and changes to wetland catchment size were evaluated.

6.3.1 Impervious Cover Score

An increase in the percent of impervious cover within a wetland catchment has the effect of reducing infiltration and potentially decreasing baseflow and/or interflow contributions to the wetland. It further increases runoff contributions and risks of flooding and potentially increases stormwater sediment and contaminant loading. To assess the risk of the proposed impervious surfaces on sensitive features including Wetlands 1, 2, 3 and 5/6, the Impervious Cover Score (S) was calculated for each of the catchments. The equation defining S is as follows:

$$S = \underline{IC \cdot Cdev}$$

$$C$$

where,

IC is the proportion of impervious cover proposed within the specific catchment (as a percentage between 0 and 100) C dev is the total proposed development area within the catchment (in ha) C is the size of the wetland's catchment (in ha).

Results of the calculation are provided in **Table 14** and show that wetland catchment W1 to W6 are presented with low risk based on the calculated S.

Table 14 - Impervious Cover Score - Probability and Magnitude of Hydrological Change

Subcatchment Area Name	Pre- development Catchment Size (m²)	Proposed Impervious Cover (m²)	Impervious Cover Score (S) (%)	Sensitive Feature	magnitude of hydrological change
Wetland 1 (W1)	13,402	72.2	0. 5	Wetland	Low
Wetland 2 (W2)	50,784	0	0	Wetland	Low
Wetland 3 (W3)	225,600	352	0.2	Wetland	Low
Wetland 4 (W4)	62,040	918	1.5	Wetland	Low
Wetland 5 (W5)	74,225	502	0.7	Wetland	Low
Wetland 6 (W6)	47,447	62	0.1	Wetland	Low

Note: * Impervious Cover Score (S) calculated using equation 1 (TRCA - Wetland Water Balance Risk Evaluation, Nov 2017)

6.3.2 Change in Catchment Size

Changes to catchment size directly effects the volume and timing of stormwater contributions to

downgradient features. To evaluate the magnitude of hydrological change these effects can have, predevelopment and post-development catchments were compared. **Table 15** provides the area breakdown for pre- and post-development conditions. The same magnitude thresholds used for impervious cover (10% and 25 %) are used as thresholds to define catchment size alteration. As a result, changes to catchment size for W1 to W6 is considered high risk.

Table 15 - Changes to Catchment Size - Probability and Magnitude of Hydrological Change

Subcatchment Area Name	Pre-development catchment area (m²)	Post-Development Catchment Area (m²)	% Change in Catchment Area	Sensitive Feature	Magnitude of Hydrological Change *
W1	13,402	3,843	71% decrease	Wetland	High
W2	50,784	30,519	40% decrease	Wetland	High
W3	225,600	29,108	87% decrease	Wetland	High
W4	62,040	19,451	68% decrease	Wetland	High
W5	74,225	18,423	75% decrease	Wetland	High
W6	47,447	8,854	81% decrease	Wetland	High

Note: * Based on Table 2: Criteria used to evaluate the probability and magnitude of hydrological change (TRCA - Wetland Water Balance Risk Evaluation, Nov 2017)

6.4 Wetland Water Balance

To estimate potential hydrologic changes to the wetland catchments as a result of the proposed development, a Thornthwaite Water Balance was completed for all retained onsite wetlands with catchments identified as intersecting the site. The model was developed using the same input as the site water balance with the exception of including only those areas which fall within the Wetland catchments.

6.4.1 Existing Conditions

The existing conditions across the wetland catchments W1 to W6 include a silty clay loam soil type on a rolling terrain with pervious cover consisting of cultivated agricultural areas, pasture and shrub (NHS areas) and urban lawn and impervious surfaces associated with existing developed areas of the Site. **Table 16** shows the pre-development catchment breakdown of land uses for each subcatchment.

Table 16 – Pre-Development Conditions

Subcatchment Area Name	Pre-development catchment area (m²)	Mature Forest (m²)	Pasture and Shrub (m ²)	Moderately Rooted Crop (m²)	Landscaped (m²)	Impervious Surface (m²)
W1	13,402	0	5,161	4,003	1,881	2,357
W2	50,784	0	26,743	18,870	1,486	3,685
W3	225,600	0	35,599	163,350	21,470	5,181
W4	62,040	0	8,313	52,371	0	1,356
W5	74,225	0	19,471	50,398	3,331	1,025

Subcatchment Area Name	Pre-development catchment area (m²)	Mature Forest (m²)	Pasture and Shrub (m²)	Moderately Rooted Crop (m²)	Landscaped (m²)	Impervious Surface (m²)
W6	47,447	0	16,702	27,448	1,989	1,307

6.4.2 Proposed Development

It is expected that the proposed plans for development will result in a decrease in the total catchment area size for Wetlands 1 to 6 during the post-development conditions. In order to understand the effects of the reduced catchment area and evaluate the magnitude of actual hydrological changes, a wetland water balance is currently being completed by Urbantech, which includes the use of a continuous model. A preconstruction wetland monitoring program by **DS** is currently underway and will be ongoing for a minimum of a 1-year period to establish baseline conditions throughout the hydroperiods for Wetlands 1 to 6. The results of the baseline wetland monitoring will be used in combination with the continuous modeling to assess the actual risk to the wetlands. Based on the findings of the water balance results, a wetland mitigation plan will be developed.

7.0 CONSTRUCTION DEWATERING & PERMANENT GROUNDWATER CONTROL

Based on the preliminary designs, the proposed plans for development will consist of low-rise residential blocks, commercial and institutional zones, Stormwater Management (SWM) Ponds and greenspace. The development will also include the construction of roadways and associated storm, sanitary sewer and water distribution infrastructure. Detailed design of the proposed plans for the developments are not currently finalized, it is assumed that the proposed residential blocks will comprise of one (1) level of underground basement and/or parking. Further, the institutional and mixed commercial use blocks and the GO station block will be constructed slab-on-grade.

Based on the findings of the subsurface drilling investigation, there are significant variations noted in the subsurface stratigraphic and groundwater conditions across the Sites. The construction of the low-rise residential blocks and the site servicing will be dispersed across the Site areas and therefore will encounter varying subsurface conditions at different locations of the Sites. Grading plans and site plans for the Site located at Argo King I & II were not provided to **DS**, and therefore flow rates will be provided once grading plans and site plan designs are received. The following preliminary grading plans for the Caledon Station Site were provided to **DS** for review in estimating the requirements for groundwater control and dewatering during the construction period:

- "Drawing No. 301 Preliminary Grading Plan (1 of 4), Town of Caledon, Regional Municipality of Peel, Macville Secondary Plan (BRES Option 3 Lands)", by Urbantech Consulting, dated Jan 2021, File No.: 15-458
- "Drawing No. 302 Preliminary Grading Plan (2 of 4), Town of Caledon, Regional Municipality of Peel, Macville Secondary Plan (BRES Option 3 Lands)", by Urbantech Consulting, dated Jan 2021, File No.: 15-458

- "Drawing No. 601 SWM Pond 1, Town of Caledon, Regional Municipality of Peel, Macville Secondary Plan," by Urbantech Consulting, dated Sep 2021, File No.: 15-458
- "Drawing No. 602 Interim SWM Pond, Town of Caledon, Regional Municipality of Peel, Macville Secondary Plan," by Urbantech Consulting, dated Sep 2021, File No.: 15-458
- "Drawing No. 603 SWM Pond 2A, Town of Caledon, Regional Municipality of Peel, Macville Secondary Plan," by Urbantech Consulting, dated Sep 2021, File No.: 15-458
- "Drawing No. 604 SWM Pond 2B, Town of Caledon, Regional Municipality of Peel, Macville Secondary Plan," by Urbantech Consulting, dated Sep 2021, File No.: 15-458

Based on the review of the proposed preliminary grading plans, it is understood that the site grades will generally range from approximately 280.0 masl in the northwestern corner to an approximate elevation of 275.0 masl in the southwest and 267.6 masl in the southeastern corner of the Site. For the purpose of assessing the requirements for groundwater control and dewatering during the construction period, a conceptual model of the Site has been prepared based on the proposed site grading and the worst-case subsurface conditions, which can be encountered during the trenching/excavation for the low-rise residential blocks and site servicing. Conceptual models for the mid-rise residential developments are prepared based on inference from nearby boreholes and monitoring wells in the locality of these proposed structures.

It is expected that the trenching and excavation earthwork during the construction period will extend below the groundwater table in certain areas of the Site and groundwater control and dewatering will be required to ensure the excavation area remains dry and safe. Generally, the excavations will be completed into the cohesive clayey silt till, however will extend into the underlying silty sand till / silt unit in certain locations.

The dewatering estimates also include provisions for controlling storm water in the excavation area from an incidental 2-year storm event. As per the Ministry of Transportation (MTO) Intensity-Distribution-Frequency (IDF) curves for the Town of Caledon, a 2-Year storm that is 2-hours in duration would result in a 13.5 mm/hr of rainfall intensity.

This section calculates the estimated dewatering required during the construction of the proposed residential buildings and private services.

7.1 Estimation of Flow Rate – Medium Density Residential Blocks, Low-Rise Development

It is understood that the architectural designs for the proposed structures at the Site are not finalized at this time. For the purpose of assessing groundwater seepage rates during the construction period, the following assumptions were made:

• An excavation for one (1) residential block within the larger Site development will comprise of fifteen (15) medium density residential blocks. The development is to include a series of townhouses and single detached homes. This will result in an excavation that will be approximately 80 m x 130 m in area for one block.

• The low-rise residential development will comprise of one (1) level of underground basement extending to approximately 2 m below ground surface. The excavation will extend an additional 0.5 m below the finished floor basement slab for the foundation. On this basis, the base of excavation for each low-rise residential block will be advanced to 2.5 m below ground surface.

As previously indicated, the excavations for the proposed residential blocks will be dispersed across the Site area and therefore will encounter varying subsurface conditions at different locations of the Site. Generally, it is expected that the excavations for the low-rise residential blocks will be completed above the groundwater table and construction dewatering/control will be minimal for the majority of the Site, and particularly during the summer period. To assess the requirements for groundwater control and dewatering during the construction period, a conceptual site model was prepared assuming the worst-case scenario with respect to the depth of excavation below the ground water table at the Site. Based on the proposed preliminary grading plan, it is anticipated that these conditions will likely be present in the south-central portion of the Site. For the purpose of estimating the requirements for groundwater control and dewatering during the construction period, the groundwater table in the conceptual site model was set to Elev. 268.0 masl (BH22-27, March 2023). The elevation at the base of excavation will be Elev. 265.2 masl. On this basis, the excavation will be advanced to a depth of 2.5 m below the ground surface. There will be a requirement to lower the groundwater table to an elevation of 0.5 m below the base of excavation.

The groundwater seepage volume in the excavation is estimated using the Dupuit-Forcheimer analytical model for flow into a linear trench from a system of wells of equivalent radius under unconfined groundwater conditions. The anticipated groundwater seepage rates are estimated to be on the order of 44,020 L/day. An incidental 2-year storm event will result in a total of 280,800 L of water to be removed from the excavation. The total **unit** dewatering rate during the construction period for **one (1) residential low-rise block** development at the Site is estimated to be **346,830 L per day**, which includes a 50% safety factor on the anticipated rates and the contribution from an incidental precipitation event.

It is understood that the provided site grading plans are currently preliminary and are subject to changes in the future. Should there be any changes to the proposed site grading and/or deviation from any assumptions made above, **DS** should be consulted to confirm if revisions to the construction dewatering/control assessment is deemed to be required.

7.2 Estimation of Flow Rate – Townhouse & Single Detached Units

Based on Block Plan Concept dated May 1st, 2023, provided to DS, blocks consist of townhouses and detached homes are proposed within the Caledon Station Community. For the purpose of assessing groundwater seepage rates during the construction period, the following assumptions were made:

- A maximum excavation for one (1) single residential detached unit within the larger Site development will be approximately 12.8 m x 27 m in area; and,
- The single detached units and townhouse developments will comprise of one (1) level of underground basements extending to approximately 2 m below ground surface. The excavation will extend an additional 0.5 m below the lowest finished floor basement slab for the foundation.

On this basis, the base of excavation for each mid-rise residential block will be advanced to 2.5 m below ground surface.

The excavations for the proposed residential blocks will be dispersed across the Site area and therefore will encounter varying subsurface conditions at different locations of the Site. The highest groundwater level measured in the east portion of the Site is 0.3 mbgs at Elev. 265.8 masl (BH22-32). On this basis, the excavation for the mid-rise residential development will extend approximately 2.5 m below the groundwater table. For this reason, groundwater control and dewatering during the construction period will be required to maintain a dry and safe excavation. There will be a requirement to lower the groundwater table to an elevation of 0.5 m below the base of excavation.

The groundwater seepage volume in the excavation is estimated using the Dupuit-Forcheimer analytical model for flow into a linear trench from a system of wells of an equivalent radius under unconfined groundwater conditions. The anticipated groundwater seepage rate is estimated to be a maximum rate of 118,300 L/day. An incidental 2-year storm event will result in a total of 9,330 L of water to be removed from the excavation. The total **unit** dewatering rate during the construction period for **one** (1) unit (assuming largest unit dimensions) is estimated to be on the order of 186,705 L per day, which includes a 50% safety factor on the anticipated rates and contribution from an incidental 2-year precipitation event.

It is understood that the provided site grading plans are currently preliminary and are subject to changes in the future. Should there be any changes to the proposed site grading and/or deviation from any assumptions made above, **DS** should be consulted to confirm if revisions to the construction dewatering/control assessment is deemed to be required.

7.3 Estimation of Flow Rate – Site Servicing

It is understood that the site servicing plans for the proposed development at the Site are not finalized at this stage. For the purpose of assessing groundwater seepage rates during the construction period, the following assumptions were made:

- The trenching for the site servicing will be completed in segments of 30 m x 2 m per day; and
- The lowest invert level of the proposed trunk sewer and local servicing infrastructure will be limited to a depth of 4 mbgs.

As previously indicated, the trenching for the proposed site servicing will be dispersed across the Site area and therefore will encounter varying subsurface conditions at different locations of the Site. Generally, it is expected that the excavations for the site servicing will be completed above the groundwater table and construction dewatering/control will typically be minimal for the majority of the Site, and particularly during the summer period. To assess the requirements for groundwater control and dewatering during the construction period, a conceptual site model was prepared assuming the worst-case scenario with respect to the depth of excavation below the ground water table at the Site. Based on the proposed preliminary grading plan, it is anticipated that these conditions will likely be present in the south-central portion of the Site. For the purpose of estimating the requirements for groundwater control and dewatering during the

construction period, the groundwater table in the conceptual site model was set to Elev. 269.7 masl (BH20-9, August 6, 2020). The elevation at the base of excavation will be Elev. 266.3 masl. On this basis, the excavation will be advanced to a depth of 3.4 m below the ground surface. There will be a requirement to lower the groundwater table to an elevation of 0.5 m below the base of the trench.

The groundwater seepage volume in the excavation is estimated using the Dupuit-Forcheimer analytical model for flow into a linear trench from a system of wells of an equivalent radius under unconfined groundwater conditions. The anticipated groundwater seepage rates are estimated to be on the order of 9,006 L/day. An incidental 2-year storm event will result in a total of 1,620 L of water to be removed from the trench. The total **unit** dewatering rate during the construction period for **one** (1) trench segment at the Site is estimated to be 15,500 L per day, which includes a 50% safety factor on the anticipated rates and contributions from an incidental precipitation event.

It is understood that the provided site grading plans are currently preliminary and are subject to changes in the future. Furthermore, the detailed design of the proposed site servicing has not been finalized at this stage. During the detailed design stage, **DS** should be consulted to confirm if revisions to the construction dewatering/control assessment is deemed to be required.

7.4 Estimation of Flow Rate – Storm Water Management Ponds

The proposed plans for development will include three (3) storm water management (SWM) ponds, in addition to an interim SWM Pond. SWM Pond locations are presented in **Figure 4.** Preliminary SWM Pond designs were provided to DS by Urbantech Consulting dated September 2021. The proposed depths of SWM Ponds 1, 2A, 2B and interim SWM ponds are 261 masl, 259 masl, 256 masl, and 268.5 masl, respectively. Target dewatering rates should be lowered 1 m below the proposed depths to maintain dry conditions within the excavations. Pump tests were completed at SWM Pond 1 and SWM Pond 2B locations. Details and estimated dewatering rates are presented in sections 7.7 through 7.9 & 7.11 below. The below dewatering estimates pertain to SWM Pond 2A and the Interim SWM Pond.

Table 17 below indicates the boreholes considered for the estimated flow rates. Based on the highest groundwater level at each proposed SWM Pond, the excavations for the SWM Ponds will extend below the groundwater table. For this reason, groundwater control and dewatering during the construction period will be required to maintain a dry and safe excavation. The depth of the silty clay to clayey silt till (aquitard) was considered to be the transition point between the upper and lower aquifer unit detected in BH23-1 at 15.3 mbgs (Elev. 246.2 masl). The groundwater seepage volume in the excavations is estimated using the Dupuit-Forcheimer analytical model for flow into a linear trench from a system of wells of an equivalent radius under unconfined groundwater conditions.

Table 17 – Estimated Construction Dewatering SWM Pond Flow Rates

Parameter	SWM Pond 2A		Interim SWM Pond			
Monitoring Well	BH23-1 (deep)	BH23-1A (shallow)	BH22-13			
Seasonal High Groundwater Level (masl)	264.5	262.4	280			
H- Initial Elevation of Water Table (m)	7.5	16.2	4.4			

h- Final Elevation of Water Table (m)	1	11.8	1
In-Situ K- Hydraulic Conductivity (m/s)	4.0 X 10 ⁻⁶	5.4 x 10 ⁻⁹	1.6 X 10 ⁻⁶
Ro- Radius of Influence (m)	128	91	86
Re- Equivalent Radius (m)	89.7	89.7	72.9
A- Unit Area (m²)	25,300	25,300	16,700
C- Dimensionless constant	3	3	3
Q- Flow rate (L/d)	154,000	15,000	49,000
Q- Total Flow Rate - 50% safety factor (L/d)	231,000	22,500	73,500
Q- Flow 10 mm storm water (L/day)	214,000	214,000	167,000
Q- Total Flow Rate (L/d)	445,000	236,500	240,500

Based on preliminary findings a pressurized sand aquifer was encountered at around 15 mbgs. A nested pair of wells (BH23-1) was installed near the SWM Pond location to establish groundwater levels in the upper clayey silt to silty clay till zone (aquitard) and lower silty sand to sandy silt (aquifer) zone. On September 11, 2023, the groundwater level within BH23-1 (shallow) was recorded to be at the top of the pipe, suggesting that the two (2) units may be connected. Therefore, a range of construction dewatering values (278,500-500,500 L/day) is presented for SWM Pond 2A. Further investigation is required to determine whether the upper unit and lower unit are hydraulically connected.

It is understood that the provided site grading plans are currently preliminary and are subject to changes in the future. Should there be any changes to the proposed site grading and/or deviation from any assumptions made above, **DS** should be consulted to confirm if revisions to the construction dewatering/control assessment is deemed to be required.

7.5 Permanent Drainage (Long-term Discharge) - Medium Density Residential Blocks, Townhouse & Single Detached Units

It is understood that the residential blocks will include one (1) level of underground basement, which will likely be constructed above the water table and with a water-proofing membrane. A perimeter drainage system will be installed, however all collected percolating stormwater will be discharged to landscaped/vegetated areas of individual residential lots. Further, the institutional and commercial zones will be constructed slab-on-grade. For this reason, all low-rise residential blocks, institutional and commercial zones are not anticipated to require any permanent groundwater drainage control.

Given that the detailed design for the proposed plans for development were not finalized at this stage, various assumptions were made to assess the requirements for groundwater control and dewatering during the post-construction period. During the detailed design stage, if the assumptions made therein Section 6.0 of this report deviate from the finalized developmental designs, then **DS** should be consulted to revise the estimated groundwater seepage rates and permitting requirements.

7.6 Permanent Drainage (Long-term Discharge) – Storm Water Management Ponds (SWMP 2A & Interim SWMP)

The proposed SWM pond designs will require permanent groundwater control. This is required to prevent hydrostatic pressure from up lifting the base of the pond during both normal operation and maintenance events. Due to the high-water level/hydrostatic pressure at the pond location the use of a conventional weeping tile drainage system will not be adequate in controlling the amount groundwater required to protect the base of the ponds. The groundwater can be controlled using relief wells that penetrate the aquifer. Permanent drainage volumes at SWM Pond 2A the Interim SWM Pond are summarised in **Table 18** below inclusive of a 50% safety factor. A range of permanent drainage values are presented to consider the two (2) units for SWM Pond 2A. Permanent drainage for SWM Pond 1 and SWM Pond 2B is discussed as part of the pumping test program in Section 11 below.

SWM Pond 2A Interim SWM Pond Parameter Monitoring Well BH23-1 (deep) BH23-1A (shallow) BH22-13 Sandy Silt to Silty Silty Clay to Clayey Silt Screened Unit Sandy Silt Sand Till Seasonal High Groundwater Level (masl) 264.5 262.4 280 4.0 X 10⁻⁶ 5.4 x 10⁻⁹ In-Situ K- Hydraulic Conductivity (m/s) 1.6 X 10-6 Q- Flow Rate (L/day) 126,000 7,000 30,000 Q- Flow Rate 50% safety factor (L/day) 189,000 10,500 45,000

Table 18 – Estimated Permanent Drainage SWM Pond Flow Rates

It is important to note that the safe excavation depth established near SMW Pond 2A was estimated to be approximately 3 mbgs (Elev. 259 masl). Two (2) pump tests are recommended within the SWM Pond 2A footprint, one (1) in the upper silty clay to clayey silt till (aquitard) zone and one (1) in the lower sandy silt to silty sand (aquifer) zone to determine whether the two (2) units are hydraulically connected. Should construction occur, a pump test is recommended with the Interim SWM Pond location. The pump tests are performed to accurately estimate aquifer parameters (storativity and transmissivity) and to estimate accurate construction dewatering and permanent drainage volumes.

7.7 Pumping Test Program

In August 2023, aquifer pumping tests were conducted on the pumping wells PW1 at the proposed SWM Pond 1 location and PW2 at the proposed SWM Pond 2 location to provide indications of the quantity of water available from each single well and to calculate the aquifer hydraulic coefficients (Transmissivity and Storativity). During each of the drawdown pumping tests, a data logger was installed in the pumped well and in select monitoring wells utilized as observation wells. Water level measurements were also taken by manual means and recorded in a field book. A flow meter was used to confirm that the constant pumping rate was maintained throughout the drawdown period

7.7.1 PW1 Pumping Test Results

7.7.1.1 PW1 Step Test (Mogg Type)

On August 1st, 2023, a 3 step, Mogg Type step-drawdown test was conducted on PW1, at controlled flow rates of 22.4, 38 and 76 l/min (4.9, 8.4 and 16 imperial gpm). The semi-logarithmic plot of drawdown vs. time for the test are shown on **Figures E-1**, in **Appendix E**. The attached **Figures E-2** is an arithmetic plot of drawdown versus pumping rate for the same data set. The specific capacity at each step was also calculated and shown in **Figures E-3**. This figure shows the separation from the "theoretical line of zero well and formation loss" at the pumping rates tested.

7.7.1.2 PW1 Drawdown and Recovery Test

An aquifer test was performed on PW1 located within the proposed SWM Pond 1 area within the Humberking and Argo Humberking lands at a pumping rate of 60.5 L/min (13.3 igpm). A data logger was programmed and installed in the pumping well during the test to record the water level inside the pumped well on a 60 second interval. The flow rate was controlled using a standard ball valve and measured using a digital flow meter. At the conclusion of the 22-hour drawdown time, the pump was shut-down, and a 10-hour recovery period was recorded in the pumping well and observation wells during each test.

The attached **Figures E-3 (in Appendix E)** is a semi-logarithmic plot of the drawdown vs. time response to pumping inside the pumping well, PW1. The attached **Figures E-4 (in Appendix E)** is a semi-logarithmic plot of the drawdown vs. time response to pumping inside the observation well, BH22-33. At BH22-33, minimal drawdown, approximately 0.24m, due to the interference/pumping of PW1 after 22 hours of pumping was observed. Based on the geology and hydrogeology at the Site, the interference due to pumping at PW1 will differ from PW2 (as discussed in Section 7.7.2).

7.7.2 PW2 Pumping Test Results

7.7.2.1 PW2 Drawdown and Recovery Test

An aquifer test was performed on PW2 within the SWM Pond 2B footprint within the Argo King I and Argo King II lands at a pumping rate of 16 L/min (3.5 igpm). The pumping test at PW2 generally followed the same flow recording and flow control setup procedure as testing during PW1, with the exception that PW2 was initially shut-in with a well seal to establish the above ground static water level. At the conclusion of the 1-hour constant rate pumping period, the available drawdown from the well was exhausted. The pump was then shut-down, and a 30-hour recovery period was recorded in the pumping well and observation well.

The attached **Figures F-1 (in Appendix F)** is a semi-logarithmic plot of the drawdown vs. time response to pumping inside the well, PW2. **Figure F-2** shows the response in the observation well (BH22-5) during the pumping at PW2. There was no drawdown at BH22-5 due to the interference/pumping of PW2 after 1 hour. The drawdown response observed at the observation well after 1 hour of drawdown is also displayed graphically in **Figure-F-3** as a function of radial distance from the center of the pumped well.

7.7.3 Pumping Test Interpretation

The aquifer pumping tests were designed to determine the performance characteristics of the pumping wells, PW1 and PW2. The specific aquifer parameters of interest are Transmissivity (T) and Storativity (S). Using the Jacob-Cooper straight line method, the test data was analyzed in order to produce the target parameters.

From the data gathered and analyzed at PW1 and PW2, calculated Transmissivity values were **40.3** m^2 /day **(2,700** igpd/ft.) and **2.5** m^2 /day **(165** igpd/ft.), respectively. The Storativity estimated for PW1 and PW2 was 1.0 X 10⁻⁴ (dimensionless) based on hydrogeologic conditions encountered at the Site.

7.8 Conceptual Construction Groundwater Control (SWMP 1 & 2B)

7.8.1 Conceptual Groundwater Control Requirements

SWM Pond details prepared by Urbantech Consulting dated September 2021 were provided to DS for review. If the design details change, the groundwater control model will need to be recalculated to ensure they represent the final design. Based on the provided information, bottom elevations for SWM Pond 1 and SWM Pond 2B are proposed to extend to 261.0 masl and 256.0 masl, respectively.

For the purposes of evaluating a dewatering plan, a groundwater model was developed using first principles. The purpose of the model is to produce an optimal layout and to help predict the dewatering rates that will be necessary in order to achieve the target water levels (1 m below the base of the SWM Pond).

The following sections describe the conceptual dewatering requirements for construction. Section 7.11of the report will describe the conceptual permanent groundwater control requirements. If the design proposed SWM Ponds change, the groundwater control model will need to be recalculated to ensure they represent final design.

7.8.2 Conceptual Groundwater Control Model

The aquifer performance data from the testing program, was analyzed to produce a conceptual geological and hydrogeological model. The groundwater control model was constructed using the below noted aquifer coefficients (Transmissivity and Storativity) in **Table 15** calculated through our field data. The dewatering target elevations for this model was selected based on the geology that was encountered during our drilling program. During construction, dewatering will be required to control groundwater from the overburden.

Based on the step test and aquifer pumping test data obtained, the permeability was identified in the overburden. The calculated Transmissivities, 40.3 m² day⁻¹ (2,700 igpd/ft) from PW1 and 2.5 m² day⁻¹ (165 igpd/ft) from PW2 and the estimated Storativity, 1.0 x 10⁻⁴ (dimensionless), were used in an iterative process which allowed the number of theoretical wells, the spacing of the wells and the quantities of water pumped to be altered and modified. The results of each outcome were analyzed after each trial until the optimum configuration was determined. Figure G-1 (Appendix G) and Figure H-1 (Appendix H) shows the proposed layout of the theoretical pumping wells and two (2) theoretical observation wells for SWM Pond 1 and SWM Pond 2B, respectively.

After numerous trial runs, the final run was created using the Transmisivity values of 40.3 m² day¹ (2,700 igpd/ft) from PW1 and 2.5 m² day¹ (165 igpd/ft) from PW2. Based on the water levels measured in August 2023, it was determined through the iterative process that the groundwater control system featuring twelve (12) and eight (8) theoretical wells for SWM Pond 1 and SWM Pond 2B, respectively are set to pump at combined pumping rate of 525,600 L/day (80.4 igpm) and 41,760 L/day (6.4 igpm) for SWM Ponds 1 and SWM Pond 2B, respectively which would lower the groundwater to below the target elevations. **Figure G-2** (Appendix G) and **Figure H-2 (Appendix H)** shows the predicted response to the groundwater levels in the theoretical well systems.

7.8.3 Total Conceptual Construction Dewatering Requirements

The total volumetric pumping rate to control groundwater from the aquifer during construction is estimated to be approximately 365 L/min or 525,600 L/day (525.6 m³/day) and 29 L/min or 41,760 L/day (41.8 m³/day) for SWM Pond 1 and SWMP Pond 2B, respectively. Total volumetric pumping rates for each SWM Pond is presented in **Table 15** below.

The Site will also have to manage storm water collected within the open excavation. Based on the estimated areas of the open excavations, and a 10 mm storm event the estimated daily discharge volume for storm water was estimated to 590,000 L/day and 95,690 L/day (pumped over a 48-hour period) for SWM Pond 1 and SWM Pond 2B, respectively. Storm water volumes, and the total discharge volumes for each pond are presented in **Table 19** below.

SWM Pond 1 SWM Pond 2B Groundwater Model Summary Bottom SWM Pond Elevation (masl) 261 256 Target Pumping Water Level (masl) 255 260 Number of Theoretical Pumping Wells 12 8 Transmissivity (m²/day) 40.3 2.5 Combined Pumping Rate (I/day) 525,600 41,760 Total discharge Volume (25% safety factor) (I/day) 657,000 52,200 Storm event (10 mm) (I/day) 590,000 95,690 Total discharge Volume (I/day) 1,247,000 147,890

Table 19: Construction Dewatering Parameters & Volumes (SWM Pond 1 & 2B)

7.9 Temporary Conceptual Groundwater Control Model

During construction and excavation, groundwater in the sand aquifer will have to be controlled. The conceptual groundwater modelling results applied twelve (12) and eight (8) theoretical pumping wells for SWM Pond 1 and SWM Pond 2B, respectively to control groundwater within the water bearing zones. The number of theoretical wells assumed for each pond is presented in **Table 19** above. It should be noted that the number of theoretical wells used to simulate the required pumping volume is based the data obtained from the pumping wells PW1 and PW2, therefore the actual number of wells, well points, or eductors will vary based on the subsurface site conditions at the SWM Pond areas. The dewatering contractor should

confer on the most suitable method for groundwater control (for example staged well points, eductor system or deep wells).

7.10 Zone of Influence

The radius of influence (Ro) for the construction dewatering was calculated based on the Sichardt equation for the low-rise residential development, townhouse/detached units, site servicing trench and each of the SWM Ponds. Ro is the distance at which the drawdown resulting from pumping is negligible. The equation is empirical and was developed to provide representative flow rates using the steady-state flow dewatering equations as indicated above. Under steady-state conditions, Ro of pumping will extend until boundary flow conditions are reached and sufficient water inputs are equal to the discharge rate due to pumping. Therefore, the Sichardt equation is used to provide a representative flow rate but is not precise in determining the actual radius of influence by pumping. Based on Sichardt equation the ZOIs are summarized in **Table 20** below:

Medium Density Townhouse Site **Residential Blocks SWMP** & Single Servicing **SWMP** Interim **SWMP 1** 2A* **SWMP** (Low-Rise **Detached** (30 m x 2 **2B Development)** Units m) 4 Ro (m) 11 2 103 84-121 21 86 Note: * range reported due to 2 hydrostratigraphic units detected. Further investigative work is required

Table 20: Summary of Estimated Zones of Influence

7.11 Permanent Groundwater Control (SWM Ponds 1 & 2B)

7.11.1 Permanent Drainage Conceptual Groundwater Control Model

The proposed SWM Ponds (SWM Ponds 1 & 2B) will require permanent groundwater control. This is required to prevent hydrostatic pressure from up-lift to the base of the pond. The same theoretical control wells for each SWM Pond were used during construction dewatering will be preserved and adapted to a permanent configuration. The target groundwater elevation to be maintained during permanent operation is 0.5 m below the base of the ponds. Target elevations are presented in **Table 21** below for SWM Ponds 1 and 2B. A groundwater model was used to calculate the permanent discharge volume from each theoretical control well for each SWM Pond 1 & 2B. **Figure G-3 and Figure H-3** shows the spreadsheet model for estimated permanent groundwater discharge for each SWM Pond. **Table 21** below presents discharge volumes for SWM Pond 1 and SWM Pond 2B. As per the Geotechnical Comments and Recommendations letter (DS 2024), SWM Pond 1 will require an under-line drainage system to reduce the uplift hydrostatic pressure at the base of the liner. The dewatering wells may also be preserved for future SWM Pond maintenance for SWM Pond 1. Based on the subsurface investigation at SWM Pond 2B, the cohesive soils consisting of clayey silt to silty clay extended to the maximum extent of the investigation. Therefore, based on the proposed SWM Pond 2B bottom elevation, the material encountered can serve as an appropriate clay liner, and a liner is not considered necessary for SWM Pond 2B.

Table 21: Permanent Drainage Parameters & Volumes (SWM Pond 1 & 2B)

Theoretical Permanent Discharge	SWM Pond 1	SWM Pond 2B
Bottom Pond Elevation (masl)	261	256
Target Pumping Water Level (masl)	260.5	255.5
Theoretical Combined Discharge Rate (I/day)	377,280	27,360
Total discharge Volume (50% safety factor) (I/day)	565,920	41,040

7.12 Permit Requirements

7.12.1 Environmental Activity and Sector Registry (EASR) / Permit to Take Water (PTTW) Application

An Environmental Activity Sector Registration (EASR) Posting is required to be submitted to the Ministry of the Environment, Conservation and Parks (MECP) if the taking of groundwater and stormwater for a temporary construction project is between 50,000 L/day and 400,000 L/ day. The EASR application is an online registry and should be submitted to the MECP before commencing any construction dewatering operations. A PTTW is required to be submitted to the MECP if the taking of groundwater and stormwater for a temporary construction project is greater than 400,000 L/ day. A PTTW is required for permanent drainage if the permanent drainage volume exceeds 50,000 L/day.

During the construction period, the requirements to obtain any water taking permitting (EASR/PTTW) will depend on the ownership structure of the Site and the staging for development. The estimates for groundwater control and dewatering provided in Section 7.1 through 7.12 of this report should be made use of each individual land parcel that comprise of the larger subject Site. It is anticipated that an EASR Posting will likely be required, however if the construction dewatering rates exceed 400,000 L/day on any given day, a PTTW Registration with the MECP will be required. Based on the construction dewatering values for SWM Ponds 1 & 2A, a PTTW will be required.

During the post-construction period, the anticipated permanent drainage flows for SWM Ponds 1 & 2A are expected to be greater than 50,000 L/day. Given that the estimated permanent drainage flows are expected to be greater than the MECP threshold of 50,000 L/day, a long-term PTTW will be required in support of permanent groundwater control for the SWM Ponds should design details corroborate the assumptions made in this assessment.

7.12.2 Discharge Permits (Construction Dewatering and Permanent Drainage)

The Site is located within the Humber River watershed, which is located within the regulatory jurisdiction of the Toronto and Region Conservation Authority (TRCA). A discharge permit may be required from the TRCA, Peel Region and/or Town of Caledon if the water is to be discharged to a nearby/on-site surface water feature during the construction period. A discharge and monitoring plan will need to be prepared prior to obtaining a discharge approval from the TRCA, Peel Region and/or Town of Caledon.

If the private water during the post-construction period is anticipated to be discharged into the proposed municipal sewer system, a sewer discharge agreement with the Town of Caledon and/or Regional Municipality of Peel will be required prior to any discharging operations.

8.0 POTENTIAL IMPACTS

The following are the predicted potential impacts as a result of construction dewatering:

8.1 Local Groundwater Use

Based on the MECP WWRs, there are numerous well records listed within the boundary of the Site and the immediately adjacent area. The wells located within the Site boundary are expected to be decommissioned prior to commencing construction works for the proposed development. The majority of water supply wells in the area are noted to be installed at deeper depths. Given that the proposed construction is anticipated to extend less then 10m below existing ground surface, and the resulting radius of influence from the dewatering activities will be kept minimal, short and long-term impacts to private wells in the area during the construction period is not considered to be likely.

It is understood that the detailed design of the proposed plans for development have not been finalized at this stage. These specific details include, among other items, the maximum depth of excavation/trenching required in support of the proposed development, servicing and storm water management ponds. At this stage, the above-defined assumptions were considered in this assessment with regards to the deepest anticipated depth of excavation. It should be noted that if at the detailed design stage, the above assumptions do not hold true, then this assessment will need to be revisited based on the finalized design details.

8.2 Surface Water Features

Based on the proposed plans for development at the Site, the following may have the potential for impacts to natural surface water features:

- (i) Groundwater control and dewatering operations during the construction period;
- (ii) Reduction of groundwater recharge and possibly groundwater contributions to surface water features as a result of impervious surfaces following construction; and,
- (iii) Reduction of runoff available to natural features as a result of changes to Site drainage.

A discussion on the potential for impacts (i to iii above) are provided below.

Groundwater Control and Dewatering:

All dewatering activities for the proposed development adjacent to the existing wetlands have the potential to interfere and lower the groundwater table within the wetland features. During the construction period, monitoring of the wetlands must be continued to ensure the groundwater levels and surface water flows in the headwater drainage features are not being lowered. On the onset of completing the pre-construction

monitoring, **DS** will prepare a contingency plan, which will outline pre-defined "review" and "response" levels for all surface water stations in the wetlands, where impacts to the surface water features will have become apparent and mitigative measures as well as more frequent monitoring will need to be initiated promptly. Further preliminary details on the contingency plan are discussed in Section 8.0.

Pumped water from temporary construction dewatering activities should be managed to avoid direct discharge of potentially impacted water into sensitive features such as the wetland. To manage the potential risks to surface water quality, a discharge plan should be developed for proper discharge of private water during the construction period.

Reduction in Groundwater Recharge:

As discussed in Section 4.3.6, there are eight (8) wetlands within the Caledon Station and three (3) wetlands within the Argo King 1 & II development. A water balance assessment has not been proposed for the Argo Kin I & II lands and the baseline monitoring program is currently underway. Therefore, the below discussion refers to the conclusions made from the monitoring program and water balance assessment within the Caledon Station Community.

Wetlands W7 and W8 are being relocated with existing upgradient (offsite) contributions proposed to be redirected toward the new features. An adaptive management program for the newly constructed features will be required to ensure there is adequate contribution. For wetlands W1 to W6, a long-term preconstruction surface water and groundwater monitoring program is currently underway. Monitoring during the current period indicates that most wetlands are ephemeral surface water features, with minimal to some response to precipitation events. Upward shallow groundwater gradient at wetland W3 is noted, however further monitoring will be required to establish seasonal baseline conditions and to confirm surface water and groundwater interaction dynamics for each of the wetlands.

There is a potential that groundwater levels may rise during the spring period and provide contribution to seasonal baseflow of the wetlands. A reduction in recharge over the Site as a result of the development may result in a lowering of the water table and thus a reduction in groundwater contribution. The water balance completed for the Site shows there is a total Site infiltration deficit of 21,851 m³/yr following mitigation. The mitigation plan provides a significant improvement to the unmitigated Post-Development condition however, to prevent risk to the wetlands which may rely on contribution from groundwater, the post-development infiltration deficit should be further reduced / eliminated through the designing and implementation of additional Low Impact Development (LID) servicing for storm water management at the Site. LID's which target areas surrounding upgradient portions of wetlands W1 through W6 would help maintain groundwater gradients toward the features without necessarily requiring a complete elimination of the infiltration deficit over the entire Site.

Reduction in Runoff Contribution:

Results of the wetland water balance shows there is reduced runoff within upgradient wetland catchments which is considered contribution for each of the wetlands W1 to W6. It is anticipated that the runoff deficits

can be managed by introducing LIDs which collect and convey clean sources of runoff from residential lots. The system can outlet to infiltration trenches constructed around the wetland buffer to maintain groundwater gradients toward each of the wetland units. Runoff contribution can be maintained by sizing the trenches to allow larger precipitation/melt events to overflow to constructed outlets along the natural wetland inlets. It is anticipated that there is enough storm water surplus available and sufficient infiltration potential available in native soils based on in-situ infiltration testing results.

Discharged water from storm sewer outfalls should be designed to avoid direct discharge into the wetland where possible. Results of the wetland risk assessment (TRCA, Nov 2017) indicates that since the impervious cover was calculated to be under 15% of the total wetland catchment, that stormwater generated over the proposed development currently contributing to wetlands presently includes a low risk. should an outfall be considered with a direct discharge to the wetland, the risk to the wetland should be revaluated.

8.3 Point of Discharge and Groundwater Quality

A discharge plan will be required for the discharge of pumped groundwater from construction dewatering activities. The plan must identify the discharge location and ensure the discharge will not result in any adverse impacts by identifying the discharge measures to be installed and control measures to limit the turbidity of the discharge water.

Discharged water from temporary construction dewatering activities should be managed to avoid direct discharge of potentially impacted water into sensitive features such as the wetland. To manage the potential risks to surface water quality, a discharge plan should be developed for the discharge of pumped groundwater from the construction dewatering.

The results of the groundwater analytical testing indicate the quality of groundwater exceeded the Provincial Water Quality Objective (PWQO) for total cobalt. Therefore, pre-treatment of the pumped construction water will be required prior to discharging into any surface water bodies. Exceedances of metals can generally be treated through the use of a primarily filtration. The design and effectiveness of the pre-treatment system will be the responsibility of the pre-treatment system contractor. The quality of the discharge water must meet the guideline limits of the PWQO prior to discharging into any surface water features. If the pumped water is to be discharged into a surface water body, a monitoring plan will need to be prepared and submitted to the Toronto and Region Conservation Authority (TRCA), Peel Region and/or the Town of Caledon to obtain approval for a discharge permit.

8.4 Source Protection Area

The Sites are located within the Toronto Region Source Protection Area (SPA). The Sites were identified to be within an area of significant groundwater recharge; however, a vulnerability score was not specified for the Sites. Significant groundwater recharge areas are characterized by porous soils such as sand and gravel, which allows water to seep easily to the ground. A recharge area is considered significant when it helps maintain water levels in an aquifer that supplies a community with drinking water. Groundwater impacts as a result of construction should be assessed and minimize potential impacts to drinking water.

8.5 Highly Vulnerable Aquifer

The Sites are not located within a Highly Vulnerable Aquifer (HVA). No HVA impacts are anticipated due to the proposed development.

8.6 Wellhead Protection Area

The sites and the study area were not located within a municipal Wellhead Protection Area-Quantity (WHPA-Q). No WHPA-Q impacts are anticipated due to the proposed development.

8.7 Intake Protection Zone

The Sites and the study area are not located within a water intake protection zone (IPZ). No IPZ impacts are anticipated due to the proposed temporary dewatering.

8.8 Well Decommissioning

Following the completion of construction activities, all dewatering wells, well points, eductors, and monitoring wells installed at various stages of this project must be decommissioned. The installation and eventual decommissioning of the wells and the dewatering system must be carried out by a licenced water well contractor in accordance with Regulation 903 of the Ontario Water Resources Act.

9.0 MONITORING AND MITIGATION

Based on the hydrogeological investigation, **Table 22** below provides a recommended monitoring program, triggers for mitigation and recommended mitigation measures for groundwater levels and the discharge of water during construction.

Table 22: Monitoring and Mitigation Plan

PERIOD	MONITORING LOCATION	MONITORING FREQUENCY	METHOD	TRIGGERS FOR MITIGATION	COMMENTS / RECOMENDATIONS			
WATER LEVE	WATER LEVELS							
Pre- Construction	Groundwater level monitoring (available on-site monitoring wells)	Continuously for one week	Dataloggers within the existing wells	None	Complete hydrographs to document baseline water levels			
	Existing surface water stations (including staff gauages and nested piezometers)	Continuously for one week	Dataloggers within the existing staff gauges and manual measurements in nested piezometer	None	Complete hydrograph to document baseline water levels			

PERIOD	MONITORING LOCATION	MONITORING FREQUENCY	METHOD	TRIGGERS FOR MITIGATION	COMMENTS / RECOMENDATIONS
	Existing monitoring wells or replacements adjacent to dewatering area	Daily until target water level is reached	Dataloggers with weekly downloads	Target drawdown not reached or exceeded	Increased / reduced pumping; if pumping is approaching 400 m³/day, a PTTW will be required
	Discharge volume	Daily at discharge location	Manual with totalizing flow meter in-line	Flow exceeds predicted volumes	Reduce to maximum allowed or obtain a PTTW
During construction	Existing surface water stations (including staff gauages and nested piezometers)	Continuously until pre-defined review and/or response trigger levels are reached	Dataloggers and manual monitoring with weekly downloads	Drawdown of groundwater levels in wetlands to pre-defined review and/or response levels	The review and response levels will be finalized upon completion of the 1-year pre-construction monitoring
	Groundwater Contribution to Wetland (if any)	Continuously until pre-defined review and/or response trigger levels are reached	Dataloggers and manual monitoring with weekly downloads	Drawdown of surface water flows in wetlands below pre-defined review and/or response levels	The review and response levels will be finalized upon completion of the 1-year pre-construction monitoring
Post- Construction	Existing monitoring wells or replacements adjacent to dewatering area	Weekly for one month or until water levels reach 90% of original static level	Datalogger water level monitoring with weekly downloads	NA	NA
	Existing surface water stations (including staff gauages and nested piezometers)	Weekly for one month or until water levels reach 90% of original static level	Datalogger water level monitoring with weekly downloads	N/A	N/A

PERIOD	MONITORING LOCATION	MONITORING FREQUENCY	METHOD	TRIGGERS FOR MITIGATION	COMMENTS / RECOMENDATIONS			
WATER QUA	WATER QUALITY							
During construction (discharge to surface water feature)	Groundwater Discharge from dewatering	Sample for parameters against the PWQO criteria Field monitoring for turbidity and correlation with lab results	Once the start of dewatering at the point of discharge Weekly from the dewatering system for the first month of active dewatering Assuming water quality is compliant, monthly for the remainder of the dewatering period.	Discharge quality exceeds the PWQO criteria Field TSS/Turbidity exceed the PWQO criteria	More frequent monitoring will be considered Enhanced treatment of the discharge water will be considered, if needed			
During Construction (surface water quality in wetlands)	Surface water flows at each surface water station	Sample for parameters against the PWQO criteria Field monitoring for turbidity and correlation with lab results	Sampling to be completed during construction monitoring on a monthly basis, until trigger level is reached	Exceedance in background turbidity concentration in water quality by more than 20 NTU or total suspended solids concentration above 25 mg/L	Conduct a site visit with the contractor; revisit the effectiveness of the pre-treatment system with the contractor and property owner to potentially alter construction phasing/methodology plan; revisit surface runoff at the Site and sediment and erosion control measures; and assess the need for clean up of the HDFs to minimize sediment transport			

10.0 LIMITATIONS

This report was prepared for the sole use of the addressee to provide an assessment of the hydrogeological conditions on the property. The information presented in this report is based on information collected during the completion of the hydrogeological investigation. DS Consultants Limited was required to use and rely upon various information sources produced by other parties. The information provided in this report reflects DS' judgment in light of the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this document or findings, conclusions, and recommendations represented herein, is at the sole risk of said users. The conclusions drawn from the Hydrogeological report were based on information at selected observation and sampling locations. Different conditions between and beyond these locations may become apparent during future investigations or on-site work, which could not be detected or anticipated at the time of this investigation. DS Consultants Ltd. cannot be held responsible for hydrogeological conditions at the site that was not apparent from the available information.

Should you have any questions regarding these findings, please do not hesitate to contact the undersigned.

DS Consultants Ltd.

Prepared By:

Dorothy Santos, M.Sc. Project Manager

Scott Watson, B.A.T. GeoBase Solution (GBS) Ltd. Reviewed By:

Martin Gedeon, M.Sc. P.Geo., Senior Hydrogeologist

11.0 REFERENCES

- [1] A Report to Humberking (I) Developments Limited and HumberKing (IV) Developments Limited, A Geotechnical Investigation for Proposed Mixed-Use Development, King Street and Humber Station Road, Town of Caledon", prepared by Soil Engineers Ltd., dated December 2021, File No. 2108-S069
- [2] Chapman, L.J., and D.F. Putnam; The Physiography of Southern Ontario, Third Edition, Ontario Geological Survey Special Volume 2; 1984, & 2007.
- [3] Draft- A Report to HumberKing (I) Developments Limited and HumberKing (IV) Developments Limited, Hydrogeological Assessment, Proposed Mixed Use Development King Street and Humber Station Road, Town of Caledon", prepared by Soil Engineers Ltd., dated December 2022, File No. 2108-W069
- [4] Phase One Environmental Site Assessment, 14275 The Gore Road, Bolton, Ontario, by SPL Consultants Limited, August 13, 2014
- [5] Freeze, R.A. and J.A. Cherry. "Groundwater". Prentice-Hall, Inc. Englewood Cliffs, NJ. 1979.
- [6] Preliminary Geotechnical Investigation. Proposed Subdivision Development, 14275 The Gore Road, Town of Caledon, Ontario, by SPL Consultants Limited, August 25, 2014
- [7] Bolton Residential Expansion Study: Phase 3 Technical Memorandum Development of a Preliminary Natural Heritage System, by Dougan & Associates et. Al., June 16, 2014
- [8] Pat M. Cashman and Martin Preene; Groundwater Lowering in Construction- Second Edition, CRC Press.
- [9] Headwater Drainage Feature Assessment: In Support of the Bolton Residential Expansion Study, by Dougan & Associates, June 16, 2013
- [10] Preliminary Geotechnical Investigation, Proposed Subdivision Development, Cook Property, Town of Caledon, Ontario, by SPL Consultants Limited, September 17, 2014
- [11] Preliminary Geotechnical Investigation, Proposed Residential Subdivision, Bolton Option 3 Lands, Bolton, Ontario", by DS Consultants Ltd., dated September 4, 2020, File No.: 20-169-100
- [12] Recommendation Report, Selection of Residential Expansion Area, Meridian Planning, June 19, 2014
- [13] Revised Report on Preliminary Geotechnical Investigation Proposed Residential Development 7675 King Street Argo King I & II, Bolton, ON (DS Consultants Limited, 2024).
- [14] Revised Report on Preliminary Geotechnical Investigation Proposed Development Caledon Station, Bolton, ON (DS Consultants Limited, 2024).
- [15] Powers, J. Patrick, P.E. (1992); Construction Dewatering: New Methods and Applications Second Edition, New York: John Wiley & Sons.
- [16] Updated Preliminary Geotechnical Comments and Recommendations Proposed SWM Ponds, Caledon Station Subdivision, Caledon, ON, by DS Consultants Ltd, May 31,2024
- [17] Wetland Water Balance Risk Evaluation, Toronto and Region Conservation Authority, 2017

- [18] Toronto and Region Conservation Authority and Credit Valley Conservation, 2010. Low Impact Development Stormwater Management Planning and Design Guide.
- [19] www.mndm.gov.on.ca/ogsearth.
- [20] http://www.mto.gov.on.ca/IDF Curves/map acquisition.shtml

Tables

Staff Gauges (6) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	9-50cc20 114-60-31 07-40-21 07-50-21 03-60-31 03-60-31 05		
50:00564 270:051 1.40 200:450 497 457 458	for the state of t	No.0425 No.0	dry 265.307 0.8 265.637 0.61 265.827 0.77 265.667 Inacessible Inacessible Dry 265.307 0.53 265.907
Sci-WC-1	11/1 283-45 1.07 281.55 1.28 281.34 281.55 1.3 281.51 1.4 281.54	32 1.22 261.4 1.15 261.47 0.92 261.7 1.2 261.42 1.20 84.33 1.27 261.35 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dry 260.933 0.92 261.033 0.92 261.033 0.96 260.993 dry 1.07 260.883 0.84 261.113 1.04 260.993
WS-92S 262.17 1.71 0.90 261.27 1.06 261.11 1.09 W4-92D 261.89 2.35 0.74 261.15 1.19 260.70 2.18 W4-92S 262.17 1.49 0.86 261.31 1.27 260.90 dry W2-92D 262.38 2.92 0.90 261.48 0.95 261.43 1.03	270-65 1.14 270-63 m. odest 0.99 270-84 0.9 271-7 2.9	27 28-50 1.08 297.71 277.77 6.7 276.02 1.17 275.00 1.19 286.02 1.07 26.7 26.7 275.02 275.02 275.02 275.02 275.02 275.02 26.7 275.02 275.02 275.02 275.02 275.02 26.7 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02 275.02	36.82 Per 26.92 26.92 26.92 27.92 26.93 0.72 26.93 0.72 26.94 1.1 26.97 1.0 26.93 0.72 26.93
tonitoring Well (MW) 06-Aug-20 08-Sep-20	22-Oct-20 9-Dec-20 18-Feb-21 07-Apr-21 09-Jun-21	03-Sep-21 27-Oct-21 06-Jan-22 05-May-22 05-May-22 07-Jul-22	08-5ep-22 08-Nov-22 04-Jan-23 21-Mar-23 13-Jul-23 11-Sep-23 21-Nov-23 13-Feb-24 15-May
Columb C	435 26666 422 269.72 403 2700 37.65 270.277 401 270.00 41.61 270.00 41	160 777 7217 738 777.5 4.51 777.5 4.61 777.5 4.61 777.5 4.61 777.5 4.61 777.5 4.61 777.5 4.61 777.5 4.61 777.5 4.61 777.5 4.61 777.5 4.61 777.5	7-72 72-73 7-80 77-85 7-8

	SG			24-	Oct-22	21-N	ov-22	19-D	ec-22	26-Ja	n-23	24-Fe	0-23	23-Ma	ir-23	26-Ap	-23	25-N	1ay-23	25-J	ul-23	25-A	ug-23	26-S	ep-23	23-0	ct-23	20-D	ec-23	16-M	ay-24
SGID	TOP Elevation (masi)	Depth (top of pipe)	Surface Elev. (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)
SG1-1	261.479	1.43	260.049	dry	260.049	dry	260.049	1.29	260.19	1.30	260.18	1.31	260.17	1.23	260.25	1.31	260.17	1.32	260.159	1.31	260.169	1.28	260.199	Dry	260.049	dry	260.049	1.27	260.209	1.24	260.239
SG1-2	261.888	1.36	260.528	dry	260.528	dry	260.528	1.23	260.66	1.21	260.68	1.24	260.65	1.19	260.70	1.23	260.66	1.28	260.608	1.27	260.618	1.24	260.648	Dry	260.528	dry	260.528	1.24	260.648	1.22	260.668
SG1-3	260.755	1.38	259.375	dry	259.375	dry	259.375	1.26	259.50	1.24	259.52	1.26	259.50	1.24	259.52	1.32	259.44	1.34	259.415	1.34	259.415	1.3	259.455	1.34	259.415	dry	259.375	0.86	259.895	1.29	259.465
SG2	262.619	1.37	261.249	dry	261.249	dry	261.249	dry	261.249	1.36	261.26	1.25	261.37	1.23	261.39	1.33	261.29	dry	261.249	0.9	261.719										
SG3	261.818	1.29	260.528	dry	260.528	dry	260.528	1.13	260.69	dry	260.53	1.15	260.67	1.22	260.60	dry	260.53	dry	260.528	dry	260.528	dry	260.528			1.29	260.528	Frozen	[Dry	260.528

PZ					24-00	t-22	21-No	v-22	19-Dec-22		26-Jar	1-23	24-Fe	b-23	23-M	ar-23	26-A	pr-23	25-M	ay-23	25-Ju	ıl-23	25-Au	ig-23	26-Se	p-23	23-Oct-23		20-Dec-23		16-May-24	
20	TOP Elevation (masl)	Depth (top of pipe)	Stick-up (m)	Surface Elev. (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)
PZ1-1S	260.01	2.06	1.13	258.88	1.21	258.80	1.24	258.77	1.28	258.73 dr	у	257.95	1.19	258.82	1.19	258.82	1.20	258.81	1.23	258.78	1.36	258.65	1.27	258.74	1.26	258.75	1.21	258.80 d	ry	257.95	1.23	258.78
PZ1-1D	260.24	3.22	1.37	258.87	1.06	259.18	1.56	258.68	1.59	258.65	1.44	258.80	1.42	258.82	1.43	258.81	1.47	258.77	1.52	258.72	1.57	258.67	1.56	258.68	1.57	258.67	1.06	259.18	1.50	258.74	1.47	258.77
PZ1-2S	257.56	1.87	0.73	256.83	1.12	256.44	0.87	256.69	0.77	256.79	0.70	256.86	0.73	256.83	0.67	256.89	0.75	256.81	0.77	256.79	0.78	256.78	0.74	256.82	0.81	256.75	1.12	256.44	0.73	256.83		
PZ1-2D	257.64	2.73	0.78	256.86	1.00	256.64	0.94	256.70	0.80	256.84	0.68	256.96 F	rozen		0.74	256.90	0.85	256.79	0.82	256.82	0.88	256.76	0.92	256.72	0.84	256.80	1	256.64	0.82	256.82	0.82	256.82
PZ1-3S	259.07	2.13	0.95	258.12	1.25	257.82	1.13	257.94	1.07	258.00	1.05	258.02	0.97	258.10	0.97	258.10	1.06	258.01	1.07	258.00	1.21	257.86	1.08	257.99	1.08	257.99	1.25	257.82	1.03	258.04	1.04	258.03
PZ1-3D	259.22	2.95	1.10	258.12	0.91	258.31	1.29	257.93	1.22	258.00	1.19	258.03	1.14	258.08	1.12	258.10	1.20	258.02	1.21	258.01	1.22	258.00	1.19	258.03	1.22	258.00	0.91	258.31	1.19	258.03	1.27	257.95
PZ2S	260.83	2.08	0.89	259.94	1.68	259.15	1.50	259.33	1.20	259.63	0.98	259.85	0.85	259.98	0.82	260.01	0.92	259.91	1.11	259.72	1.07	259.76	1.05	259.78	1.36	259.47	1.68	259.15 D	iry	258.75	0.96	259.87
PZ2D	261.20	3.25	1.23	259.97	2.54	258.66	1.9	259.30	1.62	259.58	1.38	259.82	1.24	259.96	1.20	260.00	1.34	259.86	1.51	259.69	1.43	259.77	1.41	259.79	1.74	259.46	2.54	258.66	1.85	259.35	1.40	259.80
PZ3S	260.11	2.22	0.82	259.29 d	lry	257.89	2.02	258.09	1.39	258.72	1.04	259.07	0.91	259.20	0.81	259.30	0.96	259.15	1.34	258.77	1.25	258.86	1.03	259.08	No Data		dry	257.89	1.20	258.91	1.16	258.95
PZ3D	259.89	2.70	0.61	259.28	2.29	257.60	1.83	258.06	1.53	258.36	0.92	258.97	0.70	259.19	0.61	259.28	0.74	259.15	1.17	258.72	1.08	258.81	0.94	258.95	Sata		2.29	257.60	0.85	259.04	0.98	258.91

MW				26-Oct-	-22	21-No	v-22	19-De	c-22	26-Jan	1-23	24-Feb-	-23	23-M	ar-23	26-Ap	ır-23	25-Ma	ay-23	25-Ju	ıl-23	25-Aı	ıg-23	26-Se	p-23	23-Oct	-23	20-Dec-23		16-May-24	
MW ID	Surface Elevation (masl)	Depth (mbgs)	Stick-Up (m)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)	Depth to Water (TOP)	Depth to Water (masl)
BH19-1	257.19	5.95	0.74	1.40	256.53	1.50	256.43	1.56	256.37	0.67	257.26		257.48	0.40	257.53	0.67	257.26	0.71	257.22	0.63	257.30	0.8	257.13	1.1	256.83		256.71	1.19	256.74	0.56	257.37
BH19-3	259.82	6.06	0.71	1.48	259.05	1.52	259.01	1.45	259.08	0.77	259.76	0.61	259.92	0.59	259.94	0.68	259.85	0.83	259.70	0.77	259.76	1.15	259.38	1.48	259.05	1.57	258.96	0.75	259.78	0.67	259.86
BH19-4	262.68	6.00	0.60	artesia	n	artes	ian	arte	ian	artesi	an	artesia	an	artes	sian	artes	ian	artes	ian	arte	sian	arte	sian	artes	ian	artesia	ın	artesi	an	artesia	an
BH19-5	260.69	6.10		artesia	n	artes	ian	arte:	ian	artesi	an	artesia	an	artes	ian	artes	ian	artes	ian	artes	sian	arte:	sian	artes	ian	artesia	ın	artesi	an	artesia	an
BH19-6	259.35	6.05	0.77	1.52	258.60	1.60	258.52	1.41	258.71	1.22	258.90	1.20	258.92	1.04	259.08	1.21	258.91	1.29	258.83	1.22	258.90	1.12	259.00	1.08	259.04	1.05	259.07	Data Mi	ssing	1.07	259.05
BH19-7	260.44	7.1	0.88		no c	data		1.96	259.36	1.03	260.29	1.08	260.24	0.93	260.39	1	260.32	1.14	260.18	1.51	259.81	2.12	259.20	Tall Grass		2.31	259.01	1.81	259.51	1.05	260.27
BH1	260.44	4.59	0.71	3.82	257.33	2.97	258.18	2.74										1.31		1.66		1.67		1.63		2.48		1.87		1.11	
BH22-1	262.14	8.21	0.95	artesia	n	dama	ged	arte	ian	artesi	artesian		an	artes	ian	artes	ian	artes	ian	artes	sian	artesian		artesian		artesia	ın	artesi	an	artesia	an
BH22-5	259.12	7.70	0.96	1.65	258.43	1.70	258.38	1.76	258.32			0.45	259.63	0.45	259.63	0.75	259.33	0.82	259.26	0.85	259.23	1.18	258.90	1.35	258.73	1.45	258.63	0.88	259.20	0.7	259.38
BH22-7	257.63	10.33	1.07	2.46	256.24	2.69	256.01	2.62	256.08	1.39	257.31	0.94	257.76	0.99	257.71	1.25	257.45	1.2	257.50	1.33	257.37	1.53	257.17	1.84	256.86	2.01	256.69	2.13	256.57	0.69	258.01
BH22-8	259.44	9.37	1.00	2.38	258.06	2.24	258.20	2.20	258.24	1.27	259.17	1.18	259.26	1.00	259.44	1.11	259.33	1.15	259.29	1.11	259.33	1.24	259.20	1.23	259.21	1.9	258.54	1.58	258.86	1.16	259.28
BH22-9	261.62	7.45	0.67	artesia	n	artes	ian	arte	ian	artesi	an	artesian		artes	sian	artes	ian	artes	sian	artesian		artesian		artesian		artesian		artesi	an	artesia	an

TABLE 3: Channel Transect Flow, Caledon Station, Caledon, ON

Date	SG	W2	SG	W3	SG	W4	SG	W5	SG W	НТ6-Е	SG	W7	SG	W8
Date	M^3/day	L/day	M^3/day	L/day	M^3/day	L/day	M^3/day	L/day	M^3/day	L/day	M^3/day	L/day	M^3/day	L/day
2020-09-08	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2020-10-23	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2020-12-09	0	0	0	0	23.76	23760	258.768	258768	0	0	0	0	0	0
2021-02-18	0	0	0	0	23.76	23760	258.768	258768	0	0	0	0	0	0
2021-04-27	475.2	475200	0	0	0	0	113.4	113400	0	0	59.616	59616	58.32	58320
2021-06-09	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2021-09-03	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2021-10-29	0	0	0	0	451.656	451656	38.016	38016	2471.904	2471904	0	0	989.712	989712
2022-01-06	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2022-03-09	0	0	0	0	649.728	649728	154.44	154440	787.968	787968	0	0	222.912	222912
2022-05-05	660.096	660096	21.168	21168	69.12	69120	235.44	235440	158.112	158112	0	0	10.368	10368
2022-07-07	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2022-09-08	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2022-11-08	0	0	0	0	0	0	6.048	6048	0	0	0	0	0	0
2023-01-04	0	0	10.2384	10238.4	565.056	565056	360.72	360720	955.584	955584	0	0	289.44	289440
2023-03-21	77.544	77544	0	0	1487.808	1487808	385.776	385776	1198.368	1198368	250.128	250128	6885.648	6885648
2023-07-13	86	86400	0	0	1675	1674864	397	397440	1017	1016712	192	192240	6487	6487128
2023-09-11	98	97632	0	0	0	0	0	0	0	0	0	0	2654	2653776
2023-11-21	55	55080	0	0	0	0	0	0	0	0	0	0	1853	1853064
2024-02-13	0	0	0	0	308	307584	216	216000	106	105840	0	0	0	0
2024-05-15	285	285120	0	0	178	178416	38	37584	0	0	0	0	0	0

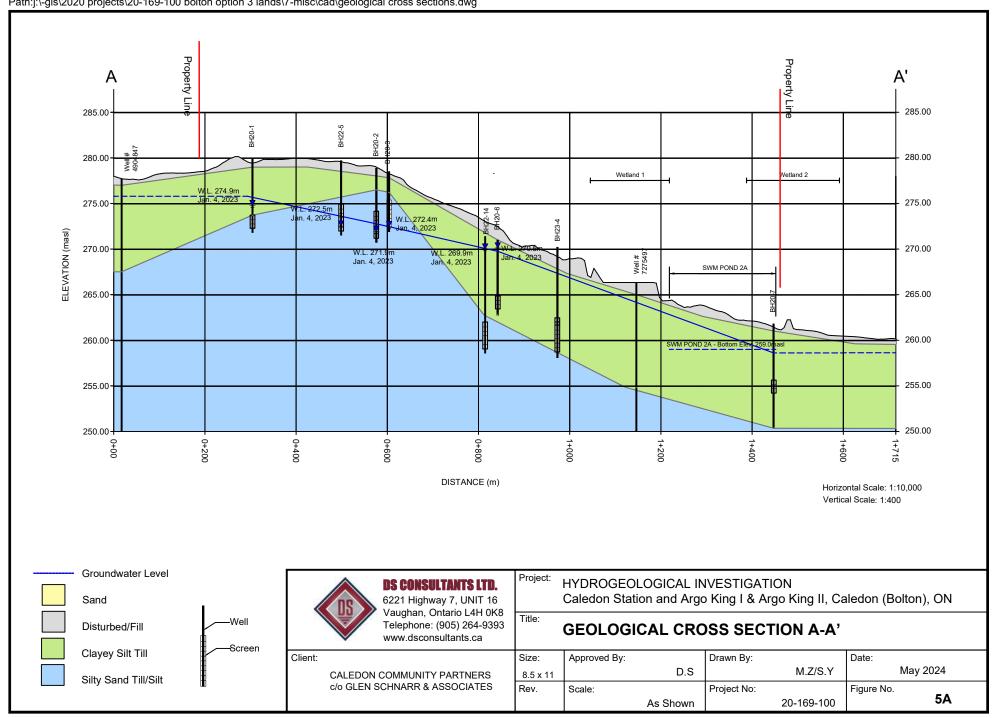
Data	SG1	-1	SG	1-2	SG	1-3	SC	3 2	SG	3
Date	M^3/day	L/day	M^3/day	L/day	M^3/day	L/day	M^3/day	L/day	M^3/day	L/day
26-Oct-22	0	0	0	0	0	0	0	0	0	0
21-Nov-22	0	0	0	0	0	0	0	0	0	0
19-Dec-22	0	0	0	0	0	0	0	0	0	0
26-Jan-23	0	0	0	0	0	0	0	0	0	0
24-Feb-23	0	0	0	0	0	0	0	0	0	0
23-Mar-23	1054.08	1054080	2790.72	2790720	634.176	634176	0	0	761.4	761400
26-Apr-23	57.024	57024	100.224	100224	0	0	0	0	43.2	43200
25-May-23	1	1296	0	0		0	0	0	0	0
25-Jul-23	54	54432	0	0	0	0	0	0	0	0
25-Aug-23	1860	1860386	0	0	0	0	0	0	0	0
26-Sep-23	0	0	0	0	0	0	0	0	0	0
23-Oct-23	48	48384	0	0	0	0	0	0	0	0
20-Dec-23	0	0	0	0	0	0	0	0	0	0
16-May-24	0	0	0		0	0	0	0	0	0

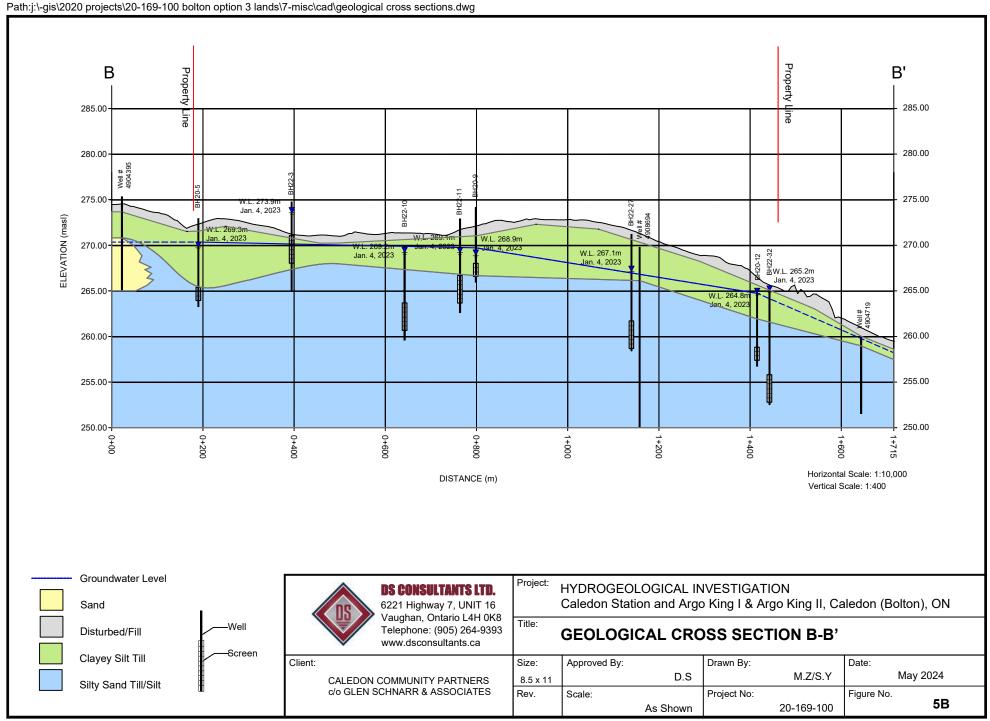
Figures

c/o GLEN SCHNARR & ASSOCIATES

Rev.

Figure No.:


1


20-169-104


As Shown

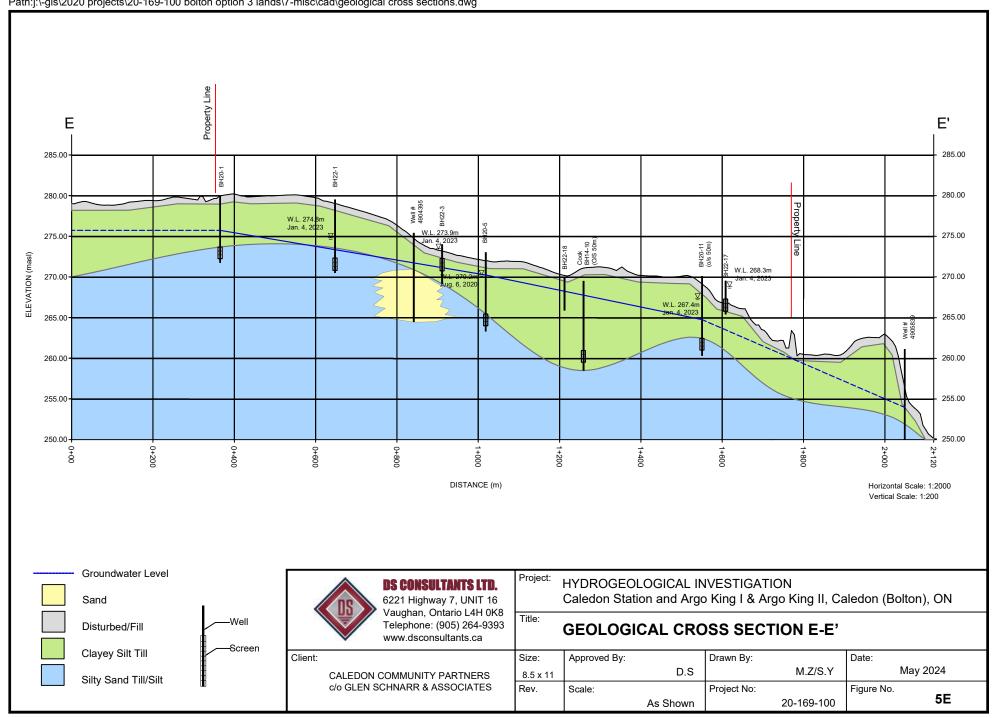
Image/Map Source: Google Satellite Image

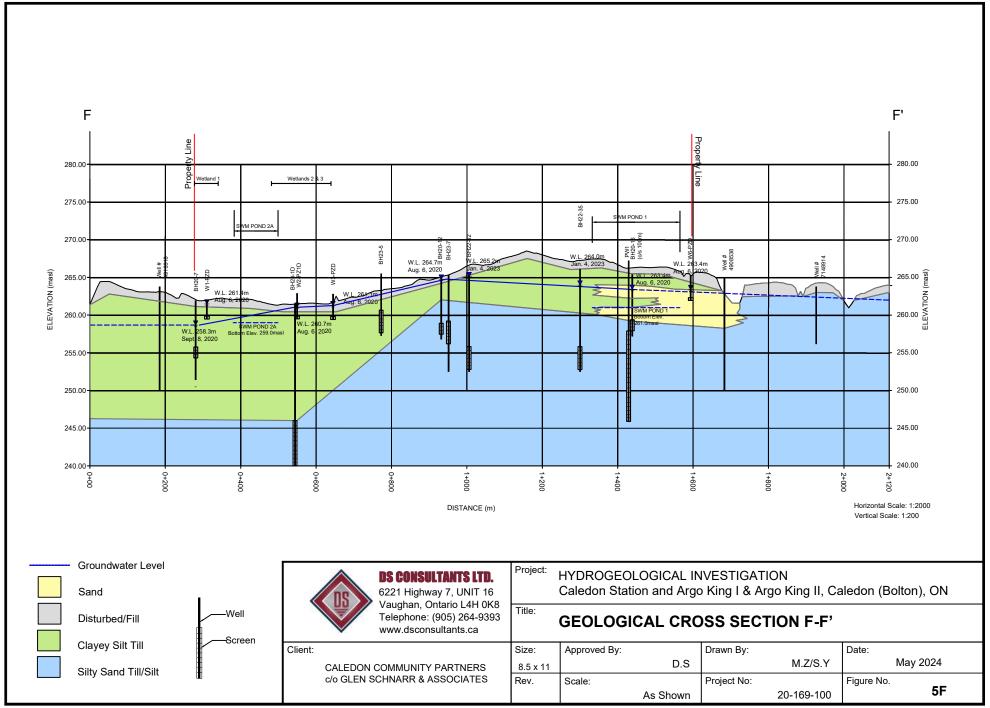
7212107 HU

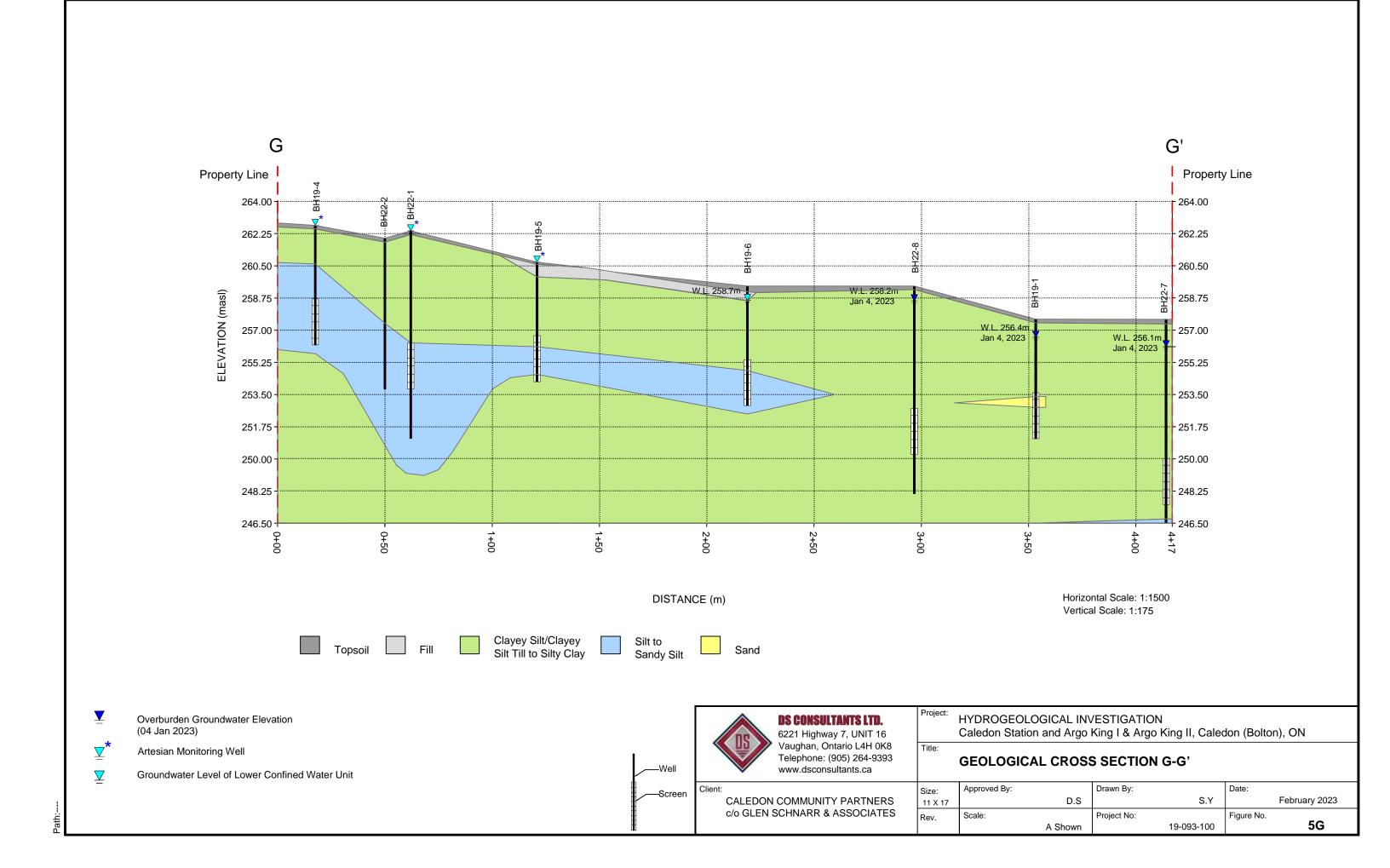
Rev.

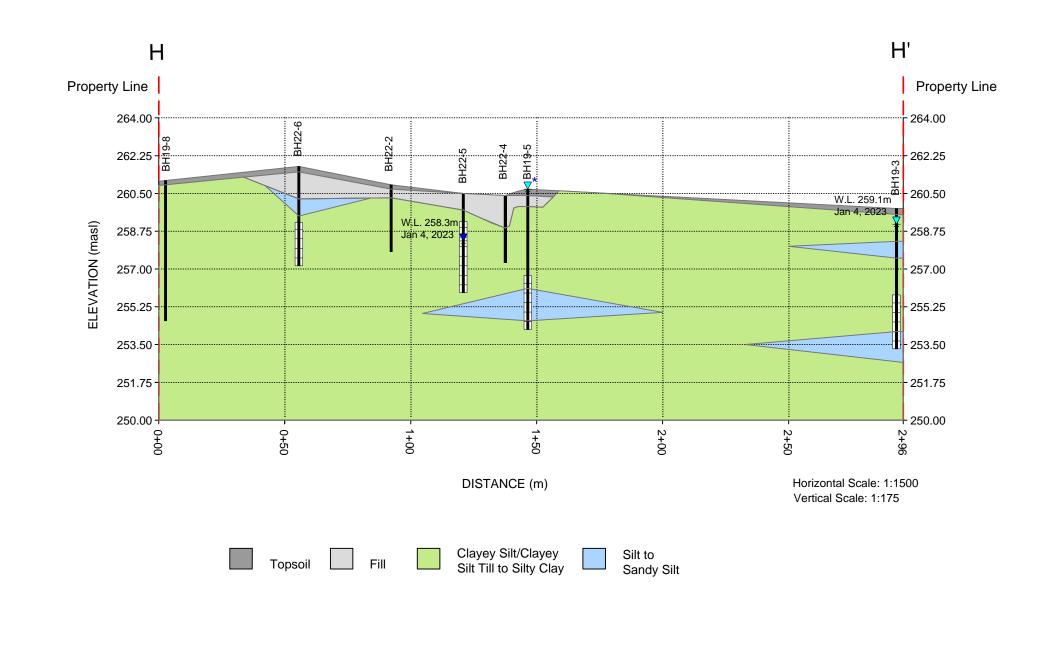
Scale:

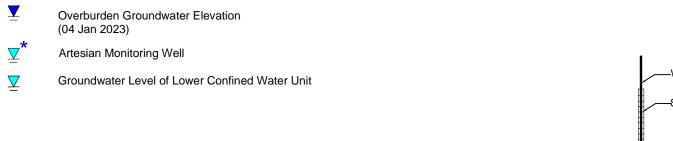
Project No:

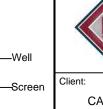

As Shown


Figure No.

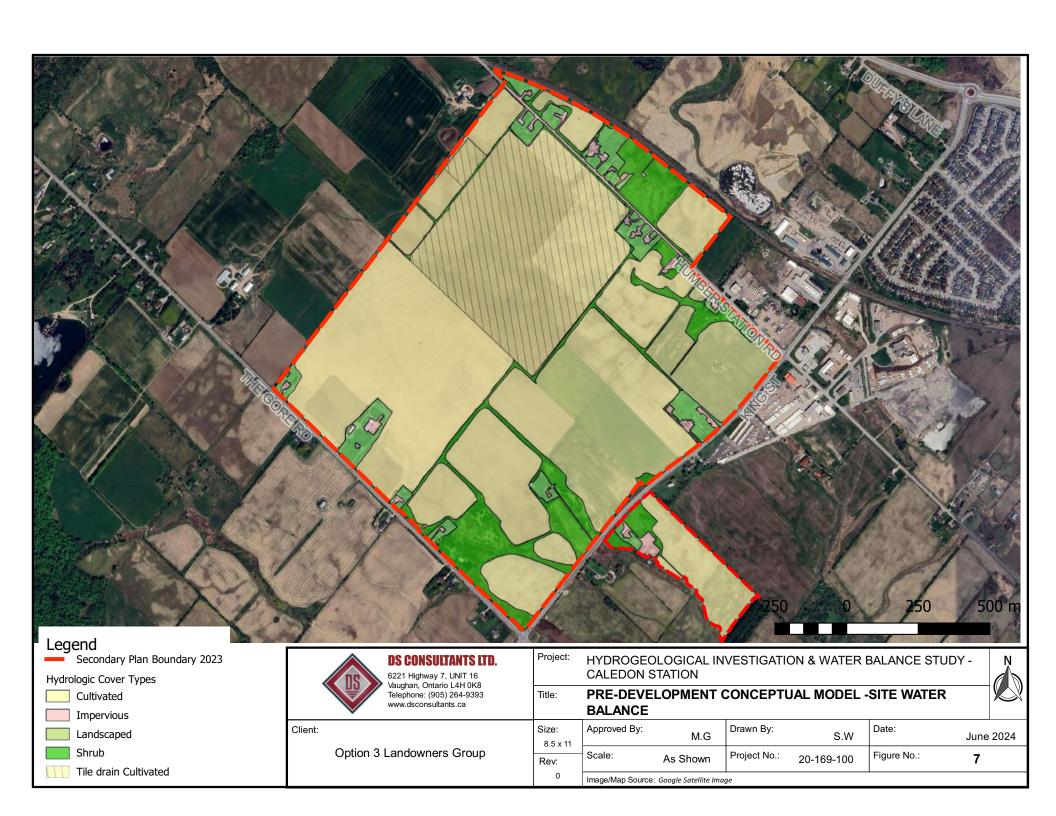

20-169-100

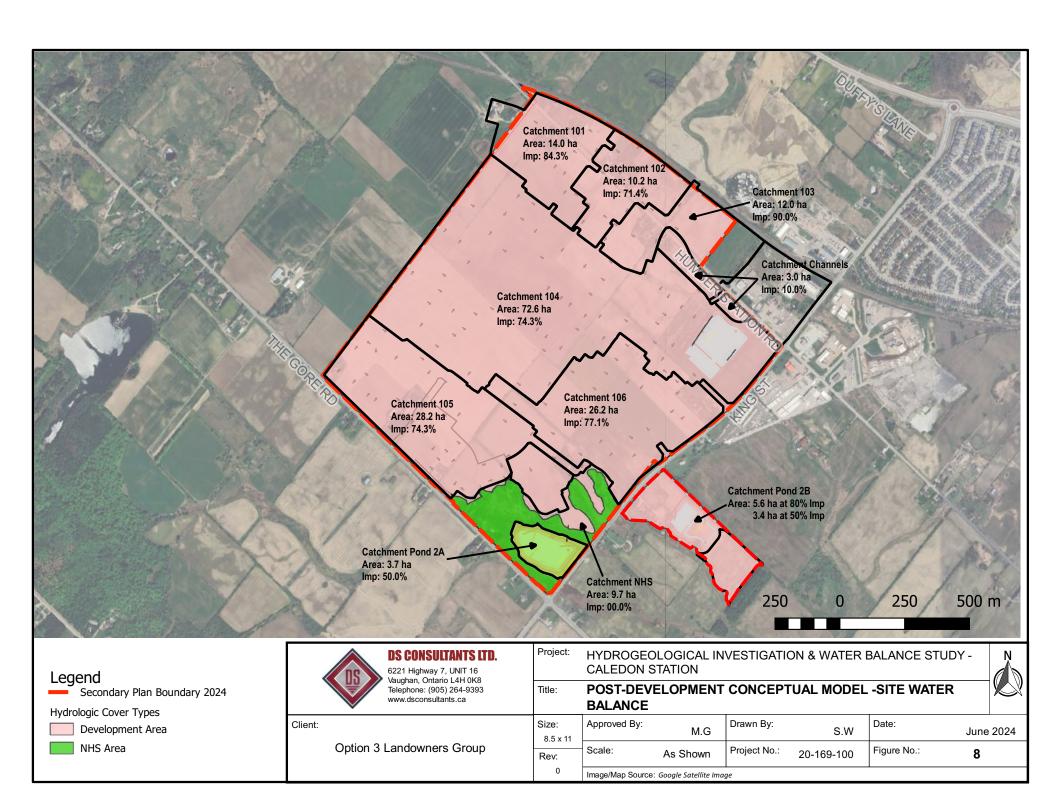

5D

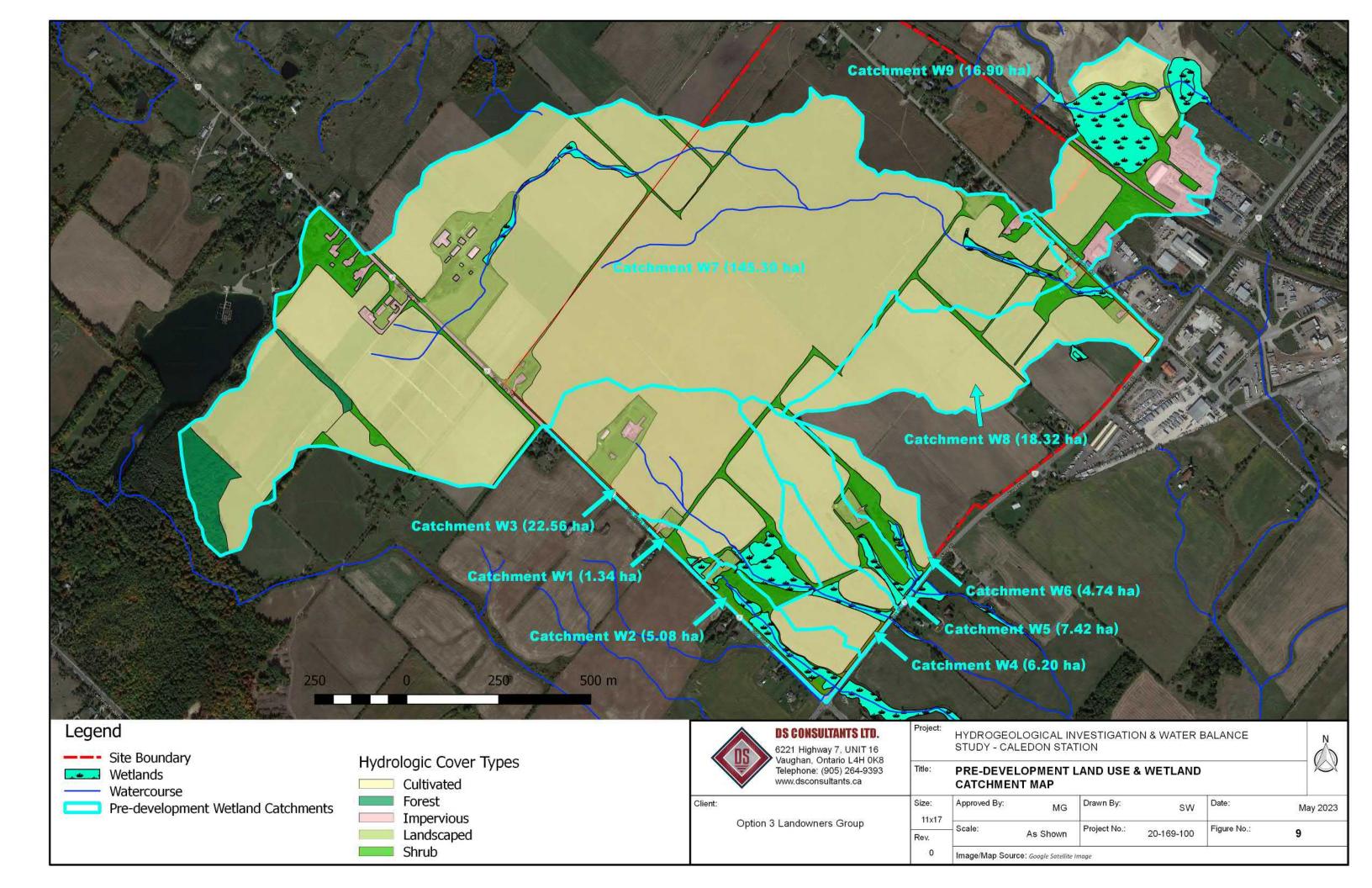

c/o GLEN SCHNARR & ASSOCIATES



DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

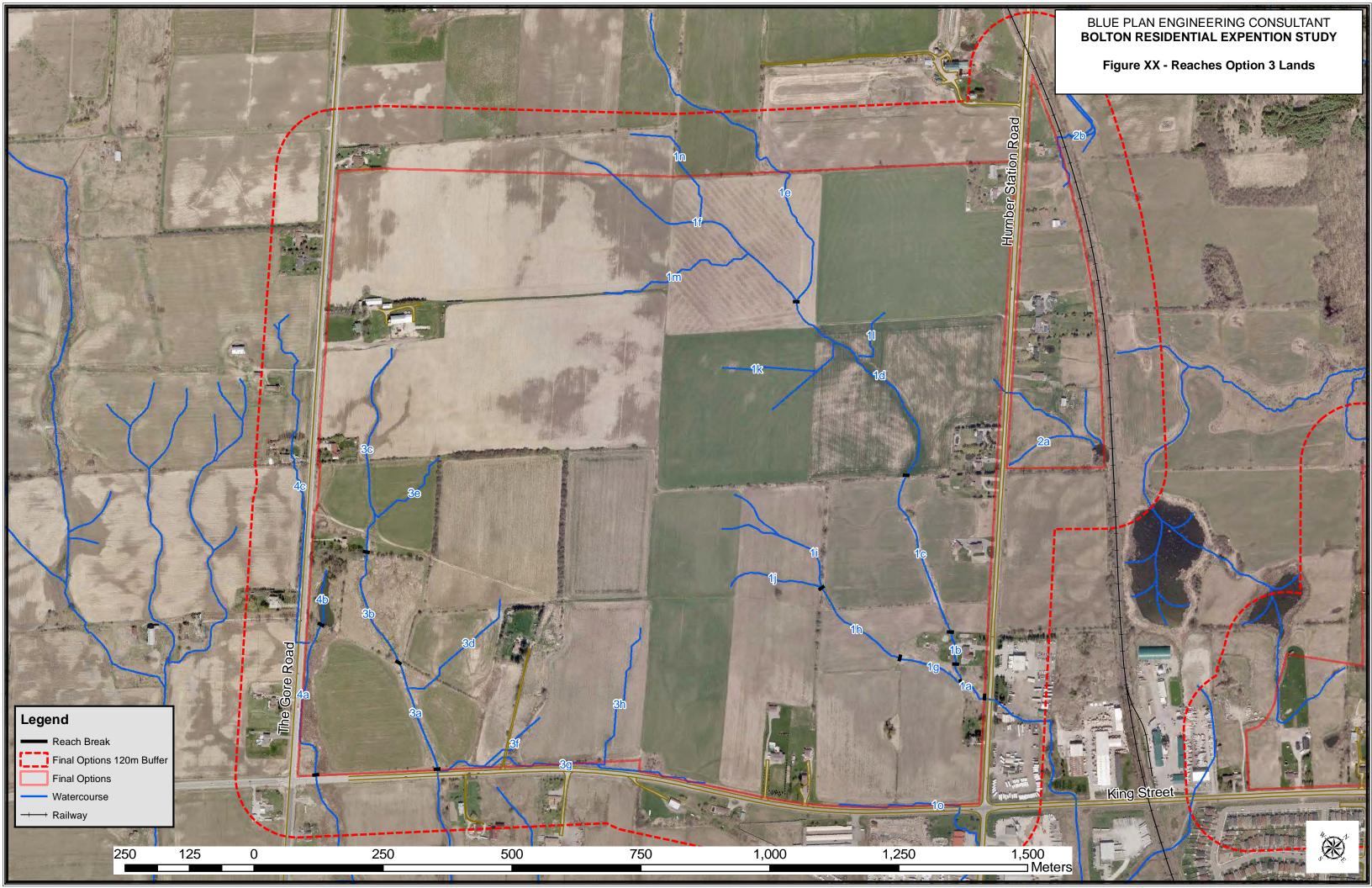

HYDROGEOLOGICAL INVESTIGATION Caledon Station and Argo King I & Argo King II, Caledon (Bolton), ON Title:


GEOLOGICAL CROSS SECTION H-H'


CALEDON COMMUNITY PARTNERS c/o GLEN SCHNARR & ASSOCIATES Rev.

Date: Approved By: Drawn By: Size: S.Y February 2023 D.S 11 X 17 Scale: Project No: Figure No. 19-093-100 A Shown

5H



Appendix A

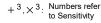
Appendix B-1 Caledon Station

PROJECT: Geotechnical Investigation

CLIENT: Bolton Option 3 Landowners Group
PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario

DATUM: Geodetic

DRILLING DATA


Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-100

Date: Jul/27/2020 ENCL NO.: 2

	HOLE LOCATION: See Drawing 1 N 4 SOIL PROFILE			AMPL					DYNA	MIC CO	NE PE E PLOT	NETR/	TION								
	00.2	Τ.				띮					10 60 60 60 60 60 60 60 60 60 60 60 60 60		$\overline{}$	100	PLASTI LIMIT	C NAT	URAL	LIQUID LIMIT	z	T WT	METHANE AND
m) <u>-EV</u> PTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER		ELEVATION	SHEA O UI	AR ST NCONF UICK T	RENG INED RIAXIAL	ΓΗ (kF + . ×	Pa) FIELD & Sens LAB \	VANE itivity /ANE	W _P ⊢	TER CO		w _∟ IT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZ DISTRIBUTIO (%)
9.8	TOPSOIL: 300mm		Ž	<u> </u>	<u>-</u>	0	i i		- 2	20 4	0 6	0 8	0	100	1	0 2	20	30			GR SA SI
9:8 0.3 9.0	FILL: sandy silt, trace gravel, dark brown, moist, loose	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	1	SS	6	I										0					
0.8	CLAYEY SILT TILL: sandy, trace gravel, sand seams, brown, moist, very stiff to hard		2	SS	19			279								0					
			3	SS	36		2	278													
	trace cobble below 2.3m		4	SS	55	1	-Be	entor	 - nite						0						
			5	SS	32	ı			-							0					
75.3						Ţ Ž		276 . L. 2	75.7 275.7 5, 2020	m n											
4.5	SILTY CLAY: trace sand, grey, very moist, very stiff		6	SS	17	<u>*</u>	W.	. L. 2	, 2020 275.3 , 2020	m							0		=		
73.8								274	-												
6.0	SILT: trace clay, grey, wet, compact		7	SS	12		i. Fi	Iter F	ack							0					
							:SI	otted	Pipe												
71.6			8	SS	20			272	-							,	•		_		
8.2	END OF BOREHOLE: Notes:																				
	Water level at 4.5m below grade during drilling. Somm dia. monitoring well installed upon completion. Water level Reading:																				
	Date: Water Level (mbgl): Aug 6, 2020 4.11 Sept 8, 2020 4.24																				
	Oct 22, 2020 4.51																				

PROJECT: Geotechnical Investigation

CLIENT: Bolton Option 3 Landowners Group
PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-100

Date: Jul/27/2020 ENCL NO.: 3

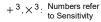
	M: Geodetic							Date	Jul/2	7/2020)					ΕN	NCL N	O.: 3		
BORE	HOLE LOCATION: See Drawing 1 N 4 SOIL PROFILE	18576	1	9 E 59 SAMPL			1	DYNA RESIS	MIC CO	ONE PE E PLOT	NETRA	TION			NAT	I IDAI				METHANE
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	ш	BLOWS 0.3 m	GROUND WATER	ELEVATION	SHE.	AR ST	40 6 RENG	0 8 TH (kF +	0 1 Pa) FIELD V & Sensiti	OO ANE ivity	W _P	,	STURE ITENT W O	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	ATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%)
78.8				TYPE	ż	GRC					0 8		00				30		_	GR SA SI
7 9.0 0.2 78.0	TOPSOIL: 200mm FILL: sandy silt, trace gravel, brown, moist, loose	\(\frac{1}{2}\)	1	SS	8		07/	-						0						
0.8	CLAYEY SILT TILL: sandy, trace gravel, sand seams, brown, moist, very stiff		2	SS	16		278	3 <u></u>							0					
6.5			3	SS	19		27 -Bent								0			-		
2.3	SANDY SILT: trace clay, brown, moist to very moist, very dense		4	SS	58		270	<u>-</u>							0					
			5	SS	58										0					
							27	5 												
			6	SS	66		274	1							0					
							1	Pack-										-		
	wet below 6m		7	SS	51		W. L. Aug 0 W. L.	272.7 272.7 16, 202 2/2.3 2, 2020	m 0- m							0				
								2, 2020 - - - - - -												
70.6			8	SS	52		27	1												
8.2	END OF BOREHOLE: Notes: 1) Water level at 6.1m below grade during drilling. 2) 50mm dia. monitoring well installed upon completion. 3) Water level Reading: Date: Water Level (mbgl): Aug 6, 2020 6.12 Sept 8, 2020 6.36 Oct 22, 2020 6.48																			

PROJECT: Geotechnical Investigation

PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario

DATUM: Geodetic

DRILLING DATA


Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-100

Date: Jul/27/2020 ENCL NO.: 4

	M: Geodetic			a = -	- 0				Date:	Jul/2	7/2020)					ΕN	NCL N	0.: 4		
BORE	HOLE LOCATION: See Drawing 1 N 4 SOIL PROFILE	8576		2 E 59 SAMPL			Т		DYNA	MIC CO	ONE PE E PLOT	NETR/	ATION		I	NAT	TIDAL				METHANI
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT			BLOWS 0.3 m	GROUND WATER	SNOILIO	ELEVATION	SHE/	20 4 AR ST NCONI	40 6 RENG	50 E TH (kl	Pa) FIELD \ & Sensi	00 /ANE	- W _P	,	NTENT W	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	TURAL UNIT WT (kN/m³)	METHAN AND GRAIN SI DISTRIBUT (%)
78.6			NUMBER	TYPE	ż	GRO	NO OO	ELEV			RIAXIA 40 6	L ×	LAB V	ANE 00		TER C0		1 (%) 30		Ž	GR SA SI
78:3 0.3 77.8	TOPSOIL: 300mm FILL: sandy silt, trace gravel, brown, moist, compact	<u>11.1.7.</u>	1	SS	10			278								0			_		
0.8	SILTY CLAY TILL: sandy, trace gravel, sand seams, brown, moist, stiff		2	SS	13		-Е	Bento	L nite								•				
			3	SS	10			277									0				
2.3	SILTY SAND: trace clay, grey, moist, compact to very dense	 	4	SS	15			276									0				
			5	SS	35			275								٥					
							1::1	=ilter l													
	wet below 4.5m		6	SS	65				F d Pipe E								0				
								273											-		
			7	SS	49		· '. v	ug 06	‡ 272.6 5, 202								0				
71.9	END OF BOREHOLE:	11:1	╁				+	272													
	Notes: 1) Water level at 4.5m below grade during drilling. 2) 50mm dia. monitoring well installed upon completion. 3) Water level Reading: Date: Water Level (mbgl): Aug 6, 2020 6.0 Sept 8, 2020 dry																				
	Oct 22, 2020 dry																				

REF. NO.: 20-169-100

PROJECT: Geotechnical Investigation CLIENT: Bolton Option 3 Landowners Group

DRILLING DATA

Method: Solid Stem Auger PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario Diameter: 150mm

	SOIL PROFILE		S	AMPL	.ES			RE	MAM SIST	IIC CO ANCE	NE PEN PLOT	NETR/	ATION		D. A.S.T.	o NATI	URAL	1101		F	METHANE
m)		Ŀ				Į∄″ 1			20		-			100	PLASTI LIMIT	MOIS CON	TURE	LIQUID LIMIT	EN CE	M ⊢	AND
LEV PTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER	ELEVATION	SH O	HEAF UN	R STF CONFI	RIAXIAL	+ ×	FIELD \ & Sensi		1	TER CO	w OMTEN	w _L ☐ (%) 30	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	GRAIN SIZ DISTRIBUTIO (%) GR SA SI
77.1 78:8	CONCRETE: 300mm	() ()						╞	Ŧ					+				+			GR SA SI
0.3 76.3	FILL: clayey silt, trace gravel, grey to brown, moist, stiff		1	SS	8			Ē							0						
8.0	SANDY SILT: trace clay, brown, moist, compact to very dense		2	SS	21		၁ -Ber	76 Intonite	•												
			3	SS	42		2	75								0					
			4	SS	62			-								•					
			5	ss	56		2	74								0					
							W.	L. 273 06, 2	3.3 m 020	1 1											
	wet below 4.5m						:.1	tted P													
			6	SS	46			72									0				
71.1								Ė													
6.0	SANDY SILT: trace silt, brown, wet, compact		7	SS	28		2	71									0				
6.7	END OF BOREHOLE:	1					$\dot{\top}$	╅													
	Notes: 1) Water level at 4.5m below grade during drilling. 2) 50mm dia. monitoring well installed upon completion. 3) Water level Reading:																				
	Date: Water Level (mbgl): Aug 6, 2020 3.77 Sept 8, 2020 3.90 Oct 22, 2020 inaccessible																				
						1															

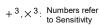
PROJECT: Geotechnical Investigation

PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-100


BORE	HOLE LOCATION: See Drawing 1 N 4	858369 I				7	_	DYN	AMIC	ONE F	FNFT	RATI∩	N	_						_
(m) ELEV DEPTH 273.0	SOIL PROFILE DESCRIPTION	STRATA PLOT	H.	TYPE	"N" <u>BLOWS</u> Si	GROUND WATER CONDITIONS	ELEVATION	SHE 0 (20 AR S	40 TREN	oT <u></u> 60 GTH (80 kPa)	100 D VANE nsitivity S VANE 100		TER CO	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	METHAI AND GRAIN S DISTRIBU (%)	SIZE ITIO
27 2 . 9	TOPSOIL: 250mm FILL: sandy silt, trace topsoil/	<u> </u>	1 ;	SS	15										0					
0.3 272.2 0.8	organics, trace gravel, trace rootlets, brown, moist, compact SILTY CLAY TILL: sandy, trace						272													
	gravel, frequent sand seams, brown, moist, hard		2 :	SS	35		212	-							0					
			3	SS	31		271	_	-			+			0					
70.0			4	SS	39	abla	W. L. :	- - - - - - - - - - - - - - - - - - -	 m						0					
3.0	CLAYEY SILT TILL: sandy, trace gravel, interbed of sandy silt layers, greyish brown, moist to very moist, hard		5	SS	35	Ā	Aug 00 W. L. Oct 22 269	6, 202 269.6 2, 202	20 5 m						0					
	grey below 4.5m		6 :	SS	37		268							c))					
	sand seams below 6m						267													
			7 :	SS	46		266								•					
265.5 7.5	SILTY SAND: trace clay, grey, moist, very dense		8 :	SS ,	74/ 280mr		Filter Slotte	Г						С)		-		0 51 4	7
	very moist at 9m		9 ;	SS	59		264								0					
9.7	END OF BOREHOLE:	Kid-					+	-		+										_
	Notes: 1) Water level at 9.1m below grade during drilling. 2) 50mm dia. monitoring well installed upon completion. 3) Water level Reading: Date: Water Level (mbgl): Aug 6, 2020 2.78 Sept 8, 2020 3.09 Oct 22, 2020 3.38																			

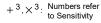
GROUNDWATER ELEVATIONS

1st 2nd 3rd 4th

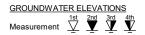
Measurement \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \)

PROJECT: Geotechnical Investigation

PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-100

	HOLE LOCATION: See Drawing 1 No.		1	SAMPL				DYNA	MIC C	ONE PE E PLOT	NETRA	TION								
	GOIL THOTILE		\vdash	, avii E		GROUND WATER CONDITIONS		I				_		PLASTI LIMIT	c NAT	URAL STURE	LIQUID LIMIT	į į	NATURAL UNIT WT (kN/m³)	METHANE AND
m)		STRATA PLOT			ای	NAT NS	z	-		40 6			00	W _P	CON	TENT N	WL	POCKET PEN. (Cu) (kPa)	NS (m	GRAIN SIZ
LEV PTH	DESCRIPTION	ΑP	监		BLOWS 0.3 m	1 É E	E			RENG	I Н (КН +	′a) FIELD V & Sensiti	ANE			·		OCKE Cu)	RA J	DISTRIBUTI
		₩.	NUMBER	TYPE		l S d	ELEVATION			RIAXIAL	. ×	& Sensiti LAB V	VITY ANE	WA	TER CO	ONTEN	IT (%)	2	¥	(%)
71.0			ž	₽	þ	<u> </u>	ᆸ	:	20 4	40 6	8 0	0 1	00	1	0 2	20	30			GR SA SI
0.0	TOPSOIL: 250mm	311/	1	SS	8			F												
0.3	FILL: sandy silt, trace topsoil/ organics, trace gravel, trace	\otimes	<u>.</u> ՝	00	Ů			F												
70.2 0.8	_rootlets, dark brown, moist, loose					-	070	F												
0.0	CLAYEY SILT TILL: sandy, trace gravel, sand seams, brown, moist,		2	SS	12	¥	270	Γ							0			1		
	stiff to hard		\vdash				W. L. Sep 0	269.8 8. 202	m O											
			3	SS	21			Ė	ĺ					Ι,						
		111	Ľ				269	F										ł		
	hard below 2.3m	[1/4.]	\vdash					Ē												
	Hard Below 2.5III	1411	4	SS	59		D 4 -	F.						c						
		rld	Ъ				-Bento 268													
			厂					F												
			5	SS	58			F						C	1					
			\vdash				007	Ē												
			1				267	-										1		
			1					Ē												
	grey below 4.5m		十					Ē												
		14	6	SS	31		266	 						-				ł		
		1:11	\vdash					Ė												
			1				:	Ė												
		nn	1				265	Ė												
			├			∤ ∷⊨∷	: 200	Ė												
		119	7	SS	39		Filter	⊦ Pack						٥						
			\vdash			∤ ∷⊠∴	Filter	I ack												
			1				: ₩. L. Aug 0	264.2 6, 202	m)									1		
		1111	1					É												
			\vdash			∦ ∵∺∵	:	Ė												
		44	8	SS	25	.	263	<u> </u>										1		
8.2	END OF BOREHOLE:	1111/	\vdash				+	F										\vdash		
0.2	Notes:																			
	 Borehole dry during drilling. 50mm dia. monitoring well 																			
	installed upon completion.																			
	3) Water level Reading:																			
	Date: Water Level (mbgl):																			
	Date: Water Level (mbgl): Aug 6, 2020 6.77 Sept 8, 2020 1.15																			
	Зерго, 2020 1.13																			
			1	1	1															
							1		1							1	1	I	ı	I
															l					

PROJECT: Geotechnical Investigation **DRILLING DATA** CLIENT: Bolton Option 3 Landowners Group Method: Solid Stem Auger PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario Diameter: 150mm REF. NO.: 20-169-100 DATUM: Geodetic Date: Jul/31/2020 ENCL NO.: 8 BOREHOLE LOCATION: See Drawing 1 N 4857020.81 E 597903.58 DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE CONTENT METHANE GROUND WATER CONDITIONS LIQUID LIMIT POCKET PEN. (Cu) (kPa) AND 40 60 100 NATURAL UNIT (KN/m³) (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m ELEVATION SHEAR STRENGTH (kPa) ELEV DEPTH + FIELD VANE & Sensitivity DISTRIBUTION DESCRIPTION NUMBER O UNCONFINED (%) WATER CONTENT (%) QUICK TRIAXIAL X LAB VANE 40 60 80 10 20 30 261.7 GR SA SI CL 0.0 TOPSOIL: 500mm SS 8 0 261.2 FILL: clayey silt, trace topsoil/ 268:9 261 organics, trace gravel, trace 1 0.8 rootlets, dark brown, moist, stiff 2 SS 10 0 CLAYEY SILT TILL: some sand, trace gravel, brownish grey, very moist, stiff 260 3 SS 13 with silt and sand seams at 1.5m 0 SILTY CLAY TILL: some sand, SS 15 18 38 29 some gravel, greyish brown, moist, 4 39 0 Bentonite very stiff to hard grey, very moist to wet below 3m SS 28 5 0 W. L. 258.3 m Oct 22, 2020 257 6 SS 21 0 256 SS 19 0 W. L. 255.2 m Sep 08, 2020 254 8 SS 25 0 253 9 SS 16 0 Bentonite: Bottom of hole DS.GDT 21/1/8 252 GPJ 251 SS 10 24 SOIL LOG 20-169-100 BOLTON OPTION 3 LANDS. END OF BOREHOLE: Notes: 1) Borehole dry during drilling. 2) 50mm dia. monitoring well installed upon completion. 3) Water level Reading: Water Level (mbgl): Date: Aug 6, 2020 Sept 8, 2020 6.52Oct 22, 2020 8

PROJECT: Geotechnical Investigation

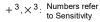
CLIENT: Bolton Option 3 Landowners Group

PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-100

Date: Jul/28/2020 ENCL NO.: 9

	M: Geodetic							Duto.	Jul/2	5/ L 0 L 0							VOL IV	O.: 9				
BORE	HOLE LOCATION: See Drawing 1 N 4 SOIL PROFILE	1857		2 E 59 SAMPL				DYNA RESIS	MIC CO	NE PE	NETR/	ATION		DI ACTI	_ NATI	URAL	LIOUID		F	М	ETH/	ANE
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/		0 6 RENG	0 8 TH (kF +	Pa) FIELD V. & Sensiti	ANE vity	PLASTI LIMIT W _P 	CON	TURE TENT W D	LIQUID LIMIT W _L ——I T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GR DIST	ANI AIN RIB (%)	SIZI UTIC
277.2	TOPSOIL: 340mm	<u>7,7,7</u>		₹	ž	<u>R</u> S		2	20 4	0 6	0 8	80 10	00	1	0 2	20 3	30			GR S	SA	SI
0.0 276.8 0.4	FILL: sandy silt, trace topsoil/	1	1 1	SS	8		277	-						()			1				
276.4	organics, trace gravel, brown, noist, loose CLAYEY SILT TILL: sandy, trace		2	SS	10																	
275.7	gravel, brown, moist, compact SILT: some clay, trace sand, trace		\vdash				276															
	gravel, brown, very moist, compact to very dense		3	SS	19		275								•	D						
			4	SS	58											0				2	2 8	85
			5	SS	92/ 255mr	† †	274	<u> </u>							c							
						-	273															
			6	SS	74										_							
				00	/-	=	272											-				
271.2	SANDY SILT: trace clay, brown,	111					271															
	wet, very dense		7	SS	62		271								٥					0 2	27 (67
							270															
269.0			8	SS	54		260								0							
8.2	END OF BOREHOLE: Notes: 1) Water at depth of 6.1m during drilling.																					

PROJECT: Geotechnical Investigation
CLIENT: Bolton Option 3 Landowners Group

PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-100

Date: Jul/28/2020 ENCL NO.: 10

	SOIL PROFILE		s	AMPL	.ES	~		DYN. RES	AMIC CO STANC	ONE PE E PLOT	NETRA	ATION		DI ACT	C NAT	URAL	HOLID		۲	METHANE
(m)		F]貲	.						00	LIMIT	MOIS CON	TURE	LIQUID	Ä.	W L	AND
LEV		STRATA PLOT	ا ر ا		BLOWS 0.3 m	GROUND WATER	ő l o	SHE	AR ST	RENG	TH (kF	- Ра)		W _P	,	w 0	LIQUID LIMIT W _L ——I T (%)	Ē,	AL U	GRAIN SIZ DISTRIBUTI
PTH	DESCRIPTION	¥	NUMBER		0.3		CONDITION		JNCON		÷	FIELD V. & Sensiti	ANE vity				1	S S	JE S	(%)
		₹	JME	TYPE	<u> </u>	[장		• (RIAXIAI	L×	LAB V	ANE			ONTEN	T (%)	"	₹	(70)
74.1	TORCOH : 550		Ž	<u> </u>	F	0			20	40 6	0 8	80 10	00	1	0 2	20 3	30			GR SA SI
0.0	TOPSOIL: 550mm	× 1/2	1	SS	5		27	4								0				
73.6	Ell Loondy cit troce t	<u> </u>			Ĺ			Ė												
7 9 : 9	FILL: sandy silt, trace topsoil/ ¬organics, trace clay, trace gravel, /	1/2/				н		Ė												
8.0	trace organics, trace rootlets, dark		2	SS	16		27	'3 ^E —							-			1		
	brown, moist, loose		1					Ē												
	SILTY CLAY TILL: some sand, trace gravel, brown, moist, very stiff		\Box					Ė												
	to hard		3	SS	25			F							0					
			\vdash			Н	27	<u>'2</u>										1		
	sand seams below 2.3m		一					Ė												
			4	SS	38		-Ren	_ tonite							0					
			\vdash		<u> </u>			Ł						1						
							27	1										1		
			5	SS	72			Ė						1	0					
			\vdash					F												
							27	ω <u>Ε</u>										1		
			1			\vee		Ĕ												
	grey below 4.5m		1—1			¥	W. I	. 269.7	m											
			6	SS	45	Ā	Aug	06, 202						0						
		11	\perp		<u> </u>		W. I	. 269.1	m			-		1				1		
							Oct	22, 202 E	U											
		[15]	1				:	F												
			1					, F												
	trace cobble, very moist below 6m		1_			l∷E	:: 26 ::	8										1		
			7	SS	24	ĿE	Filte	ı∟ er Pack						C	1					
			\vdash				Slot	ted Pip												
		1191]			K:E	26											1		
6.6						:E		Ē												
7.5	SANDY SILT: trace clay, grey, wet,	11.11	ऻ			ŀF	[::]	F												
	compact		8	SS	29			Ė								0				
55.9	END OF BOREHOLE:	1111	H			-	26	6						+				┿	-	
8.2	Notes:																			
	1) Water level at 7.6m below grade																			
	during drilling. 2) 50mm dia. monitoring well																			
	installed upon completion.																			
	3) Water level Reading:																			
	Date: Water Level (mbgl):																			
	Aug 6, 2020 4.43																			
	Sept 8, 2020 4.72																			
	Oct 22, 2020 4.97						1													
							1													
							1													
							1													
							1													
									1	1	I	I .	1	1	1			1		

PROJECT: Geotechnical Investigation

PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario

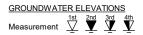
DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-100

Date: Jul/29/2020 ENCL NO.: 11


	HOLE LOCATION: See Drawing 1 N SOIL PROFILE			AMPL				DYNA RESIS	MIC CC STANCE	NE PEI	NETRA	ATION		рі деті	C NATI	URAL	חוויוטו		¥	METHAN
n)		TO			(0)	GROUND WATER CONDITIONS		2	0 4	0 60	0 8	30 10	00	PLASTI LIMIT	MOIS CON	URAL TURE TENT	LIQUID	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN S
EV PTH	DESCRIPTION	STRATA PLOT	监		BLOWS 0.3 m	W O F	ELEVATION		AR STI	RENGT	ΓΗ (kF →	Pa) FIELD V & Sensiti	ANE	W _P ⊢		w >	W _L	CU) (K	(kN/m	DISTRIBU
111		IRAT	NUMBER	TYPE		ROUI	-EVA	● QI	UICK T	RIAXIAL	. ×	LAB V	ANE		ER CO		1 (70)	<u> </u>	NAT	
8.3 9:0	TOPSOIL: 300mm	7/1/V	ž	F	ż	ַ ט <u>ַ</u>	Ш		0 4	0 60	0 8	80 10	00	1	0 2	20 3	30			GR SA S
0.3	FILL: sandy silt, trace topsoil/ organics, trace gravel, trace		1	SS	15		268								-			ł		
7.5	organics, trace gravel, trace —cootlets, brown, moist, compact																			
0.8	SILTY CLAY TILL: some sand,		2	SS	21										0					
	trace gravel, sand seams, brown, moist to very moist, very stiff						267											ĺ		
			3	SS	25										0					
							266													
			4	SS	25		200	-							0					
			1			-														
	grey below 3m		5	SS	16	1	265								0			-		
		19.7	Ľ																	
							264											1		
			6	SS	20	1									0					
			Ľ	00	20		000													
							263											1		
			7		47		262													
			Ľ	SS	17										0					
		191																		
							261	-												
			8	SS	15	1									٥					
0.1		*/*/ */*/	L	33	13			-							U					
8.2	END OF BOREHOLE: Notes:																			
	Borehole dry and open upon completion.																			
	•																			
			l																	l
						I													l l	1

PROJECT: Geotechnical Investigation

DRILLING DATA

Method: Solid Stem Auger

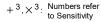
PROJI	ECT LOCATION: Bolton Option 3 Lands	s, Ca	ledo	n, Ont	ario			Diam	eter: 15	0mm						RE	F. NC).: 20)-169	-100
	M: Geodetic							Date:	Jul/29	/2020						ΕN	ICL N	O.: 1	2	
BORE	HOLE LOCATION: See Drawing 1 N 4	8587)		IDVNA	MIC CO	NE DE	NETD	MOITA								
	SOIL PROFILE			SAMPL	.ES	l H		I	MIC CO TANCE			_		PLASTI	NATI	JRAL TURE TENT	LIQUID		TW.	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	0 40 AR STF NCONFI JICK TF	RENG NED RIAXIAL	ΓΗ (kl + . ×	Pa) FIELD V & Sensiti LAB V	ANE vity ANE		ER CC	v ONTEN	LIQUID LIMIT W _L T (%)	POCKET PEN (Cu) (kPa)	NATURAL UNIT (kN/m³)	AND GRAIN SIZE DISTRIBUTIOI (%)
270.1	TOPSOIL: 300mm	7/1/2	Z	-	-	0 0	ш 270		0 40		, (10	<u>'</u>	0 2	.0 3	50			GR SA SI C
0.3	FILL: sandy silt. trace topsoil/	XX	1	SS	12			Ē						٥						
269.3	organics, trace gravel, trace —cootlets, brown, moist, compact	X						Ē												
0.8	SILTY CLAY TILL: sandy, trace gravel, sand seams, brown, moist, very stiff to hard		2	SS	19		269								•					
2			3	SS	22		268								0					
: - :		***	4	SS	28		200	- - - - -							0					
3			5	SS	44		267	-												
4			5	55	44		-Bento	ļ.							0					
-	grey below 4.5m						266													
<u>5</u>	gicy 25.6W		6	SS	24		265								0					
-							W. L.: Aug 06	264.7 3, 2020	m)											
6			7	SS	21		264	-							0					
							263	-												
262.4	OUT.						200	- - - -												
7.7	SILT: some sand, trace clay, trace gravel, grey, wet, compact		8	SS	28		-Fi <u>lter</u> -Slotte	_							0					1 11 80 8
9							Olotte	L - -												
260.4			9	SS	27	: H*. 	261								0					
9.7	END OF BOREHOLE: Notes: 1) Water level at 9.1m below grade during drilling. 2) 50mm dia. monitoring well installed upon completion. 3) Water level Reading: Date: Water Level (mbgl): Aug 6, 2020 5.42 Sept 8, 2020 5.37 Oct 22, 2020 5.33																			

CLIENT: Bolton Option 3 Landowners Group

PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario

DATUM: Geodetic

DRILLING DATA


Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-100

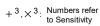
Date: Jul/31/2020 ENCL NO.: 13

	M: Geodetic		45.5.5	0000:	00		Date:	Jul/3	1/2020)					EN	ICL N	O.: 13	3	
BORE	HOLE LOCATION: See Drawing 1 N 48 SOIL PROFILE	57520.	.15 E 5 SAMP				DYNA RESIS	MIC CO	ONE PE E PLOT	NETR/	TION			NAT	IRAI			_	METHANE
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	ТУРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/	AR ST NCONI	40 6 RENG FINED RIAXIA	0 8 TH (kF +	0 1/ Pa) FIELD V & Sensiti LAB V	ANE vity ANE	W _P ⊢ WA	TER CO	TENT W DOMTEN	LIQUID LIMIT W _L ——I T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT W (kN/m³)	AND GRAIN SIZ DISTRIBUT (%) GR SA SI
0.0 64.5 0.4	TOPSOIL: 400mm FILL: clayey silt, trace topsoil/	1		8	¥	W. L.:	264.7 202	 т											
0.4	organics, trace gravel, sand seams, trace rootlets, dark brown, moist, stiff		ss	8		264	F								0				
	SILTY CLAY TILL: some sand, trace gravel, sand seams, brown, moist to very moist, stiff	3													0				
	grey below 2.3m					263	-												
61.9 3.0		4	SS	10		-Bento 262								0			-		
3.0	grey, very moist, dense	5	ss	32										0					
						261											-		
	wet below 4.5m	6	SS	36		260									•		-		
						<u>.</u>													
6.0	SILT: trace clay, trace sand, grey, very moist, compact to loose	7	SS	25		259 Filter	E E Pack								0		-		0 1 94
						-Slotte	a Pipe - - - - - - -										-		
56.7		8	SS	7		257	-								0				
8.2	END OF BOREHOLE: Notes: 1) Water level at 3.1m below grade during drilling 2) 50mm dia. monitoring well installed upon completion. 3) Water level Reading: Date: Water Level (mbgl): Aug 6, 2020 0.2 Sept 8, 2020 0.1 Oct 22, 2020 0.14																		

LOG OF BOREHOLE BH20-13

PROJECT: Geotechnical Investigation

CLIENT: Bolton Option 3 Landowners Group


DS CONSULTANTS LTD.

DRILLING DATA

Method: Solid Stem Auger

PROJ	ECT LOCATION: Bolton Option 3 Lands	s, Ca	aledo	n, Ont	ario			Diam	eter: 1	50mm						RE	EF. NC).: 20)-169	9-100
	M: Geodetic							Date:	Jul/3	0/2020						E١	NCL N	O.: 14	4	
BORE	HOLE LOCATION: See Drawing 1 N 4	18579)9 T	1	DYNA	MIC CC	NF PF	VETR	ATION								
	SOIL PROFILE	1	8	SAMPL	.ES	<u> </u>		RESIS	TANCE	NE PEI				PLASTI	NATI	URAL	LIQUID	_	WT	METHAN
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U	NCONF	RENG	TH (kl + . ×	& Sensiti	ANE vity ANE	W _P ⊢ WA1	CON V ER CO	TENT W DOMTEN	W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT (kN/m³)	AND GRAIN SI DISTRIBUT (%) GR SA SI
0.2	TOPSOIL: 200mm	31 1/2	1	00	10		268								_					
267.3	FILL: clayey silt, trace topsoil/ organics, trace gravel, trace rootlets, dark brown, moist, stiff		1	SS	12			-							0					
0.8	SILTY CLAY TILL: some sand, trace gravel, sand seams, brownish grey, moist, stiff to very stiff		2	SS	19		267								•			-		
	<i>3.3,</i> , , ,		3	SS	20		266								0					
			4	SS	26		200								0					
			5	ss	14		265								•			-		
				00			004								J					
	grey below 4.5m					-	264													
			6	SS	9	-	263	- - -							0			-		
			7	SS	19	-	262							()			-		
							261													
7.5	SANDY SILT TO SILT: trace clay, trace gravel, grey, wet, very dense		8	SS	94/ 255mr										0					
259.9 8.2	END OF BOREHOLE:	1111	⊨		2331111	<u> </u>	260											_		
8.2	Notes: 1) Water at 7.6m below grade during drilling																			
			1			l .		ı												

CLIENT: Bolton Option 3 Landowners Group

PROJECT: Geotechnical Investigation

PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-100

Date: Jul/30/2020 ENCL NO.: 15

HOLE LOCATION: See Drawing 1 N 4	18583				8	T	DYNA	MIC CC	NE PEI	NETRA	ATION		Ι				1		
SOIL PROFILE	_	S	AMPL	ES	<u>~</u>		RESIS	TANCE	PLOT	\geq			PLASTI	IC NAT	URAL	LIQUID		₹	METHANE
	=				₽″	,	2	0 4	0 60	8 (0 10	00		CON	TENT	LIMIT	a) EN	Ę (AND
	15			N N) ž	Z	SHEA	R ST	RENG	H (kF	Pa)	·	W _P	١	N	W_L	Ē,	الاس الاسا	GRAIN SIZ
DESCRIPTION	Ĭ Ĭ	Ä		0.3		ĮĚ				÷	FIÉLD V	ANE vitv	'	(1	50	J.S.	(%)
	₹	JME	ĴΕ		\(\times \) \(\times \)					. ×	LAB V	ANE	l				l"	.₹	(70)
		ž		Z	9 2		2	0 4	0 60	8 (0 10	00	1	0 2	20 3	30			GR SA SI
TOPSOIL: 400mm	7/ 1/2		00	_			-												
FILL: clavey silt_trace tonsoil/	XX	1 '	55	'			ļ.							0					
organics, trace gravel, trace sand,	\bowtie					267	-										1		
trace rootlets, brown, moist, firm	7/9/						ŧ												
SILTY CLAY TILL: some sand,		2	SS	14			F							0					
trace gravel, frequent sand seams,							Ė												
brown, moist, sun to nard		1 2	22	13		266	F										1		
			00	10			Ē							"					
	161						F												
	XX	1 , 1	00	27			E												
			33	21		265	F										1		
	181						F												
		_	00	20	∇		F												
		1 3	33	20	Ā	W. L. 2	1 6.432	n '						١					
		1					Ė												
	11/2/	1				-Bento	nite E										1		
		\vdash				263	<u> </u>						<u> </u>	_			1		
	1	6	SS	24			Ē							0					
	177	1					Ė												
		1					E												
	igi	1				262	-										ł		
		1					ŧ												
grey below 6m		\Box					F												
		7	SS	18			Ė							0					
		\vdash				261	F -										1		
	jişi	1					Ē												
		1					Ē												
		Ш				260	ļ.												
	1	1 8	SS	29		200	F							0			1		
							Ė												
	jigi	1					ļ.												
		1				. 259	<u> </u>										1		
		1					Ė												
	181	1—1			ŀ∴⊟:	:	Ė.												
		9	SS	22			Ē							(þ				
	1461	\vdash				Filter	Pack_										-		
	127	1			₽	Slotte	d Pipe												
		1				:]	F												
	181	1			::日	3	Ė												
interbed of clayey silt and sany silt		\vdash			l∷H:	: 257	<u> </u>										1		
ayoro, wet below 10.0111	1	10	SS	35		:	F							0					
END OF ROPEHOLE:	WW.					+	<u> </u>						-				-	Н	
Notes:													1						
1) 50mm dia. monitoring well					1														
installed upon completion. 2) Water level Reading:					1														
,					1														
Date: Water Level (mbgl):					1														
Aug v, 2020 3.32 Sept 8, 2020 3.43					1												1		
Oct 22, 2020 3.59					1												1		
•					1														
													1						
					l		l						1						
				l															
•	siLTY CLAY TILL: some sand, trace gravel, frequent sand seams, brown, moist, stiff to hard grey below 6m grey below 6m end of clayey silt and sany silt layers, wet below 10.5m end of BoreHole: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Aug 6, 2020 3.32 Sept 8, 2020 3.43	DESCRIPTION TOPSOIL: 400mm FILL: clayey silt, trace topsoil/ organics, trace gravel, trace sand, trace rootlets, brown, moist, firm SILTY CLAY TILL: some sand, trace gravel, frequent sand seams, brown, moist, stiff to hard grey below 6m END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Aug 6, 2020 3.32 Sept 8, 2020 3.43	DESCRIPTION DESCRIPTION TOPSOIL: 400mm FILL: clayey silt, trace topsoil/ organics, trace gravel, trace sand, tace rootlets, brown, moist, firm SILTY CLAY TILL: some sand, trace gravel, frequent sand seams, brown, moist, stiff to hard 3 grey below 6m 7 END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Aug 6, 2020 3.32 Sept 8, 2020 3.43	DESCRIPTION Description D	DESCRIPTION Dot Dot	DESCRIPTION A A B B B B B B B B	DESCRIPTION Lange Lange	DESCRIPTION Topsoil: 400mm Tipsoil:	DESCRIPTION DESCRIPTION D	DESCRIPTION	DESCRIPTION Variable Variab	DESCRIPTION Second Secon	DESCRIPTION	DESCRIPTION	DESCRIPTION Comparison Com	DESCRIPTION A	DESCRIPTION A	DESCRIPTION A	DESCRIPTION Second Second

CLIENT: Bolton Option 3 Landowners Group

DRILLING DATA

Method: Solid Stem Auger

	ECT LOCATION: Bolton Option 3 Land	ls, Ca	ledo	n, Onta	ario			Diar	neter:	150mm						RE	EF. NC).: 20	0-169	9-100
	M: Geodetic							Date	: Jul/	30/2020						ΕN	NCL N	O.: 16	6	
BORE	HOLE LOCATION: See Drawing 1 N 4	18587				97 T	1	DYN	AMIC (ONE PE	VETR	MOITA						_		
	SOIL PROFILE		8	SAMPL	ES	<u>بر</u>		RES	ISTAN	CONE PEI	\geq			PLASTI	C NAT	URAL	LIQUID		WT	METHANE
(m)		LOT			ଥା	GROUND WATER CONDITIONS	z	CLIE	20	40 60			00	LIMIT W _P	CON	ITENT W	LIQUID LIMIT W _L ————————————————————————————————————	KPa)	- UNIT	AND GRAIN SIZ
ELEV DEPTH	DESCRIPTION	STRATA PLOT	Ä		BLOWS 0.3 m	ONI	ELEVATION			TRENGT IFINED	H (KI	FIELD V & Sensiti	ANE ivity			o—		(Cu)	TURAI (KN)	DISTRIBUTION (%)
		TRA	NUMBER	TYPE	ž	SROL SONE	LEV.	• (QUICK 20	TRIAXIAL	. ×	LAB V	ANE 00			ONTEN 20 3	T (%) 30		¥	
264.1 0.0 263.8	TOPSOIL: 350mm	×1 1/2.	_				ш 264	-	1	70 00	, (,,,		<u> </u>						GR SA SI
- 0.4	FILL: clayey silt, trace topsoil/	XX	1	SS	12			Ē							0					
263.3	organics, trace gravel, trace sand, trace rootlets, brown, moist, stiff							Ē												
0.8	CLAYEY SILT TILL: some sand,		2	SS	18		263	<u> </u>												
	trace gravel, sand seams, brown, moist, stiff to very stiff							Ē												
	,		3	ss	22			Ė							0					
							262	<u> </u>												
					07	\mathbf{Y}	₩. L.	E 261 7	 m											
			4	SS	27		Aug 0	5, 202	20						0					
							261	<u> </u>												
			5	SS	27		-Bento	F nite							0					
								Ē												
							260	<u> </u>	_									ł		
	grow holow 4 Em							Ė												
	grey below 4.5m		6	SS	17			Ē							0					
			Ľ		.,		259	<u> </u>												
								Ė												
								Ē												
			1				258	<u> </u>										-		
			7	SS	14			Ė							0					
								Ē												
							257	-	+									ł		
							:]	Ē												
			8	ss	16			<u> </u>							0					
							Filter Slotte	Pack	_									1		
							Slotte	a Pip E	е											
						甘		Ė												
	wet below 9m		9	SS	12	ŀ. Fl -	200	-							0					
254.4			9	33	12		<u>: </u>	<u>E</u>										L		
9.7	END OF BOREHOLE: Notes:																			
	1) Water level at 9.1m below grade																			
	during drilling. 2) 50mm dia. monitoring well																			
	installed upon completion. 3) Water level Reading:																			
	Date: Water Level (mbgl):																			
	Aug 6, 2020 2.41																			
	Sept 8, 2020 2.33 Oct 22, 2020 2.41																			
			Ш					$ldsymbol{ldsymbol{ldsymbol{eta}}}$										Ц		

LOG OF BOREHOLE BH20-16

PROJECT: Geotechnical Investigation

CLIENT: Bolton Option 3 Landowners Group

PROJECT LOCATION: Bolton Option 3 Lands, Caledon, Ontario

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-100

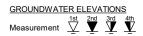
Date: Jul/31/2020 ENCL NO.: 17

	SOIL PROFILE		S	AMPL	ES	۳.		i	RESIS	STANCE	NE PEN E PLOT		TION		PLASTI	C NATI	URAL	LIQUID		WT	METI	
(m)		TO.			SI	NATE IN	2 2	,		1	0 60		80 10	00	LIMIT W _P	CON	TENT W	LIMIT W _L	r PEN.	UNIT	Al GRAII	ND N SIZ
LEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	Е	BLOWS 0.3 m	GROUND WATER	EL EVATION		o U	NCONF		+	FIELD VA & Sensitiv		⊢	TER CO	o		POCKET PE (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	DISTRI	
65.5			NUN	TYPE	ż	GRC					RIAXIAL 0 60		10 10					30		_	GR SA	SI
0.0 65.1	TOPSOIL: 400mm	77.	1	SS	9			F	-							0						
0.4 64.7 0.8	FILL: clayey silt, trace topsoil/ organics, trace gravel, trace otlets, brown, moist, stiff	$\bigotimes_{j \in J}$					2	265														
64.0	SILTY CLAY TILL: some sand, trace gravel, sand seams, brown,		2	SS	33				- - - - -							0						
1.5	moist, stiff to hard GRAVELLY SAND: some silt, trace clay, brown, very moist to wet, compact to dense		3	SS	30			264	63.4	m					0							
			4	SS	24	<u> </u>	Aug W.	g 06, L. 2	, 2020 63.1 2020	ງາ m						0					22 64	10
3.3	SANDY SILT: trace clay, brown, wet, compact		5	SS	20		2	262	-								0		-			
61.0								064	- = - - -													
4.5	SAND AND GRAVEI: some silt, trace clay, brownish grey, wet, very dense	0.0	6	SS	66		2	261	-						·)					42 37	15
50.0		о. О					2	260	-										_			
6.2	SILTY SAND: some clay, trace gravel, greyish brown, wet, dense		7	SS	38		• • •	- 1	Pack- I Pipe							0			-		3 61	26
58.0	CANDY OUT To be a select a second of							258	- - -													
7.5	SANDY SILT: trace clay, grey, wet, dense		8	SS	41				- - -							0						
8.2	END OF BOREHOLE: Notes:																					
	Water level at 2.3m below grade during drilling. Somm dia. monitoring well installed upon completion. Water level Reading:																					
	Date: Water Level (mbgl): Aug 6, 2020 2.12 Sept 8, 2020 2.27 Oct 22, 2020 2.49																					

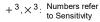
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

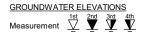
DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-104

Date: Aug-31-2022 ENCL NO.: 2


	CATION: See Drawing 1 N 4858060.2 SOIL PROFILE		s	AMPL	ES	<u>_</u>		DYNA RESIS	MIC CO STANCE	NE PEI E PLOT	NETRA	ATION		PLASTI	C NATI	JRAL TURE	LIQUID		ΤΛ	REN	//ARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/	AR STI NCONF UICK T	RENGT RENGT INED RIAXIAL	H (kF + . ×	Pa) FIELD V & Sensiti LAB V	ANE vity ANE O0	LIMIT W _P WA1	CON' V TER CC	TENT v D ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTR	(%)
279.0 27 9 . 9	TOPSOIL: 300mm	<u> </u>	1	SS	9		ш				, ,			'	0 2	.0				GR SA	A SI
0.3 278.2 0.8	WEATHERED/DISTURBED NATIVE: clayey silt to silty clay, \[\text{trace sand, trace gravel, trace} \]						0.70														
0.0	rootlets, brown, moist, stiff SILTY CLAY TO CLAYEY SILT		2	SS	24		278								0						
	TILL: trace to some sand, trace gravel, brown, moist, very stiff to		3	SS	28		277								∘⊢		1			2 18	3 47
	hard sandy silt till layer @2.3m		4	SS	32			Ē							o						
							276	_													
			5	SS	31	<u>-</u>	W. L. Sep 0								0						
							. 275	É													
	grey below 4.6m		6	SS	34		: : 274								0						
							: 217														
72.7							273														
6.3	SANDY SILT TILL: trace clay, trace gravel, grey, very moist, very		7	SS	65		:	Ē							0						
	dense						272														
7.6	SANDY SILT TO SILTY SAND: trace clay, trace gravel, grey, wet,		8	SS	78										0						
8.2	ery dense END OF BOREHOLE:]. . <u> </u>					. 271	-													
	Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																				
	Date: Water Level(mbgl): Sept. 8, 2022 3.4																				
														1							

PROJECT: Geotechnical Investigation **DRILLING DATA** CLIENT: ARGO Development Corp Method: Hollow Stem Auger PROJECT LOCATION: Bolton Option 3 Lands, Block 10, Caledon, Ontario Diameter: 200mm REF. NO.: 20-169-100 DATUM: Geodetic Date: Apr/22/2021 ENCL NO.: 2 BOREHOLE LOCATION: See Drawing 1 N 4858817.153 E 598138.646 DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT METHANE GROUND WATER CONDITIONS LIQUID LIMIT POCKET PEN. (Cu) (kPa) AND 40 60 100 NATURAL UNIT (KN/m³) (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + ESensitivity ELEVATION ELEV DEPTH DISTRIBUTION DESCRIPTION NUMBER (%) WATER CONTENT (%) QUICK TRIAXIAL X LAB VANE 60 80 10 20 30 GR SA SI CL 264.1 TOPSOIL: 300mm 264 263:8 SS 8 0 FILL: clayey silt, trace topsoil/ organics, trace gravel, trace sand, 0.3 W. L. 263.6 m trace rootlets, brown, moist, stiff May 03, 2021 0.8 CLAYEY SILT TILL: some sand, 2 SS 10 263 trace gravel, brown, moist, stiff to very stiff 3 SS 11 262 SS 15 4 -Filter Pack -Slotted Pipe SS 19 5 260 grey below 4.5m 6 SS 26 0 259 -Bentonite 258 SS 23 0 257.4 END OF BOREHOLE: 1) Borhole dry and open at completion of drilling 2) 50mm dia. monitoring well installed upon completion.
3) Water level Reading: Date: Water Level (mbgl): May 3, 2021

SOIL LOG 20-169-100 ARGO HUMBER STATION.GPJ DS.GDT 21/6/28

S

PROJECT: Geotechnical Investigation **DRILLING DATA** CLIENT: ARGO Development Corp Method: Hollow Stem Auger PROJECT LOCATION: Bolton Option 3 Lands, Block 10, Caledon, Ontario Diameter: 200mm REF. NO.: 20-169-100 DATUM: Geodetic Date: Apr/22/2021 ENCL NO.: 3 BOREHOLE LOCATION: See Drawing 1 N 4858839.839 E 598092.887 DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE CONTENT METHANE GROUND WATER CONDITIONS LIQUID LIMIT POCKET PEN. (Cu) (kPa) AND 40 60 100 NATURAL UNIT (KN/m³) (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + ESensitivity ELEVATION ELEV DEPTH DISTRIBUTION DESCRIPTION NUMBER (%) WATER CONTENT (%) QUICK TRIAXIAL X LAB VANE 40 60 80 10 20 30 GR SA SI CL 263.8 TOPSOIL: 200mm 26**9.6** 0.2 SS 7 0 FILL: clayey silt, trace topsoil/ organics, trace sand, trace rootlets, -Bentonite brown, moist, firm W. L. 263.1 m SILT: trace clay, brown, saturated, May 03, 2021 2 SS 9 1.0 CLAYEY SILT TILL: trace gravel, trace sand, brown, moist to wet, stiff 3 SS 29 to hard 262 SS 27 4 0 -Filter Pack -Slotted Pipe SS 34 5 0 260 grey below 4.5m 259 6 SS 24 0 Bentonite SS 22 257.1 END OF BOREHOLE: Notes: 1) Dry and open upon completion of drilling. 2) 50mm dia. monitoring well installed upon completion.
3) Water level Reading: Date: Water Level (mbgl): May 3, 2021

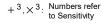
SOIL LOG 20-169-100 ARGO HUMBER STATION.GPJ DS.GDT 21/6/28

S

CLIENT: ARGO Development Corp

PROJECT LOCATION: Bolton Option 3 Lands, Block 10, Caledon, Ontario

DRILLING DATA


Method: Hollow Stem Auger

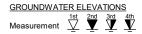
Diameter: 200mm REF. NO.: 20-169-100

BORE	HOLE LOCATION: See Drawing 1 N 485				.05		IDVA	ANIC C	ONE DE	NETD	ATION								
	SOIL PROFILE	\perp	SAMPI	LES	<u>ا</u> الله		RES	AMIC CO ISTANC					PLAST	IC NAT	URAL STURE	LIQUID	_	WT	METHANE
(m)		LOT		SNE	GROUND WATER CONDITIONS	z	епе					00	LIMIT W _P	CON	ITENT W	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZ
EPTH	DESCRIPTION	STRATA PLOT	l	BLOWS 0.3 m	OND	ELEVATION	0 1	AR ST	FINED	+	FIELD \ & Sensit	/ANE tivity			o	——————————————————————————————————————	(Cu)	TURAI (KN	DISTRIBUT (%)
266.9		STRATA F	TYPE	ż	GRO	ELEV	•	QUICK T				ANE 00		TER CO		11 (%) 30		≥	GR SA SI
260.0	TOPSOIL: 200mm	\ 1 _{1/2} .					-	+											011 071 01
0.2	topsoil/organics, trace sand, trace	\bigotimes_{-1}^{1}	SS	8			Ē							0					
0.8	_gravel, brown, moist, firm				1	266	<u> </u>												
	trace sand, brown, moist to wet, stiff	2	SS	21			Ē							0					
	to hard				1		Ē												
	P	3	SS	30		265	<u> </u>	+					-	0			ł		
	ٳٛ						Ē												
		4	SS	38			Ė							0					
	م []	炉				264											1		
		5	SS	44			Ē							0					
	[]	州 —			1	263	Ė												
						203	E												
	grey, stiff below 4.5m						Ē												
	groy, e.m. belett item	6	ss	17		262	<u> </u>	+						-			-		
	ļ;	∦ <u>⊢</u>			-		Ė												
							Ē												
	f.					261	<u> </u>	+									ł		
	<u> </u>	7	SS	12			E							0					
6.7	END OF BOREHOLE:	14	+	+			-	+									<u> </u>		
0	Notes: 1) Borehole was open and wet at																		
	the bottom upon completion of																		
	drilling.																		
		- 1		1	1	l	I		1				1		1		I	1	

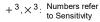
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-31-2022 ENCL NO.: 3

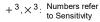
BH LO	CATION: See Drawing 1 N 4857899.6	0 = 3						DVNIA	MIC CC	NE DE	NETD/	ATION						_		
	SOIL PROFILE		S	AMPL	ES	ا س		RESIS	MIC CC STANCE	PLOT	NETRA	AHON		PLASTIC	NATI	URAL	LIQUID		₽	REMARK
(m)		F				ļ				0 6		30 1	00	LIMIT	MOIS CON	TURE	LIMIT	Ä.	≤ ⊨	AND
LEV		STRATA PLOT			BLOWS 0.3 m	GROUND WATER CONDITIONS	N C	_	AR ST	-	ΓΗ (kF	 Ра)		W _P		N	\mathbf{W}_{L}	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SI
EPTH	DESCRIPTION	ΙŽ	NUMBER		0.3	DN E	ELEVATION		NCONF		+	FIELD V & Sensiti	ANE					S Q	동	(%)
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\] ME	TYPE		3 SNF	EV.		UICK TI		. ×	LAB V	ANE		ER CC			"	₹	(70)
80.2			ž		ż	8 8	_		20 4	0 6	8 0	0 1	00	1	0 2	0	30			GR SA SI
79.9	TOPSOIL: 300mm	<u> </u>	1 1	SS	8		280	-							0			1		ı
0.3	WEATHERED/DISTURBED NATIVE: sandy silt, clayey, trace		Ľ					F												1
0.8	rootlets, trace gravel, brown, moist,		┨			1		E												ı
	l\phi_ose /	1414	2	SS	13		279	_							0			ł		ı
1.5	SILTY CLAY TO CLAYEY SILT	НK	F			1		Ė												ı
1.5	TILL: some sand to sandy, trace potlets, trace gravel, brown, moist,		3	SS	15			F						0						ı
	stiff /					1	278	_										-		ı
	SILTY SAND TO SANDY SILT:	$\ \cdot\ $	4	SS	36			Ė						0						ı
	trace clay, brown, moist, compact to dense		Ļ		- 00			Ē												ı
	delise	$ \cdot \cdot $				ł	277	Ē										-		ı
			5	SS	34			E						0						ı
		$[\cdot][$				1		-												ı
		$\ \cdot\ $					276	<u> </u>										-		ı
			1					Ē												ı
	wet, trace gravel below 4.6m	$ \cdot $	6	SS	45			Ė							0					ı
		:	Ľ				275	<u> </u>												ı
		$ \cdot \cdot $						Ē												ı
			1					Ė												ı
			┢				274	-												ı
			7	SS	44			Ē							(þ				ı
			⊢					Ē												ı
		$ \cdot \cdot $	1				273	Ē												ı
		HH					213	Ē												ı
					25	1		-							_					ı
	grey below 7.8m		. 8	SS	35		272	Ē							٥					ı
							212	Ė												ı
			l					F												ı
		$ \cdot $	ldash				271	<u> </u>				\bot								ı
	compact below 9.1m	$ \cdot $	9	SS	19		~'	<u> </u>							0					ı
			⊢					F										1		ı
		:					270	E				L				L]		ı
							210	Ė			-							1		ı
10.7	SAND: some silt to silty, trace clay,	Ш	⊢					Ė												ı
10.7	grey, wet, compact		10	SS	16		260	Ē							0					ı
	·	:::	\vdash			1	269	E												ı
		· · ·	ł					Ė												ı
268.0			1				268	Ē												ı
12.2	SANDY SILT TILL: some clay,	[] 	11	SS	53		200	-								0				ı
67.4	trace gravel, grey, wet, very dense	<u> </u>	ш			<u> </u>		<u> </u>				<u> </u>						\vdash	Щ	
12.8	END OF BOREHOLE: Notes:																			ı
	1) Water at depth of 4.5m during																			ı
	drilling.																	1		ı
																				ı
																				ı
																				ı
																		1		ı
																		1		ı
																		1		ı
																				ı
																				ı
		1	l			l	1											1	Ιl	1
					l															
																				l

CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA


Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-104

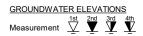
Date: Aug-30-2022 ENCL NO.: 4

	SOIL PROFILE		S	SAMPL	.ES			DYNA RESIS	MIC CO	ONE PE E PLOT	NETRA	ATION			NAT	IIDAI				REMARKS
		Τ.				띪		ı					20	PLASTI LIMIT	C NATI	TURE	LIQUID) - z	T WT	AND
m)		10			81	GROUND WATER CONDITIONS	z			10 6		0 10	JU L	W _P	CON	TENT W	LIQUID LIMIT W _L T (%)	T PE kPa)	υ°ς NN (GRAIN SIZ
EV	DESCRIPTION	A □	œ		BLOWS 0.3 m	1 <u>0</u> <u>0</u>				RENG	IH (KF	Pa) FIELD V/ & Sensitiv	ANE	<u>-</u>		·	—- [™]	800	(kN/	DISTRIBUT
PTH		STRATA PLOT	NUMBER	й		15 9	ELEVATION		NCONF	-INED RIAXIAL	+ _ ×	& Sensitiv	vity ANF	WA	TER CO	ONTEN	T (%)	18 S	ĭ¥	(%)
74.8		STF	Ž	TYPE	ż	GR O				10 6		0 10		1	0 2	20 3	30	1		GR SA SI
4.0	TOPSOIL: 250mm	1/1/2	:					-										t		
2:3	WEATHERED/DISTURBED		1 1	SS	9			Ē							0	0		1		
0.6	NATIVE: clayey silt to silty clay, trace sand, trace gravel, trace						274	Ē						<u> </u>				4		
	rootlets, brown, moist, stiff		2	SS	20			Ė							0			1		
	SILTY CLAY TO CLAYEY SILT		頖			$\pm \Psi$	W. L. :	F 272 4	 m									1		
	TILL: trace sand, trace gravel,		3	ss	23		Sep 08	273.4 3. 202	<u> </u>						-			1		
	brown, moist, very stiff		1—					É										1		
		1/9/	1					Ē										1		
			4	SS	28	: :	272	Ē							0			1		
1.6						1:14:		Ē												
3.2	SANDY SILT TILL: some clay to	1,4	5	SS	30	ΙΞ		Ē							•			1		
	clayey, trace gravel, grey, moist, compact to dense	[]-[]	╁				271	<u> </u>										1		
			1			:	:	Ē												
		$ \cdot $	1			:		E												
				66	04		270	<u> </u>						<u> </u>				1		
		[4]	. 6	SS	21		:	Ē							О					
								Ē												
		-	1				269	<u> </u>										1		
			Ь_		1	: F	: -09	Ē												
		$ \cdot \cdot $. 7	SS	28			E							0					
		4	\vdash		-		268	<u> </u>										1		
			1				200	ŧ												
7.2		$\left \cdot \right \phi \left \cdot \right $	1					Ē												
'.6	SANDY SILT: trace clay, trace	1111	1_		1		267	Ē												
	gravel, grey, wet, dense to very	:[. 8	SS	42		207	•							0					
	dense							Ē												
			1				266	Ė										1		
			┕				200	ŧ _												
		[:]:	. 9	SS	59			F							0					
9.7	END OF BOREHOLE:	ļii	Ť	_	1			<u> </u>						-				┞	\vdash	
9.1	Notes:																			
	1) 50mm dia. monitoring well					1														
	installed upon completion. 2) Water Level Readings:																			
	Date: Water Level(mbgl):																			
	Sept. 08, 2022 1.42																			
						1														
						[
						[
						[
						1														
						1														
						1														
		1	1	1			1							1				1		

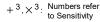
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 20-169-104

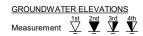
Date: Aug-30-2022 ENCL NO.: 5

	SOIL PROFILE		s	AMPL	ES	<u></u>		DYNA RESIS	MIC CC STANCE	NE PE	NETR/	ATION		PI ASTI	C NATI	URAL	LIQUID		7	REN	MARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U	AR STI NCONF UICK T	INED	TH (kl + - ×	Pa) FIELD V & Sensit LAB V	OO ZANE ivity ANE OO	W _P ⊢ WA1	CON \ TER CO	TENT W DOMTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTR	AND AIN SIZE RIBUTIC (%)
27 9.8 0.2	TOPSOIL: 200mm WEATHERED/DISTURBED	317/2	1	SS	9										0						
278.8 1.0	NATIVE: clayey silt to silty clay, trace sand, trace gravel, trace cotlets, brown, moist, stiff		2	SS	26		279								0						
	SILTY CLAY TO CLAYEY SILT TILL: trace sand, trace gravel, brown, moist, very stiff to hard		3	SS	50/ 130mn		278								0						
277.5	sand pocket@1.5m SAND: trace to some silt, trace gravel, brown, moist, dense		4	SS	36		277							0							
			5	SS	41									0							
							276														
275.2 4.6	SANDY SILT TO SILT: trace clay, brown, wet, compact to dense		6	SS	25		275									0					
							274														
			7	SS	39											0					
							273														
			8	SS	19		272									0					
							271														
			9	SS	41		.=.									0					
							270														
268.5	grey below 10.7m		10	SS	45		269									0					
11.3	END OF BOREHOLE: Notes: 1) Water at depth of 4.6m during drilling.																				

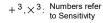
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-104

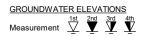
Date: Aug-31-2022 ENCL NO.: 6

	SOIL PROFILE		S	AMPL	ES	<u></u> <u>r</u>		DYN/ RESI	AMIC CO STANCI	ONE PE E PLOT	NETR/	ATION		PLASTI	IC NATI	URAL TURE	LIQUID LIMIT		WT	REMARKS
(m) LEV EPTH	DESCRIPTION	STRATA PLOT	3ER		BLOWS 0.3 m	GROUND WATER	ELEVATION	SHE	1	10 6 RENG	TH (kl		00 ANE	LIMIT W _P ⊢	CON	TENT W	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%)
79.7			NUMBER	TYPE	ž	GROU	ELEV			RIAXIAI 10 6	_ ×	LAB V	ANE 00		TER CO		30		Ž	GR SA SI
7 9 : 4	TOPSOIL: 320mm WEATHERED/DISTURBED	1111	1	SS	10			Ė							0					
0.8	NATIVE: clayey silt, some sand to sandy, trace rootlets, trace gravel, brown, moist, stiff		2	SS	45		279								0					
	SILTY CLAY TO CLAYEY SILT TILL: trace sand, trace gravel, brown, moist, hard		3	SS	30		278	3						,						
			4	SS	37		277	, <u> </u>							0					
76.6 3.1	SANDY SILT: trace clay, brown, moist, dense to very dense		5	SS	82			Ē							0					
							276	\$ 												
	wet below 4.6m		6	SS	46		275	<u></u>								0				
73.6							274	<u> </u>												
6.1	SILT: some clay, trace sand, silty clay pockets, trace gravel, brown, wet, dense		7	SS	40		.⊹ .:: W. L. .∹ Sep 0									0				
	some sand to sandy@7.6m			-			272	Ė												
71.5	END OF BOREHOLE:	Ш	8	SS	48			<u> </u>								0		_		
	Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																			
	Date: Water Level(mbgl): Sept. 08, 2022 6.53																			

CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-31-2022 ENCL NO.: 7

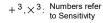
	SOIL PROFILE		S	AMPL	ES	_		DYNA RESIS	MIC CC STANCE	NE PE PLOT	NETR/	ATION		DI ACTI	_ NATI	URAL	HOHID		П	REI	MARK
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	J.	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U	20 4 AR STI NCONF	0 6 RENG	0 8 TH (kF +	Pa) FIELD V. & Sensiti	ANE vity	PLASTIC LIMIT W _P 	MOIS CON V	w 0	LIQUID LIMIT W _L ————————————————————————————————————	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTE	AND AIN SIZ RIBUTI (%)
278.0			N	TYPE	Ż	GR	ELE			0 6		30 1					30			GR S	A SI
279:6		<u>11.</u>	1	SS	9									0	0						
0.4 277.2	WEATHERED/DISTURBED NATIVE: sandy silt, trace clay,	. .												ľ							
0.8	trace gravel, trace rootlets, brown, hoist, loose SILTY SAND TO SANDY SILT:		2	SS	10		277							0							
	trace clay, brown, moist, compact to dense		3	SS	25		276							0							
			4	SS	38									0							
			5	SS	45		275							0							
							274														
	wet below 4.6m																				
	wet below 4.0111		6	SS	33		273								(
							272														
			7	SS	23		2.2									0					
							271														
			8	SS	19		070													0 5	1 46
							270														0
						 -	269														
			9	SS	18											0					
							268														
			10	SS	26		267									0					
	greyish brown below 12.2m		44	SS	31		266														
265.2 12.8	END OF BOREHOLE:	:: ::	11	33	31										,						
	Notes: 1) Water at depth of 4.6m during drilling.																				
	J																				

CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA


Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

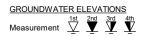
Date: Aug-30-2022 ENCL NO.: 8

	SOIL PROFILE		S	AMPL	ES.] _~		RESIS	MIC CO STANCE	PLOT	NETR/	ATION		DI ASTI	_C NAT	URAL	LIOLID		5	R	ЕМА	RKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/	20 4 AR STI NCONF UICK T	RENG INED	TH (ki	Pa) FIELD V & Sensit	OO L ANE ivity ANE	PLASTI LIMIT W _P 	TER CO	w 0	LIQUID LIMIT W _L ——I	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)		AN RAIN TRIB (%	SIZ
79.8	TORON	ν, γ, γ. Ω	ž		þ	<u>2</u> 2	ᆸ		20 4	0 6	0 8	80 1	00	1	0 2	20 :	30			GR	SA	SI
27 9 : 9	TOPSOIL: 300mm WEATHERED/DISTURBED		1	SS	7			Ē							0							
279.0	NATIVE: silty clay, trace sand,						279	<u> </u>														
8.0	trace rootlets, trace gravel, brown, / noist, firm	$\ \cdot\ $	2	SS	10		219									,						
78.3	SANDY SILT: some clay, brown,	Ш						Ē														
1.5	moist, compact SILT: some sand to sandy, trace		3	SS	24		278	<u> </u>								0		ł				
	clay, trace grayel, brown, very							Ė														
	moist, compact to dense occasional silty clay pockets, wet		4	SS	31											0						
	below 2.3m					1	277	F-										1				
	silty clay layer@3.1m		5	SS	31	1		Ė												0	0	75
							276	ŧ														
							210															
								Ē														
	grey below 4.6m		6	SS	39		275	<u> </u>								0		ł				
								Ē														
								Ė														
							274	F										1				
			7	SS	26			E								0						
						-	273	Ē														
							213	Ė														
								F														
			8	SS	43		272	<u> </u>								0		1				
						-		Ė														
								Ė														
							271	F										1				
			9	SS	31			F								0						
						-	270	Ē														
							210	Ė														
								Ē														
			10	SS	32	1	269	<u> </u>								0		ł				
			10		32			Ē														
								Ė														
							268	F										1				
12.8			11	SS	30	1		F								0						
67.0	END OF BOREHOLE:	Ш	L''		00			<u> </u>														
12.8	Notes:																					
	Water at depth of 2.3m during drilling.																					
	drilling.																					
- 1					l		l	l						1				1				
						l	l		1			1										

CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

Date: Sep-01-2022 ENCL NO.: 9

	SOIL PROFILE		s	AMPL	ES			DYNA RESIS	MIC CO STANCE	ONE PE E PLOT	NETR/	ATION		ы леті	IC NAT	URAL	LIQUID		ь	REMARK
(m)		гот			NS m	WATER	Z Z	2	20 4		80 0	30 1	00	LIMIT W _P	CON	TURE TENT W	LIQUID LIMIT W _L	ET PEN. (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SI
EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	0 U ● Q	NCONF UICK T	INED RIAXIA	+ L ×	& Sensit	ANE	1	TER CO		` '	POCKET PE (Cu) (kPa)	NATURA (KN	DISTRIBUT (%)
77.0 7 8.9 0.2	TOPSOIL: 200mm	0 31 1/2 1/2	1	SS	11	00	Ш	- 4	20 4	0 6	80 8	30 1	00	1	0 2	20 :	30			GR SA SI
276.2 0.8	WEATHERED/DISTURBED NATIVE: clayey silt to silty clay, trace sand, trace gravel, trace rootlets, brown, moist, stiff		2	SS	17	-	276								0					
	SILTY CLAY TILL: trace sand, trace gravel, brown, moist, very stiff		3	SS	26		075								0					
2.3	SILT: some sand to sandy, trace		4	SS	65	-	275								0					
	clay, trace gravel, brown, moist, dense to very dense						274													
			5	SS	60		273								0					
	grey, wet below 4.6m		6	SS	51	_	070													
			H	- 55	- 01		272											1		
			7	SS	38	<u> </u> -	271									0				
			_			-	270													
			8	SS	34	-	200									٥				
						-	269													
9.1	SILTY SAND TO SANDY SILT: trace clay, grey to brown, wet,		9	SS	24	<u>-</u>	268									0				
	compact to dense						267													
	brown, clayey silt pocket@10.7m		10	SS	48		266													
						_														
064.0			11	SS	44		265									0				
12.8	END OF BOREHOLE: Notes: 1) Water at depth of 4.6m during drilling.																			
	umiy.																			

CLIENT: Caledon Community Partners

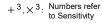
PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104


ENCL NO.: 10

Date: Sep-02-2022

BH LC	OCATION: See Drawing 1 N 4857907.1	3 E 5	59764	13.95				Invara		NE DE	NETD.	TION						_			
	SOIL PROFILE		5	SAMPL	ES.	<u>د</u>		RESIS	MIC CO TANCE	NE PE E PLOT	NETR/	ATION		PLASTI	C NATU	JRAL	LIQUID		ΛΤ		MARKS
(m)		10			(OI	GROUND WATER CONDITIONS	_		1	1	1	0 1	00	LIMIT	CON	TENT	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)		ND IN SIZE
ELEV	DESCRIPTION	STRATA PLOT	~		BLOWS 0.3 m	M OI	ELEVATION			RENG	TH (k	Pa) FIFLD V	ANF	W _P ⊢	v	v 	W _L	SKET SKET	RAL ((kN/m		IBUTION
DEPTH	DEGGRII HON	₹Y	NUMBER	Ж		NDO TIQN	:VA1		NCONF	INED RIAXIA	+ L X	FIELD V & Sensiti	vity ANE	WAT	ER CC	NTEN	Γ(%)	ğ0	NATU.	((%)
278.2			Ž	TYPE	ż	GR	ELE						00				0		-	GR SA	SI CL
270.9	TOPSOIL: 250mm	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	SS	7		278								0						
0.3	FILL: clayey silt to silty clay, some sand to sandy, trace gravel, trace	\bowtie	<u> </u>		·			E							00						
<u>-</u>	rootlets, organic staining, dark brown to brown, moist, firm to stiff	\bigotimes	2	SS	11			Ē							0						
E	(possible weathered/disturbed	\bowtie			- ''		277								Ů						
E. I	native)	\otimes	3	SS	9			Ē							0						
275.9		\bigotimes	}				276	<u> </u>													
2.3	SILT: some sand to sandy, trace clay, brown, moist, dense to very	Ш	4	SS	31			Ė							0						
<u>-3</u>	dense							Ė													
			5	SS	53	1	275	E							0						
								F													
<u>-4</u>							274	<u> </u>													
-								F													
- <u>5</u>	wet below 4.6m		6	SS	53			F							٥						
							273														
								E													
2 72.1 6.1	SANDY SILT TO SILTY SAND:	1111	-			-	272	Ē													
F "	trace clay, brown, wet, dense		7	SS	42			Ē								•					
7								Ē													
							271	F													
		[[i]						E													
-8			. 8	SS	38		270	Ē							0						
-								Ē.													
<u>-9</u>			-					F													
			9	SS	38		269								0						
			10	SS	43			E													
10.1	END OF BOREHOLE:		10	00	40			<u> </u>							J						
10.1	Notes:																				
	 Water at depth of 4.6m during drilling. 																				
	C																				
		1				GRAPH		<u> </u>		re refer		g - 30/									

DS SOIL LOG-2021-FINAL 20-169-104 GEO COPY.GPJ DS.GDT 22-10-21

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

Date: Sep-06-2022 ENCL NO.: 11

	SOIL PROFILE		S	SAMPL	ES			DY RE	NAMIC (SISTAN	CONE PI	ENETR.	ATION		DI 40=	_ NAT	URAL	1.10: ::-		F	REM	ARKS
(100)		 -				GROUND WATER			20			30 10	00	PLASTI LIMIT	C NAT MOIS	TURE	LIQUID LIMIT W _L T (%)	Ä.	W TI	AI	ND
(m)		STRATA PLOT			BLOWS 0.3 m	× ×		SH		TRENG				W _P		W	\mathbf{W}_{L}	(kPa	L UN	GRAII	
LEV EPTH	DESCRIPTION	ΙĀ	띪		N.3.	를 달 E	2 E	0		NFINED	۸) ۱۱۱ر +	FIELD VA & Sensitiv	ANE.	-		·		S S	(RA	DISTRI	
-' '''		₹	NUMBER	TYPE		3 5	CONDITION	Ĭ		TRIAXIA	AL X	LAB VA	INE	WAT	TER CO	ONTEN	T (%)	2	MA⊤	(,	%)
69.9		ST	≥	≥	ż	l R S	3 🖫		20	40	60 8	30 10	00	1	0 2	20 3	30			GR SA	SI
69.0	TOPSOIL: 280mm	7/1/	1	SS	8			E								0					
0.3	WEATHERED/DISTURBED		1	33	0			F							0						
0.8	NATIVE: clayey silt to silty clay, trace to some sand, trace gravel,	KK	_				2	59Ē—										1			
0.0	trace rootlets, brown, moist, stiff		2	SS	15	∇		F							0						
68.4	SILTY CLAY TILL: trace to some	1/1	1—				W.	268	6 m												
1.5	sand, trace gravel, brown, moist,		3	SS	29		Sep	08, 20 68 L)22						-]			
	very stiff SANDY SILT TILL: trace to some	$ \cdot $	1-				_	70[
	clay, trace gravel, brown, moist,	4						F													
	compact to very dense	$ \cdot \cdot $	4	SS	71			<u>, _</u> [١	†						
							_	67 -										1			
		4	5	ss	61			E							0					1 24	64
		1111						[
			1				2	36										1			
		$ \cdot $	1					E													
	grey, wet below 4.6m		\vdash					F													
	g.cy, wet below 4.0III		6	SS	56		2	35 <u> </u>	+						0			1			
		$ \cdot $	\vdash					E													
							·:	Ē													
63.8						[:]	∴ 2	64	+		1			 				1			
6.1	SANDY SILT TO SILTY SAND:	11:11	-	00	20	::E	[:: <u> </u>	F							_						
	trace clay, trace gravel, grey, wet,	밥밥	7	SS	38	::E	::: 	E							0						
	compact to dense	掃				:: <u> </u>	∷ 2	63 <u>F</u> —	_			-		-				1			
		陆	.]			ĽΕ	::. 	ŧ													
		比片				I; E	;:: 	Ē													
		: :	8	SS	37	ĽΈ	. 2	62 <u> </u>	_		-					0		1			
		Hil	\vdash	_	-	ĽΈ		E													
			1			: <u> </u> =		F													
						:: E	2	31E													
			\vdash			<u>.</u> ت	-	Ē													
			9	SS	23			É								0					
			H				2	30E—						L							
59.6		腔	10	SS	31			Ĭ							0						
10.3	END OF BOREHOLE:							╅													
	Notes: 1) 50mm dia. monitoring well																				
	installed upon completion.																				
	2) Water Level Readings:																				
	Date: Water Level(mbgl):																				
	Sept. 08, 2022 1.27																				
	•																				
		1																			
		1		ı	l	l															
									1	- 1	1				1	1					

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

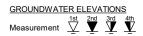
Diameter: 200mm REF. NO.: 20-169-104

Date: Sep-06-2022 ENCL NO.: 12

	SOIL PROFILE			SAMPL	ES			DYNA RESIS	MIC CO STANC	ONE PEN E PLOT	NETRA	TION	T,	OI ACT	NATI	URAL	HOHID		۲	REMARK
(m)		 -				GROUND WATER CONDITIONS		I		40 60		_		IMIT	C NATU MOIS CON	TURE TENT	LIQUID LIMIT W _L ————————————————————————————————————	EN	NATURAL UNIT WT (kN/m³)	AND
(m)		STRATA PLOT			BLOWS 0.3 m	W W	Z		1	RENGT	H (kP:	a)		\mathbf{W}_{P}		w	W_{L}	(kPa	J. (L	GRAIN SIZ
EPTH	DESCRIPTION	Ι¥	监		3.3	무은	E		NCON		+ F	a) IELD VAN Sensitivity	ΙE	-	—— <u></u>			S S	A S	DISTRIBUT
		₹	NUMBER	TYPE		3 8	ELEVATION			RIAXIAL	. × L	AB VAN	NE	WAT	ER CC	ONTEN	T (%)	100	¥	(%)
272.9		STI	₽	Σ	ż	19 S	ä			40 60				1	0 2	0	30	1		GR SA SI
72.0	TOPSOIL: 250mm	11/	1.					<u> </u>										1		
0.3	WEATHERED/DISTURBED	17	1	SS	8			F							0			1		
272.1	NATIVE: silty clay, trace sand,						272	F										1		
8.0	trace gravel, trace rootlets, brown, /	194	2	SS	21		212	F							0			1		
	SILTY CLAY TILL: trace sand,		싵	-				E										1		
	trace gravel, brown, moist, very stiff		1		-00			F										1		
	to hard		3	SS	32		271	-							0			1		
			仁					Ē										1		
270.2		16	4	SS	40			Ē										1		
2.7	SANDY SILT TILL: clayey, trace	1141	1		70		270	<u> </u>												
	gravel, brown, moist, dense to very	$ \cdot \cdot $.—		50/		2,0	Ē										1		
	dense		5	SS	50mm			F							b			1		
		•				<u> </u>	W. L.	269.3	m									1		
							Sep 08	8, 202	2									1		
								E										1		
4.6	SANDY SILT TO SILTY SAND:	++41	1	_				F										1		
7.0	trace clay, trace gravel, brown, wet,		6	SS	54		268	Ē-			\rightarrow		\dashv		-			1		
	compact to very dense		\vdash	_				F										1		
		[F										1		
		$[\cdot]$	1				267	£					_					1		
			1			ŀ∷H·		F										1		
			. 7	SS	44			F								0		1		
								Ē										1		
		:]	ł				266	E										1		
								Ē										1		
						[:日:		Ė										1		
		$ \cdot $	8	SS	14		265	-								0		┨		
		1111				∤∷ ∃:	::	Ē										1		
			1			[::目:		F										1		
		$ \cdot \cdot $	1				264	<u> </u>										1		
			⊢				·· 207	ŧ										1		
		1111	9	SS	37			F							0			1		
		$ \cdot $	⊨				200	Ė										1		
,,,,		1	. 10	SS	53		263	F							0		1	1		
10.3	END OF BOREHOLE:	111	Ť					┡					\dashv					+		
10.5	Notes:																	1		
	1) Monitoring well installed 1 m																	1		
	away from borehole.					1	1											1		
	50mm dia. monitoring well installed upon completion.					1	1											1		
	3) Water Level Readings:					1	1											1		
	,		1			1		1										1		
	Date: Water Level(mbgl):					1	1											1		
	Sept. 08, 2022 3.6					1	1	1										1		
			1			1		1										1		
						1	1	1										1		
			1			1												1		
			1			1												1		
						1	1	1										1		
			1			1		1										1		
						1	1	1										1		
- 1						1	1	1										1		
			1			1		1										1		
			1			1		1										1		
						1	1											1		
						1	1	1									1	1	1 1	I
								1		1	1	- 1							1 1	l

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

Date: Sep-02-2022 ENCL NO.: 13

	SOIL PROFILE		S	AMPL	ES	· ·		RESIS	MIC CC STANCE	NE PE PLOT	NETR/	ATION		PI ASTI	C NATI	URAL	LIQUID		7	REMA	ARK:
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	0 4 AR STI NCONF UICK TI	0 6 RENG INED RIAXIAI	0 8 TH (kF + - ×	Pa) FIELD V. & Sensiti	ANE ivity ANE	w _P ⊢ WA¹	CON V TER CO	TENT W DOMTEN	LIMIT W T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AN GRAIN DISTRIE (%	I SIZ BUTI 6)
77.7 79. 4	TOPSOIL: 300mm	7/1/V	H			00	Ш		0 4	0 6	0 8	80 1	00	1		20 ;	30			GR SA	SI
0.3	WEATHERED/DISTURBED NATIVE: sandy silt to silt, trace clay, trace gravel, trace rootlets,		1	SS	10		277								0						
1.0	dark brown to brown, moist, opmpact		2	SS	18										0						
	SILT: some sand to sandy, trace clay, trace gravel, brown, moist, compact to very dense		3	SS	33		276								0						
	clayey@2.3m		4	SS	59		275								0						
	wet below 3.1m		5	SS	75											0					
							274														
			6	SS	66		273									0					
							272														
			7	SS	40		271									0					
270.1																					
7.6	SANDY SILT TO SILTY SAND: trace clay, brown, wet, compact to dense		8	SS	38		270									0					
							269														
			9	SS	33											0					
							268														
	grey below 10.7m		10	SS	45		267									0					
			10		40																
							266														
264.9 12.8	END OF BOREHOLE:		11	SS	14		265									0					
	Notes: 1) Water at depth of 3.1m during drilling.																				
1																					

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

SOIL PROFILE DESCRIPTION		_																		
	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR ST JNCONF QUICK T	10 60 RENG1	ΣΗ (kl + . ×	Pa) FIELD V	ANE vity ANE		CON V TER CO	TENT W DOMTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTE	MARK AND AIN SIZ RIBUTI (%) A SI
WEATHERED/DISTURBED	<u></u>	1	SS	9		276	5							0						
NATIVE: clayey silt to silty clay, race rootlets, trace sand, trace gravel, brown, moist, stiff		2	SS	15		275	5													
SILT: trace sand, trace clay, trace gravel, brown, moist, compact to grey dense		3	SS	19										٥						
		4	SS	70		274	1							0			-			
		5	SS	72		273	3													
				12		27	, 													
vet below 4.6m		6		F0		212														
		ь		52		27	1								J		-		0 3	3 93
					\sqsubseteq															
		7	SS	34		·	Ė	22							0					
SANDY SILT: trace clay brown						269														
vet, compact to dense		8	SS	35		268	3								0					
						267	, -													
grey below 9.1m		9	SS	21											o				0 3	1 64
·						266	-													
		10	SS	46		26	5								0					
						26/	£													
		11	SS	37		20-	_								0					
NO OF BOREHOLE: Notes: 1) 50mm dia. monitoring well Installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Sept. 08, 2022 6.03																				
	vet below 4.6m ANDY SILT: trace clay, brown, vet, compact to dense rey below 9.1m ND OF BOREHOLE: lotes:) 50mm dia. monitoring well installed upon completion.) Water Level Readings: Date: Water Level(mbgl):	vet below 4.6m ANDY SILT: trace clay, brown, vet, compact to dense rey below 9.1m ND OF BOREHOLE: lotes:) 50mm dia. monitoring well installed upon completion.) Water Level Readings: Date: Water Level(mbgl):	ret below 4.6m 6 ANDY SILT: trace clay, brown, ret, compact to dense rey below 9.1m 9 IND OF BOREHOLE: lotes:) 50mm dia. monitoring well installed upon completion.) Water Level (mbgl): Date: Water Level(mbgl):	rey below 9.1m SANDY SILT: trace clay, brown, yet, compact to dense rey below 9.1m SIND OF BOREHOLE: lotes:) 50mm dia. monitoring well installed upon completion.) Water Level Readings: Date: Water Level (mbgl):	### ANDY SILT: trace clay, brown, ret, compact to dense ### SS 70 5	rey dense 4 SS 70	274 4 SS 70 273 274 275 276 277 277 277 277 278 279 279 279	## SS 70	### Part of the property dense 274 4 SS 70 273 272 272 272 272 273 273 274 274 275 2	## Part of the low 4.6m A	### Part of the property dense 274 273 273 273 274 275	## 274 274 274 274 275 275 276 277	## SS 70 1	## SS 70	## Description of the image is a series of the	ANDY SILT: trace clay, brown, ret, compact to dense 268	274 273 273 273 273 273 274 275	## January State 1	## Description of BoreHole:	274

 $\frac{\text{GROUNDWATER ELEVATIONS}}{\text{Measurement}} \ \ \frac{\overset{1\text{st}}{\sqrt{2}}}{\overset{2\text{nd}}{\sqrt{2}}} \ \ \frac{\overset{3\text{rd}}{\sqrt{2}}}{\overset{4\text{th}}{\sqrt{2}}}$

GRAPH NOTES + ³, × ³: Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

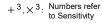
Date: Sep-01-2022 ENCL NO.: 15

	SOIL PROFILE		s	AMPL	ES	~		DYNA RESIS	MIC CO STANCE	ONE PE E PLOT	NETR.	ATION -		PLASTI	IC NAT	URAL	LIQUID		7	RE	MARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ш	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI		RENG	TH (k	Pa) FIELD	100 VANE	W _P	CON	STURE NTENT W O	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTI	AND AIN SIZE RIBUTIO (%)
271.4		STR	NON	TYPE	ż	GRC	ELE						100	1			30		2	GR S	A SI C
279.9	TOPSOIL: 300mm	<u>71 14.</u>	1	SS	7		271	-								0					
0.3	WEATHERED/DISTURBED NATIVE: clayey silt, trace rootlets,						2/1								0						
270.4	_trace sand, trace gravel, brown, moist, firm /		2	SS	9			-							0						
	SILTY CLAY TO CLAYEY SILT						270	-										1			
2	TILL: some sand to sandy, trace gravel, brown, moist, stiff to hard		3	SS	34			Ē													
	sandy below 2.3m				40		269	_						!							
3			4	SS	42			-)						
			5	SS	48		268														
•	grey below 3.4m		Ľ		70		200														
4								Ē													
							267											1			
5			6	SS	22			-													
							266											-			
6																					
			7	SS	26		265							L .						4 3	1 45 2
•			-				200														0 -
7								E													
							264											1			
8			8	SS	28			Ē													
.							263											-			
9								E													
			9	SS	19		262														
		1	Ľ		10]														
0								Ē													
							261											1			
1			10	SS	16			-							0						
							260	<u> </u>				-						{			
2							W. L.	E													
	moist to very moist @12.2m		11	00	10		Sep 0	209.5 3, 2022	2												
258.6	END OF DODELOUE.		11	SS	12		1								0						
12.8	END OF BOREHOLE: Notes:																				
	50mm dia. monitoring well installed upon completion.																				
	2) Water Level Readings:																				
	Date: Water Level(mbgl):																				
	Sept. 08, 2022 11.9																				
258.6 12.8																					
1					1	l		l	1					1		1	1	l			

CLIENT: Caledon Community Partners
PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA


Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-104

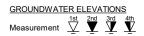
Date: Aug-29-2022 ENCL NO.: 16

	SOIL PROFILE	\square	S	AMPL	ES	~		DYI RES	NAM SIST	IC CC ANCE	NE PE PLOT	NETR	ATION -	l	PLASTI	IC NAT	URAL STURE	LIQUID		ΛŢ	REMARK
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	ËR		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SH o	20 EAF		RENG	∟ TH (k	1	100 VANE	LIMIT W _P	CON	ITENT W O	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUT (%)
270.2		STRA-	NUMBER	TYPE	<u>a</u>	GROU	ELEV/			ICK T	RIAXIA	L X	LAB \	VANE 100		TER CO		T (%) 30	•	NA.	GR SA SI
269:9	TOPSOIL: 300mm	<u> </u>	1	SS	10		27	0									0				0.1 0.1 0.
0.3	WEATHERED/DISTURBED NATIVE: clayey silt to silty clay, trace rootlets, trace gravel, trace															0					
268.7 1.5	sand, brown, moist, stiff to firm SILTY CLAY TO CLAYEY SILT		2	SS	6		26	9								0					
	TILL: trace sand, trace gravel, brown, moist, very stiff to hard		3	SS	25	$\underline{\nabla}$		t . 268. 08, 20		1			-			0					
			4	SS	38		26	- E								0					
			5	SS	24		20	'								0					
							26	6													
	grey below 4.6m		6	SS	22		26	5								0					
			7	SS	21		26	4								0					
262.6							26	3													
7.6 262.0	SANDY SILT TILL: trace to some clay, trace gravel, grey, moist, very		8	ss	57			F								0					
	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Sept. 08, 2022 1.93																				

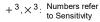
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-104

Date: Aug-29-2022 ENCL NO.: 17

	SOIL PROFILE		S	AMPL	ES	<u>بر</u>		RESIS	TANCE	NE PE PLOT	NETRA	TION		PLASTI LIMIT	C NATI	URAL	LIQUID LIMIT		WT	REMAR	
(m) ELEV EPTH 268.8	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	R STE NCONF JICK TE	0 6 RENG INED RIAXIAL 0 6	ΓΗ (kF + . ×	Pa) FIELD V. & Sensiti LAB V.	ANE vitv	w _P ⊢ WA1	TER CO	w OMTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN S DISTRIBU (%) GR SA S	SIZE
26 9 . 0 TC	PSOIL: 250mm EATHERD/DISTURBED	<u>37%</u>	1	SS	9										0						
268.0 NA 0.8 tra	TIVE: clayey silt, some sand, ce gravel, brown, moist, stiff TY CLAY TO CLAYEY SILT		2	SS	17		268								0						
bro	L: trace sand, trace gravel, own, moist, very stiff to hard		3	SS	20		267														
			4	SS	36		266								0						
gre	ey below 3.5m		5	SS	27		265								0						
			6	SS	27		264								0						
							263														
		***	7	SS	21		262								0						
sil 260.6	ty sand pockets @ 7.6m		8	SS	25		261								0						
No 1)	tes: Borehole wet at the bottom upon mpletion.																				

CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

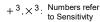
Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-104

Date: Aug-29-2022 ENCL NO.: 18

BH LC	DCATION: See Drawing 1 N 4858813.1	1 E 5	9781	17.61																	
	SOIL PROFILE		S	SAMPL	.ES	<u>ر</u>				NE PEN		ATION		PLASTI		URAL	LIQUID	ΤΛ	RE	MARK	 3
(m) ELEV DEPTH 269.0	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	O UN	R STF ICONF JICK TF	RENGT INED RIAXIAL	H (kF + ×	Pa) FIELD V. & Sensitr LAB V.	OO ANE ivity	LIMIT W _P ⊢ WA	CON CON	STURE ITENT W O ONTEI	W _L W _L WT (%)	NATURAL UNIT V (kN/m³)	GR/ DISTI	AND AIN SIZ RIBUTI (%) A SI	ON
268:9	TOPSOIL: 300mm	7, 12		SS	Q			E													
- n 3	WEATHERED/DISTLIRRED	$\Pi\Pi$	1'	- 33	0			F 1							` ما	1					

ELEV DEPTH	DESCRIPTION	STRATA PL	NUMBER	TYPE	"N" BLOW 0.3 m	GROUNDV	ELEVATION	0 U	NCONI UICK T	RENG FINED RIAXIAI 10 6	+ L ×	FIÉLD V & Sensit LAB V	ANE ivity ANE 00		ONTEN	T (%)	POCKE (Cu) (F	NATURAL (KN/r	DISTR (GR SA	IBUTIO	
26 9 : 9	TOPSOIL: 300mm WEATHERED/DISTURBED	<u>11/2</u>		SS	8									0							
268.2 1 0.8	brown, moist, loose		2	ss	23		268							0							
2	SILTY CLAY TO CLAYEY SILT TILL: trace sand, trace gravel, brown, moist, very stiff to hard	**	3	SS	27		267							0							
-			4	SS	33	. Y	W. L. 2 Sep 08 266	3, 202						0							
			5	SS	31		200							0							
-4							265										-				
- - - -	grey below 4.9m		6	SS	26		264							0			=				
							263														
	possible boulder@6.1m		7	SS	50/ 75mm									О							
-7							262														
- 260.8	END OF BODELIOLE		8	SS	24		261							0							
8.2	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion																				


installed upon completion.
2) Water Level Readings:

Date: Water Level(mbgl): Sept. 08, 2022 2.26

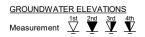
DS SOIL LOG-2021-FINAL 20-169-104 GEO COPY.GPJ DS.GDT 22-10-21

GRAPH NOTES

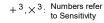
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-104

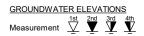
Date: Aug-29-2022 ENCL NO.: 19

	SOIL PROFILE		S	AMPL	ES	~		DYNA RESIS	MIC CC STANCE	NE PE PLOT	NETRA	ATION		PLASTI LIMIT	C NAT	URAL	LIQUID		ΤV	REM	ARKS
(m) ELEV DEPTH 270.0	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STI NCONF UICK T	0 6 RENG INED RIAXIAI 0 6	TH (kF + - ×	L———Pa) FIELD V & Sensit LAB V	OO L ZANE ivity ZANE OO	w _P ⊢ WA	TER CO	ITENT W O ONTEN	LIQUID LIMIT W _L ——I IT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	A GRAI DISTR (GR SA	%)
269.0	TOPSOIL: 250mm	×1 1/2.	1	SS	3											0				0.1.	
0.3 269.2 1 0.8	WEATHERED/DISTURBED NATIVE: clayey silt, some sand, trace rootlets, trace gravel, brown, noist, soft		2	SS	21		269								0			-			
2	SILTY CLAY TO CLAYEY SILT TILL: trace sand, trace gravel, brown, moist, very stiff to hard		3	SS	21		268								0			-			
<u>3</u>			4	SS	34		267								0						
<u>4</u>			5	SS	31		266								0						
<u>5</u>	grey below 4.6m		6	SS	18		265														
263.9							264														
6.1	CLAYEY SILT: trace sand, grey, moist, very stiff		7	SS	29		263							(
7.6 8 261.8	SAND AND SILT TILL: some clay, some gravel, grey, moist, dense		8	SS	31		262							0						11 38	40
8.2	END OF BOREHOLE: Notes: 1) Borehole wet at the bottom upon completion.																				

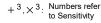
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger

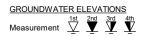

Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-30-2022 ENCL NO.: 20

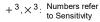
	SOIL PROFILE		S	AMPL	ES	_ ا		DYNA RESIS	MIC CC TANCE	NE PE PLOT	NETRA	ATION		PLASTI	c NAT	URAL	LIQUID		Λ	REMAR
(m)		7			(0)	GROUND WATER CONDITIONS				0 6			00	PLASTI LIMIT	MOIS	TURE TENT	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SI
LEV	DECODIDATION	P.	~		E SWS	N O	<u>N</u>	SHE/	R ST	RENG INED	TH (kF	Pa)		W _P	\ \	v >	W _L	Ä Ä	SAL L	DISTRIBUT
PTH	DESCRIPTION	STRATA PLOT	NUMBER	UI	BLOWS 0.3 m		ELEVATION	0 U	NCONF	INED	+	& Sensiti	vity	\\\ \	TER CO	NIT⊏^!	IT (%)	ğõ	ATUF	(%)
		18	N	TYPE	þ	0 N O	E)			RIAXIAI 0 6			ANE 00				30		2	00 04 01
69.0 6 9 .0	TOPSOIL: 280mm	2/ 1/2.	_		-	0 0	ш	- '	.0 -		0 0		+		-		+			GR SA SI
0.3	WEATHERED/DISTURBED	177	1	SS	6			E								0				
68.2	NATIVE: clayey silt, trace sand,	KW						Ė												
0.8	trace rootlets, trace gravel, brown,	19/	2	SS	9		268	<u> </u>							0			ł		
	noist, firm SILTY CLAY TO CLAYEY SILT		Ĺ					Ē							•					
	TILL: trace sand, trace gravel, brown, moist, stiff to hard		3	SS	23	1		E												
	brown, moist, stiff to hard		L°	33	23		267	<u> </u>							0					
	trace fine rootlets above 0.9m		\vdash			-		ŧ												
		191	4	SS	31			Ē							0					
							266	<u> </u>										-		
			5	SS	32			Ė							0					
			Ľ					Ē												
			1				265	<u> </u>										-		
		183	1					ŧ												
	sandy, grey below 4.6m		$\vdash\vdash$			1		E										1		
	Sandy, grey below 4.0111		6	SS	24		264	<u> </u>						0				1		
		1	\vdash			1		ŧ										1		
								E												
							263	<u> </u>										1		
			7	SS	24			ŧ										1		
		(ig)	ட்					Ē						l `						
		KK]				262											1		
								ŧ												
			\vdash			-		Ē												
60.8			8	SS	20		261	<u> </u>							0			1		
8.2	END OF BOREHOLE:	1.7.	Н					<u> </u>										H		
	Notes:																	1		
	Water at depth of 7.3 during drilling.																			
	ig-																			
								1										1		
																		1		
																		1		
																		1		
																		1		
																		1		
																		1		
																		1		
																		1		
																		1		
																		1		
- 1									1	ı		1	i .	i	1	1				

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-104

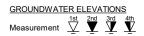
Date: Aug-29-2022 ENCL NO.: 21

	SOIL PROFILE		s	AMPL	ES	<u>~</u>		DYNA RESIS	MIC CO STANC	ONE PE E PLOT	NETR/	ATION		PLAST	IC .NATI	JRAL	LIQUID		۸T	REMARK
(m)		PLOT			WS m	WATER	Z	SHF4	R ST	40 6 RENG	0 8 TH (k	30 1 Pa)	100	LIMIT W _P	IC MATU MOIS CON	TURE TENT V	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SI
EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	l" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	• Q	UICK I	RENG FINED RIAXIA	L X	LAB V	ANE	1	TER CC		. ,	Pock (Cu)	NATURA (kh	DISTRIBUT (%)
269.4 26 9 . 2	TOPSOIL: 250mm	377 377		F SS	<u>‡</u> 7	0 0		-	20 4	40 6	0 8	30 1	100	1	0 2	:0 ;	30			GR SA SI
0.3 268.6 0.8	WEATHERED/DISTURBED NATIVE: clayey silt, some sand to sandy, trace rootlets, trace gravel, /				,		269													
0.0	brown, moist, firm SILTY CLAY TO CLAYEY SILT		2	SS	24		268							'	•					
	TILL: trace sand, gravelly sand pocket@1.0m, brown, moist, very stiff to hard		3	SS	30										0					
			4	SS	45	abla	267 W. L.	266.9	m D						0					
			5	SS	39		Sep 0	Ė.												
							•													
	grey below 4.6m						265													
			6	SS	19		264								0					
						I.: ⊟.:														
			7	SS	21		263							-						
							262													
261.2			8	SS	18										•					
	Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Sept. 08, 2022 2.51																			

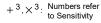
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-26-2022 ENCL NO.: 22

SOUTH SOUT		SOIL PROFILE		S	AMPL	ES	<u>~</u>		RESIS	MIC CC STANCE	PLOT	NETR/	ATION		PLASTI	C NATI	URAL	LIQUID		₩	RE	MAR	
269.2 TOPSOIL: 250mm 1	ELEV	DESCRIPTION	, PLOT	ω.		3 m	D WATE	NOL							LIMIT W _P ⊢—	CON	TENT V		CKET PEN. u) (kPa)	RAL UNIT \		AIN S	SIZE
TOPSOIL: 250mm	EPTH	DESCRIPTION	STRATA	NUMBER	YPE		SROUN	ELEVAT	● Q	UICK TI	RIAXIAI	L X	LAB V	ANE					900	NATUT PUTAN		(%)	
NATIVE: sandy silt, trace rootlets, rootlets	269.0								-												OIV C	,,,	-
SiLTY CLAY TILL: some sand, trace gravel, brown, moist, very stiff to hard 3 SS 18		NATIVE: sandy silt, trace rootlets, trace clay, trace gravel, brown,		2	SS	20										0							
grey below 4.6m grey below 4.6m 6 SS 16 263 7 SS 16 261 262 8 SS 19 6 Description of the property of t		SILTY CLAY TILL: some sand, trace gravel, brown, moist, very stiff						266								0							
grey below 4.6m grey below 4.6m 6 SS 16 262 7 SS 16 261 260 8 SS 19 6 SS 19		to nard					<u> </u> 	265								_							
grey below 4.6m 6 SS 16 263 7 SS 16 261 260 59.2 END OF BOREHOLE: Notes: 1) Borehole wet at the bottom upon				4	55	30	<u> </u> 									0							
grey below 4.6m 6 SS 16 262 7 SS 16 261 8 SS 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				5	SS	33		264								∘					4 1	7 4	7
262 7 SS 16 261 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								263															
59.2 END OF BOREHOLE: Notes: 1) Borehole wet at the bottom upon		grey below 4.6m		6	SS	16										o							
59.2 8.2 END OF BOREHOLE: Notes: 1) Borehole wet at the bottom upon								262															
59.2 8.2 END OF BOREHOLE: Notes: 1) Borehole wet at the bottom upon				7	SS	16		261								•							
8.2 END OF BOREHOLE: Notes: 1) Borehole wet at the bottom upon								260															
8.2 END OF BOREHOLE: Notes: 1) Borehole wet at the bottom upon	250.2			8	SS	19		200								o							
		1) Borehole wet at the bottom upon																					

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

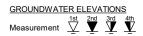
Date: Aug-26-2022 ENCL NO.: 23

	SOIL PROFILE		S	SAMPL	ES	~		DYNA RESIS	MIC CC STANCE	NE PEN PLOT	IETRA	TION		PLASTI	NATI	JRAL TURE	LIQUID		V	REMAR
(m)		=				GROUND WATER CONDITIONS	.	l	20 4					LIMIT	CON	TENT	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT	AND
LEV		l P.			NS E	χχ	l s	SHEA	R ST	RENGT	H (kP	a)		W _P	۷	v	W _L	후	A P N	GRAIN S
PTH	DESCRIPTION	STRATA PLOT	NUMBER		BLOWS 0.3 m	취호	ELEVATION		NCONF		+ F	TELD VA & Sensitivi	NE tv	,				βÖ	[통 _훈	DISTRIBU (%)
		₹	₩	TYPE		S 2		• Q	UICK TE	RIAXIAL	×ί	AB VA	NE	WAT	ER CC	NTEN	IT (%)	l ⁻	≨	(70)
67.8			Ν	≽	ž	& 8		2	20 4	0 60	80	10	0	1	0 2	0	30	1	1	GR SA S
6Ø. 9	TOPSOIL: 250mm	Z1 1/2.	1	SS	7			E										1		
0.3	WEATHERED/DISTURBED] '	ಶಾ	' '			Ė							U					
67.0	NATIVE: clayey silt to silty clay,	12/12					267	<u> </u>										-		
8.0	trace rootlets, some sand, trace gravel, dark brown, moist, firm		2	SS	16			E							0					
	CLAYEY SILT TO SILTY CLAY	/ [XX	╚			∇		F												
	TILL: trace sand, trace gravel,			00	-00		W. L. 2													
	brown, moist, very stiff to hard		3	SS	26		Sep 08	3, 2022 E	<u> </u>						0					
								E												
		161	4	ss	33			F							0					
			<u> </u>		00		265	F										1		
			⊢	\vdash	\vdash			F												
			5	SS	39			E							0					
			⊣				264	<u> </u>										-		
		1,27	1					ŧ												
			1			:: :		F												
	grey below 4.6m		1—	\vdash	\vdash	ŀ∷⊟·	262	<u> </u>											1	
	g. 5, 50,000 T.O.		6	SS	15		263	Ė							0			1	1	
			\vdash	\vdash	\vdash			Ė										1	1	
			1			F::EF	`: I	Ė										1	1	
		19.1	1		[262	E										1	1	
			\vdash					Ė										1	1	
			7	SS	22	F::⊟:	::1	Ė							0			1	1	
			\vdash			ľĦ	261	<u> </u>									1	1	1	
			1					Ė										1	1	
60.2		1	1		[ĽΕ	:1	Ė										1	1	
7.6	SANDY SILT TILL: some clay to	-11:17	\vdash			ľ.H:	260	<u> </u>										1		
59.6	clayey, trace gravel, silty sand	- -	8	SS	68		.]	Ē						0				1		
8.2	pockets, grey, moist, very dense	기 				<u> </u>	1											t	1	Ì
	END OF BOREHOLE: Notes:	'																1	1	
	1) 50mm dia. monitoring well	'			1													1	1	
	installed upon completion.	- '			[1										1	1	
	2) Water Level Readings:	- '																1	1	
	Date: Water Level(mbgl):	'		1														1		
	Sept. 08, 2022 1.43				[1										1	1	
	•		1	1 1	1	I				1 1							1		1	
				1 1		l		1												1

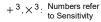
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 20-169-104

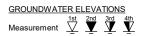
Date: Aug-26-2022 ENCL NO.: 24

	SOIL PROFILE		S	AMPL	ES	ω		DYNA RESIS	MIC CC TANCE	NE PE PLOT	NETRA	ATION		PLASTI	C NATU	JRAL	רוטו ווט		ΛŢ	REMARK
(m)		TO			ଥା	NATEF NS	z	2	0 4	0 6	0 8	0 1	00	LIMIT W _P	C NATU MOIS CON	TURE TENT V	LIQUID LIMIT W _L	T PEN. KPa)	. UNIT V	AND GRAIN SIZ
LEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	౼	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	O UI	NR STE NCONF JICK TE	RENG INED RIAXIAL	H (k⊦ - - ×	Pa) FIELD V & Sensiti LAB V	ANE vity ANE	-	ER CC	—		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	DISTRIBUT
70.6			N	TYPE	ż	GR	E			0 6			00	1	0 2	0 :	30			GR SA SI
7 0.9 0.3	TOPSOIL: 250mm WEATHERED/DISTURBED	11/2 1/2/	1	SS	5			Ē							0					
0.8	NATIVE: silty clay, trace rootlets, trace sand, trace gravel, brown,						270											1		
0.8	noist, firm SILTY CLAY TILL: trace sand,		2	SS	23										0					
	trace gravel, brown, moist, very stiff to hard		3	SS	24		269								0					
			4	SS	29		268								-					
			5	SS	30										0					
					00		267											1		
							266													
	grey below 4.6m		6	SS	21										o					
164 E			1				265													
6.1	SANDY SILT TILL: clayey, trace gravel, grey, moist, compact to very		7	SS	27		264							0						
	dense						204													
			. 8	SS ,	50/		263	_						0						
8.1	END OF BOREHOLE:				100mn	1														
	Notes: 1) Borehole wet at the bottom upon completion																			
	completion.																			
					i .	ı			1	i l		I	1	1	1	Ì	1	i .		

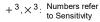
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger

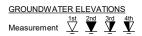

Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-25-2022 ENCL NO.: 25

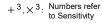
	SOIL PROFILE		S	AMPL	ES	<u>_</u>		DYNA RESIS	MIC CC TANCE	NE PE PLOT	NETR/	ATION		рі дсті	C NAT	URAL	LIQUID		۲	REMARK
(m) ELEV		PLOT	0.5		BLOWS 0.3 m	GROUND WATER CONDITIONS	NO	2		0 6	0 8 TH (kF	30 1 Pa)		PLASTI LIMIT W _P	MOIS CON	TURE TENT W	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SI DISTRIBUT
EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLO	SROUNE	ELEVATION	• Q		RIAXIA	L ×	FIELD V & Sensiti LAB V	ANE vity ANE 00		TER CO		T (%)	POC (Cu	NATUR (k	(%) GR SA SI
273.1 27 9.9	TOPSOIL: 200mm	13.7 ₇ .	1	SS	12		273									0				GR SA SI
27 9.9 279.7 0.4	WEATHERED/DISTURBED NATIVE: silty clay, trace sand, trace rootlets, brown, moist, stiff														o					
	SILTY CLAY TILL: trace sand, trace gravel, brown, moist, stiff to hard		2	SS	32	-	272								_					
			3	SS	36	-	271								0					
			4	SS	35		270								0					
			5	SS	38		2.0								0					
268.5							269													
4.6	SILT: some clay, some sand, trace gravel, grey, moist, dense		6	SS	30		268								0					
67.0 6.1	CLAYEY SILT TO SILTY CLAY	191				-	267													
0.1	TILL: trace sand, trace gravel, grey, moist, very stiff		7	SS	20	-									0					
						-	266											-		
			8	SS	17	_	265								0					
	sandy @9.1m					-	264													
	candy @c		9	SS	17	-									0					
262.7 10.4	END OF BOREHOLE:		10	SS	16		263													
	Notes: 1) Borehole wet at the bottom upon completion.																			

CLIENT: Caledon Community Partners
PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 20-169-104

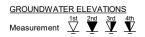
Date: Aug-25-2022 ENCL NO.: 26

	SOIL PROFILE		8	AMPL	.ES	بير ا			RESIS	TANCE	ONE PEN E PLOT	\geq			PLAST	IC NAT	URAL	LIQUID	۱.	₩	REN	/ARKS
m)		ТО			ωı	¥	<u> </u>	,			10 60			00	LIMIT W _P	CON	ITENT W	LIMIT W _L	PEN (TIND (C	GRA	AND IN SIZI
EV PTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	I" BLOWS 0.3 m	GROUND WATER	CONDITION	EVALION	0 UI	NCONF	RIAXIAL	+ ×	FIÉLD V & Sensiti LAB V	AŃE	WA.	TER C	O	T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)		RIBUTIO
70.9 7 0 : 0	TOPSOIL: 300mm	ν/ 1/γ.	z		ż	0 0	O L			0 4	10 60		30 1	00	1	0 2	20 :	30			GR SA	A SI
0.3 0.1	WEATHERED/DISTURBED NATIVE: clayey silt to silty clay, trace rootlets, trace sand, trace		1	SS	10			270								0	0					
0.8	gravel, brown, moist, stiff SILTY CLAY TILL: some sand,		2	SS	28			270								0						
	trace gravel, brown, moist, very stiff to hard		3	SS	29		2	269								∘⊩					1 14	1 49
			4	SS	31		, 2	268								0						
			5	SS	30		Se	90 p H	67.8 r , 2022							0						
							2	267														
	grey below 4.6m		6	SS	18		2	266								0						
							2	265														
			7	SS	34											•						
33.3						::		264														
7.6	SILTY SAND: trace clay, silt seams, grey, wet, compact to very dense		8	SS	57		2	263								0						
	uerise							262														
			9	SS	22			· · ·	-							0					0 70	27
							2	261														
59.6			10	SS	37		2	260									φ					
11.3	END OF BOREHOLE: Notes:							ヿ														
	1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																					
	Date: Water Level(mbgl): Sept. 08, 2022 3.1																					

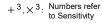
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-24-2022 ENCL NO.: 27

	SOIL PROFILE		s	AMPL	ES	œ		DYNA RESIS	MIC CO STANCE	NE PE E PLOT	NETR/	ATION		PLASTI	C NATI	URAL	LIQUID		WT	REMARI
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U	AR STI NCONF UICK T	0 6 RENG INED RIAXIAL 0 6	ΓΗ (kF + - ×	Pa) FIELD V & Sensiti LAB V	OO CANE ivity ANE OO	l .	TER CO	w DNTEN	LIQUID LIMIT W _L ——I IT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN S DISTRIBU' (%)
26 9.9 0.2	TOPSOIL: 200mm	13 17. XX	1	SS	9											0				
0.2	WEATHERED/DISTURBED NATIVE: clayey silt to silty clay, trace rootlets, trace sand, brown, noist, stiff SILTY CLAY TO CLAYEY SILT		2	SS	28		268								0			-		
	TILL: trace sand, trace gravel, brown, moist, stiff to hard		3	SS	22		267								0					
			4	SS	39		266								0					
			5	SS	34		265								0					
	grey below 4.6m		6	SS	14		264								0					
	silty sand pockets below 6.1m		7	SS	31		263							()					
							262													
			8	SS	53		261								o					
259.9 25 9 . 6	SILT: trace to some sand, trace		9	SS	50/		260								0					
9.4	clay, grey, moist to wet, very dense END OF BOREHOLE:				(30mn	h														
	Notes: 1) Borehole wet at the bottom upon completion.																			
					i				1	1		1	1			1				

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-19-2022 ENCL NO.: 28

	M: Geodetic	_						Date	: Aug	-19-202	22					EN	NCL N	0.: 2	8	
BH LC	OCATION: See Drawing 1 N 4857751.7 SOIL PROFILE	E 59		9.64 SAMPL	FS	Г	Т	DYN	AMIC C	ONE PE	NETR	ATION		I				I		
(m)	SOIL FROITILE	ТО.		DAIVIF L		VATER			20	40 6	30 8	30 1	00	PLAST LIMIT W _P	CON	URAL STURE ITENT W	LIQUID LIMIT W _L	T PEN. (Pa)	UNIT WT	REMARKS AND GRAIN SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER	ELEVATION	0 1	JNCON	TRIAXIA	+ L ×	FIÉLD V & Sensit LAB V	ANE ivity ANE	WA	TER C	O ONTEN	———	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	DISTRIBUTIO (%) GR SA SI
27 0.0 0.2	TOPSOIL: 230mm WEATHERED/DISTURBED	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	SS	12		271								0					
270.4	NATIVE: clayey silt to silty clay, some sand to sandy, trace rootlets, tkace gravel, brown, moist, stiff		2	SS	23		270								0					
269.5	SILTY CLAY TILL: trace sand, trace gravel, brown, moist, very stiff SANDY SILT: trace clay, trace		3	SS	35										0					
	gravel, brown, moist, dense		4	SS	46		269								C	>				
	clayey seams @3.1m		5	SS	44		268								0					
						- <u>⊻</u>	267													
266.6 4.6	_grey @4.5m	-	1				W. L. Sep 0													
÷.0	SILT: some clay to clayey, some sand, grey, very moist, compact		6	SS	29		266	ŧ								0		-		
	wet below 6.1m		L	65	25		265	<u></u>												
			7	SS	26											0				
263.6 7.6	SANDY SILT: trace clay, grey, wet,		-	00	00		264													
	compact		8	SS	20		263	<u> </u>								0				
			9	SS	19		262									0				
.				33	19		261													
			10	SS	17		201									0				
				33	17		260													
259.0 12.2	SILTY SAND: trace clay, grey, wet, (disturbed)		11	SS	listurb	ed.	259	-								0				disturbed sample
258.4 12.8	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:	<u>, r t y</u>				1.1		F												1.22
	Date: Water Level(mbgl): Sept. 08, 2022 4.25																			

 $\begin{array}{c|c} \underline{\mathsf{GROUNDWATER}\;\mathsf{ELEVATIONS}} \\ \mathsf{Measurement} & \overset{1\mathsf{st}}{\underbrace{\hspace{1em}}} & \overset{2\mathsf{nd}}{\underbrace{\hspace{1em}}} & \overset{3\mathsf{rd}}{\underbrace{\hspace{1em}}} & \overset{4\mathsf{th}}{\underbrace{\hspace{1em}}} \\ \end{array}$

CLIENT: Caledon Community Partners
PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

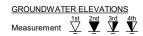
Date: Aug-19-2022 ENCL NO.: 29

	M: Geodetic	\- = <i>i</i>	-000	24.50				Date:	: Aug-	19-202	2					EN	ICL N	O.: 29	9	
BH LOCATION: See Drawing 1 N 4857801.25 E 598264.59 SOIL PROFILE SAMPLES							\top	DYNAMIC CONE PENETRATION RESISTANCE PLOT							NATI	NATURAL.			<u> </u>	DEMARKO
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	Ä	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	20 40 60 80 100 SHEAR STRENGTH (kPa) O UNCONFINED + FIELD VANE & Sensitivity QUICK TRIAXIAL X LAB VANE				/ANE	W _P	CONT	NATURAL MOISTURE CONTENT W W L R CONTENT (%)		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	REMARKS AND GRAIN SIZE DISTRIBUTIOI (%)	
270.9							ELE			RIAXIAL 40 6		80 100					30		Ž	GR SA SI
7 0.0 0.2 70.1	TOPSOIL: 200mm WEATHERED/ DISTURBED NATIVE: clayey silt, some sand to sandy, trace gravel, trace rootlets, brown, moist, stiff SILTY CLAY TO CLAYEY SILT TILL: trace sand, trace gravel,		1	SS	13		070													
8.0			2 SS 30	30		270							C	0						
68.6	brown, moist, hard sandy@1.5m		3	SS	55		269								o					
2.3	SANDY SILT TILL: trace clay, trace to some gravel, brown, moist, dense SANDY SILT: trace clay, brown, very moist to wet, very dense		4	SS	44		268								0			-		
3.1			. 5	SS	72		267								0					
65.9			6	SS	56	_ 														
5.0	SILT: some clay to clayey, trace sand, trace to some gravel, grey, very moist to wet, dense to very dense			33	30			266.1 8, 202												
	donde		7	SS	32		203								0					1 10 71
63.3							264 ::													
7.6	SANDY SILT: trace clay, grey, wet, compact to dense		8	ss	37		 263								0					
							262													
			9	SS	29		261								0					
59.6			10	SS	14		∴ 260)				
11.3	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Sept. 08, 2022 4.81																			

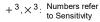
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 20-169-104

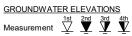
Date: Aug-23-2022 ENCL NO.: 30

	SOIL PROFILE		S	AMPL	ES.	\			DYNA RESIS	MIC CO	ONE PE E PLOT	NETR/	ATION		ы леті	_ NAT	URAL	LIOLID		۲	REMAR	KS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	" BLOWS 0.3 m	GROUND WATER	SNOILIONS	ELEVATION	SHEA O UI	0 4 AR ST NCONF JICK T	RENG FINED RIAXIAI	0 8 TH (kl + L ×	Pa) FIELD V & Sensit	ANE	W _P ⊢ WA	TER CO	TENT W O ONTEN		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN S DISTRIBU (%)	SIZE ITIC
268.9 26 9 . 9	TOPSOIL: 250mm	11/2	ž 1	SS	10	Ū	ŏ	Ш	2	0 4	10 6	0 8	30 1	00	1		20 3	30			GR SA S	4
0.3 268.1 0.8	WEATHERED/DISRURBED NATIVE: silty clay, trace sand, trace gravel, trace rootlets, brown,				10	ı		268								٥						
0.0	noist, stiff SILTY CLAY TO CLAYEY SILT		2	SS	26											0						
	TILL: trace sand, trace gravel, brown, moist, very stiff to hard		3	SS	26			267								0						
	sandy silt till lenses below 2.3m		4	SS	34			266								0						
3.2	SAND: trace silt, trace gravel,		5	SS	36			200								0 0						
	orange brown, moist to wet, compact to dense					<u> </u>	Z	W.Î Sep 0	E 265.1 : 3. 2022	 m <u>2</u>												
	clayey silt pockets, grey, wet@4.6m		6	SS	39	ı		264	Ė													
						··																
			_] ∃::.	263														
			7	SS	29			262														
			8	SS	32			261														
259.8								260														
9.1	SILTY SAND: silt pockets, trace clay, grey, wet, dense		9	SS	43											c						
9.7	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Sept. 08, 2022 3.8																					

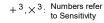
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-23-2022 ENCL NO.: 31

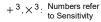
(m) ELEV DEPTH 268.3 268.0 0.3	DESCRIPTION	5				ш	l .													
269.0		STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/	AR ST NCONF UICK T	RENG INED RIAXIA	TH (kl	Pa) FIELD \ & Sensit LAB V	OO /ANE ivity ANE OO	W _P ⊢ WA	TER CO	TENT W O ONTEN	LIQUID LIMIT W _L ——I IT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZI DISTRIBUTIO (%) GR SA SI
(1) '31	TOPSOIL: 250mm	1 1/2.		SS	10		268	E												
267.5 1 0.8	NATIVE: clayey silt to silty clay, trace sand, trace rootlets, brown, noist, stiff		2	SS	35		267								0					
266.0	SILTY CLAY TILL: trace sand, trace gravel, occasional cobble, brown, moist, very stiff to hard		3	SS	28		266								0					
2.3	SANDY SILT: trace clay, brown to grey, wet, dense grey below 2.6m		4	SS	35										c					
<u>.</u>			5	SS	32		265								C					
263.7 4.6	SILT TO SANDY SILT: some sand, trace to some clay, grey, wet,		6	SS	23		264									0				
	compact						263													
			7	SS	25		262	-								0				
-					04		261											=		
<u> </u>			8	SS	21		260									0		-		
9.1	SAND: some silt to silty, grey, wet, compact		9	SS	11		259									0				
							258											_		
<u>1</u>			10	SS	29		257								С			_		
255.5			11	SS d	isturbe	ed	256								С	×				(disturbed sample)
12.8	END OF BOREHOLE: Notes: 1) Water at depth of 2.3m during drilling.																			

CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA


Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-23-2022 ENCL NO.: 32

	SOIL PROFILE		S	AMPL	ES	<u>س</u>		RESIS	STANCE	NE PEN PLOT	NETR/	ATION		PLASTI	C .NAT	URAL	LIQUID		Ļ	REMARK
n)						ATE		2	20 4	0 60) 8	30 1	00	LIMIT	CON	TENT	LIMIT	BEN.	V TINI	AND GRAIN SIZ
EV PTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	0 U ● Q	NCONF	RENGT INED RIAXIAL 0 60	+ ×	& Sensiti		ı	TER CO		W _L IT (%) 30	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	DISTRIBUT (%) GR SA SI
0.0 9.6 0.2	TOPSOIL: 200mm WEATHERED/DISTURBED	13.7%. 17.77	1	ss	9											0				OK OA OI
8.0	NATIVE: clayey silt to silty clay, trace sand, trace gravel, trace organics/rootlets, brown, moist, stiff		2	SS	24		268								0					
	SILTY CLAY TILL: trace sand, trace gravel, brown, moist, very stiff		3	SS	24		267													
6.5 2.3	SILT: some sand to sandy, trace to some clay, brown, wet, compact to		4	SS	37															
	dense			SS	38		266													
			5		38		265								0					
	grey below 4.6m		6	SS	28		264									0				
							263													
			7	SS	33											0				
							262													
			8	SS	37		261	_								0				
							260													
			9	SS	35		259									0				
8.1							200													
0.7 7.5	SAND: some silt to silty, trace clay, brown to greyish brown, wet, dense		10	SS	30		258									0				
1.3	END OF BOREHOLE: Notes: 1) Water at depth of 2.3m during drilling.																			

CLIENT: Caledon Community Partners
PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-23-2022 ENCL NO.: 33

	SOIL PROFILE		S	AMPL	ES	۳		DYNA RESIS	MIC CC TANCE	NE PEI PLOT	NETR/	ATION		рі деті	C NATU	JRAL	LIQUID		Ţ.	REN	/ARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	L STI NCONF JICK TI	0 60 RENGT INED RIAXIAL 0 60	ΓΗ (kl + . ×	Pa) FIELD V & Sensit LAB V	ANE ivity ANE O0	W _P 	CON' V TER CC	TENT V > ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTR	(%)
265.3 26 9.0 0.2	TOPSOIL: 200mm WEATHERED/DISTURBED		1	SS	9	∑	265 W. L.	-								•				GR SA	4 31
0.8	NATIVE: clayey silt to silty clay, trace sand, trace gravel, trace rootlets, brown mottled, moist, stiff/		2	SS	19		Sep 0	3, 2022 E	<u></u> 						0						
	SILTY CLAY TILL: trace sand, trace gravel, brown mottled, moist,		3	SS	14		264	<u>-</u>							0						
2.0	stiff to very stiff SANDY SILT: trace clay, trace to some gravel, grey, very moist, compact to dense		4	SS	21		263								0						
	wet below 2.3m		5	SS	27		262								0						
							261														
			6	SS	38		260								0						
			7	SS	27		259								()					
	with silty sand lenses below 7.6m		8	SS	33		258									0					
							257														
			9	SS	23		256									o					
254.6							255														
10.7	SAND: some silt, trace clay, grey, wet, compact		10	SS	24		254	<u>-</u>								0		-		0 82	2 15
253.1 12.2	SANDY SILT: with clayey silt	1111					253														
252.5 12.8	pockets, grey, wet, compact END OF BOREHOLE: Notes:		11	SS	15		:									0					
	1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																				
	Date: Water Level(mbgl): Sept. 08, 2022 0.32																				

CLIENT: Caledon Community Partners
PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-25-2022 ENCL NO.: 34

	SOIL PROFILE		S	AMPL	ES			DYNA RESI	MIC CO STANCI	NE PE E PLOT	NETR/	ATION		PLASTI	NAT	URAL	ווטויים		F	REMARKS
(m)		F				GROUND WATER		1		0 6			00	LIMIT	MOIS CON	URAL TURE TENT	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND
LEV		STRATA PLOT	l		BLOWS 0.3 m	N N	Z O	SHE	AR ST	RENG	TH (kf	Pa)		W _P		N .	WL	A SA	AL U	GRAIN SIZI
PTH	DESCRIPTION	¥	NUMBER		0.3		ELEVATION	0 0	NCONF	INED	÷	FIÉLD V & Sensiti	ANE ivity	l				000	통	(%)
		₹	JME	TYPE	ž	S Z				RIAXIAL	_ X	LAB V	ANE	1	TER CO				₹	(,0)
68.0	TORONI, OFO		z	Ĺ		0 0	ш	1	20 4	0 6	υ ε	80 1	00	1	0 2	20	30			GR SA SI
6 9.9 0.3	TOPSOIL: 250mm WEATHERED/DISTURBED	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	SS	10			ŧ								0				
67.2	NATIVE: clayey silt to silty clay,		\vdash					Ē												
0.8	trace rootlets, trace sand, trace	1/2/			40		267	<u>-</u>										4		
	gravel, brown, moist, stiff		2	SS	12			ŧ							0					
	SILTY CLAY TILL: trace sand, trace gravel, brown, moist, stiff to							F												
	very stiff		3	SS	29		266	; <u> </u>								0		-		
35.7								E												
2.3	SANDY SILT TILL: trace clay, trace gravel, occasional cobble,	•	4	SS	41			Ė							0					
	brown, moist, compact to very	$\ \cdot\ $	\vdash				265	; <u>E</u>												
	dense occasional wet sand seams@3.1m	[-	5		25			E												
	occasional wet sand seams@s.im	1:11.	э	SS	25			F							0					
							264	ıĔ—	_									-		
		1141	1			abla		ŧ												
		11:11.	Ш		50/			263.7 8, 202												
		[- - -	6	SS	100mr		263	E .	<u></u>						•			-		
								E												
			1					F												
31.9							262	<u>.</u>												
6.1	SANDY GRAVEL: some silt,	ō.	7	SS	25			E						Ι.						
	brown, wet, compact to dense	0	Ľ	- 33	25			Ē							1					
		.0:]				261	Ē												
		.o.]					Ė												
			⊢			ŀН	.]	F												
		·	8	SS	43		: 260	E							0			-		52 34 11
		0	\vdash			十月		E												
		0.	1					F												
58.9			1				259	, <u>E</u>										-		
9.1	SILTY SAND TO SANDY SILT:		9	SS	27			Ē								0				
	trace clay, grey, wet, compact to dense	Hili			21		:: 	F												
	derise	lir lir					∷ 258	3 E										-		
								Ē												
								F												
			10	SS	35		257	<u>-</u>								0		-		
56.7	END OF BOREHOLE	111.				Ш	4	<u> </u>	-									_	<u> </u>	
11.3	END OF BOREHOLE: Notes:																			
	1) 50mm dia. monitoring well																			
	installed upon completion. 2) Water Level Readings:																			
	,																			
	Date: Water Level(mbgl):																			
	Sept. 08, 2022 4.29																			
						1		1												
						1		1												
			I I			1	1	1										I	I	1
												1								

CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-24-2022 ENCL NO.: 35

	M: Geodetic							Date:	Aug-2	24-202	22					EN	ICL N	D.: 3	5		
BH LC	OCATION: See Drawing 1 N 4857838.4	5 E 5	9861	15.09																	
	SOIL PROFILE		S	SAMPL	ES.] ~		RESIS	MIC CC TANCE	PLOT	NETRA	ATION		ы леті	C NAT	URAL	LIQUID		Ц	REM	ARKS
(m)		T				GROUND WATER CONDITIONS		2	0 4	0 6	0 8	30 1	00	LIMIT	MOIS CON	TURE TENT	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	Al	ND
ELEV		STRATA PLOT			BLOWS 0.3 m	W c	Z O	SHEA	R STI	RENG	∟ TH (kF	 Ра)	1	W _P		N	W _L	(KPg	AL UI N/m³)	GRAII	N SIZE BUTION
DEPTH	DESCRIPTION	¥	NUMBER		0.3	IN E	ELEVATION		NCONF		÷	FIELD V & Sensiti	ANE ivity	10/0	TED 00	ONITEN	T (0/)	00 00 00	TUR.	() ()	%)
l l		₹	N	TYPE	Į.	SRO	LE.		JICK TI 0 4	RIAXIA 0 6			ANE 00	1		ONTEN 20 3	1 (%) 30		₹		
267.0 26 9 . 9	TOPSOIL: 250mm	31 1 _y		-	F	0 0	Ш		-			+	+	-	-	-	+			GR SA	SI CL
0.3	WEATHERED/DISTURBED	17	1	SS	8			Ė								þ					
266.2	NATIVE: silty clay to clayey silt,	KX.				1		Ē													
0.8	trace sand, trace gravel, trace rootlets, brown, moist, stiff		2	SS	13		266									0					
	CLAYEY SILT TO SILTY CLAY		=					Ē													
265.2 2 1.8	TILL: trace to some sand, trace gravel, brown, moist, stiff to very/		3	SS	28			-								0					
1.8	stiff	0.0				-	265														
E	GRAVELLY SAND: some silt,).	4	SS	44	1		Ė							0						
F ₃	trace clay, brown, wet, compact to very dense	o.0						E													
<u>-3</u> - - -	moist, some cobbles at 3.1m	ه. (<u>)</u>				1	264														
ŧ l		0.0	5	SS	51			-													
- -4		0.1					263														
		6. C	1				203	Ė													
		į.O.				-															
-5		0.0	6	SS	25		262								0					32 54	11 3
F		۲.	1					E													
		. O						Ē													
<u>-6</u>		6. (<u>)</u>	1_				261	-													
<u> </u>		O	7	SS	24			Ē							0						
Ē,		٠. (<u>)</u>				1		-													
-7							260	<u> </u>													
F		0.0						Ė													
- 8		٠٠ <u>٠</u>	8	SS	56		م-ر	Ė							0						
		0.0				-	259														
Ē l		٥. <u>(</u>)						-													
-9			1				258														
		0.0	9	SS	43	1	230								0						
F		6 O	Ľ					Ē							_						
10		 0.					257														
Ē		. C						Ė													
-256.3 -, 10.7	CLAYEY SILT TILL: sandy, trace							Ē													
255.7	gravel, sand pockets, grey, moist,		10	SS	49		256	_							- 0						
11.3	END OF BOREHOLE:	1																			
	Notes:																				
	1) Water at depth of 1.8m during																				
	drilling.																				
<u> </u>																					
8																					
<u> </u>																					
												<u></u>				<u>L</u>		L			
						GRAPH			li ina la au			8=3%									

DS SOIL LOG-2021-FINAL 20-169-104 GEO COPY.GPJ DS.GDT 22-10-21

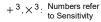
PROJECT: Geotechnical Investigation
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 20-169-104

Date: Aug-24-2022 ENCL NO.: 36

	M: Geodetic							Date:	Aug-	24-202	22					El	NCL N	O.: 30	6	
BH LC	OCATION: See Drawing 1 N 4857741.5 SOIL PROFILE	6 E 5	1	99.11 SAMPL	FS	Г	$\overline{}$	DYNA	MIC C	ONE PE E PLOT	NETR	ATION	١							
(m) ELEV		PLOT		JAIVII L	BLOWS 0.3 m	GROUND WATER	NO NO	:	20		60 i	80 Pa)	100	PLAST LIMIT W _P		TURAL STURE NTENT W	LIQUID LIMIT W _L ————————————————————————————————————	KET PEN.) (kPa)	AL UNIT WT N/m³)	REMARKS AND GRAIN SIZ DISTRIBUTION
266.1	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLO	GROUND	ELEVATION	• Q	UICK	FINED RIAXIA 40 (L X		VANE sitivity VANE 100		TER C		IT (%) 30	<u>0</u> 00	NATUR (k	(%) GR SA SI
26 9.9 0.3	TOPSOIL: 250mm WEATHERED/DISTURBED			SS	5											0				
265.3 0.8 264.6	NATIVE: clayey silt to silty clay, trace sand, trace gravel, trace rootlets, brown, moist, firm SILTY CLAY TILL: trace sand,		2	SS	21		265	<u> </u>							0					
1.5	trace gravel, brown, moist, very stiff SANDY SILT TO SILTY SAND: trace clay, brown, wet, compact to		3	SS	18	- - <u>∨</u>	264								0	,				
	dense		4	SS	30	. · · ·	Sep 0	263.8 8, 202 E	m 2 							0				
			5	SS	32		263									0				
			:				262											-		
			6	SS	23		261									0				
260.0							260													
6.1	SAND: some silt, trace silt seams, brown, wet, compact		7	SS	17											0				
258.5 7.6	SANDY SILT TO SILTY SAND:	1111					259													
7.0	trace clay, grey, wet, compact to very dense		8	SS	37		258								(>		-		
							257	Ē												
			9	SS	52		256								(9				
			10	SS	37		255								-					
			11	SS	47		254													
			11				253													
2 <u>252.5</u> 13.6	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Sept. 08, 2022 2.23		. 12	SS	23											0				

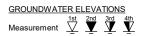
 $\begin{array}{c|c} \underline{\mathsf{GROUNDWATER}\;\mathsf{ELEVATIONS}} \\ \mathsf{Measurement} & \overset{1\mathsf{st}}{\underbrace{\hspace{0.1cm}}} & \overset{2\mathsf{nd}}{\underbrace{\hspace{0.1cm}}} & \overset{3\mathsf{rd}}{\underbrace{\hspace{0.1cm}}} & \overset{4\mathsf{th}}{\underbrace{\hspace{0.1cm}}} \\ \end{array}$

GRAPH NOTES

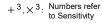
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-104

Date: Sep-07-2022 ENCL NO.: 37

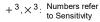
	SOIL PROFILE		S	AMPL	ES	~		DYNA RESIS	MIC CC STANCE	NE PE E PLOT	NETR/	ATION		PLASTI	C NAT	URAL	LIQUID LIMIT		ΤM	REI	MARKS
(m) ELEV DEPTH 261.7	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U	AR STI NCONF UICK T	INED	TH (ki + L ×	Pa) FIELD \ & Sensit LAB V	/ANE tivity /ANE 00	W _P ⊢ WA	TER CO	NTENT	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)		AND AIN SIZE RIBUTIC (%) A SI
260.9	TOPSOIL: 250mm	<u> </u>	1	SS	7										0						
0.3 260.9 1 0.8 260.2	WEATHERED/DISTURBED NATIVE: silty sand, trace rootlets, trace gravel, brown, moist, loose SANDY SILT: some clay, trace gravel, brown, very moist, compact		2	SS	12		261								0			-			
1.5	SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist, stiff to very stiff		3	SS	10		260								I ↔	1				4 2	5 48 3
3	grey below 2.3m		4	SS	16		259								0			_			
4			5	SS	16	_	258								0						
<u> </u>			6	SS	18		257								0						
i							256											-			
			7	SS	19	-	255								0						
			8	SS	19		254								a	<u> </u>				6 19	9 45
							253									•					
1			9	SS	27	-	252								0						
251.2 10.5	END OF BOREHOLE:		10	SS	26										0						
	Notes: 1) Borehole wet at the bottom upon completion.																				

CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA


Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-104

Date: Sep-07-2022 ENCL NO.: 38

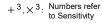
_	SOIL PROFILE	_	S	SAMPL	ES	<u>ا</u> بر		DYNA RESIS	MIC CC STANCE	NE PEN PLOT	NETR/	ATION		PLASTI	C NATI	JRAL	LIQUID		WT	REMARKS
		5			اری ر	NS NS	z	2		0 60			00	LIMIT W _P	CON	TENT V	LIMIT W _L	T PEN kPa)	UNIT	AND GRAIN SIZ
/ H	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	O UI	AR STI NCONF UICK TI	LENGT RENGT INED RIAXIAL	H (kl + 	FIELD V. & Sensiti LAB V.	ANE vity ANE	-	TER CC	—	—і ⁻ Т (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	DISTRIBUT (%)
8	Straight drilled to 4m to installed	ST	₽	≱	ż	R 00	岀	2	0 4	0 60	8 0	80 1	00	1	0 2	0 :	30			GR SA SI
ا	well							Ē												
							261													
							260													
							W. L. :	E 259 1 i	 m											
							Sep 19), 2022 E	 2 i											
							050													
8	END OF BOREHOLE:						258											\vdash		
	Notes: 1) Straight drilled to 4m to install 50mm dia. monitoring well. 2) Water Level Readings:																			
	Date: Water Level(mbgl):																			
	Sept. 19, 2022 2.7																			
								l											1	

CLIENT: Caledon Community Partners PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-104

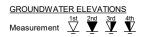
Date: Sep-07-2022 ENCL NO.: 39

	SOIL PROFILE		s	AMPL	ES.	<u>بر</u>		DYNA RESIS	MIC CC STANCE	NE PE E PLOT	NETRA	ATION		PLASTI LIMIT	C NAT	URAL	LIQUID LIMIT		WT	REMA	
(m) ELEV EPTH 265.1	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STE NCONF UICK TI	INED	TH (kF + - ×	L———Pa) FIELD V & Sensit LAB V	OO ANE ivity ANE OO	W _P ⊢ WA	TER CO	w O ONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	ANI GRAIN DISTRIB (% GR SA	SIZI UTIC
26 0.0 0.2	TOPSOIL: 230mm WEATHERED/DISTURBED	137. 137.	1	SS	5											0		t			
264.3	NATIVE: clayey silt to silty clay, trace rootlets, trace sand, trace gravel, brown, moist, firm		2	SS	22	-	264								0)					
	SILTY CLAY TILL: trace sand, trace gravel, brown, moist, stiff to very stiff		3	SS	27		263								0						
	grey below 3.1m		4	SS	29		262								0						
	grey below 3. IIII		5	SS	22	-	261								0						
			6	SS	14	_									0						
						-	260														
			7	SS	14		259								0						
				65	16		258														
256.9 8.2	END OF BOREHOLE:		8	SS	16		257								0			┕			
	Notes: 1) Borehole wet at the bottom upon completion.																				

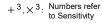
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-104

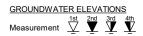
Date: Sep-07-2022 ENCL NO.: 40

	SOIL PROFILE		S	SAMPL	.ES	~		DYNA RESIS	MIC CC STANCE	NE PE PLOT	NETR/	ATION		PLASTI	IC NATI	URAL	LIQUID		ΛΤ	REMARK
m)		10			(0)	GROUND WATER CONDITIONS	_	2	20 4	0 6	0 8	80 1	00	LIMIT	IC NATI	TURE TENT V	LIQUID	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SI
EV	DESCRIPTION	STRATA PLOT	œ		BLOWS 0.3 m		ELEVATION	SHE	AR STI	RENG	TH (kF	Pa)	/ANF	W _P ⊢	`	· 	W _L	S, ET	RAL I	DISTRIBUT
PTH	BESONII TION	\X	NUMBER	Й			\ \ \		NCONF UICK TI	INED RIAXIAI	+ ×	& Sensit	tivity ANF	WA	TER CO	ONTEN	IT (%)	88	MATU	(%)
52.7		STF) N	TYPE	ż	GR	H			0 6			00	1	0 2	20	30			GR SA SI
62.9	TOPSOIL: 250mm	311/4.		SS	6			E												
0.3	WEATHERED/DISTURBED NATIVE: clayey silt to silty clay,			33	0			Ē							0					
0.8	\trace rootlets, trace sand, trace	/	1			-	262	-												
0.0	gravel, brown to reddish brown,		2	SS	13			Ė							0					
	nyoist, firm SILTY CLAY TILL: trace sand,		F			1														
	trace gravel, brown, moist, stiff to	12	3	SS	22		261								0					
	very stiff		\vdash			1		-												
		19:1	4	SS	42		260								0					
		i i i	一			-	200	-												
	grey below 3.1m		5	SS	24			Ē							0					
			<u>L</u>		ļ-:-		259													
			1					Ē												
			1					Ē												
			\downarrow		04	1	258											ļ		
		15	6	SS	21										0					
								Ē												
		181	1				257	-										1		
			\vdash			-		Ē												
			7	SS	25			-							0					
			一				256	-										1		
			1					Ė												
		18	_					Ē												
54.5			8	SS	23		255								0			1		
8.2	END OF BOREHOLE:	P. X.						_												
	Notes:																			
	1) Borehole wet at the bottom upon completion.																			
																		1		
- 1																				
																		1		
			1	l														1		
									1	1			1	1	I	1	1	1		1

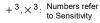
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-104

Date: Sep-07-2022 ENCL NO.: 41

	SOIL PROFILE		S	SAMPL	.ES	~		DYNA RESIS	MIC CC TANCE	NE PE PLOT	NETRA	ATION		PLASTI	C NATI	JRAL TURE	LIQUID		۲	REMARK
n)						GROUND WATER CONDITIONS		2	0 4	0 6	0 8	0 10	00	LIMIT	CON	TENT	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND
EV	DECODIDATION	STRATA PLOT	_		BLOWS 0.3 m	N N	ELEVATION			RENG	TH (kF	Pa)		W _P	v	v 	W _L	A A	S K	GRAIN SI DISTRIBUT
PTH	DESCRIPTION	4TA	BE		0.3	N	/ATI		NCONF		+	FIELD V	ANE ity	١٨/ ٨٦	TER CC	NITEN	T (0/.)	80	TP S	(%)
		TR/	NUMBER	TYPE	ż	SRO SON	ILE\			RIAXIAL 0 6			ANE 00				1 (%) 30		≥	
6.5 a a	_TOPSOIL: 200mm	3/1/2	_	-	-	0 0	ш				0 0		,,,				1			GR SA SI
0.2	WEATHERED/DISTURBED	1	1	SS	5		000								0					
5.7	NATIVE: clayey silt to silty clay, trace rootlets, brown, moist, firm /						266											1		
0.8	trace rootlets, brown, moist, firm silty sand lens below 0.5m		2	SS	9															
5.0	SILTY CLAY TILL: trace sand,						005													
1.5	trace gravel, trace rootlets, brown,		3	SS	23		265								0			1		
	moist, stiff (disturbed) SILTY CLAY TILL: trace sand,		Ĺ			-														
	trace gravel, trace rootlets, brown,		1		0.5	1	264													
	moist, very stiff to hard		4	SS	35		204								٥					
			\vdash					Ē												
			5	SS	41		263								0					
			\vdash			1														
		14	1					Ē												
							262											1		
	grey below 4.6m	191	6	SS	34															
			 					-												
			1				261	_										-		
			1																	
			7	SS	19	1														
		189	<u>L</u>		"		260													
			1																	
		işi	1				0.50													
						1	259													
8.3		1	8	SS	26										0					
8.2	END OF BOREHOLE: Notes:																			
	Borehole wet at the bottom upon																			
	completion.																			
						l														
												l						1		
																		1		

CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-104

	CATION: See Drawing 1 N 4858595. SOIL PROFILE			SAMPL	.ES			DYN/	AMIC C	ONE PE	NETR	ATION	ı	AIAT	ı IDA'			l	DEMAGE	
(m) ELEV EPTH 266.6	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	20 AR ST INCON QUICK 1	40 (RENG FINED FRIAXIA	60 GTH (k + NL ×	Pa) FIELD & Sens	100 VANE	TER C		LIQUID LIMIT W _L ——I IT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	REMAF AND GRAIN S DISTRIBU (%)	O SI UT ()
0.0	Straight drilled to 7.6m to install well.						266 W. L.: Sep 19 264 263 262 261	264.7	m m 22											
7.6	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Sept. 19, 2022 1.92						250													

GRAPH NOTES

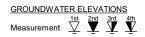
+ ³, × ³: Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

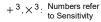
PROJECT: Geotechnical Investigation
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-104

Date: Sep-07-2022 ENCL NO.: 43

	SOIL PROFILE		s	AMPL	ES	<u></u>		DYN/ RESI	MIC CO STANC	ONE PE E PLOT	NETR	ATION -		PI AST	IC NATI	URAL	LIQUID		I	REMAR
(m)		5				GROUND WATER			20 4	40 6	80 0	30 1	100	LIMIT	IC NATU MOIS CON	TURE TENT	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SI
LEV	DESCRIPTION	STRATA PLOT	œ		BLOWS 0.3 m	A S	ELEVATION	SHE	AR ST	RENG	TH (kl	Pa)	/ANE	W _P		v >	W _L	X S	RAL L	DISTRIBUT
EPTH	DESCRIPTION	ATA	NUMBER	Ш	0.0		<u> </u>	0 0	NCON	FINED 'RIAXIAI	+	& Sensi	tivity	WA-	TER CC	NTEN	JT (%)	§ 0	NT O	(%)
264.0		STR	Ì	TYPE	ż	SRC S							IOO				30		_	GR SA SI
269.0	TOPSOIL: 230mm	31 1/2						‡							<u> </u>		+			0.000
0.2	WEATHERED/DISTURBED	177	1	SS	8			E							00					
263.2	NATIVE: silty clay, trace sand, trace rootlets, trace gravel, brown, /							. ŧ												
0.8	noist, stiff	133	2	SS	27		26	3							0					
	SILTY CLAY TILL: trace sand,		╘					Ē												
	trace gravel, brown, moist, very stiff		3	SS	27			E							0					
	to hard trace rootlets above 1.0m	W	Ĺ				26	2										1		
	race routets above 1.011							ŧ												
		199	4	SS	37			ŧ							0					
						\sqsubseteq	26	1 F 260.9	 									1		
	grey below 3.1m		5	SS	29		Oct 1	8, 202	111 2						0					
			1—					É												
			1			\cdot	26	DE										1		
			1			$ \cdot $		Ė											1	
						1:: =	::	ŧ											1	
		(is)	6	SS	15		25	9[+			+			-			1	1	
			\Box			1:⊟		Ė											1	
			1			₽		Ē											1	
			Щ				25	3										1		
			7	SS	20	問	::	Ė							0				1	
			\vdash			11. LU	il	Ē											1	
							25	7-	1			1						1	1	
		KAY.	1			眉目		Ė											1	
				00	47	1:1		Ē												
55.8			8	SS	17		25	3							0			\bot	L	
8.2	END OF BOREHOLE: Notes:																			
	1) 50mm dia, monitoring well																			
	installed upon completion. 2) Water Level Readings:					1													1	
	2) Water Level Readings:	1				ı	1	1	1	1				1				1	1	
	2) Water Level Readings.					1														
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			
	Date: Water Level(mbgl):																			

CLIENT: Caledon Community Partners

PROJECT: Geotechnical Investigation DRILLING DATA

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

Diameter: 150mm

Date: Sep-07-2022

Method: Solid Stem Auger

REF. NO.: 20-169-104

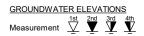
ENCL NO.: 44

	OCATION: See Drawing 1 N 4858702.2 SOIL PROFILE			SAMPL	FS			DYNAI	MIC CC	NE PE PLOT	NETR/	ATION								
	33.E11011EE		HĬ	L		GROUND WATER CONDITIONS		ı				30 1	00	PLASTI LIMIT	C NATU	JRAL TURE	LIQUID LIMIT	z.	NATURAL UNIT WT (kN/m³)	REMARKS AND
m)		STRATA PLOT			SNE	WA	l z			RENG	ΓΗ (kF	∟—— Ра)		W _P	٧	TENT V	W _L	POCKET PEN. (Cu) (kPa)	N UNI	GRAIN SIZ
EV PTH	DESCRIPTION	TAF	BER		BLOWS 0.3 m	OND DETIC	ATIC	0 UI	NCONF	INED	+	FIELD V. & Sensiti	ANE vity	10/07	-)——	T (0/)	POCK (Cu)	KI (KI	DISTRIBUTI (%)
53.9		STR/	NUMBER	TYPE	ż	GRO	ELEVATION			RIAXIAL 0 6			ANE 00		TER CC		1 (%) 30			GR SA SI
0.0	Straight drilled to 4.0m to install	+"	F		-															011 011 01
	well.							E												
							263													
							1	-												
							262													
							262 W. L. 2 Sep 19	262.0 r	n D											
							loch is	5, 2022 E	Ī											
							261													
							1	-												
59.9							260													
4.0	END OF BOREHOLE: Notes:																			
	1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																			
	Date: Water Level(mbgl): Sept. 19, 2022 1.92																			
							1							1				l		

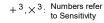
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 20-169-104

Date: Sep-06-2022 ENCL NO.: 45

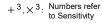
S	OIL PROFILE		S	SAMPL	ES	<u>~</u>		DYNA RESIS	MIC CC TANCE	NE PE PLOT	NETRA	ATION		PLASTI LIMIT	C NAT	URAL	LIQUID LIMIT		WT		MARKS
(m) ELEV EPTH 264.0	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	LESTE NCONF JICK TI	0 6 RENG INED RIAXIAL 0 6	ΓΗ (kF + . ×	FIELD VA & Sensitiv LAB VA	ANE vitv	W _P ⊢ WA1	TER CO	w O ONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTR	(%)
269:9 TOPSOIL	350mm	<u> </u>	1	SS	9			-								0					
0.4 WEATHEI 263.2 NATIVE: 0 0.8 trace grav staining, t noist, stif	RED/DISTURBED layey silt to silty clay, el, trace sand, organic ace rootlets, brown, LT TO SILTY SAND:		2 3	SS	12		263								0	0		-			
trace to so	me clay, trace gravel,		Ľ	- 00	12	-	262											-			
	y moist, compact AY TILL: trace to some		1			ł		Ė													
sand, trac stiff to ver grey below	e gravel, brown, moist, v stiff		5	SS	24		261								0						
		*** ***		00	21		260											_			
			6	ss	16		259								4—					1 11	51
		**** **** ****																			
			7	SS	13		258								0						
							257														
255.8			8	SS	20		256	Ē							0						
Notes:	OREHOLE: e wet at the bottom upon h.																				

PROJECT: Geotechnical Investigation
CLIENT: Caledon Community Partners

PROJECT LOCATION: The Gore Rd. & King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA


Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 20-169-104

Date: Sep-06-2022 ENCL NO.: 46

	SOIL PROFILE		S	AMPL	ES	Cr.		DYNA RESIS	MIC CO STANCE	ONE PE E PLOT	NETR/	ATION		PLASTI	C NAT	URAL STURE	LIOUID		ΤΛ	REMARKS
(m)		μ				GROUND WATER CONDITIONS		ı		0 6			00	LIMIT	CON	TENT	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND
LEV	DECODIDE C	STRATA PLOT			BLOWS 0.3 m	× × ×	N O			RENG	ΓΗ (kF	Pa)		W _P		N 0	WL	ËËT (F)	N/m ³	GRAIN SIZ
PTH	DESCRIPTION	\TA	NUMBER	111	0.3	N E	ELEVATION	0 U	NCONF	INED	+	FIELD V & Sensiti	ANE vity	10/4	TER CO	ハリエニャ	IT (0/.)	징 3	ATUR (A	(%)
7		TR/	NO.	TYPE	ż	SRO SON	I.E.			RIAXIAL 10 6			ANE 00				30		Ž	CB SA SI
6.7 6.4	TOPSOIL: 250mm	3/1/2					ш	<u> </u>					1	<u> </u>				<u> </u>		GR SA SI
0.3	WEATHERED/DISTURBED	17	1	SS	13			Ē							00					
0.8	NATIVE: clayey silt to silty clay, Trace sand, trace gravel, trace						266											1		
0.0	rootlets, brown, moist, stiff		2	SS	21			Ė							0					
	SILTY CLAY TILL: trace sand, trace gravel, brown, moist, very stiff		3	SS	21		265	<u> </u>							0			-		
			Ľ			-	W. L. :	E	 m											
			4	SS	26		Oct 18	, 2022												
			4	33	20		264											1		
			5	SS	27			Ē							0					
			Ľ		21		263	<u> </u>										ł		
							·.													
							:	Ē												
	grey below 4.6m		6	SS	17		262								0			1		
			H					F												
							261	<u> </u>										1		
0.6 6.1	SAND: silt pockets, grey, wet,	KY.		_		情		Ė												
	compact	:::	7	SS	18		260	<u> </u>							٥					
						l::	-55	Ē										1		
59.1								Ē												
7.6	SANDY SILT TILL: trace clay,	<u> </u>	8	SS	32		259	-							0			ł		
8.2	trace gravel, grey, very moist, dense END OF BORHOLE:	<u> </u>	Ŭ		02		<u>:</u>								_					
0.2	Notes:																			
	50mm dia. monitoring well installed upon completion. Water level Readings:																			
	Date: Water Level(mbgl):																			
	Oct. 18, 2022 2.05																			
																		1		
- 1		1	i l		l	I	1	l		1		1	1	I	1	1		1	I I	

DRILLING DATA

CLIENT: Caledon Community Partners

Method: Hollow Stem Auger

PROJECT LOCATION: Macville Secondary Plan and Argo King, Caledon, ON

Diameter: 200mm REF. NO.: 20-169-105 ENCL NO.: 2

DATUM: Geodetic

Date: Jun-26-2023

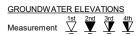
SOIL PROFILE SAMPLES	ENT	D	5	REMARKS
(m) ELEV DEPTH DESCRIPTION LUMIT WOODS OF SHEAR STRENGTH (kPa) V O UNCONFINED + FIELD VANE	ENT			KEWAKKS
ELEV DESCRIPTION A W SE O SHEAR STRENGTH (kPa) O UNCONFINED + FIELD VANE O UNCONFINED + FIELD VANE O CONFINED O	W _L	EN T	NATURAL UNIT WT	AND GRAIN SIZE
TELET		POCKET PE	URAL	DISTRIBUTION
X W U WATER CON WAT		18.	¥	(%)
261.5	30	42		GR SA SI CL
268.7 WEATHERED/DISTURBED	0	1		
0.8 NATIVE: clayey silt to silty clay, trace rootlets, trace gravel, brown,				
moist, firm		1		
TILL: trace sand, trace gravel.				
brown, moist, firm to very stiff 4 SS 50 hard below 2.3m				
some sand to sandy, grey below 5 SS 51 8 258		4		
3.1m				
wet sand seams below 4.5m				
		1		
7 SS 40				
254		4		
8 SS 27 B B F				6 25 45 24
9 SS 42 252				
9 SS 42 252 0 0		1		
10 SS 44 0 0 0				
250		-		
11 SS 44 P				
14 248 248 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
(30mr)				
246.2				
15.3 SANDY SILT TO SILTY SAND: 13 SS 300 246		+		
trace clay, grey, wet, very dense				
1 14 SS 77 1 1 244	0			
15 SS 72 H				0 22 74 4
		1		
16 SS 84 ∴ □ · □ · □ · □ · □ · □ · □ · □ · □ · □				
17 88 75 240				
239.6 17 SS 75 240 0 0 0 0 0 0 0 0 0		+	+	
Notes: 1) 50mm dia. monitoring well				
installed upon completion.				
2) Water Level Readings:				
Date: Water Level(mbgl): July 7, 2023 -(above ground				
surface)				

DS SOIL LOG-2021-DRAFT 20-169-105.GPJ DS.GDT 23-9-20

CLIENT: Caledon Community Partners

PROJECT LOCATION: Macville Secondary Plan and Argo King, Caledon, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-169-105

Date: Jul-04-2023 ENCL NO.: 3

	SOIL PROFILE		s	AMPL	.ES			DYN/ RESI	AMIC CO STANCI	ONE PE E PLOT	NETRA	ATION			_ NAT	URAL			T	REI	MARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	20 4 AR ST INCONF QUICK T	FINED	TH (kl	Pa) FIELD V & Sensiti	ANE vity ANE	W _P ⊢ WA	TER CO	w O ONTEN		POCKET PEN. (Cu) (kPa)	-	GRA DISTE	AND AIN SIZ RIBUTI (%)
261.5 0.0	Straight drilled to install well	S	ž		ž	9 2	ш		20 4	10 6	80 8	30 1	00	1	0 2	20 :	30			GR S	A SI
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	END OF BOREHOLE:						261 260 259 258 257 256 255 254		m—33												
9.1	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): July 7, 2023 8.4																				

GRAPH NOTES $+3, \times 3$: Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

LOG OF BOREHOLE BH23-2

PROJECT: Geotechnical Investigation

DRILLING DATA

CLIENT: Caledon Community Partners

Method: Hollow Stem Auger

PROJECT LOCATION: Macville Secondary Plan and Argo King, Caledon, ON

Diameter: 200mm

	SOIL PROFILE	_	s	SAMPL	ES			DYN RES	AMIC CO	ONE PE E PLOT	NETRA	ATION		DI ACT	_ NATI	URAL	1.10: :::		 -	RE	ИARK
m) LEV PTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	20 - EAR ST UNCONI	40 6 RENG FINED FRIAXIA	TH (kF	Pa) FIELD V. & Sensiti	ANE ivity ANE		CON V TER CO		LIQUID LIMIT W _L IT (%) 30	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTF	AND IN SIZ RIBUT (%)
71.7 70.0	TOPSOIL: 200mm	177	1	SS	9		: "	E	Ť	Ť			Ì		0		Ť			GIV 3/	1 31
7 8:9 70.9 0.8	WEATHERED/DISTURBED NATIVE: clayey silt to silty clay, frace rootlets, trace gravel, brown,		2	SS	17			-							0						
69.4	nhoist, stiff CLAYEY SILT TO SILTY CLAY		3	SS	28		270	-							0						
2.3	TILL: trace sand, trace gravel, brown, moist, very stiff SILT: trace clay, brown, moist to		4	SS	31			-							0						
	very moist, dense		5	SS	45	<u>¥</u>	W. L.: Jul 07								0					0 0	94
	grey below 4.6m		6	SS	38			-								•					
			_				266 .:														
			7	SS	35		:	-								O					
7.6	SANDY SILT TO SILTY SAND: trace clay, brown to grey, wet,		8	SS	41		264									0					
	compact to dense		. 9	SS	37											0					
			Ť		01		262	-													
	grey below 10.7m		10	SS	33		:	-								0					
58.9			. 11	SS	21		260	[0					
12.8	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): July 7, 2023 3.4																				

PROJECT: Geotechnical Investigation

DRILLING DATA

CLIENT: Caledon Community Partners

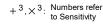
Method: Hollow Stem Auger

PROJECT LOCATION: Macville Secondary Plan and Argo King, Caledon, ON

Diameter: 200mm

DATUM: Geodetic

Date: Jun-23-2023


ENCL NO.: 5 BH LOCATION: See Drawing 1 N 4857381.92 E 597592.36 DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT POCKET PEN.
(Cu) (kPa)
NATURAL UNIT W
(kN/m³) AND 40 60 100 (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + ESensitivity ELEVATION ELEV DEPTH DISTRIBUTION DESCRIPTION NUMBER (%) WATER CONTENT (%) QUICK TRIAXIAL X LAB VANE 60 80 10 20 30 GR SA SI CL 270.2 TOPSOIL: 250mm 269.9 270 SS 12 0 WEATHERED/DISTURBED 0.3 **NATIVE:** clayey silt to silty clay, 269.4 trace rootlets, trace gravel, brown, 0.8 moist, stiff 2 SS 24 269 SILTY CLAY TO CLAYEY SILT TILL: some sand to sandy, trace gravel, brown, moist, very stiff to 3 SS 23 0 268 SS 37 4 267 SS 35 5 266 grey below 4.6m 6 SS 17 265 264 SS 15 5 28 47 20 b**⊦** ¥ W. L. 263.1 m Jul 07, 2023 SS 16 8 262 261 SS 16 260.5 END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): July 7, 2023 7.1

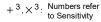
SOIL LOG-2021-DRAFT 20-169-105.GPJ DS.GDT 23-9-20

S

PROJECT: Geotechnical Investigation

DRILLING DATA

CLIENT: Caledon Community Partners PROJECT LOCATION: Macville Secondary Plan and Argo King, Caledon, ON


Diameter: 200mm

Method: Hollow Stem Auger

DATUM: Geodetic Date: Jul-04-2023 ENCL NO.: 6

1	JM: Geodetic							Date:	Jul-0	4-2023	3					ΕN	NCL N	O.: 6		
BH LC	DCATION: See Drawing 1 N 4857474.3	E 59	т —		<u></u>			DYNA	MIC CC	ONE PE	NETRA	ATION							1	
	SOIL PROFILE	1		SAMPL	.ES	H H		RESIS	TANCE	PLOT	\geq			PLAST	C NAT	URAL STURE	LIQUID		NATURAL UNIT WT (kN/m³)	REMARKS
(m)		þ			ν ₁ _	GROUND WATER CONDITIONS	z	-	ĭ .				00	LIMIT W _P	CON	TENT W	LIMIT W _L	POCKET PEN. (Cu) (kPa)	UNIT TIND (°	AND GRAIN SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	띪		BLOWS 0.3 m	V ON 10 F	ELEVATION		AR STI NCONF	RENG		Pa) FIELD V & Sensiti	ANE	—		·	<u></u>	OC)	(RN/	DISTRIBUTION
		Æ	NUMBER	TYPE		중	A	• Q	UICK T	RIAXIAI	LX	LAB V	ANE		TER CO			ď.	¥	(%)
265.5	TODOOU - OFOrest	<u>2/ /²/</u>	ž		ż	9 9	ш	2	20 4	0 6	0 8	0 1	00	1	0 2	20 :	30			GR SA SI CL
269:9 - 0.3 -264:9	TOPSOIL: 250mm WEATHERED/DISTURBED		1	SS	7			E									0			
-264.9 - 0.6	NATIVE: clayey silt to silty clay, trace rootlets, trace gravel, brown,		├				265	-								0				
1	moist, firm			SS	1.1			Ē												
	CLAYEY SILT TO SILTY CLAY TILL: trace sand, trace gravel,		2	33	14			Ē							0					
	brown to grey, moist, stiff to very				10		264	-												
2	stiff		3	SS	18			Ė							0					
E	grey below 2.3m							Ē												
-	grey below 2.3m		4	SS	11		263								0					
$\frac{-262.6}{3}$ 2.9	SANDY SILT TO SILT: trace clay,	HH						Ē												
[grey, wet, compact		5	SS	18			Ē								0				0 48 49 3
F			Ľ		10		262	-												0 40 40 0
4						in in		Ė												
Ē								Ē												
-260.9 - 4.6	SANDY SILT TO SILTY SAND:					ŀ∷ 	261													
5	with clayey silt pockets, trace gravel, grey, wet, dense		6	SS	40			Ē							'	þ				
	graver, grey, wer, derise							E												
F							260													
6							1	E												
			7	SS	38			-								0				
F			Ė			: :	259													
7			1					E												
			1					-												
E			-			k:H:	258	-												
- ₈ - 257.3			8	SS	38			-								0				
8.2	END OF BOREHOLE: Notes:	ļ'''																		
	1) 50mm dia. monitoring well																			
	installed upon completion. 2) Water Level Readings:																			
	Date: Water Level(mbgl):																			
	July 7, 2023 flowing artesian																			
	conditions																			
;																				
ш						GRAPH		3			l	2 =3%					1			

DS SOIL LOG-2021-DRAFT 20-169-105.GPJ DS.GDT 23-9-20

LOG OF BOREHOLE BH23-6

PROJECT: Geotechnical Investigation CLIENT: Caledon Community Partners

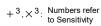
echnical Investigation DRILLING

PROJECT LOCATION: Macville Secondary Plan and Argo King, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger/Hollow Stem Auger


Diameter: 150mm/200mm REF. NO.: 20-169-105

Date: Jun-23-2023 ENCL NO.: 7

	SOIL PROFILE		8	AMPL	.ES			RESIS	MIC CO	DNE PE	NETR/	ATION -		PLASTI	_ NAT	URAL	LIQUID		П	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U	20 4 AR STI	0 6 RENG INED	0 8 TH (kl	30 10	OO ANE vity ANE	LIMIT W _P ⊢—	CON	STURE ITENT W O	LIQUID LIMIT W _L ——I T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT W (kN/m³)	AND GRAIN SIZE DISTRIBUTION (%)
263.3	TORON 000	ST	Į₹		ż	8 8		2	20 4	0 6	0 8	30 10	00	1	0 2	20 3	30			GR SA SI C
26 9.9 262.5	TOPSOIL: 200mm WEATHERED/DISTURBED		1	SS	5										'	φ				
0.8	NATIVE: clayey silt to silty clay, trace rootlets, trace gravel, brown,		2	SS	20		262								0					
	ntoist, firm CLAYEY SILT TO SILTY CLAY		3	SS	26										0					
	TILL: trace sand, trace gravel, brown to grey, moist, stiff to hard		4	SS	41															
	sandy, grey below 3.1m		5	SS	28		260													
			6	SS	26		258							С						
	sandy silt pockets at 6.0m		<u> </u>																	
			7	SS	13															
			8	SS	50/		256							c	,					
					75 mm															
9.1	SANDY SILT TO SILTY SAND:		1_		li - 4 l-		254													
	trace clay, grey, wet, loose(disturbed) to very dense		9	SS	isturbe	a d	204									0				
	, ,																			Danahala
			10	SS	47		252								C	>				Borehole drilled 1m beside origi
					00			-												position/swi to Hollow
			11	SS	39		250									0				Stem
			12	SS	24		250	-								0				
			- 12		24															
	silt pockets at 15.2m		13	SS	26		248								0					
			14	SS	27											0				
			ł				040													
			1				246													
244.4			15	SS	53										0					
18.9	END OF BOREHOLE: Notes:																			
	Water at the depth of 9.1m during drilling.																			
	during arming.																			
244.4 18.9																				
- 1			1			l	1	1						l				ı		

DRILLING DATA

CLIENT: Caledon Community Partners

Method: Hollow Stem Auger

PROJECT LOCATION: Macville Secondary Plan and Argo King, Caledon, ON

Diameter: 200mm REF. NO.: 20-169-105

DATUM: Geodetic

Date: Jul-05-2023 ENCL NO.: 8

	CATION: See Drawing 1 N 4857543 SOIL PROFILE			SAMPL	ES			DY	NAM	IC CO	NE PE	NETR	ATION	1							DE::::	21/2
(m)	0012 1 1 101	LOT				WATER			20	4		0	80	100	PLAST LIMIT W _P		URAL STURE ITENT W	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	REMAF AND GRAIN) SIZE
EPTH 265.3	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER	EVATION	265	UN QU 6 m	CONF	INED RIAXIA	+ L ×	FIÉLD & Sen: LAB	VANE sitivity VANE 100		TER CO		IT (%) 30	(cu)	NATURA (KN	DISTRIBU (%) GR SA S	
69:0 0.3	TOPSOIL: 250mm WEATHERED/DISTURBED NATIVE: clayey silt to silty clay,		1	SS	5			07, 20 65	23+							0	•					
1.0	trace sand, trace rootlets, brown, moist, firm CLAYEY SILT TO SILTY CLAY		2	SS	7			-								0						
	TILL: trace sand, trace gravel, brown, moist, firm grey below 1.5m		3	SS	6		2	54														
63.0	SANDY SILT TO SILTY SAND:				0		20	33														
2.0	trace clay, grey, wet, compact to dense		. 4	SS	23			Ė								0						
			5	SS	15		20	52								0			_			
							20	31														
			6	SS	30	H											o					
			_				20	50 E														
59.2	SILT: trace clay, trace sand, grey,																					
0.1	wet, compact		7	SS	21		2	59[-									0				0 3 9	93
257.7							2	58 -														
7.6	SANDY SILT TO SILTY SAND: trace clay, grey, wet, compact to dense		8	SS	13			ŀ									0					
	dense						2	57 -														
			9	SS	37		<u>:</u> 2:	56								0						
					37																	
							2	55											_			
			10	SS	20		2:	54									0					
253.1 12.2	SAND: some silt, trace gravel, grey, wet, compact		11	SS	16		2	53									0					
12.8	END OF BOREHOLE: Notes:	1	\vdash					╁						+								
253.1 12.2 252.5 12.8	1) 50mm dia. monitorng well installed upon completion. 2) Water Level Readings:																					
	Date: Water Level(mbgl): July 7, 2023 -0.3																					

PROJECT: Geotechnical Investigation

DRILLING DATA

Diameter: 200mm

CLIENT: Caledon Community Partners

Method: Hollow Stem Auger

PROJECT LOCATION: Macville Secondary Plan and Argo King, Caledon, ON

Date: Jul-04-2023

DATUM: Geodetic

ENCL NO.: 9

	SOIL PROFILE		s	AMPL	ES			DYNA RESIS	MIC CO STANCE	NE PE PLOT	NETRA	NOITA		PLAST	IC NAT	URAL	LIQUID	,	۲	RE	MARKS
(m)	DESCRIPTION	STRATA PLOT	IR.		BLOWS 0.3 m	GROUND WATER CONDITIONS	NOIT	SHE/	20 4	0 6	0 8 TH (kF	30 1	100	LIMIT W _P	CON	STURE ITENT W	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTI	AND AIN SIZ RIBUTIO
EPTH 274.2		STRAT	NUMBER	TYPE	"N"	GROUN	ELEVATION	• Q	UICK T	RIAXIAL 0 6	. ×	LAB V	tivity /ANE 100		TER Co		IT (%) 30	000	NATI		(%) A SI
274.0	TOPSOIL: 230mm	<u> </u>			40		274														
0.2	WEATHERED/DISTURBED NATIVE: sandy silt, trace clay,		1	SS	12		217	Ė							٥						
770	trace rootlets, trace organics,							Ė													
1.0	brown, moist, compact		2	SS	14			ŧ													
	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace						273	-													
	gravel, brown, moist, stiff to hard		\vdash					F													
	trace cobble fragments at 1.5m	181	3	SS	19			Ē							0						
			\vdash				272														
		191		2	20		212	Ė													
			4	SS	32			Ė							0						
								ļ.													
			5	SS	50/		271	F							0			1			
			$\vdash \vdash$		130mr			F						1							
								F						1							
			1				270														
							210	Ē						1							
	grey below 4.6m			0.5				Ė							l <u>.</u>	1_				<u>۔</u> ۔	
			6	SS	30			ŧ							4 —	†1				5 2	3 48
		187	\vdash				269	F						1				1			
			1					ŧ													
		irgi	1					Ė													
			┦				268	-													
267.7			7	SS	33		200	-							0						
6.5	GRAVELLY SAND: trace cobble, grey, wet, dense	6. (S)	\vdash					F						٥							
	grey, wer, derise	0.0	1					E													
		. O					267	┡─						_				1			
7.6	SANDY SILT TO SILTY SAND:	117	-					Ē													
7.0	trace clay, grey, wet, dense		8	SS	37			F								0					
						∇	w^^^^	<u> </u>	l												
			-				W. L. 2 Jul 07,	266.0 2023	m 												
							,	F													
								Ė													
			9	SS	35		265	<u> </u>								0		1			
		$ \cdot $	Ľ		"	[:目:		Ė													
								Ē						1							
						:: T:	264	Ė.	-					ऻ—				-			
263.5		111				: :	1	Ė													
10.7	SAND: some silt, trace clay, grey,	1::::						Ė												١.	_
	wet, dense		10	SS	33	:甘:	000	F						1		0				0 8	0 17
						: <u> </u>	263	F						İ				1			
								Ē						1							
		:::				:甘:	1	Ē						1							
		::::	H			:	262	<u> </u>										1			
			11	SS	40	[: : : : i		Ė						1		0					
12.8	END OF BOREHOLE:	+ -	\vdash			 	\vdash	┝				\vdash		\vdash				\vdash	\vdash	_	
12.0	Notes:																				
261.4 12.8	50mm dia. monitoring well installed upon completion. Water Level Readings:																				
														1							
	Date: Water Level(mbgl): July 7, 2023 8.2							1						1							
					1				1	1 1		1	1		1	1	1				

LOG OF BOREHOLE PW1

PROJECT: Hydrogeological Investigation DRILLING DATA CLIENT: Caledon Community Partners Method: Air Rotary

PROJECT LOCATION: Macville Community Diameter: 152mm REF. NO.: 20-169-105

	M: Geodetic CATION: N 4857933.965 E 598567.30	63_						Date: Ju	i-10-20	23							ENCI	L NO).: 2		
	SOIL PROFILE		S	AMPL	ES.	H H			oil Hea	d Spa		apor		F	PLASTIC	NATUR	RAL URE LI	QUID LIMIT	zi.	T WT	REMARKS AND
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	(p	pm)		•	(ppm	1)	\	N _P		NTENT (W _L	POCKET PEI (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZ DISTRIBUTI (%)
267.2 0.0 265.7 1.5	SILTY SAND TO SANDY SILT:trace sand, clay and fill SILTY CLAY: brown to grey moist		Z	-	F	00	ച ാടട -Bentor		30 4	0		20 3	40			20	30				GR SA SI
264.1 3.1	SILTY CLAY TO SANDY SILT: brown to grey moist					i:: Y i::	264 W. L. 2	63.8 mas	sl .												
261.1	sionii to gio, iioto						Aug 11 262	, 2023													
6.1	SAND: fine, wet, dense, traces of silt						260														
							258														
							256 -Sand														
							254														
								PVC Sc	reen—												
							250														
245.9							248														
21.3	NOTES: 1. 152 mm pumping well. 2. 20 ft of 20 slot-PVS screen (30-70 ft). 3. Soil description based on drillers' field observations. 4. Water level: 3.4 mbgs - August 11, 2023																				

LOG OF BOREHOLE NO.: 1

FIGURE NO.:

PROJECT DESCRIPTION: Proposed Mixed-Use Development

METHOD OF BORING: Flight-Auger

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

DRILLING DATE: September 29, 2021

		5	SAMP	LES			0	30)		7	70	90	ŀ	Atter	bera	Limit	s		
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)		× 5 O 0	Shea 0 Pend	ar Str 100 L etrati (blov	rengtl on Revs/30	h (kN 150 Lesista cm)	/m²) 20 Ince 70		● Me	PL — oistu	re C	 	nt (%)		WATER LEVEL
263.9	Ground Surface					t													T	
0.0	40 cm TOPSOIL	1	D0	8	0	Ę									15					
	Stiff to hard weathered	1	DO	0										11						
		2	DO	54	1 -					С)			•						
		3	DO	40	2 -	1			0					1	4					
	SILTY CLAY TILL	4	DO	41	-	1			0						15				-	uc
		5	DO	30	3 -			C)						17				•	Dry on completion
	some sand, a trace of gravel — brown grey occasional cobbles and boulders	6	DO	33	4 -				5						15					Dry o
257.3		7	DO	24	6 -			0							15					-
6.6	Installed 50 mm Ø monitoring well to 6.1 m completed with 3.1 m screen Sand backfill from 2.4 to 6.1 m Bentonite seal from 0.0 m to 2.4 m Provided with a monument steel casing				8															

LOG OF BOREHOLE NO.: 2

METHOD OF BORING: Flight-Auger

2

FIGURE NO.:

PROJECT DESCRIPTION: Proposed Mixed-Use Development

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon DRILLING DATE: September 28, 2021

		(SAMP	LES		10	30	Cone (blows/3 50 70	90	Д	tterberg Lir	nits	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)	×	Shear Stree 50 100 Penetratio (blows	ength (kN/m²) 150 2 1 1 1 1 n Resistance s/30 cm)	00	F	PL Disture Con	^{LL} −	WATER LEVEL
264.1	Ground Surface												
0.0	30 cm TOPSOIL Stiff to hard weathered	1	DO	9	0 -	0					19		
		2	DO	36	1 -		0			12			
		3	DO	45	2 -		С			1			
	SILTY CLAY TILL	4	DO	26	_		0			1	4		ion
		5	DO	44	3 -		0				16		Dry on completion
	some sand, a trace of gravel <u>brown</u> occasional cobbles and bouldersgrey				4 -								Dry or
		6	DO	25	5 -		0			12			
					-								
257.5		7	DO	26	6 -		0				16		
6.6	END OF BOREHOLE				7 -								
					8 -								
					9 -								
					10								

Soil Engineers Ltd.

Page: 1 of 1

LOG OF BOREHOLE NO.: 3

METHOD OF BORING: Flight-Auger

PROJECT DESCRIPTION: Proposed Mixed-Use Development

FIGURE NO.:

3

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon DRILLING DATE: September 28, 2021

		Ç	SAMP	LES		10	30		70	90		Atterbe	erg Limit	s	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)	;	She 50 Pen		n (kN/m² 150 2) 200 		PL 	Conten	t (%)	WATER LEVEL
266.3	Ground Surface														
0.0	30 cm TOPSOIL Firm to hard weathered	1	DO	6	0 -	0						14			
		2	DO	46	1 -			0							
		3	DO	51	2 -	-		0				14			
	SILTY CLAY TILL	4	DO	44	_			0				2			tion
		5	DO	56	3 -							14			Dry on completion
	some sand, a trace of gravel <u>brown</u> occasional cobbles and bouldersgrey				4 -	-									Dry o
		6	DO	28	5 -		0				1				
					-										
259.7		7	DO	28	6 -		0					15			
6.6	END OF BOREHOLE				7 -										
					8 -	-									
					9 -										
					_										
					10										

Soil Engineers Ltd.

Page: 1 of 1

LOG OF BOREHOLE NO.: 4

FIGURE NO.:

PROJECT DESCRIPTION: Proposed Mixed-Use Development

METHOD OF BORING: Flight-Auger

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

DRILLING DATE: September 29, 2021

		5	SAMP	LES		● Dynamic Cone (blows/30 cm) 10 30 50 70 90	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)	X Shear Strength (kN/m²) 50 100 150 200 —————————————————————————————————	WATER LEVEL
266.6	Ground Surface						
0.0	60 cm TOPSOIL	1	DO	8	0	0 20	
	Very stiff to hard <u>weathered</u>	2	DO	33	1 -	0 13	
		3	DO	48	2 -	0 12	
		4	DO	32		0 13	lon
	SILTY CLAY TILL	5	DO	41	3 -	15	Dry on completion
	brown_grey some sand, a trace of gravel occasional cobbles and boulders	6	DO	21	4 -	16	
260.0		7	DO	20	6 -		
6.6	Installed 50 mm Ø monitoring well to 6.1 m completed with 3.1 m screen Sand backfill from 2.4 to 6.1 m Bentonite seal from 0.0 m to 2.4 m Provided with a monument steel casing				8 - 9 -		

LOG OF BOREHOLE NO.: 5

METHOD OF BORING: Flight-Auger

FIGURE NO.:

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

PROJECT DESCRIPTION: Proposed Mixed-Use Development

DRILLING DATE: October 4, 2021

		(SAMP	LES		1	0			Cone 50			cm) 90			Atterl	pera I	imits			
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	0)	N-Value	Depth Scale (m)		X	Shea	ar Str 100	rength 1 on Revs/30	(kN/ 50	m²) 20				PL 		LL —	(%)		WATER LEVEL
		Nun	Туре	>-Z	Dep		0	30)	50 	7	0	90 I						(_WA_
267.9 0.0	Ground Surface 20 cm TOPSOIL				0	Ļ			_	_				_			0				
0.0	Stiff to hardweathered	1	DO	8		С)									2					
		2	DO	35	1 -				0							14					
		3	DO	27	2 -			0								16					
	SILTY CLAY TILL	4	DO	38	- -				0							16					tion
		5	DO	38	3 -				0							16				• - - -	Dry on completion
	some sand, a trace of gravel occasional cobbles and boulders — brown grey				4 -																Dry o
		6	DO	16	5 -		0								12						
																				•	
261.3		7	DO	17	6 -		0									15					
6.6	END OF BOREHOLE Installed 50 mm Ø monitoring well to 6.1 m completed with 3.1 m screen Sand backfill from 2.4 to 6.1 m Bentonite seal from 0.0 m to 2.4 m Provided with a monument steel casing				7 - 8 - 9 -																

LOG OF BOREHOLE NO.: 6

METHOD OF BORING: Flight-Auger

FIGURE NO.:

6

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

PROJECT DESCRIPTION: Proposed Mixed-Use Development

DRILLING DATE: September 29, 2021

		Ç	SAMP	LES			10	Dyna 30		Cone 50	(blow		cm) 90		٨	ttork	ora I	_imits	T		
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)		×	Shea	ar Str 100 etrati (blow	rength 1 on Revs/30	(kN/i 50	m²) 200 Ince		•	F	<u> </u>	re Co			WATER LEVEL	
268.1 0.0	Ground Surface 30 cm TOPSOIL				0	_				_							24		4		4
0.0	Firm to hard weathered	1	DO	7													24				
		2	DO	33	1 -				5						1	5					
		3	DO	26	2 -			0								16					
	SILTY CLAY TILL	4	DO	29				0)							16					lon
		5	DO	34	3 -			(0						1.	4					Dry on completion
	some sand, a trace of gravel <u>brown</u> occasional cobbles and bouldersgrey				4 -														-		Dry or
		6	DO	14	5 -		0									17				- - - - -	
					6 -															- - -	
261.5		7	DO	15			0								11					IΠ	
6.6	Installed 50 mm Ø monitoring well to 6.1 m completed with 3.1 m screen Sand backfill from 2.4 to 6.1 m Bentonite seal from 0.0 m to 2.4 m Provided with a monument steel casing				8 -																

LOG OF BOREHOLE NO.: 7

FIGURE NO.:

PROJECT DESCRIPTION: Proposed Mixed-Use Development

METHOD OF BORING: Flight-Auger

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

DRILLING DATE: September 29, 2021

			SAMP	LES		10		50	70 90	Atterberg	g Limits	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)) Penetrati	rength (kN) 150	1/m²) 200 1 1 1 1	PL 	Content (%)	WATER LEVEL
266.6	Ground Surface											
0.0	20 cm TOPSOIL Stiff to hard <u>weathered</u>	1	DO	8	0 -	0				21		
	<u>weathered</u>	2	DO	21	1 -		0			17 • i	-	-
		3	DO	31	2 -		0			14		-
	SILTY CLAY TILL	4	DO	46				0		13		- - -
		5	DO	40	3 -		0			14		Dry on completion
	some sand, a trace of gravel occasional cobbles and boulders — brown grey				4 -							Dry on
		6	DO	27	_ 5 -		0			16		-
					6 -							-
260.0		7	DO	26			0			2		
6.6	END OF BOREHOLE				7 -							-
					_							-
					8 -							
					9 -							-
					10							-

LOG OF BOREHOLE NO.: 8

METHOD OF BORING: Flight-Auger

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

PROJECT DESCRIPTION: Proposed Mixed-Use Development

DRILLING DATE: September 29, 2021

FIGURE NO.:

8

		(SAMP	LES		10		namic 30	Cone 50	(blows	/30 cm) 90		Λ++.	orbora I	imito		
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)		50 Pe	ear S	trength 0 1 ion Re	(kN/m 50	²) 200		PL 	ture Co	LL Intent (%)		WATER LEVEL
265.6 0.0	Ground Surface 25 cm TOPSOIL				0							\bot				4	
0.0	Stiff to hard weathered	1	DO	9	0	0								27			
		2	DO	30	1 -			0					15				
		3	DO	34	2 -			0					14				
	SILTY CLAY TILL	4	DO	54	-				0				15				ion
		5	DO	40	3 -			C)				15				Dry on completion
	some sand, a trace of gravel <u>brown</u> occasional cobbles and boulders grey				4 -												Dry on c
		6	DO	24	5 -		0						10	5		- •	
					-												-
259.0		7	DO	12	6 -	C)						15				
6.6	Installed 50 mm Ø monitoring well to 6.1 m completed with 3.1 m screen Sand backfill from 2.4 to 6.1 m Bentonite seal from 0.0 m to 2.4 m Provided with a monument steel casing				7 - 8 - 9 -												

Soil Engineers Ltd.

Page: 1 of 1

LOG OF BOREHOLE NO.: 9

FIGURE NO.:

PROJECT DESCRIPTION: Proposed Mixed-Use Development

METHOD OF BORING: Flight-Auger

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

DRILLING DATE: September 29, 2021

		Ç	SAMP	LES		10	Dynami 30	50	70	90	Atterb	erg Lim	nits	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)	×		Strength	n (kN/m² 50 2) 200 	PL 	e Conte	ent (%)	WATER LEVEL
267.7	Ground Surface													
0.0	50 cm TOPSOIL ————————————————————————————————————	1	DO	8	0 -	0						24		
	_weathered	2	DO	29	1 -		0				17			-
		3	DO	36	2 -		0				16			-
		4	DO	63	_				0		2			
	SILTY CLAY TILL	5	DO	44	3 -			0			15			Dry on completion
	some sand, a trace of gravel occasional cobbles and boulders	6	DO	23	4 - - 5 -		0				17			Dry or
261.1		7	DO	18	6 -						2			-
6.6	END OF BOREHOLE				7 - 8 - 9 - -									

LOG OF BOREHOLE NO.: 10

FIGURE NO.:

10

PROJECT DESCRIPTION: Proposed Mixed-Use Development

METHOD OF BORING: Flight-Auger

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

DRILLING DATE: October 5, 2021

Solid			(SAMP	LES			• I		mic Co			30 cm) 90	Τ	Atterk	nera I	imits		
201.0 Siff to hard 20 cm TOPSOIL 1 1 1 1 1 1 1 1 1	(m) Depth	SOIL DESCRIPTION	ier		en	Scale (m)	:	X 50	Shea	r Strer 100	ngth (F	(N/m²)) 2	00		PL —		 —		WATER LEVEL
Siff to hard Siff	(m)		Numb	Туре	N-Val	Depth	10	0	30	5	0	70	90						WATE
Stiff to hard		Ground Surface				0	╄		_	_		_		╀	T 4	4			
SILTY CLAY TILL 2 DO 15 1 O O O O O O O O O	0.0	Stiff to hard	1	DO	12			Э											
SILTY CLAY TILL 4 DO 42 5 DO 34 Some sand, a trace of gravel occasional cobbles and boulders — brown grey 6 DO 19 7 DO 26 END OF BOREHOLE 7 DO 26			2	DO	15	1 -	-	0											
SILTY CLAY TILL 4 DO 42 5 DO 34 5 DO 34 4 DO 42 5 DO 34 4 DO 42 5 DO 34 6 DO 19 6 DO 19 7 DO 26 7 DO 26 8 BOOK BOREHOLE			3	DO	46	2 -	-			0					•				-
some sand, a trace of gravel occasional cobbles and boulders — brown grey 6 DO 19 7 DO 26 END OF BOREHOLE 7 DO 26		SILTY CLAY TILL	4	DO	42		-			0					14				tion
6 DO 19 7 DO 26 8 - 1			5	DO	34	3 -			C						18			1	Dry on completion
6 DO 19 5 - O O O O O O O O O O O O O O O O O O		some sand, a trace of gravel occasional cobbles and boulders — brown grey				4 -													Dry c
7 DO 26 END OF BOREHOLE 7 DO 26 8			6	DO	19	5 -		C)										
7 DO 26 END OF BOREHOLE 7 DO 26 8						-	-												-
6.6 END OF BOREHOLE 7	261.0		7	DO	26				0										-
	6.6	END OF BOREHOLE				7 -													
						-													-
						8 -													
						9 -													
10						-													

LOG OF BOREHOLE NO.: 11

FIGURE NO.:

11

PROJECT DESCRIPTION: Proposed Mixed-Use Development

METHOD OF BORING: Flight-Auger

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

DRILLING DATE: October 5, 2021

			SAMP	LES		0	30	į	one (b 50	70		90		A	Atter	berg	Lim	its	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)	× 50	Shea) Pene (r Stre 100 tration blows	ngth (150 1 Resi 5/30 cr	(kN/m 0 istano m) 70	²) 200 :e	90			PL 	ıre C	onte		WATER LEVEL
267.2	Ground Surface																		
0.0	20 cm TOPSOIL Stiff to hard weathered	1	DO	10	0 -)										24			
		2	DO	27	1 -		0								17				
		3	DO	50/15	2 -)	1					
	SILTY CLAY TILL	4	DO	33			c								15				uc
		5	DO	35	3 -			0							16				Dry on completion
	some sand, a trace of gravel occasional cobbles and boulders — brown grey				4 -														Dry on
		6	DO	16	5 -	0									18				
					_														
260.6		7	DO	22	6 -	()							1					
6.6	END OF BOREHOLE				7 -														
					8 -														
					9 -														
					10														

Soil Engineers Ltd.

LOG OF BOREHOLE NO.: 12

FIGURE NO.:

12

PROJECT DESCRIPTION: Proposed Mixed-Use Development

METHOD OF BORING: Flight-Auger

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

DRILLING DATE: October 4, 2021

			SAMP	LES		10)		50	70	90			Atter	berg	Limits	S		
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)		X S	hear Str 100 1 1 enetration	ength 15	(kN/m 50	²) 200			PL 		LL		WATER LEVEL	
		N	Ty	ż	De	10)	30	50 I	70	90	\downarrow	10		20	30	40	×	
266.4 0.0	Ground Surface — 100 mm ASPHALTIC CONCRETE —					Ļ						+			I I			_	
0.0	200 mm GRANULAR FILL	1	DO	7	0	-									22 •				
	Firm to hard weathered				_	1										++			
		2	DO	22	1 -									15					
			ЪО	22			0		+	\vdash		+				++		-	
					-	\blacksquare								15					
		3	DO	43	2 -			С											
					-	1								15		+		-	
		4	DO	36	-	\blacksquare		0				1		•				1	_
	SILTY CLAY TILL				3 -													-	etio
		5	DO	69	3					0				16		+			ldu
					_														n co
						\blacksquare													Dry on completion
	some sand, a trace of gravel				4 -														
	some sand, a trace of gravel occasional cobbles and boulders				_														
		6	DO	25		\perp								17		++		-	
					5 -							1						1	
					_														
																+			
					6 -										21				
259.8		7	DO	16	_	\blacksquare	0					+				++		-	
6.6	END OF BOREHOLE					\blacksquare										\blacksquare			
					7 -														
					_	+						+				+			
					8 -	1			+			+				++		-	
												-				\blacksquare			
					9 -					\vdash	+	+	+		\vdash	++	+	-	
												1				#		1	
					_	1				\Box	+	+	+		\vdash	+			
					10	-													

Soil Engineers Ltd.

LOG OF BOREHOLE NO.: 13

METHOD OF BORING: Flight-Auger

FIGURE NO.:

13

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

PROJECT DESCRIPTION: Proposed Mixed-Use Development

DRILLING DATE: October 1, 2021

			SAMP	LES		10		ynamic 30	Cone	(blow		:m) 90	Δtto	rhero	ı Limi	te		
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)	;	× s 50 D P	hear S	trength 0 1 tion Re	n (kN/r 50	m ²) 200 ince	_	PL 		 	_)	WATER LEVEL
265.8	Ground Surface										·					·		
0.0	60 cm TOPSOIL	1	DO	13	0)								32			
	Very stiff to hard <u>weathe</u>	er <u>ed</u> 2	DO	18	1 -		0						14					
		3	DO	35	2 -			0					15					
		4	DO	38				0					15					ū
	SILTY CLAY TILL	5	DO	40	3 -			C)				15					Dry on completion
	brook some sand, a trace of gravel occasional cobbles and boulders	grey 6	DO	16	4 -		0						18					Dry on
				10	5 -													
259.2		7	DO	18	6 -		0						13					
<u>259.2</u> 6.6	END OF BOREHOLE				7 - 8 - 9 -													

Soil Engineers Ltd.

LOG OF BOREHOLE NO.: 14

FIGURE NO.:

14

PROJECT DESCRIPTION: Proposed Mixed-Use Development

METHOD OF BORING: Flight-Auger

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

DRILLING DATE: October 4, 2021

		Ş	SAMP	LES		10	30 50	ne (blows/30 cm)		Atterber	a Limits	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	ā	N-Value	Depth Scale (m)	X Sh	ear Stren 100	gth (kN/m²) 150 200 Resistance 30 cm)		PL 	LL Content (%)	WATER LEVEL
		Nur	Туре	> 2	Deb	10	30 50	70 90		10 20		W
267.8 0.0	Ground Surface				0 -	<u> </u>			+			_
0.0	60 cm TOPSOIL	1	DO	8	-	0				23		
	Very stiff to hard <u>weathered</u>	2	DO	26	1 -	C				15		
		3	DO	29	2 -)			15		
		4	DO	38	: -		0			18		<u> </u>
	SILTY CLAY TILL	5	DO	34	3 -		0			11		Dry on completion
	brown grey some sand, a trace of gravel occasional cobbles and boulders				4 -					10		Dry on co
		6	DO	36	5 - -		0					
					6 -					18		
261.2		7	DO	87/23					+			-
6.6	END OF BOREHOLE Installed 50 mm Ø monitoring well to 6.1 m completed with 3.1 m screen Sand backfill from 2.4 to 6.1 m				7 -							
	Bentonite seal from 0.0 m to 2.4 m Provided with a monument steel casing				8 -							
					9 -							
					10							

Soil Engineers Ltd.

LOG OF BOREHOLE NO.: 15

.. 10

FIGURE NO.:

15

PROJECT DESCRIPTION: Proposed Mixed-Use Development

METHOD OF BORING: Flight-Auger

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon DRIL

DRILLING DATE: October 1, 2021

		Ç	SAMP	LES		● Dynamic Cone (blows/30 cm) 10 30 50 70 90 Atterberg Limits	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)		WAIER LEVEL
266.2	Ground Surface						
0.0	60 cm TOPSOIL	1	DO	7	0 _	O 23	
	Very stiff to hard <u>weath</u> er <u>ed</u>	2	DO	17	1 -	0 19	
		3	DO	41	2 -	0 • • •	
		4	DO	45		0 13	on
	SILTY CLAY TILL	5	DO	42	3 -	0 •	Dry on completion
	<u>brown</u> grey some sand, a trace of gravel occasional cobbles and boulders	6	DO	24	4 -	14 O	Dry or
					5 -		
259.6		7	DO	30	_	Φ 13	
6.6	END OF BOREHOLE				7 - 8 - 9 -		

Soil Engineers Ltd.

LOG OF BOREHOLE NO.: 16

METHOD OF BORING: Flight-Auger

FIGURE NO.:

16

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

PROJECT DESCRIPTION: Proposed Mixed-Use Development

DRILLING DATE: October 1, 2021

		,	SAMP	LES		Τ	10		nam 30		one (b	lows/	30 cm		Λ. t. t. c. t		Linai	la.			
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)		×	Sh 50 Pe	lear 1	Strer 00 1 ation lows/	ngth (150	kN/m²) 200	• N			LI		_	[[[]	WAIEK LEVEL
266.0	Ground Surface																				
0.0	60 cm TOPSOIL	1	DO	7	0 -	1)									22 •					
	Very stiff to hard <u>weathered</u>	2	DO	20	1 -		•	0							17						
		3	DO	30	2 -			(0						16						
	<u>b</u> row <u>n</u>	4	DO	47	_					0					14					•	ion
	SILTY CLAY TILL grey	5	DO	40	3 -	1			,	0					13						Dry on completion
	some sand, a trace of gravel occasional cobbles and boulders	6	DO	27	4 -			C							2						Dry or
		7	DO	29	6 -										1					*- - - - -	
259.4 6.6	END OF BOREHOLE Installed 50 mm Ø monitoring well to 6.1 m completed with 3.1 m screen Sand backfill from 2.4 to 6.1 m Bentonite seal from 0.0 m to 2.4 m Provided with a monument steel casing			2,	7 - 8 - 9 -																

Soil Engineers Ltd.

LOG OF BOREHOLE NO.: 17

METHOD OF BORING: Flight-Auger

FIGURE NO.:

17

PROJECT DESCRIPTION: Proposed Mixed-Use Development

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

DRILLING DATE: October 1, 2021

		Ç	SAMP	LES		Dynamic Cone (blows/30 cm) 30 50 70 90
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)	X Shear Strength (kN/m²) 50 100 150 200 Penetration Resistance (blows/30 cm) 10 30 50 70 90 10 20 30 40 Moisture Content (%) ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ✓ ✓ ✓
266.2	Ground Surface					
0.0	60 cm TOPSOIL	1	DO	9	0 -	Q 24 • • • • • • • • • • • • • • • • • •
	Brown, stiff to hard <u>weath</u> er <u>ed</u>	2	DO	22	1 -	12
	SILTY CLAY TILL	3	DO	40	_	14
	some sand, a trace of gravel occasional cobbles and boulders	4	DO	36	2 -	17
263.3 2.9	Dense to very dense				3 -	
		5	DO	50/13	_	mpletion
	<u>brown</u> grey SANDY SILT TILL				4 -	W.L. @ El. 260.1 m on completion
		6	DO	93/28	5 -	
	traces of clay and gravel occasional cobbles and boulders				_	
259.6		7	DO	37	6 -	
6.6	END OF BOREHOLE				7 -	
					8 -	
					9 -	
					_	
					10	

Soil Engineers Ltd.

LOG OF BOREHOLE NO.: 18

METHOD OF BORING: Flight-Auger

FIGURE NO.:

18

PROJECT LOCATION: King Street and Humber Station Road, Town of Caledon

PROJECT DESCRIPTION: Proposed Mixed-Use Development

DRILLING DATE: October 1, 2021

		5	SAMP	LES		T	10		30	5	one (60	70)	90			At	terb	era	Lim	its		T		
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Ф	N-Value	Depth Scale (m)		×	Sh 50	ear :	Strer	ngth 15 I Res /30 c	(kN/r 50	n²) 200			• [P	L		L	L ent (%)		WATER LEVEL	
		Nun	Туре	N-N	Dep		10		30	5	60 	70)	90 I							4			WA	
265.8 0.0	Ground Surface 20 cm TOPSOIL				0 -	1	_								L			olo		_			4		_
0.0	Firm to hard	1	DO	7)											20)						
	SILTY CLAY TILL	2	DO	27	1 -	1		C									15	5							
		3	DO	37	2 -				С									6							
	some sand, a trace of gravel occasional cobbles and boulders	4	DO	52		1					0							18							
262.9 2.9	Dense				3 -	1												18					١,		
		5	DO	33					0									•							
	SANDY SILT <u>brown</u> grey				4 -																			`[] ·[]	
	a trace of clay wet	6	DO	35	5 -				0									18						-[-]	
260.2					-	I																	ď	.	F
5.6	SAND				6 -	1												20					$\left\ \left[$		IOII
259.2	fine-grained, silty wet	7	DO	41	-	-				0					H			-	+					2	7
6.6	END OF BOREHOLE Installed 50 mm Ø monitoring well to 6.1 m completed with 3.1 m screen Sand backfill from 2.4 to 6.1 m Bentonite seal from 0.0 m to 2.4 m Provided with a monument steel casing				7 -																			40	Cave-III & El. 202.3 III UII CUIIIpleilUII
					9 -	1																			
					-	1																			

Soil Engineers Ltd.

Appendix B-2 Argo King I & II

CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 19-093-100

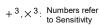
	CATION: See Drawing 1 N 4857122.7							DYN	AMIC C	ONE PE	NETR	ATION									
	SOIL PROFILE		8	SAMPL	ES	띪		RES		ONE PE E PLOT				PLASTI LIMIT	c NAT	URAL	LIQUID LIMIT	 -	- WT		MARKS
n) EV PTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	0 1	AR ST JNCON QUICK	RENG FINED	TH (kl + L ×	FIÉLD VA & Sensitiv	ANE vity ANE	W _P ⊢ WA	TER CO	ITENT W O ONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTR	IN SIZ IBUTI (%)
57.2 5 9.0 0.2	_ TOPSOIL : 225 mm	3/1/2	1	SS	5	0 0	257	┢	20	100				<u> </u>			-			GR SA	1 51
0:2	FILL: clayey silt, trace topsoil/rootlets, greyish brown, very moist. firm		2	SS	6	abla	W. L.	E 256.4	 m							0					
1.5	possibly weathered/ disturbed native below 0.8m SILTY CLAY TILL: some sand to		3	SS	30		Nov 2	1, 202 [[o			225			
	sandy, trace gravel, brown, moist, very stiff to hard silty clay at 2.3m		4	SS	31		255	-							l-o-		+	225		0 4	57
		***	5	SS	28		254								0			225			
							. 253														
4.8	200mm sand below 4.6m CLAYEY SILT TILL: sandy, trace gravel, occasional seams/ layers of		6	SS	16		252								0						
	Native below 0.8m SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist, very stiff to hard silty clay at 2.3m 200mm sand below 4.6m CLAYEY SILT TILL: sandy, trace gravel, occasional seams/ layers of sand, grey, moist, very stiff To SS 23 251 END OF BOREHOLE: Notes: 1) 50 mm diameter monitoring well installed in borehole. 2) Water Level Readings: Date: Water Level (mbgl) Oct. 7, 2019 0.8 Sep. 22, 2022 0.6 Oct. 26, 2022 0.6 Oct. 26, 2022 0.6 Oct. 26, 2022 0.6 Oct. 26, 2022 0.6																				
6.5	END OF BOREHOLE:	[11.]	_	33	23		 	┞													
	Notes: 1) 50 mm diameter monitoring well installed in borehole. 2) Water Level Readings:																				
	Oct. 7, 2019 0.8 Sep. 22, 2022 0.6																				
			I	1	1	I	1	1		1				l			1	1			

CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA


Method: Solid Stem Auger

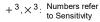
Diameter: 150mm REF. NO.: 19-093-100

Date: Jun-21-2019 ENCL NO.: 3

	M: Geodetic	۰	.0050	77 70				Date	: Jun-2	21-2019	9					ΕN	ICL N	O.: 3		
BH LC	OCATION: See Drawing 1 N 4857253.8 SOIL PROFILE	9 E 5		SAMPL	ES			DYNA RESI	MIC CC	NE PE	NETRA	ATION			NATI	IRAI			_	REMARKS
m) LEV PTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	20 4 AR STI INCONF IUICK TI	0 6 RENG INED RIAXIAL	0 8 ΓΗ (kF + - ×	Pa) FIELD VA & Sensitiv	ANE vity ANE	W _P	TER CO	TENT W DOMTEN		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI
59.0	TOPSOIL: 200mm	N 1/2		} SS	<u>F</u>	20 20	<u> </u>	:	20 4	0 6	0 8	80 10	00	1	0 2	20 3	80			GR SA SI
5 9.9	FILL: clayey silt, some sand, trace gravel, trace cobble, brown, very moist, firm to stiff		2	SS	8	-	258								0					
1.5	SILTY CLAY TILL: some sand to sandy, trace gravel, occasional		3	SS	14	-	257								0					
	sand seams, brown, moist, stiff to very stiff trace cobble below 2.3 m		4	SS	23	-	256								٥					
			5	SS	26										o					
	grow holow 4.6 m						255											-		
	grey below 4.6 m.		6	SS	17		254								0					
52.5			7	SS	16		253								0					
	Borehole was wet at bottom upon completion.																			

CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON


DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 19-093-100

JIT LO		2 E 5	9849	96.42		_		IDV4 ·	ANNO	ONE 55	NICTO:	ATION:						_		
	SOIL PROFILE	See Drawing 1 N 4857347.52 E 598496 SOIL PROFILE DESCRIPTION L: 200 mm ayey silt, some sand, trace brown, very moist, firm SILT TILL: sandy, trace brown, moist, stiff SILT TILL: sandy, trace brown, moist, very stiff to brown, moist, very stiff to brown, moist, very stiff to brown, moist, hard SILT TILL: sandy, trace brown, moist, very stiff to brown, moist,						DYN/ RESI	AMIC CO STANC	E PLOT	NETRA	A FION		PLASTI	C .NAT	URAL	FIOUID		₽	REMARKS
m)		DESCRIPTION SOIL: 200 mm Clayey silt, some sand, trace sil, brown, very moist, firm (FY SILT TILL: sandy, trace sl, brown, moist, stiff DY SILT: trace to some clay, sional sand seams, brown, t, loose Y CLAY TILL: sandy, trace sl, brown, moist, very stiff to below 3.1 m (FY SILT TILL: sandy, trace sl, brown, moist, very stiff to below 3.1 m (FY SILT TILL: sandy, trace sl, brown, moist, very stiff to below 3.1 m (FY SILT TILL: sandy, trace sl, cobble, occasional wet sand is, grey, moist, hard (FY SILT TILL: some clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, very moist, dense of the same clay, gravel, grey, and the same clay, gravel, grey, gravel, grey, very moist, dense of the same clay, gravel, grey, gravel, gr				真,			20	40 6	0 8	30 10	0	LIMIT	MOIS	STURE ITENT	LIMIT	EN EN	<u>}</u> _	AND
LEV		PLC	١		WS E	M SNC	N O	SHE	AR ST	RENG	TH (kF	Pa)		W _P		w 	WL	KP.	N _m °	GRAIN SIZ
PTH	DESCRIPTION	¥	Ä		0.3	\(\)	Ĭ	οι	JNCON	FINED	÷	FIÉLD VA & Sensitivi	NE ty					500	통	(%)
		1₹	M	YPE		NO NO	LEV				_ ×	LAB VA	NE						₹	
59.8	TORSOIL : 200 mm					0 0	Ш	<u> </u>	20 '	40 6	U 8	10	0	1	-	-	10			GR SA SI
9.6 0.2		XX	1	SS	4			F								0				
59.0	_topsoil, brown, very moist, firm	X				∇	250	F	l											
8.0	CLAYEY SILT TILL: sandy, trace		2	SS	10										0					
58.3	gravel, brown, moist, stiff		1		_		NOV Z	i, 202 F	_											
1.5	occasional sand seams, brown,	-	3	SS	9		258	┡							0			ł		
7.5	_moist, loose							Ē												
2.3	SILTY CLAY TILL: sandy, trace		4	SS	31			Ē							0					
	gravel, brown, moist, very stiff to hard		1				257											1		
	grey below 3.1 m		5	SS	25			E							0					
							256	Ē												
5.5			1				200	ŧ												
4.3	CLAYEY SILT TILL: sandy, trace		1				-	F												
	gravel/ cobble, occasional wet sand	KK	6	SS	36		255	<u> </u>							•			ł		14 24 45
	seams, grey, moist, nard	wn, moist, stiff LT: trace to some clay, Isand seams, brown, se AY TILL: sandy, trace wn, moist, very stiff to 7 3.1 m 5 SS SILT TILL: sandy, trace while, occasional wet sand ey, moist, hard LT TILL: some clay, el, grey, very moist, dense OREHOLE: diameter monitoring well borehole. evel Readings: Water Level (mbgl) 10 1.6 10 22 0.3 122 0.7].:⊟:		Ē														
54.1]					Ē												
5.7	SANDY SILT TILL: some clay,	PROFILE SAMPLES CRIPTION								1										
53.3																				
6.5	END OF BOREHOLE:																			
	Notes: 1) 50 mm diameter monitoring well	L PROFILE SAMPL LOD WITH STATE STAMPL SIT TILL: sandy, trace n, moist, stiff to sand seams, brown, TILL: sandy, trace n, moist, very stiff to sand seams, brown, TILL: sandy, trace n, moist, very stiff to sand seams, brown, TILL: sandy, trace le, occasional wet sand n, moist, hard TILL: sandy, trace le, occasional wet sand n, moist, hard TILL: sandy, trace le, occasional wet sand n, moist, hard TILL: sandy, trace le, occasional wet sand n, moist, hard TILL: sandy, trace le, occasional wet sand n, moist, hard TILL: sandy, trace le, occasional wet sand n, moist, hard TILL: sandy, trace le, occasional wet sand n, moist, hard TILL: sandy, trace le, occasional wet sand n, moist, hard TILL: sandy, trace le, occasional wet sand n, moist, hard TILL: sandy, trace le, occasional wet sand n, moist, hard TILL: sandy, trace le, occasional wet sand n, moist, hard																		
	installed in borehole. 2) Water Level Readings:																			
	Date: Water Level (mbgl)																			
	Oct. 7, 2019 1.6		2																	
	Sep. 22, 2022 0.3	1																		
	Oct. 26, 2022 0.7 Nov. 21, 2022 0.8																			
	1101. 21, 2022 0.0																			
		ESCRIPTION DIL PROFILE ESCRIPTION DIL PROFILE DIL PROFILE ESCRIPTION DIL PROFILE DIL PROFILE ESCRIPTION DIL PROFILE DIL PROFILE SAMPI DIL PROFILE SAMPI DIL PROFILE SAMPI DIL SAMPI DIL PROFILE SS SS SS SS SS DIL TILL: sandy, trace ble, occasional wet sand y, moist, hard DIL PROFILE SAMPI DIL PROFILE SAMPI DIL PROFILE SS SS SS SS SS SS SS SS SS																		
		DESCRIPTION L: 200 mm yey silt, some sand, trace rown, very moist, firm SILT TILL: sandy, trace own, moist, stiff SILT: trace to some clay, al sand seams, brown, ose AY TILL: sandy, trace rown, moist, very stiff to w 3.1 m SILT TILL: sandy, trace obble, occasional wet sand rey, moist, hard SILT TILL: some clay, vel, grey, very moist, dense BOREHOLE: In diameter monitoring well in borehole. Level Readings: Water Level (mbgl) 19 1.6 2022 0.3 2022 0.7																		
		ESCRIPTION 200 mm y silt, some sand, trace wn, very moist, firm LT TILL: sandy, trace vn, moist, stiff T: trace to some clay, sand seams, brown, e YTILL: sandy, trace vn, moist, very stiff to 3.1 m LT TILL: sandy, trace vn, moist, very stiff to 3.1 m LT TILL: sandy, trace vn, moist, very stiff to 3.1 m LT TILL: some clay, l, grey, very moist, dense DREHOLE: liameter monitoring well borehole. evel Readings: Water Level (mbgl) 9 1.6 22 0.3 22 0.7																		
									1	1		1				i	ii.			
													l							

CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 19-093-100

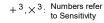
Date: Jun-21-2019 ENCL NO.: 5

	M: Geodetic							Date	: Jun-	21-201	9					ΕN	NCL N	0.: 5			
BH LO	CATION: See Drawing 1 N 4857475.29 SOIL PROFILE	9 E 5		60.25 SAMPL	FS			DYN.	AMIC CO	ONE PE E PLOT	NETR	ATION	l								
(m)	DESCRIPTION	PLOT		7 4411 2	BLOWS 0.3 m	GROUND WATER CONDITIONS	/ATION	SHE	20 AR ST	40 6 RENG	0 TH (k	80 Pa)	100	PLAST LIMIT W _P		URAL STURE ITENT W	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	REMAR AND GRAIN S DISTRIBU) SIZI
62.7		STRATA PLOT	NUMBER	TYPE	þ	GROUN	₩.L. Nov 2	1 263.3	mCK T	RIAXIAI	L ×	FIELD & Sens LAB	VANE sitivity VANE 100		TER C0	20 3	30	90°	NATUR)	(%) GR SA S	
60.0 0.2 61.9	TOPSOIL: 200 mm FILL: clayey silt, trace topsoil/ organics, trace gravel, brown, wet,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	SS	4		262	_								0					
8.0	SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist,		2	SS	13		261								0						
60.6 2.1	firm to very stiff grey below 1.5 m. SANDY SILT TILL: some clay,		3	SS	17		201								•						_
59.4	some gravel, grey, very moist, loose to compact		4	SS	7		260	Ē							•					12 30 4	.5
3.3	SILTY SAND: trace clay, occasional gravel, grey, wet, compact		5	SS	12		259								0						
			6	SS	14		258									0		_		0 64 3	4
							257														
56.2 6.5	END OF BOREHOLE:		7	SS	17			Ē								0					
	Notes: 1) 50 mm diameter monitoring well installed in borehole. 2) Water Level Readings:																				
	Date: Water Level (mbgl) Oct. 7, 2019 Artesian (above ground surface) Sep. 22, 2022 Artesian (above ground surface) Oct. 26, 2022 Artesian (above																				
	ground surface) Nov. 21, 2022 Artesian (-0.6m plus)																				

CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

DRILLING DATA


Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 19-093-100

	M: Geodetic							Date:	Jun-2	24-201	9					ΕN	NCL N	O.: 6		
BH LC	OCATION: See Drawing 1 N 4857351.8	8 E 5					1	DYNA	MIC CC	NE PE	NETRA	ATION		l						
	SOIL PROFILE	Ι.	3	SAMPL	.ES	ER				NE PE PLOT		_	00	PLASTI LIMIT	C NATI	JRAL TURE	LIQUID LIMIT	z	NATURAL UNIT WT (kN/m³)	REMARKS AND
(m)		STRATA PLOT			S E	GROUND WATER CONDITIONS	Z O	SHEA	0 4 AR STI	<u> </u>	LLL TH (kF	∟—— Pa)	00	W _P		TENT V	W _L	POCKET PEN. (Cu) (kPa)	NL UNI	GRAIN SIZE
ELEV DEPTH	DESCRIPTION	ATA	NUMBER	ш	BLOWS 0.3 m	N O	\// I	2617	m^ONE	INIED	ì	FIÉLD V	ANE ivity	Δ	TER CC	NITEN	T (%)	Š (3)	ATUR/	DISTRIBUTION (%)
260.7		STR	NON	TYPE	ż	GRC	Nov 2	2022	-11CK 11	O 6	- × 0 8	LAB V 30 1	OO				30		z	GR SA SI CL
0.0	FILL:clayey silt, sandy, trace topsoil, trace gravel & brick	\bowtie	1	SS	8			E						c						
259.9	fragments, brown, moist, stiff	\bigotimes	_				260											1		
0.8	SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist,	13/	2	SS	15			F							0					
Ē.	stiff to very stiff		3	SS	14		259	<u> </u>							-			-		
<u>-2</u>								F												
		1/3/	4	SS	25		258	<u> </u>							0					
-3	brown to grey below 3.1 m		5	SS	25			Ē							0					
	3 7		Ť		20		257	<u> </u>												
<u>-4</u>			1					Ē												
-256.1 - 4.6	SANDY SILT TILL: some clay,		6	SS	34	∤ ∶∐⊹	256	<u> </u>						L.						
-5 -	trace gravel, grey, moist, dense		Ļů	33	34			Ē						`						
							255	Ē												
254.6 254.2	CLAYEY SILT TILL: sandy, trace		7	SS	23			Ē						l ,						
6.5	gravel, occasional sand scams, grey, moist, very stiff	rlī·l	<u> </u>	33	23	!: ` · · ·		-						 '						
	END OF BOREHOLE:																			
	Notes: 1) 50 mm diameter monitoring well																			
	installed in borehole. 2) Water Level Readings:																			
	Date: Water Level (mbgl):																			
	Oct. 7, 2019 Artesian (above																			
	ground surface) Sep. 22, 2022 Artesian (above																			
	ground surface) Oct. 26, 2022 Artesian (above																			
	ground surface) Nov. 21, 2022 Artesian (-1.0m)																			
	,																			
<u>:</u>																				
\vdash		_				CDADU							1				<u> </u>			

DS SOIL LOG-2021-FINAL 19-093-100 GEO COMBINED FILE.GPJ DS.GDT 23-1-27

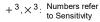
CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger


Diameter: 150mm REF. NO.: 19-093-100

Date: Jun-24-2019 ENCL NO.: 7

CLAYEY SILT TILL: sandy, trace gravel, brown, moist, very stiff to hard sand seams, brown to grey below 2.3 m grey below 3.1 m 254.8 SANDY SILT TILL: some clay, trace gravel/ cobble, grey, moist, compact CLAYEY SILT TILL: sandy, trace gravel/ cobble, grey, moist, compact		M: Geodetic		-000	. 4 77				Date.	Jun-2	24-2019	9					Er	NCL N	O.: 1		
DESCRIPTION	BHTC		5 E 5					1	DYNA	MIC CC	NE PE	NETR <i>A</i>	ATION		1				Ι		
1 1 258,6 258,6 259,	—	SOIL PROFILE	_	3	AIVIPL	.ES	<u> </u>		RESIS	TANCE	PLOT	\geq			PLASTI	C NATU	JRAL TURF	LIQUID	<u> </u>	M	
1 1 258,6 258,6 259,	(m)		10			ω _l	/ATE	_			نــــــــــــــــــــــــــــــــــــــ			00	l	CON	TENT		Pa)	UNIT (°	
1 1 258,6 258,6 259,	ELEV	DESCRIPTION]	<u>~</u>		3 2 2		É				TH (kF	Pa)	ΔNE					9.5 E.S.	RAL KN/m	
1 1 258,6 258,6 259,	DEPTH	DESCRIPTION	¥	4BE	ш	<u>Plo</u>		\{				+	& Sensiti	vity	l wat	ER CC	NTEN	T (%)	ğ0	UATU.	(%)
1 1 1 1 1 1 1 1 1 1	250 4		STR	Į Š	₹	ż	GRO													_	GR SA SI CL
1.8 ftm CLAYEY SILT TILL: trace sand,	259.2	TOPSOIL: 200 mm		1				0.50													
1.8 ftm CLAYEY SILT TILL: trace sand,		FILL: clayey silt, some topsoil,		+				259											1		
257.9 CLAYEY SILT TILL: trace sand, or clay, trace gravel, brown, moist, very stiff to hard sand seams, brown to grey below 2.3 m grey below 3.1 m 258.9 SANDY SILT TILL: some clay, trace gravel/ cobble, grey, moist, compact 259.9 seams of sand below 6.1 m 250.9 seams of sand below 6.1 m 250.9 seams of sand below 6.1 m 250.9 seams of sand below 6.1 m 250.0 clay Yes and sand sand sand sand sand sand sand	1 0.8	trace rootlets, brown, very moist,	M		SS	7	\perp	W. L. :	⊦ 258.6 ı	n n						0					
o clayer sill time (weathered / disturbed) Clayer Sill Till: sandy, trace gravel, brown, moist, very stiff to hard sand seams, brown to grey below 2.3 m grey below 3.1 m 254.8 255.9 SANDY SILT TILL: some clay, trace gravel/ cobble, grey, moist, compact 6 SS 24 255 255 255 256 257 257 257 257	E I	CLAYEY SILT TILL: trace sand,	ИK	カ▔		· ·		Nov 2	, 2022												
CLAYEY SILT TILL: sandy, trace gravel, brown, moist, very stiff to hard sand seams, brown to grey below 2.3 m grey below 3.1 m 5 SS 23 256 254.8 SANDY SILT TILL: some clay, trace gravel/ cobble, grey, moist, compact 6 SS 24 Trace gravel/ cobble, grey, moist, compact 7 SS 17 253 6.5 END OF BOREHOLE: Notes: 1) 50 mm diameter monitoring well installed upon completion. 2) Water Level (mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.9	1.5			3	SS	17			Ē							0					
gravel, brown, moist, very stiff to hard sand seams, brown to grey below 2.3 m grey below 3.1 m 254.8 255. 256. 257. 256. 258. 258. 259. SANDY SILT TILL: some clay, trace gravel/ cobble, grey, moist, compact 5 SS 24 254 257. 5 SS 23 5 SS 23 5 SS 24 7 SS 17 253 END OF BOREHOLE: Notes: 1) 50 mm diameter monitoring well installed upon completion. 2) Water Level (mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.9 Oct. 2	<u>-2</u>		KK	\Box					E												
hard sand seams, brown to grey below 2.3 m grey below 2.3 m grey below 3.1 m 5 SS 23 5 SS 23 5 SS 24 255 256 258 258 259 250 250 250 250 250 250 250				4	SS	31		257	_							0			1		
2.3 m grey below 3.1 m 5 SS 23 256 254.8 SANDY SILT TILL: some clay, trace gravel/ cobble, grey, moist, compact 6 SS 24 7 SS 17 254 END OF BOREHOLE: Notes: 1) 50 mm diameter monitoring well installed upon completion. 2) Water Level (Readings: Date: Water Level (mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.9 Oct. 26, 2022 0.6	F ₃			一					Ė												
grey below 3.1 m 254.8 254.8 SANDY SILT TILL: some clay, trace gravel/ cobble, grey, moist, compact 5 seams of sand below 6.1 m 7 SS 17 253 END OF BOREHOLE: Notes: 1) 50 mm diameter monitoring well installed upon completion. 2) Water Level (Readings: Date: Water Level (mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.6	E I			5	SS	23		256	<u> </u>							٥					
254.8 4.6 SANDY SILT TILL: some clay, trace gravel/ cobble, grey, moist, compact 5 seams of sand below 6.1 m 7 SS 17 253 6 SS 24 7 SS 17 254 7 SS 17 253 6 SS 24 7 SS 17 254 7 SS 17 253	Ē l	grey below 3.1 m	13.	广				230	Ė												
4.6 SANDY SILT TILL: some clay, trace gravel/ cobble, grey, moist, compact 8 seams of sand below 6.1 m 252.9 seams of Sand below 6.1 m 7 SS 17 253 6 SS 24 254 7 SS 17 254 7 SS 17 253 8 END OF BOREHOLE: Notes: 1) 50 mm diameter monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level (mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.6	4		PH	1					Ē										1		
4.6 SANDY SILT TILL: some clay, trace gravel/ cobble, grey, moist, compact 5 seams of sand below 6.1 m 7 SS 17 253 6 SS 24 2 254 7 SS 17 253 8 Date: Water Level (mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.6	254.8		rkl					255	<u> </u>										1		
seams of sand below 6.1 m 7 SS 17 253 6.5 END OF BOREHOLE: Notes: 1) 50 mm diameter monitoring well installed upon completion. 2) Water Level (mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.9 Oct. 26, 2022 0.6	4.6	SANDY SILT TILL: some clay,		6	SS	24	 : :		Ė						0				1		
seams of sand below 6.1 m 7 SS 17 253 END OF BOREHOLE: Notes: 1) 50 mm diameter monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.6	Ĕ l	trace gravel/ cobble, grey, moist,		t					Ē												
seams of sand below 6.1 m 7 SS 17 253 END OF BOREHOLE: Notes: 1) 50 mm diameter monitoring well installed upon completion. 2) Water Level (mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.6	ŧ l	compact					<u> ::目:</u> :	. 254													
6.5 END OF BOREHOLE: Notes: 1) 50 mm diameter monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.6	<u>-6</u>						上 目:	:	Ē												
Notes: 1) 50 mm diameter monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.6				7	SS	17		253							(
1) 50 mm diameter monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.6	6.5																				
installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.6																					
Date: Water Level(mbgl): Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.6		installed upon completion.																			
Oct. 7, 2019 1.2 Sep. 22, 2022 0.9 Oct. 26, 2022 0.6		2) Water Level Readings:																			
Sep. 22, 2022 0.9 Oct. 26, 2022 0.6		Date: Water Level(mbgl):																			
Oct. 26, 2022 0.6		Oct. 7, 2019 1.2 Sep. 22, 2022 0.9																			
Nov. 21, 2022 0.8		Oct. 26, 2022 0.6																			
		Nov. 21, 2022 0.8																			
																			1		
																			1		
																			1		
																			1		
																			1		
									1										1		
	lder																				

DS SOIL LOG-2021-FINAL 19-093-100 GEO COMBINED FILE.GPJ DS.GDT 23-1-27

CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

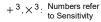
Diameter: 150mm REF. NO.: 19-093-100

Date: Jun-24-2019 ENCL NO.: 8

	SOIL PROFILE		S	AMPL	ES	l K		RESI	IMIC CC STANCE	NE PEN E PLOT		ATION		PLASTI	C NATI	URAL TURE	LIQUID		₩	REMARKS
m)		TC				ATE S] :	20 4	0 60	8	30 10	00	LIMIT	CON	TENT	LIMIT	PEN 'a)	LN.	AND GRAIN SIZE
EV	DESCRIPTION	STRATA PLOT	æ		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION			RENGT	H (kl	Pa) FIELD VA	ANE	W _P ⊢—	\ 	v >	W _L	OCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	DISTRIBUTION
PTH	BEGGIAII FIGH	₹AT/	NUMBER	JC		NO EN	- N		NCONF	INED RIAXIAL				WA	TER CO	ONTEN	T (%)	80	NATU.	(%)
0.4			N	TYPE	ż	GR CO	E E			0 60		80 10		1	0 2	20 3	30			GR SA SI
0.0 0.2	TOPSOIL: 230 mm	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	SS	5			E								0				
9.6	FILL: clayey silt, trace topsoil, trace rootlets, trace sand, brown, very	\otimes					260	E										1		
0.8	moist, firm	77.	2	SS	17			Ė							0					
	CLAYEY SILT TILL: sandy, trace gravel, occasional sand seams,	111	\Box				259	₣—										-		
	brown, moist, stiff to very stiff		3	SS	18			Ē							0			225		
		7/	1			\perp	W. L.	‡ 258.2	 m											
	wet sand seams/ layers below 2.3 m		4	SS	23		Nov 2								٥			225		
	sandy, wet sand seams/ layers	41t	1_					F												
	below 3.1 m	111	5	SS	11		257	F							О			75		
6.4		1	1					E												
4.0	SANDY SILT TO SILTY SAND: trace clay, grey, wet, loose	Ш					256	Ē												
55.7 4.7	SANDY SILT TILL: trace to some,		6	SS	7	k:H:	250	Ē							0					
4.7	trace gravel/ cobble, grey, very		ř		,		:	Ē												
	moist to wet, loose to compact						255	ŧ	1								1	1		
	+						:	F												
6.3	SILTY SAND: trace clay, trace	₩	7	SS	17	 :::::	254	<u> </u>							0					
	gravel, grey, wet, compact	냚	1			:::::]	É												
		: -	1			[. : : : i		Ē												
7.6	SANDY SILT TILL: some clay to		8	SS	27	[:::::	253	E									1	1		
5 <u>7</u> :6 8.0	clayey, trace gravel/ cobble, grey,	<u>-۲.</u>	ð	55	21		-	<u> </u>	-					٥				-	Н	
0.0	moist, compact																			
	END OF BOREHOLE: Notes:																			
	1) 50 mm diameter monitoring well																			
	installed in borehole. 2) Water Level Readings:																			
	Date: Water Level (mbgl): Oct. 7, 2019 1.7																			
	Sep. 22, 2022 1.3																			
	Oct. 26, 2022 3.1 Nov. 21, 2022 2.2							1												
	,																			
								1												
								1												
								1												
							1	1										1		
- 1																				

CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON


DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 19-093-100

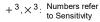
H LO	M: Geodetic CATION: See Drawing 1 N 4857316.0	1 E 5	9819	96.12					: Jun-2		-						NCL N	0 0		
	SOIL PROFILE			SAMPL	ES			DYN/ RESI	AMIC CO STANCI	ONE PE	NETR/	ATION			NAT	URAL			-	REMARKS
n)		F				GROUND WATER CONDITIONS		l				30 1		PLASTI LIMIT	MOIS CON	TURE	LIQUID LIMIT	PEN.	NATURAL UNIT WT (kN/m³)	AND
.EV		STRATA PLOT	۱.,		BLOWS 0.3 m	W W O	NO O	⊢	AR ST	RENG	TH (ki	 Ра)	1	W _P		<i>N</i>	WL	POCKET PEI (Cu) (kPa)	AL U	GRAIN SIZ DISTRIBUTI
PTH	DESCRIPTION	ΥTA	NUMBER		0.3		ELEVATION	οι	JNCONF	INED	+	FIELD \ & Sensit	/ANE tivity	"		ONTEN	T (0/)	00 00 00 00	T. X	(%)
		STR/	Σ	TYPE	þ	SRO			QUICK T 20 4				ANE 00				1 (%) 30		Ž	GR SA SI
1.1 0.0	TOPSOIL: 230 mm	11/2	1	SS	5		261		Ť				1		Ě			-		GR SA SI
0.0 0.2	FILL: clayey silt, trace topsoil, trace rootlets, trace sand, brown, very	\bowtie				1		Ē												
0.8	rootlets, trace sand, brown, very noist, firm	7	2	SS	16	1		Ē							0					
	CLAYEY SILT TILL: sandy, trace	KK					260	Ē										1		
	gravel, occasional sand seams, brown, moist, very stiff to hard		3	SS	28			Ē							0			225		
	trace cobble below 1.5 m						259	_										ł		
			4	SS	29			Ē							0			225		
		13.1					250	Ē												
	brown to grey below 3.1 m	YK	5	SS	33		258	=						0				225		
		[k]				1		Ē												
							257	F												
		[-	_	00	04	ļ		E										005		
			6	SS	24	ł	256	Ē						0				225		
		KK.					230	Ē												
		[K]						Ē												
4.6			7	SS	51	1	255	-						0				225		
6.5	END OF BOREHOLE:	17.1																		
	Notes: 1) Borehole was wet at bottom upon																			
	completion.																			
			1																1	
			1																1	
			1																	
											1	1	1			1	1			

CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA


Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 19-093-100

Date: Oct-14-2022 ENCL NO.: 10

	M: Geodetic								Date:	Oct-1	14-202	2					ΕN	NCL N	0.: 1	0	
BH LC	OCATION: See Drawing 1 N 4857417.44 SOIL PROFILE	E 59		6.16 AMPL	.ES	Π	T		DYNA	MIC CO	ONE PE	NETR/	ATION			NAT	IDAI		<u> </u>	l.	DEMARKO
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	BER		BLOWS 0.3 m	GROUND WATER	SNOTIONS	ELEVATION	SHE/	20 4 AR STI	RENG	50 8 TH (kF +	Pa) FIELD V	00 ANE	W _P ⊢	\ 	TENT W	LIQUID LIMIT W _L ————————————————————————————————————	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	REMARKS AND GRAIN SIZI DISTRIBUTIO (%)
262.1			NUMBER	TYPE	ž	GRO		ELEV				L × 80 8		OO		TER CO		1 (%) 30		≥	GR SA SI
269:9 0.4 261:3	REWORKED CLAYEY SILT TO		1	SS	11	ı											0				
0.8	SILTY CLAY: trace sand, trace tootlets, trace organics, brown, moist, stiff (Weathered/Disturbed)		2	SS	30	ı		261								•			-		
	SILTY CLAY TILL: some sand, trace gravel, brown, moist, very stiff		3	SS	26			260								∘⊩		1			5 13 48
	to hard		4	SS	33	ı		200								o					
	grey below 3.0m		5	SS	14			259								0					
								258													
			6	SS	8	·		257								0					
6.1	SANDY SILT: trace clay, grey, wet, compact to dense		7	SS	13			256									0				Water @6
	·							255											-		
			8	SS	26			254									0				0 42 55
								204													
]]] 	9	SS	19			253									0				
								252											-		
250.8			10	SS	41			251									0				
11.3	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Oct. 26, 2022 Artesian (above ground surface) Nov. 21, 2022 Well damaged																				

CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 19-093-100

	SOIL PROFILE	-	SAMPL	ES .			DYNA RESIS	MIC CC TANCE	NE PE PLOT	NETRA	ATION		DI ACT	NATI	JRAL			L	REMARK
(m) ELEV EPTH	DESCRIPTION S F	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STINCONF	0 6 RENG	0 8 TH (kF + - ×	Pa) FIELD V & Sensiti	ANE wity ANE	PLASTIC LIMIT W _P 	CONT V ———————————————————————————————————	TENT V D ONTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUT (%) GR SA SI
6 0 . Ø	TOPSOIL: 300mm ½ REWORKED CLAYEY SILT TO	1 _y .	SS	8											0				
0.9	SILTY CLAY: trace sand, trace vootlets, trace organics, brown, moist, stiff to very	2	SS	15	-	261								0					I
	stiff(Weathered/Disturbed) SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist,	3	SS	22		260	_							0					I
	very stiff grey below 2.3m	4	SS	22										0					l
	\ \ \	5	SS	19		259								0					I
57.4						258											-		
4.6	SILTY FINE SAND: trace clay, grey, wet, compact to dense	6	SS	42		257								0					l
	-					256													l
	(7	SS	33		250									0				l
	[;]: [.] [.]					255											-		l
53.8	FND OF BOREHOLE:	8	SS	10		254									0				
	1) Water at depth of 4.8m during drilling.																		

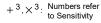
CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 19-093-100

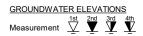
Date: Oct-13-2022 ENCL NO.: 12

	SOIL PROFILE		s	AMPL	ES	٣		DYN/ RESI	AMIC CO STANCI	ONE PE E PLOT	NETR/	ATION		PLASTI	C NAT	URAL	LIQUID		Υ	RE	MARKS
(m)	DESCRIPTION	PLOT	~		BLOWS 0.3 m	GROUND WATER CONDITIONS	NO	SHE	AR ST	RENG	TH (kl	∟—— Ра)	100	LIMIT W _P	CON	URAL STURE ITENT W	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA	AND AIN SIZE RIBUTIO
EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" 0.3	ROUNI	ELEVATION	• 0	INCONF QUICK T 20 4	RIAXIA	L X		/ANE tivity /ANE 100		TER CO		IT (%) 30	000	NATUTAN F)		(%)
260.8 26 0 . 9	TOPSOIL: 300mm	1 1/2.	1	SS	8	0 0	ш	<u> </u>	20 -					<u> </u>		0	+			GR S	A SI (
0.3 260.0 0.8	REWORKED CLAYEY SILT TO SILTY CLAY: trace sand, trace tootlets, trace organics, brown, noist, stiff (Weathered/Disturbed)		2	SS	22		260								0						
	hoist, stiff (Weathered/Disturbed)/ SILTY CLAY TILL: some sand to sandy, trace gravel, brown, moist,		3	ss	29		259														
	very stiff to hard		4	SS	33									c							
	grey below 3.1m		5	SS	23		258								,						
							257														
		*** ***	6	SS	30		256							C							
							255														
			7	SS	59										├	J				4 2	4 48
253.5	SILTY SAND: trace clay, grey, wet,						254														
252.6	dense to very dense		8	SS	34		253									0					
8.2	END OF BOREHOLE: Notes: 1) Water at the depth of 6.4m																				
	during drilling.																				

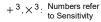
CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 19-093-100

Date: Oct-13-2022 ENCL NO.: 13

	SOIL PROFILE		s	SAMPL	ES	<u>~</u>		DYNA RESIS	MIC CC STANCE	NE PE PLOT	NETRA	TION		PLASTI LIMIT	C NATI	URAL	LIQUID LIMIT		ΛΤ	REM	
(m) ELEV EPTH 259.3	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STE NCONF UICK TE	0 6 RENGTINED RIAXIAL 0 6	ΓΗ (kF + - ×	Pa) FIELD V & Sensiti LAB V	ANE ivity ANE O0	W _P ⊢ WA1	TER CO	w DNTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	Al GRAII DISTRII (9	BUTIC %)
25 9 .0 TOP 9	SOIL: 300mm	× 1/2.	1	SS	9		259								,						
0.8 rootle	ORKED CLAYEY SILT TO Y CLAY: trace sand, trace ets, trace organics, brown, t, stiff (Weathered/Disturbed)		2	SS	21		258								∘⊩		-1			3 12	49
sand	Y CLAY TILL: some sand to y, trace gravel, brown, moist, stiff to hard		3	SS	21										0						
			4	SS	41		257								0						
			5	SS	35		256								0						
grev	pelow 4.6m						255														
9.57	ison		6	SS	26		254								0						
			7	ss	19		253														
							050														
251.1			8	SS	28		252							0							
Note: 1) Bc comp	rehole dry at the bottom upon letion.																				

CLIENT: Caledon Community Partners PROJECT LOCATION: 7675 King St., Bolton, ON

DATUM: Geodetic

DRILLING DATA

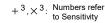
Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 19-093-100

Date: Oct-14-2022 ENCL NO.: 14

BHLO	OCATION: See Drawing 1 N 4857255.24	E 59	98500	0.76				
	SOIL PROFILE		SA	AMPLE	ES	_		DYNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC NATURAL HOUSING LIQUID REMARKS
(m) ELEV DEPTH		STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	20 40 60 80 100 SHEAR STRENGTH (kPa) ○ UNCONFINED + FIELD VANE ② QUICK TRIAXIAL × LAB VANE 20 40 60 80 100 10 20 30 AND GRAIN SIZE DISTRIBUTION (%) WATER CONTENT (%) 10 20 30 GR SA SI CI
258.8	TOPSOIL: 350mm	7/ 1/v.	1	00	7		259	

ELEV DEPTH	DESCRIPTION	STRATA PLO	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WA	ELEVATION	0 UI	NCONF	RIAXIA	+ L ×	& Sensiti	ANE ivity ANE	ı	TER CO	N O ONTEN 20 3	w _L T (%)	POCKET P (Cu) (kPa	NATURAL UN (KN/m³)		IIN SIZE RIBUTIC (%) A SI (N
258:8	TOPSOIL: 350mm REWORKED CLAYEY SILT TO	<u>11.7</u>	1	SS	7	\7	259									0						
258.2	SILTY CLAY: trace sand, trace rootlets, trace organics, brown, rootst, firm (Weathered/Disturbed)		2	SS	11	<u>-</u>	W. L. 2 Nov 15									0						
2	CLAYEY SILT TO SILTY CLAY TILL: sandy, trace gravel, brown,		3	SS	12		257									0						
	moist, stiff to hard interbedded wet silty sand at 2.3m		4	SS	14		251								⊢ ⊷					1 30	3 46 2	20
<u>-3</u>	sand seams @3.1m		5	SS	29		256								0							
<u>4</u>							255															
-5	grey below 4.6m		6	SS	29		254								o							
							.] 207															
			7	SS	46		253							0								
7							252															
=251.5 = 7.6	CLAYEY SILT TILL: sandy, trace gravel, trace cobbles, grey, moist,		8	SS	30	· · H·	251							0								
	hard						201															
	sand seams at 9.1m		9	SS	40		250								0							
10 -							249															
11/247.9			10	SS	50/ 130mn		248							0								
11.2	END OF BOREHOLE: Notes:																					


DS SOIL LOG-2021-FINAL 19-093-100 GEO COMBINED FILE.GPJ DS.GDT 23-1-27

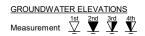
1) 50mm dia. monitoring well installed upon completion.
2) Water Level Readings:

Date: Water Level(mbgl): Oct. 26, 2022 0.7 Nov. 15, 2022 0.7

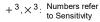
CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 19-093-100

Date: Oct-13-2022 ENCL NO.: 15

	SOIL PROFILE		S	SAMPL	ES	~		DYNA RESIS	MIC CC STANCE	NE PE PLOT	NETR/	ATION		PLASTI I IMIT	C NATI	URAL	LIQUID LIMIT		Ā	REM	ARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STE NCONF UICK TI	0 6 RENG INED RIAXIAI 0 6	TH (kF + - ×	L———Pa) FIELD V & Sensit LAB V	ANE ivity	w _P ⊢ WA¹	CON V TER CO	TENT W DOMTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AI GRAII DISTRI (° GR SA	%)
258.3 25 9 : 9	TOPSOIL: 350mm	7/1/	1	SS	10	"	258	┡												OR OR	01
0.4 257.5 0.8	REWORKED CLAYEY SILT TO SILTY CLAY: trace sand, trace cootlets, trace organics, brown, ricoist, stiff (Weathered/Disturbed)		2	ss	10		257								0						
	SILTY CLAY TILL: some sand, trace gravel, brown, moist, stiff to hard		3	SS	19										0						
	Tial G		4	SS	30		256								0						
			5	SS	31		255								o -					3 18	47
253.7							254											_			
4.6	CLAYEY SILT: trace sand, wet silt seams, grey, moist, hard		6	SS	45		253								0						
252.0																					
6.3	CLAYEY SILT TILL: some sand, trace gravel, grey, moist, very stiff		7	SS	22	-	252								0						
							251														
250.1		ŊŅ	8	SS	25			Ē							þ						
	1) Water at the depth of 6.3m during drilling.																				

PROJECT: Geotechnical Investigation CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

DRILLING DATA

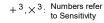
Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 19-093-100

	M: Geodetic DCATION: See Drawing 1 N 4857082.3	33 ⊑ I	50946	54.80				Date:	Oct-	17-202	2					ΕN	NCL N	0.: 1	6	
DH LC	SOIL PROFILE	00 E ($\overline{}$	SAMPL	.ES			DYNA RESIS	MIC C	ONE PE E PLOT	NETR	ATION			ΝΔΤ	TIRAL		<u> </u>		REMARKS
(m) ELEV PEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER	ELEVATION	SHEA O U	AR ST NCON	40 6 RENG FINED RIAXIA	TH (kl + L ×	Pa) FIELD V & Sensiti	ANE ivity ANE O0	W _P 	TER C	NTENT W O	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZI DISTRIBUTIO (%) GR SA SI
5 9 :9	TOPSOIL: 350mm	<u>x1 1/</u>	1	SS	10			E	ĺ							•				OK OA OI
0.4 56.7	REWORKED CLAYEY SILT TO SILTY CLAY: trace sand, trace	\bigotimes	=				257	<u> </u>										$\frac{1}{2}$		
0.9	rootlets, trace organics, brown, moist, stiff (Weathered/Disturbed)		2	SS	14	$\vdash \nabla$		F							0					
	SILTY CLAY TILL: some sand, trace gravel, brown, moist, stiff to hard		3	SS	16			256.1 5, 202:							0					
	naru		4	SS	31		255	Ē												
	sand seams, grey below 3.1m		5	SS	32		0.5								0					
							254													
3.0 4.6	CLAYEY SILT TILL: sandy, trace gravel, grey, moist, very stiff to hard		6	SS	22		253								0					
	g. a. o., g. o,,o.o., 10. , o toa. a						252													
			7	SS	62										0					
			\vdash			<u>.</u>	251 ∵													
			<u>_</u>	-00	00		250											-		
			8	SS	33			Ē												
							249													
			9	SS	32		248	Ē							<u> </u>	1		-		7 26 45
			1																	
46.7 46.9	SILTY FINE SAND: trace clay,		10	SS	50/ 130mr]. · — []	∷ 247							c	0					
1.2	grey, wet, very dense END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Oct. 26, 2022 1.4 Nov.15, 2022 1.5	[4-1]			130mr															

CLIENT: Caledon Community Partners

PROJECT LOCATION: 7675 King St., Bolton, ON

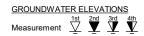

DRILLING DATA

Method: Hollow Stem Auger

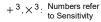
Diameter: 200mm REF. NO.: 19-093-100

-	<u> </u>			Ι		DYNA	MIC C	ONE PE	NETR	ATION								
	A PLOT			ID WATER FIONS	NOI	SHE	20 AR ST	40 (RENG	50 8 TH (kl	30 1 Pa)		PLASTI LIMIT W _P	MOIST	URE ENT	LIQUID LIMIT W _L	CKET PEN. Su) (kPa)	RAL UNIT WT (kN/m³)	REMARKS AND GRAIN SIZI DISTRIBUTIO
		TYPE	"N" 0	GROUN	ELEVA ⁻	• 0	UICK T	RIAXIA	L ×	LAB V	ANE				(70)	O)	NATU	(%) GR SA SI
REWORKED CLAYEY SILT TO	1	SS	9		259								0					
rootlets, trace organics, brown, moist, stiff (Weathered/Disturbed)		SS	27	<u> </u>	W. L.:	258.2	m						0					
TILL: some sand to sandy, trace gravel, brown, moist, very stiff to	3	SS	27			5, 202 - -							0					
Tidid			27		237								0					
	5	SS	33		256	E							0					
grey below 4.0m			25		255	<u> </u>										-		
		33	35		254								0					
	7 7	ss	13		253							۰						5 32 45
) 	SS	22		252							0				-		
					251											=		
		ss	31		250								0					
					249											-		
	1	o ss	68									0						
Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																		
Date: Water Level(mbgl): Oct. 26, 2022 1.35 Nov.15, 2022 1.2																		
																	1	
	TOPSOIL: 280mm REWORKED CLAYEY SILT TO SILTY CLAY: trace sand, trace tootlets, trace organics, brown, repoist, stiff (Weathered/Disturbed) SILTY CLAY TO CLAYEY SILT TILL: some sand to sandy, trace gravel, brown, moist, very stiff to hard grey below 4.0m END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level (mbgl): Oct. 26, 2022 1.35	SOIL PROFILE DESCRIPTION TOPSOIL: 280mm REWORKED CLAYEY SILT TO SILTY CLAY: trace sand, trace vootlets, trace organics, brown, revist, stiff (Weathered/Disturbed) SILTY CLAY TO CLAYEY SILT TILL: some sand to sandy, trace gravel, brown, moist, very stiff to hard Grey below 4.0m END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level (mbgl): Oct. 26, 2022 1.35	SOIL PROFILE DESCRIPTION TOPSOIL: 280mm REWORKED CLAYEY SILT TO SILTY CLAY: trace sand, trace vootlets, trace organics, brown, rhoist, stiff (Weathered/Disturbed) SILTY CLAY TO CLAYEY SILT TILL: some sand to sandy, trace gravel, brown, moist, very stiff to hard 4 SS 5 SS grey below 4.0m END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level (mbgl): Oct. 26, 2022 1.35	DESCRIPTION DESCRIPTION TOPSOIL: 280mm REWORKED CLAYEY SILT TO SILTY CLAY: trace sand, trace rootlets, trace organics, brown, noist, stiff (Weathered/Disturbed) SILTY CLAY TO CLAYEY SILT TILL: some sand to sandy, trace gravel, brown, moist, very stiff to hard 4 SS 27 5 SS 33 grey below 4.0m END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level (mbgl): Oct. 26, 2022 1.35	DESCRIPTION DESCR	SOIL PROFILE SAMPLES William South S	SOIL PROFILE DESCRIPTION DESC	DESCRIPTION A	SOIL PROFILE DESCRIPTION DESC	Description Description	SOIL PROFILE	SOIL PROFILE	SOIL PROFILE	SOIL PROFILE SAMPLES	SOIL PROFILE SAMPLES	SOIL PROFILE SAMPLES SAMPLES	SOIL PROFILE	SOIL PROFILE

CLIENT: Caledon Community Partners


PROJECT LOCATION: 7675 King St., Bolton, ON

DRILLING DATA


Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 19-093-100

	SOIL PROFILE		SAMPL	ES	~		DYNA RESI	MIC CO STANC	ONE PE E PLOT	NETR/	ATION		DI 407	ıc NAT	URAL	1101		F	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	NOIL ^b W. L. : Nov 2	SHE. 0 U 262.3	AR ST	40 6 RENG FINED RIAXIA	TH (kl	Pa) FIELD \ & Sensi	/ANE	1	TER CO		. ,	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	
261.6 26 0 . 9	TOPSOIL: 280mm	0 Z	SS	11	0 0	1107 2	, 202	<u> </u>	40 6	50 8	30 1	100		10 2	20 ;	30			GR SA SI
0.3 0.8 0.8	REWORKED CLAYEY SILT TO SILTY CLAY: trace sand, trace cootlets, trace organics, brown,					261	_							0					
	rhoist, stiff (Weathered/Disturbed) SILTY CLAY TO CLAYEY SILT	3	SS	23		260								0					
	TILL: trace sand, trace gravel, brown, moist, stiff to hard trace cobble/boulder at 2.3m																		
	grey below 3.1m	4	SS	27		259													
	grey below 3.1111	5	SS	22		258								0					
		6	SS	10		257													
	;		33	10		256													
		9. 7	SS	18															
						255	<u> </u>												
		8	SS	33		254													
						. 253													
9.1	SANDY SILT: trace clay, trace gravel, grey, wet, compact	9	SS	21										0					1 33 64
	g.a.s., g.s., no., sopas.					252													
50.3		10	SS	24	() H	251									•				
11.3	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Oct. 26, 2022 Artesian (above ground surface) Nov. 21, 2022 Artesian (-0.71m above ground surface)																		

LOG OF BOREHOLE PW2

PROJECT: Hydrogeological Investigation

CLIENT: Caledon Community Partners

Method: Air Rotary

PROJECT LOCATION: Macville Community

Diameter: 152mm

	M: Geodetic							Date:	Jul-06	5-2023							EN	CL N	D.: 1		
BH LO	CATION: N 4857268.375 E 598529.1 SOIL PROFILE	14	S	SAMPL	.ES	~			Soil	Head	Space	e Va	pors		DI VG.	TIC NA	TURAL ISTURE	LIQUIE		۲	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	10	PID (ppm)	1	(F 0 20	opm)	•	W _P	CO ATER C	STURE NTENT W O CONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%) GR SA SI
0.0	CLAYEY SILT TILL: trace sand and fill, moist, hard					<u> </u>	W. L. 2 Aug 24 -Bento	1,2023	nasl												
3.0	SILTY CLAY: grey						256 254 252 -Sand 250 -20 Slo		Scree	n											
247.1 12.2 244.1 15.2	CLAYEY SILT TILL: trace sand, grey END OF BOREHOLE						248 246														
	NOTES: 1. 152 mm pumping well. 2. 20 ft of 20 slot PVC screen (25-45 ft). 3. Soil description based on drillers' field observations. 4. Water level: above ground surface - August 24, 2023																				

Appendix C

Table: MECP Water Wells Records (500 m Radius)

Project: 20-169-104 Location: Caledon Station and Argo I & Argo II, Bolton, ON

Name	MECP WWR	Easting	Northing	De	pth	Thick	ness		Strati	graphy	_	Water	Found	Static	Level	Water	Date	Chatina	Mate: He
4908650 597266 4857460 68 20.7 56 61.71 Grey Clay Silt								Color			Tertiary					Kind	Completed	Status	Water Use
4908650 597296										-	•	(/	(/	(/	(111)				
490498 597296 4857460 68 20.7 656 17.1 Grey Clay Sit - 74 22.6 19 5.8 Fresh 6-Oct-00 Supply										Clay	-								
1	4908650	597296	4857460								_	74	22.6	19	5.8	Fresh	6-Oct-00		Domestic
1	.00000	00.200	1007.100							U		1			0.0		0 00.00	Supply	2011100110
1 0.3 1 0.3 1 0.3 1 0.3 3 0.4 0.4 24 7.3 3 3 4 0.4 24 7.3 3 3 4 0.4 24 7.3 3 3 4 0.4 24 7.3 3 3 4 4 4 4 4 4 4				74	22.6	6	1.8	Grey		-	-								
4904998 597281 4857622 34 10,4 20, 30, 9 2,7 Brown Clay 34 10,4 25 7,6 not stated 4-Dec-75 Supply				1	0.3	1	0.3	Brown		_	-								
Ag04998												_						Water	
4900215 597688 4857323 597688 4857323 6	4904998	597281	4857522							-		34	10.4	25	7.6	not stated	4-Dec-75		Domestic
490215 597688										+								Cuppiy	
4900215 597688										_	_								
Section Sect																		Water	
198 2 0.6 0.6 0.	4900215	597688	4857323									65	19.8	15	4.6	Fresh	9-Sep-67		Domestic
A903995 597764				65	19.8	2	0.6	-		-	-							Oupply	
Ago			22	6.7	22	6.7	Brown		_					I					
Age										+									
4903995 597764 4857063 120 36.6 42 12.8 Blue Clay 120 36.6 Flowing Fresh 24-Nov-72 Water Supply										_	_								
140 42.7 140 42.7 - Sand Silt - -	4903995	597764	4857063									120	36.6	Flo	wina	Fresh	24-Nov-72		Domestic
146	1000000	001101	1007 000									1	00.0		·······································	1 10011	21110112	Supply	Domodio
150 45.7 4 1.2 - Fine Sand - -																			
Age								_		_	-								
4904238 598060 4858628 78 23.8 11 3.4 Blue Clay Gravel Sand 177 54.0 23 7.0 Fresh 30-Nov-73 Water Supply								Brown		Stones	_								
4904238 598060 4858628 78 23.8 11 3.4 Blue Clay Gravel Sand Clay Cl												_							
120 36.6 42 12.8 Blue Clay - - 177 54.0 57 17.4 Blue Clay - - 190 57.9 13 4.0 - Fine Sand Medium Sand Clay - - 30 9.1 25 7.6 not stated 30-Oct-76 Water Supply 30-Oct-76 Water Supply 30-Oct-76 30-Oct-76 Supply 30-Oct-76 30-Oct-76																		Water	l
177 54.0 57 17.4 Blue Clay - -	4904238	598060	4858628									177	54.0	23	7.0	Fresh	30-Nov-73		Domestic
190 57.9 13 4.0 - Fine Sand Medium Sand Clay										-	-							Cuppiy	
4904994 597064 4857323 1 0.3 1 0.3 Brown Loam Hard -										Medium Sand									
4904994 597064 4857323 20 6.1 19 5.8 Brown Clay Hard - 30 9.1 25 7.6 not stated 30-Oct-76 Supply						1		Brown											
45 13.7 25 7.6 Grey Clay Sand Loose	4904994	597064	4857323	20		19						30	9.1	25	7.6	not stated	30-Oct-76		Domestic
7285847 598658 4858218											Loose	1						Supply	
19 5.8 19 5.8 19 5.8 Brown Clay Stones Gravel 39 11.9 20 6.1 Blue Clay Soft Gravel Stones Stones Gravel Stones Gravel Stones Gravel Stones Gravel Stones Stones Gravel Stones Stones Gravel Stones Stones Stones Gravel Stones	7285847	598658	4858218	_					1			-	-	-	-	-	25-Jan-17	-	_
4907399 598634 4858225 4858 22 6.7 Fresh 28-Oct-90 Water Supply 485824 485825 6.8 11.9 20 6.1 Blue Clay Soft Hard 62 18.9 7 2.1 - Hard Pan	. = 0 0 0 11			19	5.8	19	5.8	Brown	Clav	Stones	Gravel								
4907399 598634 4858225																			
4907399 598634 4858225 62 18.9 7 2.1 - Hard Pan 88 26.8 22 6.7 Fresh 28-Oct-90 Water Supply 4907399 598634 4858225 62 18.9 7 2.1 - Hard Pan 88 26.8 22 6.7 Fresh 28-Oct-90 Water Supply 4858225 62 18.9 7 2.1 - Hard Pan 88 26.8 22 6.7 Fresh 28-Oct-90 Water Supply 4858225 62 18.9 7 2.1 - Hard Pan 88 26.8 22 6.7 Fresh 28-Oct-90 Water Supply 4857436 48 11.5 810 Coarse Sand Gravel 64 19.5 31 9.5 Fresh 20-Aug-65 Supply 4857436 48 14.6 48 14.6 - Topsoil 64 19.5 31 9.5 Fresh 20-Aug-65 Supply 4857436 48 14.6 48 14.6 - Topsoil 64 19.5 31 9.5 Fresh 20-Aug-65 Water Supply											Hard								
4907399																		Water	
Record R	4907399	598634	4858225					Blue		Hard	-	- 88	26.8	22	6.7	Fresh	28-Oct-90		Commerica
93 28.4 5 1.5 Blue Coarse Sand Gravel -											Gravel							Cupp.y	
118 36.0 25 7.6 Blue Shale - -																			
4900143 597301 4857436 12 3.7 12 3.7 Brown Clay Medium Sand - 40 12.2 28 8.5 White Clay 64 19.5 31 9.5 Fresh 20-Aug-65 Water Supply 66 20.1 2 0.6 - Fine Sand 48 14.6 48 14.6 - Topsoil 76 23.2 28 8.5 Brown Sand Clay Silt Crossol										-	-								
4900143 597301 4857436 40 12.2 28 8.5 White Clay 64 19.5 31 9.5 Fresh 20-Aug-65 Supply 4857436 40 12.2 28 8.5 White Clay 64 19.5 31 9.5 Fresh 20-Aug-65 Water Supply 4857436 40 12.2 28 8.5 Drown Sand Clay Silt Crosslet										Medium Sand	_								
4801436 64 19.5 24 7.3 - Clay Medium Sand Hard Pan 66 20.1 2 0.6 - Fine Sand 48 14.6 48 14.6 - Topsoil 76 23.2 28 8.5 Brown Sand Clay Silt Cross										-		1	1			1		Water	Domestic/L
66 20.1 2 0.6 - Fine Sand	4900143	597301	4857436							Medium Sand		64	19.5	31	9.5	Fresh	20-Aug-65		ivestock
48 14.6 48 14.6 - Topsoil										-		1						Cuppiy	WOOLOOK
76 23.2 28 8.5 Brown Sand Clay Silt 03 28.0 16 4.0 Blue Clay Silt Croud										_									
02 29.0 16 4.0 Plus Clay Silt Crayal												1							
400E64E E07964 40E7709 02 20.0 10 7.0 Dido Didy Dill Didyot 400 90 E 96 70 Frank 97 Ami 70 Watter												1	1			I		Water	1
4905615 597364 4857723 100 30.5 8 2.4 Blue Hard Pan 100 30.5 26 7.9 Fresh 27-Apr-79 Supply	4905615	597364	4857723									100	30.5	26	7.9	Fresh	27-Apr-79		Livestock

i	İ	ĺ	400	04.4	_	0.0	Dive	0	0	01	İ	ı	ı	Ī	1 1	Ī	1	ĺ
			103	31.4	3	0.9	Blue	Gravel	Sand	Clay								
			106	32.3	3	0.9	Blue	Shale	-	-							10/-4	
4908534	597428	4857420	25	7.6	25	7.6	Brown		Medium Sand	-	34	10.4	34	10.4	Fresh	27-Jan-00	Water	Domesti
			66	20.1	41	12.5	Grey	Sand	Medium Sand								Supply	
			1	0.3	1	0.3	Brown	Loam	-	-							10/-4	
4904393	597637	4857116	10	3.0	9	2.7	Brown	Clay	-	-	38	11.6	20	6.1	Not stated	01-Aug-74	Water	Domesti
			38	11.6	28	8.5	Grey	Clay	-	-						J	Supply	
			42	12.8	4	1.2	Grey	Sand	-	-								ļ
			16	4.9	16	4.9	Brown	Clay	-	-								
			38	11.6	22	6.7	Grey	Clay	Stones	-								
			98	29.9	60	18.3	Grey	Silt	Sand	-							10/-4	
7275497	597641	4857180	110	33.5	12	3.7	Grey	Silt	- Silt	-	-	-	-	-	-	6-May-16	Water	Domesti
			113	34.5	3	0.9	Grey	Clay		-						•	Supply	
			125	38.1	12	3.7	Grey	Sand	Clay	-								
			133	40.5	8	2.4	Grey	Sand	Gravel	-								
			143	43.6	10	3.0	Grey	Shale	-	-								ļ
			1	0.3	1	0.3	Brown	Loam	-	-								
			10	3.0	9	2.7	Brown	Clay	-	-								
4000004	500444	4057707	12	3.7	2	0.6	Blue	Clay	-	-	7.5	00.0	_	0.4		40.14 00	Water	
4908694	598144	4857707	75	22.9	63	19.2	Grey	Fine Sand	-	-	75	22.9	7	2.1	Fresh	18-May-00	Supply	Domestic
			84	25.6	9	2.7	Grey	Medium Sand	-	-							,	
			91	27.7	7	2.1	Grey	Fine Sand	-	-								
			93	28.4	2	0.6	Grey	Sand	Silt	Clay								
100=010	=00111	4055500	2	0.6	2	0.6	Black	Topsoil	-			4.0					Water	
4905640	598114	4857523	14	4.3	12	3.7	Blue	Clay	-	Hard	14	4.3	8	2.4	not tested	30-Apr-80	Supply	Domestic
			25	7.6	11	3.4	Brown	Sand	Pebbles	Coarse								
4910378	597322	4857684	-	-	-			-		-	-	-	-	-	-	30-Sep-06	Abandoned	-
			1	0.3	1	0.3	Brown	Loam	Hard	-							147	
4905851	597414	4857323	20	6.1	19	5.8	Brown	Clay	Hard	-	30	9.1	15	4.6	not stated	15-Dec-81	Water	Domestic
			30	9.1	10	3.0	Grey	Clay	Hard	-							Supply	
			35	10.7	5	1.5	Grey	Sand	Loose	-								
			1	0.3	1	0.3	Brown	Loam	-	-								
			10	3.0	9	2.7	Brown	Clay	Stones	-							147	
4905839	597964	4859273	29	8.8	19	5.8	Grey	Clay	Stones	Sand	22	6.7	17.0	5.2	Fresh	20-May-81	Water	Domestic
			35	10.7	6	1.8	Grey	Stones	Clay	-						,	Supply	
			36	11.0	1	0.3	Grey	Clay	Shale	-								
			38	11.6	2	0.6	Grey	Shale	Very Hard	-								
100=110		4057000	12	3.7	12	3.7	Brown	Loam	-	-	40	4.0		40 -		40.14	Water	
4905116	597054	4857923	42	12.8	30	9.1	Grey	Clay	-	-	42	13	35	10.7	Fresh	10-May-77	supply	Domestic
			48	14.6	6	1.8		Sand	Gravel	Water Bearing								
			2	0.6	2	0.6	Brown	Loam	-	Soft								
			13	4.0	11	3.4	Brown	Clay	-	Hard								
			27	8.2	14	4.3	Grey	Clay	Stones	Hard								
7007700	500000	4050040	29	8.8	2	0.6	Brown	Sand	-	Loose	•	0.4	40	4.0		40 1 40	Water	Livestock
7267796	596880	4858246	65	19.8	36	11.0	Grey	Clay	-	Hard	8	2.4	13	4.0	Fresh	13-Jun-16	Supply	Domestic
			75	22.9	10	3.0	Brown	Sand	Gravel	Layered							,	
			85	25.9	10	3.0	Grey	Gravel	Sand	Loose								
			98	29.9	13	4.0	Gray	Sand	Silt	Dirty								
			98	29.9	0	0.0	Grey	Shale	-	Hard								
			25	7.6	25	7.6	Brown	Clay	Stones	Dense								
			28	8.5	3	0.9	Blue	Coarse Sand	Loose	-								
			33	10.1	5	1.5	Blue	Fine Sand	Silt	Soft							10/-4	
4908369	598459	4857745	48	14.6	15	4.6	Blue	Clay	Soft	-	99	30.2	36	11.0	Fresh	25-Aug-97	Water	Domestic
			53	16.2	5	1.5	Blue	Fine Sand	Loose	-					1		Supply	

1 1		I	86	26.2	33	10.1	Blue	Fine Sand	Silt	Loose	1	ĺ		Ī	1 1	ĺ	ĺ	1
			97	29.6	11	3.4	Blue	Clay	Stones	Packed								
			107	32.6	10	3.0	Blue		Water Bearing	Loose								
			1	0.3	1	0.3	Black	Loam	-	Soft								
			17	5.2	16	4.9	Brown	Clay	-	Hard								
7404045	500000	4050400	92	28.0	75	22.9	Grey	Clay	Silt	Layered	447	05.7	0.5	7.0		00 5 1 40	Water	
7181645	598283	4858462	98	29.9	6	1.8	Grey	Gravel	-	Loose	117	35.7	25	7.6	Fresh	20-Feb-12	Supply	Domestic
			113	34.5	15	4.6	Grey	Clay	-	Hard							117	
			117	35.7	4	1.2	Grey	Sand	-	Loose								
			7	2.1	7	2.1	-	Clay	-	-								
			10	3.0	3	0.9	-	Clay	Stones	-								
4004700	597876	4857244	12	3.7	2	0.6	-	Sand	-	-	20	0.5	4	4.0	Freeh	OC Aug 74	Water	Domostic
4904720	59/8/6	4857244	16	4.9	4	1.2	-	Stones	-	-	28	8.5	4	1.2	Fresh	26-Aug-74	Supply	Domestic
			18	5.5	2	0.6	-	Clay	-	-								
			30	9.1	12	3.7	-	Sand	Stones	-								
			2	0.6	2	0.6	Brown	Loam	-	-								
4904007	597556	4857470	9	2.7	7	2.1	Brown	Clay	-	-	23	7.0	Flo	ving	Fresh	15-Jun-72	Water	Domestic
4904007	397 330	4037470	23	7.0	14	4.3	Blue	Clay	Stones	-	23	7.0	1 10	wiiig	1 16311	13-3411-72	Supply	Domestic
			25	7.6	2	0.6	Blue	Gravel	-	-								
			32	9.8	32	9.8	-	Topsoil	-	-								
4904847	596987	4858136	35	10.7	3	0.9	Blue	Clay	-	-	90	27.4	22	6.7	Fresh	4-Feb-76	Water	Livestock /
4504047	000001	4000100	90	27.4	55	16.8	-	Fine Sand	-	-	00	27.4		0.7	1 10011	41 00 70	Supply	Domestic
			95	29.0	5	1.5	-	Gravel	-	-								
			1	0.3	1	0.3	Brown	Loam	Hard	-								
4907932	597435	4857461	30	9.1	29	8.8	Brown	Clay	Hard	-	60	18.3	5	1.5	not stated	10-Sep-94	Water	Domestic
1007002	007 100	1007 101	60	18.3	30	9.1	Grey	Clay	Hard	-	00	10.0		1.0	not otatou	10 Cop 0 1	Supply	Domodio
			72	22.0	12	3.7	Grey	Sand	Loose	-		ļ						
			1	0.3	11	0.3	Brown	Loam	-	-							Water	
4904395	597189	4858347	15	4.6	14	4.3	Brown	Clay	-	-	20	6.1	15	4.6	not stated	1-Aug-74	Supply	Domestic
			34	10.4	19	5.8	Brown	Sand	Gravel	-		ļ					Сарріу	
			2	0.6	2	0.6	-	Loam	-	-								
			15	4.6	13	4.0	-	Clay	-	-							344.4	
4900216	596886	4858130	45	13.7	30	9.1	-	Hard Pan		-	132	40.2	25	7.6	Fresh	13-Nov-64	Water	Domestic
			110	33.5	65	19.8	-	Clay	Medium Sand	-		_	_				Supply	
			130	39.6	20	6.1	-	QSND	-	-								
			132	40.2	2	0.6		GRVL	-	-								
			2	0.6	2	0.6	Black	Loam	-	-								
4004440	500000	4050004	35	10.7	33	10.1	Brown	Clay	Stones	-	00	40.4		, , ,		0 1.1.70	Water	D "
4904146	598039	4858691	57	17.4	22	6.7	Blue	Clay	Stones	-	33	10.1	57	17.4	Fresh	6-Jul-73	Supply	Domestic
			67	20.4	10	3.0	Grey	Sand	-	-	l						'''	
			75	22.9	8	2.4	Blue	Clay	-	-								
			23	7.0	23	7.0	Brown	Clay	- 04	-								
4004407	500000	4050470	100	30.5	77	23.5	Blue	Clay	Stones	-	400	20.5	00	7.0	Facels	00 1.1.70	Water	D
4904437	598238	4858479	112	34.1	12	3.7	Blue	Sand	Gravel	Clay	100	30.5	23	7.0	Fresh	30-Jul-73	Supply	Domestic

	ı	ı	407	00.7	45	10	D.	0	01		1	ĺ	i	Ì	1	1	Jouppiy	ı
ŀ			127	38.7	15	4.6	Blue	Shale	Clay	-								
			180	54.9	53	16.2	Blue	Shale	-	-								
4000000		4050000	12	3.7	12	3.7	Brown	Clay	-	-		1		40 =		44.4 00	Water	
4903300	598214	4858623	122	37.2	110	33.5	Blue	Clay	-	-	175	53.4	35	10.7	Fresh	11-Aug-69	Supply	Domestic
			175	53.4	53	16.2	Grey	Silt	-	-							0.44.0	
ļ			22	6.7	22	6.7	Brown	Clay	Stones	-								
ļ			65	19.8	43	13.1	Blue	Clay	Stones	-								
			72	22.0	7	2.1	Blue	Clay	Soft								Water	Livestock /
4907094	597663	4858835	85	25.9	13	4.0	Blue	Clay	Gravel	Sand	199	60.7	26	7.9	Fresh	20-Jan-89	Supply	Domestic
ļ			190	57.9	105	32.0	Blue	Clay	Silt								0.141.7	
ŀ			199	60.7	9	2.7	Blue	Clay	Silt	Sand								
			214	65.2	15	4.6		Fine Sand	-									
ļ			15	4.6	15	4.6	Brown	Clay	-	Hard								
			25	7.6	10	3.0	Grey	Clay	-	Hard							Water	
4909556	598425	4858349	64	19.5	39	11.9	Grey	Clay	Stones	Hard	75	22.9	17	5.2	Fresh	24-Oct-04	Supply	Domestic
ļ			70	21.3	6	1.8	Grey	Clay	-	Loose							Cupp.y	
			77	23.5	7	2.2	Grey	Gravel	-	Loose		ļ						
ŀ			2	0.6	2	0.6	Brown	Loam	-	-								
4904761	597397	4857685	24	7.3	22	6.7	Brown	Sand	Clay	-	24	7.3	23	7.0	not stated	23-Sep-75	Water	Domestic
4304701	007007	4007000	38	11.6	14	4.3	Grey	Sand	-	-		7.0		7.0	not stated	20 Ocp 10	Supply	Domestio
			43	13.1	5	1.5	Brown	Sand	-	-								
ŀ			100	30.5	100	30.5	-	Previously Du	-	-								
4905784	598114	4858823	160	48.8	60	18.3	Blue	Clay	-	-	208	63.4	22	6.7	Fresh	12-Dec-80	Water	Domestic
4303704	330114	4030023	208	63.4	48	14.6	Blue	Clay	Silt	Fine Sand	200	00.4		0.7	1 10311	12-060-00	Supply	Domestic
			212	64.6	4	1.2	-	Gravel	Coarse Sand	Clay								
7320567	598596	4858298													not stated	23-Jul-18	not stated	not stated
7320307	330330	4030230													not stated	25-301-10	not stated	not stated
ŀ																		
7366579	598709	4857850													not stated	27-Jun-20	not stated	not stated
1000010	000700	1007000													not otatoa	27 0011 20	not stated	not otatou
7345658	598259	4857256	1	0.3	1	0.3	Brown	Loam	loose						not stated	27-Jun-20	Water	Monitoring
7040000	000200	4007200	20	6.1	20	6.1	Brown	Silt Till	dry						not stated	27 0011 20	supply	Wormoning
ļ			20	6.1	20	6.1	Brown	Fill	-	-								
ŀ			38	11.6	38	11.6	Grey	Clay	-	-	-	-	-	-			Water	
4909415	599081	4858056	41	12.5	41	12.5	Brown	Sand	-	-	-	-	-	-	not stated	27-Jun-20	supply	Monitoring
ŀ			50	15.2	50	15.2	Grey	Sand	Soft	-	-	-	-	-			Supply	
			60	18.3	60	18.3	Grey	Clay	Hard	-	-	-	-	-				
ŀ			0	0.0	0	0.0	Black	-	-	-	-	-	-	-				
7172137	599023	4857883	1	0.3	11	0.3	Brown	Sand	Gravel	Loose	-	-	-	-	not stated	24-Nov-11	Water	Monitoring
7172107	000020	4007000	12	3.7	12	3.7	Brown	Silt	Sand	Loose	-	-	-	-	not stated	24 1107 11	supply	Ivioriitoriiig
			20	6.1	20	6.1	Grey	Silt	Clay	Dense	-	-	-	-				
			0	0.0	0	0.0	Brown	Loam	-	Loose	-	-	-	-			Water	
_					40	3.7	Brown	Sand	Silt	Loose	-	-	-	-	not stated	24-Nov-11	supply	Monitoring
7172136	598984	4857838	12	3.7	12	5.7				Danas	-	-	-	-			Supply	
7172136	598984	4857838	20	6.1	20	6.1	Grey	Sand	Silt	Dense								
7172136	598984	4857838						Sand Loam	-	Loose	-	-	-	-				
7172136 7172135	598984 599026	4857838 4857798	20	6.1	20	6.1	Grey					-	-		not stated	24-Nov-11	Water	Monitoring
			20 0	6.1 0.0	20 0	6.1 0.0	Grey Brown	Loam	-	Loose	-				not stated	24-Nov-11		Monitoring
			20 0 12	6.1 0.0 3.7	20 0 12	6.1 0.0 3.7	Grey Brown Brown	Loam Sand	- Silt	Loose Loose	-		-	-	not stated	24-Nov-11 9-Mar-15	Water	
7172135	599026	4857798	20 0 12 20	6.1 0.0 3.7 6.1	20 0 12	6.1 0.0 3.7	Grey Brown Brown	Loam Sand Sand	- Silt Silt	Loose Loose	-		-	-			Water supply	Monitoring -

7000570	500.100	1050015	ī	1	ī	T T		г	T	г	1	Г		1	1		1	
7366576	598402	4858345	-	-	-	-	-	-	-	-	-	-	-	-	-	24-Jul-20	-	-
7366575	597077	4857818	-	-	-	-	-	-	-	-	-	-	-	-	-	24-Jul-20	-	-
7633574	597309	4857666	-	-	-	-	-	-	-	-	-	-	-	-	-	24-Jul-20	-	-
7366573	597907	4857026	-	-	-	-	-	-	-	-	-	-	-	-	-	24-Jul-20	-	-
7366572	598317	4857523	-	-	-	-	-	-	-	-	-	-	-	-	-	24-Jul-20	-	-
7366571	597334	4857649	-	-	-	-	-	-	-	-	-	-	-	-	-	24-Jul-20	-	-
7366570	597518	4857496	-	-	-	-	-	-	-	-	-	-	-	-	-	24-Jul-20	-	-
			1	0.3	1	0.3	Brown	Loam	-	Loose	not	not	not	not			Water	
7345660	598349	4857355	10	3.0	10	3.0	Brown	Silt	Till	Dry	stated	stated	stated	stated	not stated	7-Jun-19	supply	Monitoring
			20	6.1	20	6.1	Grey	Sand	Silt	Water Bearing	Stateu	Stateu	Stateu	Stateu			Supply	
7366568	597844	4858742	-	-	-	-	-	-	-	-	-	-	-	-	-	24-Jul-20	-	-
7366567	598817	4858787	-	-	-	-	-	-	-	-	-	-	-	-	-	24-Jul-20	-	-
			1	0.3	1	0.3	Brown	Loam	-	Loose	not	not	not	not			Water	
7345661	598347	4857475	10	3.0	10	3.0	Brown	Silt	Till	Dry				stated	not stated	7-Jun-19		Monitoring
			20	6.1	20	6.1	Grey	Sand	Silt	Water Bearing	stated	stated	stated	Stated			supply	
7345662	598561	4857285	1	0.3	1	0.3	Brown	Loam	-	Loose	not	not	not	not	not stated	7-Jun-19	Water	Monitoring
7343002	390301	4037203	20	6.1	20	6.1	Brown	Silt	Till	Dry	stated	stated	stated	stated	noi sialeu	7-Jun-19	supply	Monitoring
7245662	E00E61	1057205	1	0.3	1	0.3	Brown	Loam	-	Loose	not	not	not	not	not atated	7 Jun 10	Water	Monitoring
7345663	598561	4857285	20	6.1	20	6.1	Brown	Silt	Till	Dry	stated	stated	stated	stated	not stated	7-Jun-19	supply	Monitoring
7355128	598088	4857215	-	-	-	-	-	-	-	-	-	-	-	-	-	23-Oct-18	-	-
7366565	597432	4858372	-	-	-	-	-	-	-	-	-	-	-	-	-	24-Jul-20	-	-
			1	0.3	1	0.3	Brown	Loam	-	Hard								
4006202	E0792E	1056771	20	6.1	20	6.1	Brown	Clay	-	Hard	60	10.2	20	6.1	not ototod	10 Aug 94	Water	Domostio
4906292	597825	4856771	60	18.3	60	18.3	Grey	Clay	-	Hard	60	18.3	20	6.1	not stated	19-Aug-84	supply	Domestic
			80	24.4	80	24.4	Grey	Sand	-	Loose								
			2	0.6	2	0.6	-	Loam	-	-								
			12	3.7	12	3.7	Brown	Clay	-	-								
4908027	597914	4856940	27	8.2	27	8.2	Blue	Clay	-	-	124	37.8	1	0.3	Fresh	31-Aug-95	Water	Domestic
4300027	337314	4030340	78	23.8	78	23.8	Blue	Clay	Gravel	-	124	37.0	'	0.5	1 10311	31-Aug-33	supply	Domestic
			124	37.8	124	37.8	Blue	Clay	-	Soft								
			130	39.6	130	39.6	Brown	Sand	-	-								
			12	3.7	12	3.7	Brown	Clay	-	-								
			93	28.3	93	28.3	Grey	Clay	-	-							Water	
4910318	597792	4856990	123	37.5	123	37.5	Grey	Silt	Clay	-	170	51.8	Flov	ving	Fresh	15-Aug-06	supply	Domestic
			167	50.9	167	50.9	Grey	Clay	Stones	-							00,000	
			180	54.9	180	54.9	Grey	Fine Sand	-	-								
4000054	507045	4057005	12	3.7	12	3.7	Brown	Clay	-	-	0.5	05.0	00	07.4		00 1 70	Water	D .:
4903854	597815	4857025	81	24.7	81	24.7	Grey	Clay	-	-	85	25.9	90	27.4	Fresh	26-Jun-72	supply	Domestic
			120	36.6	120	36.6	Grey	Shale	-	-		1						1
4908534	597428	4857420	25	7.6	25	7.6	Brown	Sand	Medium Sand		34	10.4	34	10.4	Fresh	13-Jan-00	Water	Domestic
			66	20.1	66	20.1	Grey	Sand	Medium Sand	-							supply	
4907840	598556	4856805	-	-	-	-	-	-	-	-	-	-	-	-	-	11-Mar-93	-	-
4907844	599080	4857704	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			2	0.6	2	0.6	-	Loam	-	-	1							
			37	11.3	37	11.3	-	Clay	- Crovel	-	1							
4007005	E00007	4057050	39	11.9	39	11.9	- Pluo	Sand	Gravel	-	104	40.0	105	11 1	Ercah	1000 04 34	Water	Domestic
4907295	598207	4857250	95 98	29.0 29.9	95 98	29.0 29.9	Blue -	Clay Sand	Gravel Gravel	-	134	40.9	135	41.1	Fresh	1990-04-31	supply	Domestic
			134	40.8	134	40.8	Blue	Clay		-	1						,	
			140	40.8	140	40.8	Blue	Sand	Gravel -	-	1							
			18	5.5	18	5.5		Clay	-	-	-	-						
			23	7.0	23	7.0	Brown Blue	Clay	-	-	1						Water	
4906516	598227	4857340	35	10.7	35	10.7	Brown	Medium Sand		-	23	7.0	22	6.1	Fresh	18-Oct-86		Domestic
1		I	J)	10.7	J)	10.7	DIUWII	Iniediaili Sand	4 -	<u> </u>	J	I	l	l	l l		supply	I

ı	1	i	45	13.7	45	13.7	Blue	Clay	_	_	1	ı		i	l l		1	I
			9	2.7	9	2.7	-	Clay	-	-	-	1						
			12	3.7	12	3.7	-	Sand		-	-						Water	
4904719	598524	4857402	18	5.5	18	5.5	-	Sand	-	-	10	3.0	6	6.1	Fresh	25-Aug-74		Domestic
			28	8.5	28	8.5	-	Clay	-	-							supply	
			20	6.1	20	0.6		Clay	-	-							+	
			45	13.7	37	11.3	Brown Blue	Clay	-	-	-							
			55	16.8	39	11.9	- Diue	Medium Sand	Clay	-							Water	
4900213	598213	4856795	115	35.1	95	29.0	Blue	Clay	- Clay	-	45	13.7	Flov	wing	Fresh	12-Jun-66	supply	Domestic
			136	41.5	98	29.9	-	Fine Sand	-	-	-						Supply	
			138	42.1	134	40.8	Blue	Clay	-	-	1							
			1	0.3	1	0.3	Black	Loam	_	-								
			6	1.8	6	1.8	Brown	Clay	Gravel	-	-							
			11	3.4	11	3.4	Blue	Clay	- Graver	-	-							
4906470	598854	4857932	83	25.3	83	25.3	Brown	Medium Sand	-	-	80	24.4	4	1.2	Fresh	16-Nov-85	Water	Domestic
4300470	330034	4037 932	92	28.0	92	28.0	Grey	Medium Sand	-	-	- 00	24.4	4	1.2	1 16311	10-1404-03	supply	Domestic
			107	32.6	107	32.6	Blue	Clay	Gravel	-	1							
			135	41.1	135	41.1	Grey	Shale	Clay	_								
4907878	598918	4857265	-	-	-	-	-	-	- Clay	_	-	-		_	_		_	_
			1	0.3	1	0.3	Brown	Loam	loose		not	not	not	not	_		Water	_
7345659	598366	4857259	20	6.1	20	6.1	Brown	Silt Till	dry		stated		stated	stated	not stated	24-Jun-19	supply	Monitoring
7292795	598776	4857763	-	-	-	-	-	-	ury -		Stateu -	Stateu	Stateu	Stateu	-	23-Aug-17	Warer supply	Monitoring
4907881	598405	4857436	-	-	-	-	-	-		-	-	-	- -	-	-	23-Aug-17	Warer Supply	WOULDING
7292729	598776	4857763	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	7-Aug-17	-	Manitorina
		4857759	1	ļ							-			-			-	Monitoring
7292728	598935	4857759	-	- 0.7	-	-	- D	-	-	-	-	-	-	-	-	7-Aug-17	-	Monitoring
			9	2.7	9	2.7	Brown	Fill	-	-	-							
			28 41	8.5 12.5	28 41	8.5	Blue	Clay	Silt Silt	- Croval	-							
			54	16.5	54	12.5 16.5	Blue Grey	Clay Clay	- -	Gravel -								
			57	17.4	57	17.4	Grey	Silt	Gravel									
4908440	598399	4856652	69	21.0	69	21.0	Grey	Silt	Gravel	-	133	40 E	3	0.9	Fresh	7-Apr-94	Water	Domostio
4900440	390399	4650052	81	24.7	81	24.7	Grey	Silt	Graver -	-	133	40.5	3	0.9	Fiesii	7-Apr-94	supply	Domestic
			121	36.9	121	36.9	Grey	Clay	Silt	-	-							
			133	40.5	133	40.5	Grey	Silt	Fine Sand	-								
			139	42.4	139	42.4	Grey	Fine Sand	-	-	-							
			145	44.2	145	44.2	Grey	Silt		-								
4907849	598780	4857872	-	-	-	-	- Grey	-		-	-	-		-	-	-	-	
7301043	330700	+031012	2	0.6	2	0.6	Brown	Peat	-	Loose	-				_	-	-	-
			40	12.2	40	12.2	Grey	Silt	Clay	Till	-							
			108	32.9	108	32.9	Grey	Silt	Stones	Layered	-							
			130	39.6	130	39.6	Grey	Clay	Sand	Layered	1							
			164	50.0	164	50.0	Grey	Clay	Sand	Silt	1						Water	
4908193	597907	4857031	184	56.1	184	56.1	Grey	Sand	Silt	Stones	Not s	stated	Not s	stated	Not stated	9-Jan-97	supply	Monitoring
		1	201	61.3	201	61.3	Grey	Fine Sand	Silt	Dense	1						Supply	
			218	66.4	218	66.4	Grey	Sand	Gravel	Layered	1							
		1	246	75.0	246	75.0	Grey	Sand	Silt	Layered	1							
		1	250	76.2	250	76.2	Grey	Shale	Layered	Weathered	1							
			1	0.3	1	0.3	Brown	Loam	Layereu -					1				
		1	9	2.7	9	2.7	Brown	Clay	-	-	1							
		1	J	4.1	J	2.1	DIOWII	Olay	_	_	_	I		I	1		1	

4905545		Ī	16	4.9	16	4.9	Brown	Clay	Sand	-	1	ı		ı	1 1		Water	1
	598515	4857723	16 24	7.3	24	7.3	Brown	Sand	Sanu -	-	16	4.9	15	4.6	Fresh	6-Jul-79	supply	Domestic
			32	9.8	32	9.8	Brown	Clay	Sand	_							Supply	
			35	10.7	35	10.7	Grey	Sand	-	_								
			2	0.6	2	0.6	Brown	Peat	-	Loose		ı		Į.				
			40	12.2	40	12.2	Grey	Silt	Clay	Till								
			108	32.9	108	32.9	Grey	Silt	Stones	Layered								
			130	39.6	130	39.6	Grey	Clay	Sand	Layered								
			164	50.0	164	50.0	Grey	Clay	Sand	Silt							Water	l
4908194	597904	4857037	184	56.1	184	56.1	Grev	Sand	Silt	Stones	Not s	stated	Not s	stated	Not stated	3-Jan-97	supply	Monitoring
			201	61.3	201	61.3	Grey	Fine Sand	Silt	Dense							очрр.,	
			218	66.4	218	66.4	Grey	Sand	Gravel	Layered								
			246	75.0	246	75.0	Grey	Sand	Silt	Layered								
			250	76.2	250	76.2	Grey	Shale	Layered	Weathered								
			2	0.6	2	0.6	-	Loam	-	-								
			5	1.5	5	1.5	Brown	Clay	_	-								
4900214	598727	4858045	20	6.1	20	6.1	Brown	Clay	Boulders	_	21	6.4	5	1.5	Fresh	3-Apr-66	Water	Domestic
1000211	000121	1000010	21	6.4	21	6.4	Blue	Clay	-	-		0.1	Ü	1.0	1 10011	0 / Ipi 00	supply	Domodio
			21	6.4	21	6.4	-	Coarse Sand	_	_								
4907843	597908	4857037	-	-	-	-	-	-	_	_	-	-		_	-	-	_	_
4307040	007000	4007 007	2	0.6	2	0.6	Brown	Loam	_	Loose				1				
			7	2.1	7	2.1	Brown	Silt	Clay	-								
7241065	598679	4857836	16	4.9	16	4.9	Brown	Sand	Clay	-	7	2.1	Not s	stated	Not stated	27-Mar-15	Water	Monitoring
7241000	000070	4007000	20	6.1	20	6.1	Grey	Silt	Clay	Soft	1 ′	2.1	1400	naica	Not Stated	21 Mai 10	supply	Wiermering
			35	10.7	35	10.7	Grey	Silt	-	Loose								
			4	1.2	4	1.2	Brown	Clay	Stones	Fill								
			12	3.7	12	3.7	Brown	Clay	Sand	-								
			34	10.4	34	10.4	Brown	Clay	Gravel	-							Water	Commerci
4908422	599026	4857876	71	21.6	71	21.6	Grey	Fine Sand	-	_	71	21.6	0	0.0	Fresh	16-Oct-98	supply	al
			114	34.7	114	34.7	Grey	Fine Sand	-	_							Supply	a a
			118	36.0	118	36.0	Blue	Clay	Gravel	Sand								
7278360	599062	4857830	-	-	-	-	-	-	-	-	-	-		-	_	7-Jun-16	-	-
1210300	333002	+007000	3	0.9	3	0.9	Brown	Sand	Fill	Loose	_				_	7-5411-10	_	
			14	4.3	14	4.3	Bown	Silt	Clay	Hard								
7220334	598903	4858000	18	5.5	18	5.5	Grey	Silt	Clay	Hard	-	-	-	-	-	7-May-14	-	Monitoring
			26	7.9	26	7.9	Grey	Sand	Silt	Dense								
-			4	1.2	4	1.2	Black	- Janu	-	- Delise								
			17	5.2	17	5.2	Brown	Clay	Stones	-								
7172781	599128	4858060	50	15.2	50	15.2	Grey	Clay	Stones	-	73	22.3	0	0	Not stated	11-Jul-11	Water	commerici
7172701	399120	4030000	70	21.3	70	21.3	Grey	Clay	Stones	-	13	22.5	U	U	Not stated	11-541-11	supply	al
			80	24.4	80	24.4	Grey	Clay	Medium-Grave									
			4	1.2	4	1.2	Brown	Clay	viedidili-Grave	-								
			16	4.9	16	4.9	Brown	Clay	Gravel	_								
			34	10.4	34	10.4	Brown	Sand	- Graver	Fine Sand							Water	Commerci
4908519	598914	4857996	42	12.8	42	12.8	Blue	Clay	_	-	Not s	stated	Not s	stated	Fresh	5-Oct-99	supply	al
			68	20.7	68	20.7	-	Sand	-								Supply	aı
			71	21.6	71	21.6	Blue	Clay	_									
-			7	2.1	7	2.1	Brown	Silt	Clay	Soft		1						
7148914	598946	4858295	16	4.9	16	4.9	Brown	Silt	Clay	Oort	_	_	_	_	Fresh	7-Jun-19	_	Test Hole
	000040	4000200	25	7.6	25	7.6	Grey	Clay	Silt	-					1 10011	7 0011 10		100011010
1140914			34	10.4	34	10.4	- Grey	Previously Dug		-		 		1				+
7 140914		i e		19.8	65	19.8	Blue	Clay	Sand	-	1							
			65			10.0	Dide	Clay		-	110	106.7	Flo	wing	Fresh	5-Aug-72	-	Domestic
4904011	598756	4858099	65 110			33.5	Blue	Fine Sand	(Clav					-	1 10311	3-Aug-12	-	Domestic
	598756	4858099	110	33.5	110	33.5	Blue	Fine Sand	Clay -					•	1 10311	3-Aug-12	-	Domestic
	598756	4858099	110 114	33.5 34.7	110 114	33.5 34.7	Grey	Fine Sand	-	-				<u> </u>	i ican	3-Aug-12		Domestic
4904011			110 114 5	33.5 34.7 1.5	110 114 5	33.5 34.7 1.5	Grey Brown	Fine Sand Clay	-	-	6	1.7					Water	
	598756 598847	4858099 4858021	110 114 5 8	33.5 34.7 1.5 2.4	110 114 5 8	33.5 34.7 1.5 2.4	Grey Brown -	Fine Sand Clay Clay		- - -	6	1.7	-	-	Fresh	13-Nov-60		
4904011			110 114 5 8 18	33.5 34.7 1.5 2.4 5.5	110 114 5 8 18	33.5 34.7 1.5 2.4 5.5	Grey Brown - -	Fine Sand Clay Clay Medium Sand	-	-	6	1.7	-	-			Water	Domestic
4904011			110 114 5 8 18	33.5 34.7 1.5 2.4 5.5 0.3	110 114 5 8 18	33.5 34.7 1.5 2.4 5.5 0.3	Grey Brown - - -	Fine Sand Clay Clay Medium Sand Loam	- - - -	- - -	6	1.7	-	-			Water	
4904011			110 114 5 8 18	33.5 34.7 1.5 2.4 5.5	110 114 5 8 18	33.5 34.7 1.5 2.4 5.5	Grey Brown - -	Fine Sand Clay Clay Medium Sand	-	- - -		1.7		- 37			Water	

4900000	590000	4000090	61	18.6	61	18.6	Brown	Clay	-	-	40	14.4	14	3.1	LIG9II	บ-บนเ-ฮฮ	supply	al
			80	24.4	80	24.4	Blue	Clay	-	-								
			93	28.3	93	28.3	Blue	Fine Sand	-	-								
			12	3.7	5	1.5	Brown	Clay	-	-							Water	
4900282	597482	4859341	59	18.0	8	2.4	Grey	Clay	Medium Sand	Stones	59	18.4	-	-	Fresh	13-Jan-57		Domestic
			60	18.3	18	5.5	-	Medium Sand	-	-							supply	
4906797	598651	4857730	-	-	-	-	-	-	-	-	Not s	tated	Not s	stated	Not stated	4-Nov-87	Water supply	Domestic

Appendix D-1 Caledon Station

Project: Hydrogeological Investigation

С

Number: 20-169-100

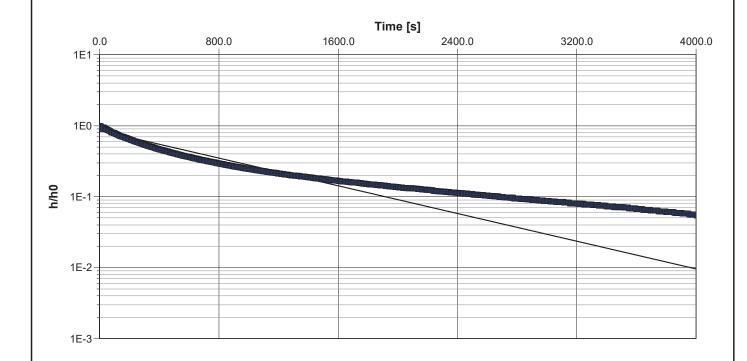
Client: Argos Development Corp.

Location: Bolton Option 3 Lands

Slug Test: BH20-1

Test Conducted by:

Analysis Performed by: AS


BH2-01

Test Well: BH20-1

Test Date: 7/6/2020

Analysis Date: 12/7/2020

Aquifer Thickness: 3.80 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH20-1	7.34 × 10 ⁻⁷	

Project: Hydrogeological Investigation

С

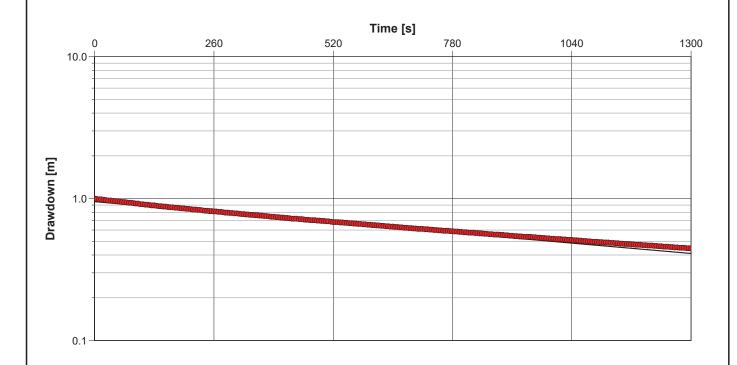
Number: 20-169-100

Client: Argos Development Corp.

Location: Bolton Option 3 Lands

Slug Test: BH20-5

Test Well: BH20-5


Test Date: 12/7/2020

Analysis Performed by: AS

BH20-5

Analysis Date: 12/7/2020

Aquifer Thickness: 7.00 m

Calculation	usina	Bouwer	& Ri	ce
Calculation	using	Douvici	G I VI	

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH20-5	5.34 × 10 ⁻⁷	

Project: Hydrogeological Investigation

С

Number: 20-169-100

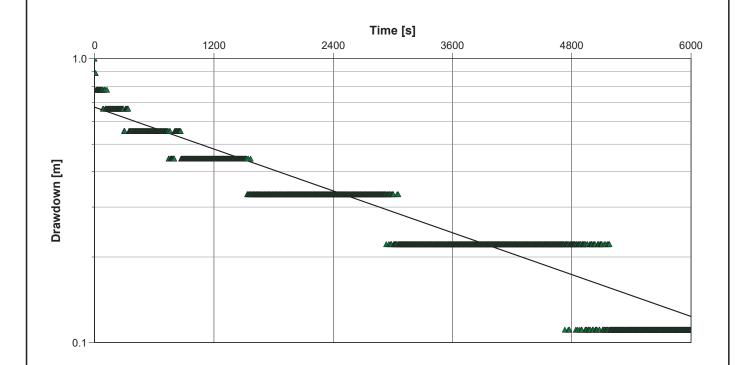
Client: Argos Development Corp.

Location: Bolton Option 3 Lands

Slug Test: BH20-6

Test Conducted by:

Analysis Performed by: AS


BH20-6

Test Well: BH20-6

Test Date: 12/7/2020

Analysis Date: 12/7/2020

Aquifer Thickness: 1.08 m

Observation Well	Hydraulic Conductivity [m/s]	
BH20-6	1.42 × 10 ⁻⁷	

Project: Hydrogeological Investigation

С

Number: 20-169-100

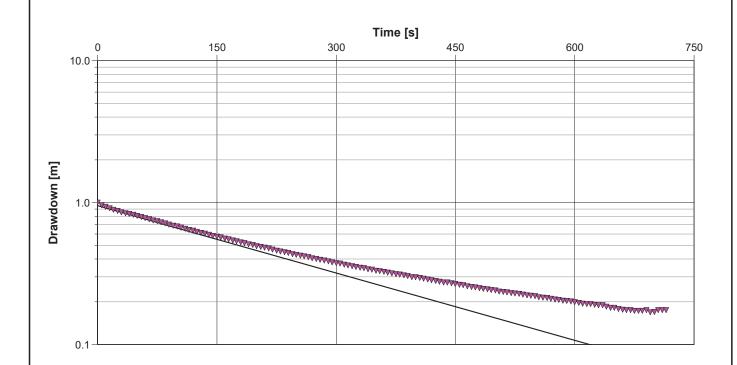
Client: Argos Development Corp.

Location: Bolton Option 3 Lands

Slug Test: BH20-9

Test Conducted by:

Analysis Performed by: AS


BH20-9

Test Well: BH20-9

Test Date: 12/8/2020

Analysis Date: 12/8/2020

Aquifer Thickness: 3.08 m

Calculation	usina	Hvorslev

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH20-9	3.21 × 10 ⁻⁶	

Project: Hydrogeological Investigation

С

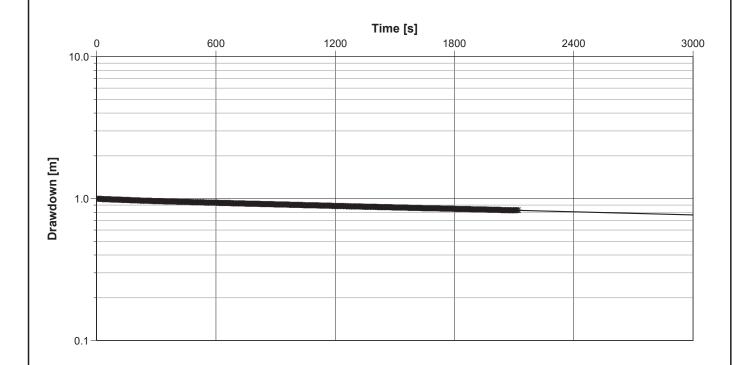
Number: 20-169-100

Client: Argos Development Corp.

Location: Bolton Option 3 Lands

Slug Test: BH20-11

Test Well: BH20-11


Test Date: 12/8/2020

Analysis Performed by: AS

BH20-11

Analysis Date: 12/8/2020

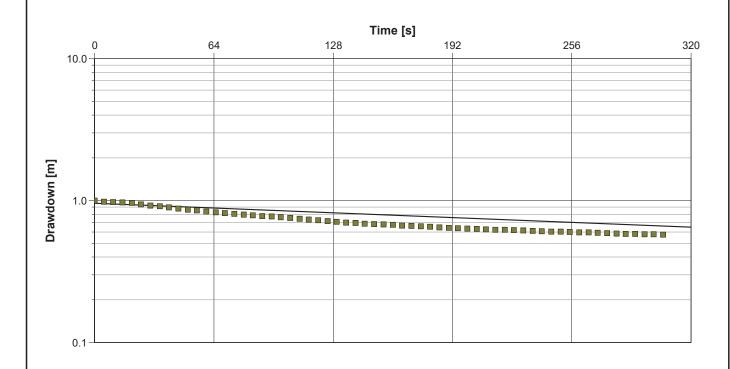
Aquifer Thickness: 2.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH20-11	5.22 × 10 ⁻⁸	

Project: Hydrogeological Investigation

С

Number: 20-169-100


Client: Argos Development Corp.

Location: Bolton Option 3 Lands Slug Test: BH20-12 Test Well: BH20-12

Test Conducted by: Test Date: 12/8/2020

Analysis Performed by: AS BH20-12 Analysis Date: 12/8/2020

Aquifer Thickness: 2.20 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH20-12	7.33 × 10 ⁻⁷	

Project: Hydrogeological Investigation

С

Number: 20-169-100

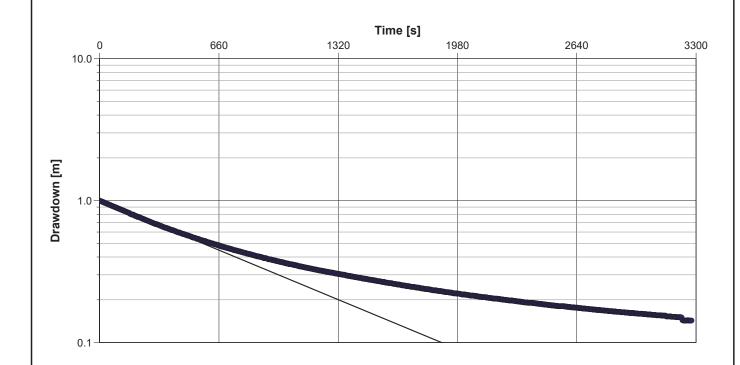
Client: Argos Development Corp.

Location: Bolton Option 3 Lands

Slug Test: BH20-14

Test Conducted by:

Analysis Performed by: AS


BH20-14

Test Well: BH20-14

Test Date: 12/8/2020

Analysis Date: 12/8/2020

Aquifer Thickness: 0.80 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH20-14	6.01 × 10 ⁻⁷	

Project: Hydrogeological Investigation

С

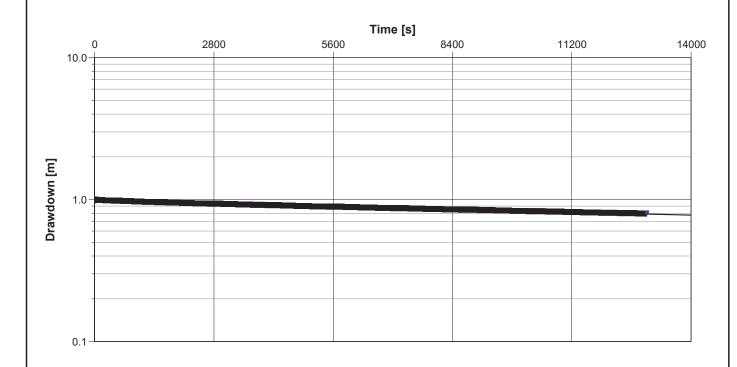
Number: 20-169-100

Client: Argos Development Corp.

Location: Bolton Option 3 Lands

Slug Test: BH20-15

Test Well: Well 9


Test Date: 12/8/2020

Analysis Performed by: AS

BH20-15

Analysis Date: 12/8/2020

Aquifer Thickness: 0.70 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
Well 9	7.38 × 10 ⁻⁹	

Project: Hydrogeological Investigation

С

Number: 20-169-100

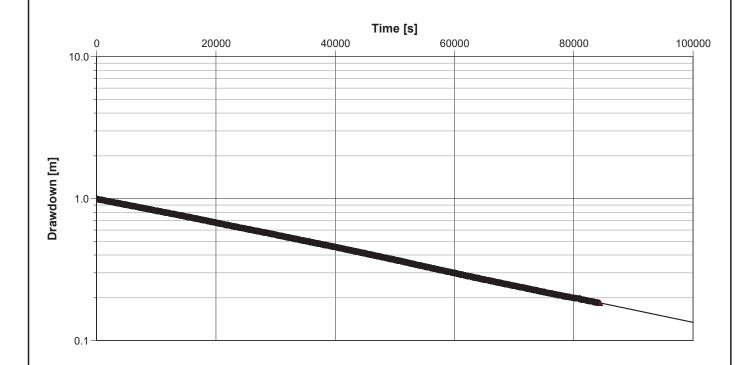
Client: Argos Development Corp.

Location: Bolton Option 3 Lands

Slug Test: BH20-16

Test Conducted by:

Analysis Performed by: AS


BH20-16

Test Well: BH20-16

Test Date: 12/8/2020

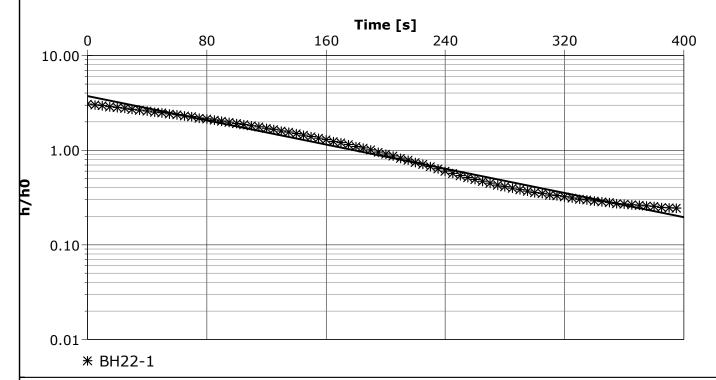
Analysis Date: 12/8/2020

Aquifer Thickness: 6.12 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH20-16	1.50 × 10 ⁻⁸	

Project: Hydrogeological Investigation

Number: 20-169-104


Client: Caledon Community Partners

 Location: Caledon Station
 Slug Test: BH22-1
 Test Well: BH22-1

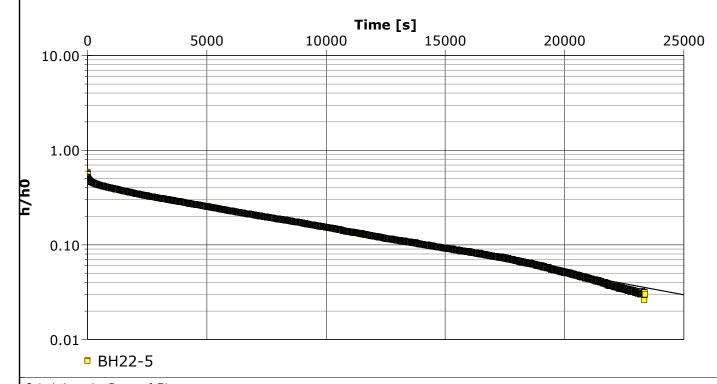
 Test Conducted by: HS
 Test Date: 11/1/2022

 Analysis Performed by: DS
 BH22-1
 Analysis Date: 11/17/2022

Aquifer Thickness: 12.00 m

Calculation	ueina	Rouwer	& Rice
Calculation	using	Douwei	a rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-1	2.95 × 10 ⁻⁶	


Project: Hydrogeological Investigation

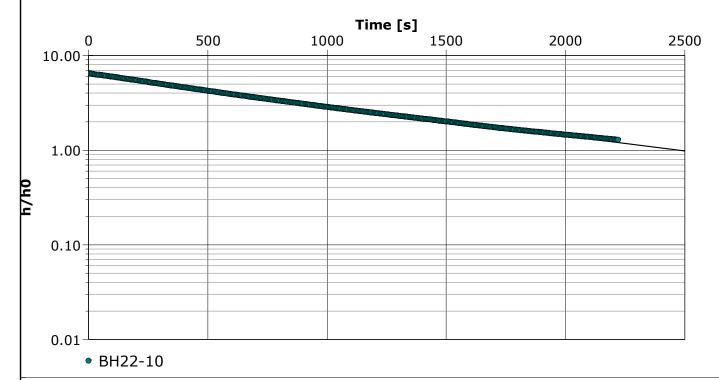
Number: 20-169-104

Client: Caledon Community Partners

Location: Caledon StationSlug Test: BH22-5Test Well: BH22-5Test Conducted by: HSTest Date: 11/1/2022Analysis Performed by: DSBH22-5Analysis Date: 11/17/2022

Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-5	4.34 × 10 ⁻⁸	


Project: Hydrogeological Investigation

Number: 20-169-104

Client: Caledon Community Partners

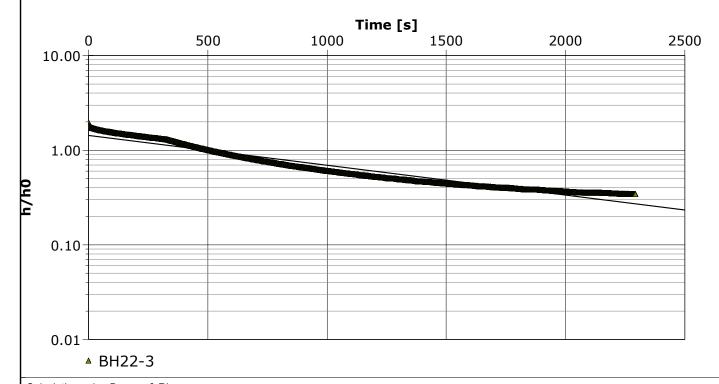
Location: Caledon StationSlug Test: BH22-10Test Well: BH22-10Test Conducted by: HSTest Date: 11/1/2022Analysis Performed by:BH22-10Analysis Date: 11/17/2022

Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-10	2.95 × 10 ⁻⁷	

Project: Hydrogeological Investigation

Number: 20-169-104


Client: Caledon Community Partners

 Location: Caledon Station
 Slug Test: BH22-3
 Test Well: BH22-3

 Test Conducted by: HS
 Test Date: 11/1/2022

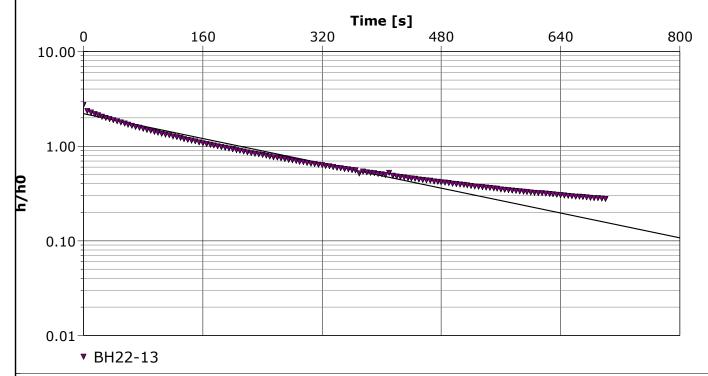
 Analysis Performed by: DS
 BH22-3
 Analysis Date: 11/17/2022

Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-3	2.76 × 10 ⁻⁷	

Project: Hydrogeological Investigation

Number: 20-169-104


Client: Caledon Community Partners

 Location: Caledon Station
 Slug Test: BH22-13
 Test Well: BH22-13

 Test Conducted by: HS
 Test Date: 11/1/2022

 Analysis Performed by: DS
 BH22-13
 Analysis Date: 11/17/2022

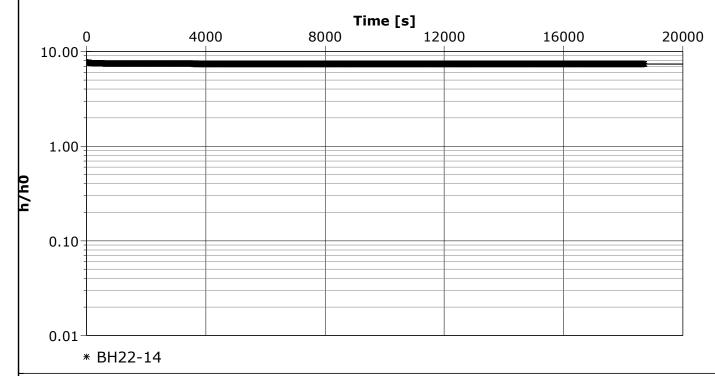
Aquifer Thickness: 30.00 m

Calculation	ueina	Rouwer	& Rice
Calculation	usiliy	Douwei	a nice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-13	1.55 × 10 ⁻⁶	

Project: Hydrogeological Investigation

Number: 20-169-104


Client: Caledon Community Partners

 Location: Caledon Station
 Slug Test: BH22-14
 Test Well: BH22-14

 Test Conducted by:
 Test Date: 11/1/2022

 Analysis Performed by: DS
 BH22-14
 Analysis Date: 11/17/2022

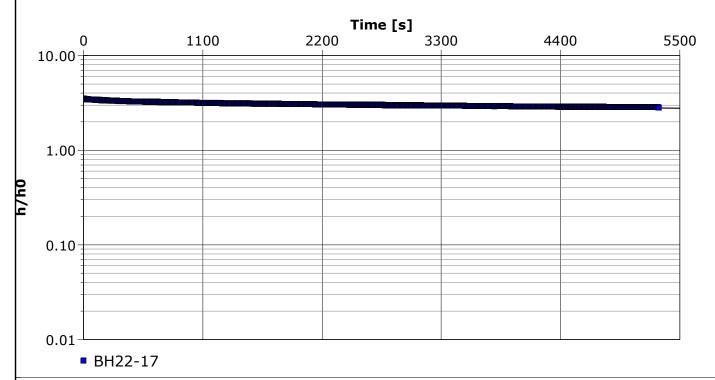
Aquifer Thickness: 30.00 m

Calculation	usina	Rouwer	& Rice
Calculation	usiliu	Douwei	C I VICE

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-14	2.94 × 10 ⁻¹⁰	

Project: Hydrogeological Investigation

Number: 20-169-104


Client: Caledon Community Partners

 Location: Caledon Station
 Slug Test: BH22-17
 Test Well: BH22-17

 Test Conducted by: HS
 Test Date: 11/3/2022

 Analysis Performed by: DS
 BH22-17
 Analysis Date: 11/17/2022

Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-17	1.21 × 10 ⁻⁸	

Project: Hydrogeological Investigation

Number: 20-169-104


Client: Caledon Community Partners

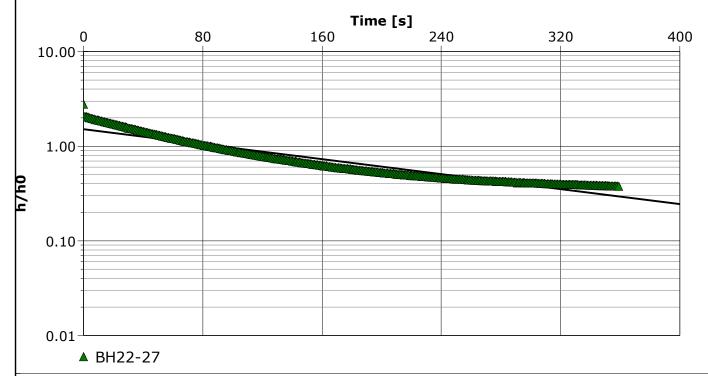
 Location: Caledon Station
 Slug Test: BH22-33
 Test Well: BH22-33

 Test Conducted by: HS
 Test Date: 11/3/2022

 Analysis Performed by: DS
 BH22-33
 Analysis Date: 11/23/2022

Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-33	4.63 × 10 ⁻⁶	


Project: Hydrogeological Investigation

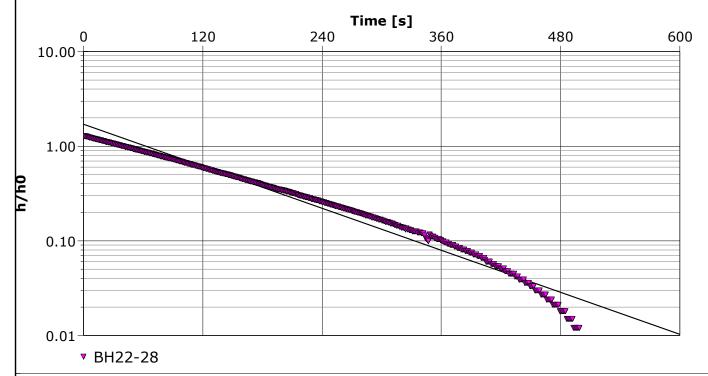
Number: 20-169-104

Client: Caledon Community Partners

Location: Caledon StationSlug Test: BH22-27Test Well: BH22-27Test Conducted by:Test Date: 11/1/2022Analysis Performed by: DSBH22-27Analysis Date: 2/10/2023

Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-27	1.87 × 10 ⁻⁶	


Project: Hydrogeological Investigation

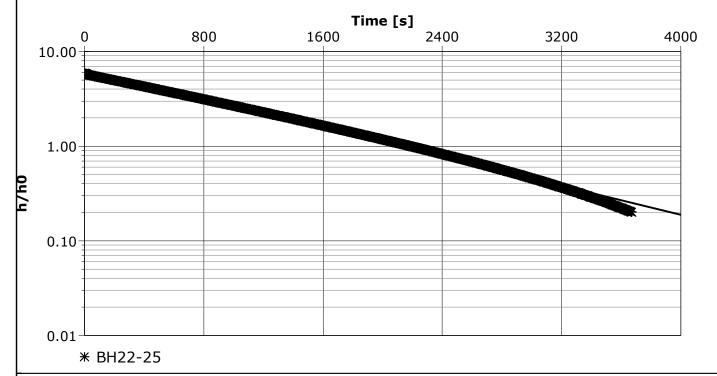
Number: 20-169-104

Client: Caledon Community Partners

Location: Caledon StationSlug Test: BH22-28Test Well: BH22-28Test Conducted by: HSTest Date: 11/2/2022Analysis Performed by: DSBH22-28Analysis Date: 2/10/2023

Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-28	3.44 × 10 ⁻⁶	


Project: Hydrogeological Investigation

Number: 20-169-104

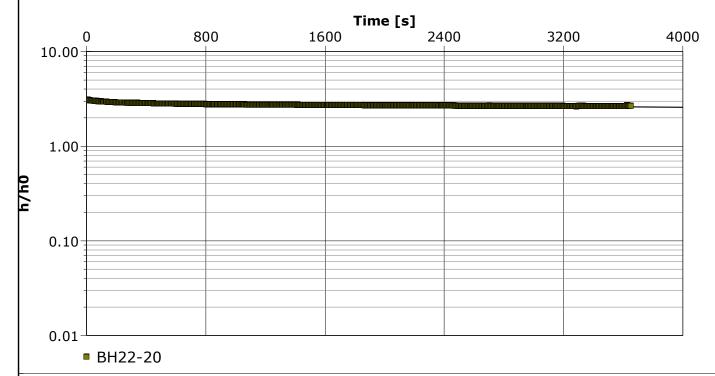
Client: Caledon Community Partners

Location: Caledon StationSlug Test: BH22-25Test Well: BH22-25Test Conducted by: HSTest Date: 2/10/2023Analysis Performed by: DSBH22-25Analysis Date: 2/10/2023

Aquifer Thickness: 30.00 m

Calculation	usina	Rouwer	& Rice
Calculation	using	Douwei	a rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-25	3.56 × 10 ⁻⁷	


Project: Hydrogeological Investigation

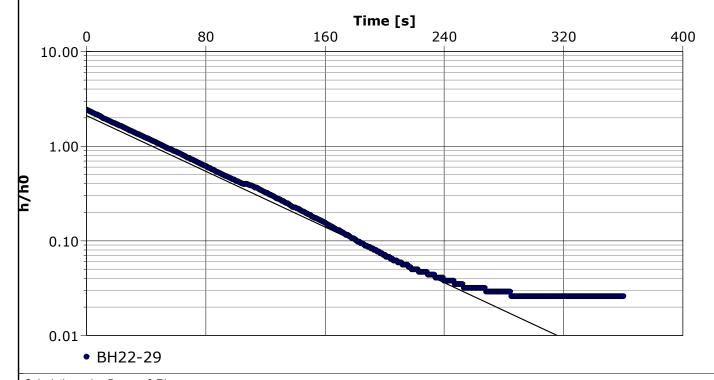
Number: 20-169-104

Client: Caledon Community Partners

Location: Caledon StationSlug Test: BH22-20Test Well: BH22-20Test Conducted by: HSTest Date: 11/2/2022Analysis Performed by: DSBH22-20Analysis Date: 2/10/2023

Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-20	1.00 × 10 ⁻⁸	


Project: Hydrogeological Investigation

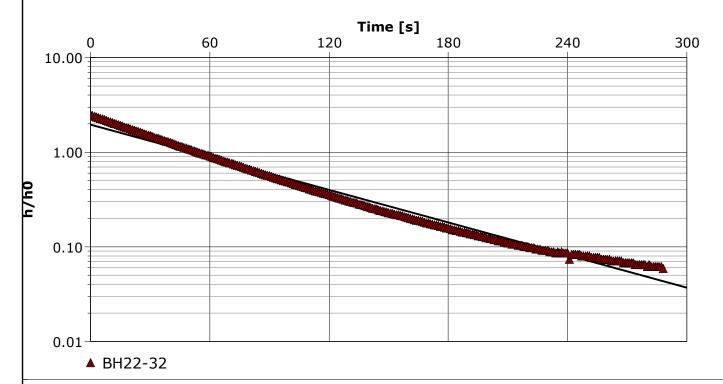
Number: 20-169-104

Client: Caledon Community Partners

Location: Caledon StationSlug Test: BH22-29Test Well: BH22-29Test Conducted by: HSTest Date: 11/2/2022Analysis Performed by: DSBH22-29Analysis Date: 2/10/2023

Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-29	6.71 × 10 ⁻⁶	


Project: Hydrogeological Investigation

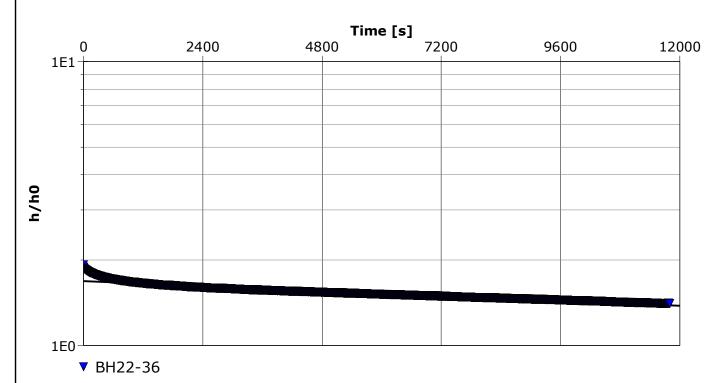
Number: 20-169-104

Client: Caledon Community Partners

Location: Caledon StationSlug Test: BH22-32Test Well: BH22-32Test Conducted by: HSTest Date: 11/2/2022Analysis Performed by: DSBH22-32Analysis Date: 2/10/2023

Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-32	5.42 × 10 ⁻⁶	


Project: Hydrogeological Investigation

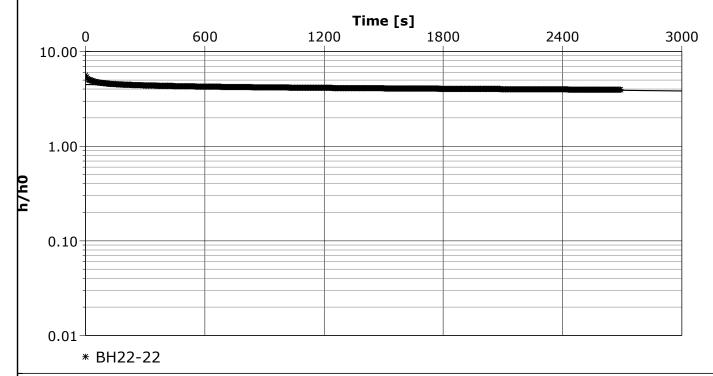
Number: 20-169-104

Client: Caledon Community Partners

Location: Caledon StationSlug Test: BH22-36Test Well: BH22-36Test Conducted by: HSTest Date: 11/2/2022Analysis Performed by: DSBH22-36Analysis Date: 2/10/2023

Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-36	5.28 × 10 ⁻⁹	


Project: Hydrogeological Investigation

Number: 20-169-104

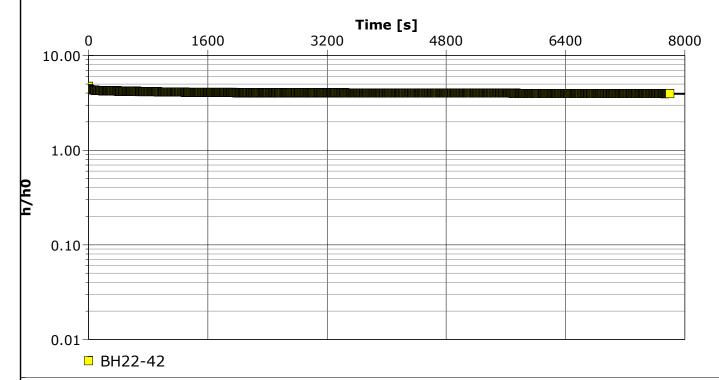
Client: Caledon Community Partners

Location: Caledon StationSlug Test: BH22-22Test Well: BH22-22Test Conducted by: HSTest Date: 11/2/2022Analysis Performed by: DSBH22-22Analysis Date: 2/10/2023

Aquifer Thickness: 30.00 m

Calculation	usina	Rouwer	& Rice
Calculation	using	Douwei	a rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-22	1.84 × 10 ⁻⁸	


Project: Hydrogeological Investigation

Number: 20-169-104

Client: Caledon Community Partners

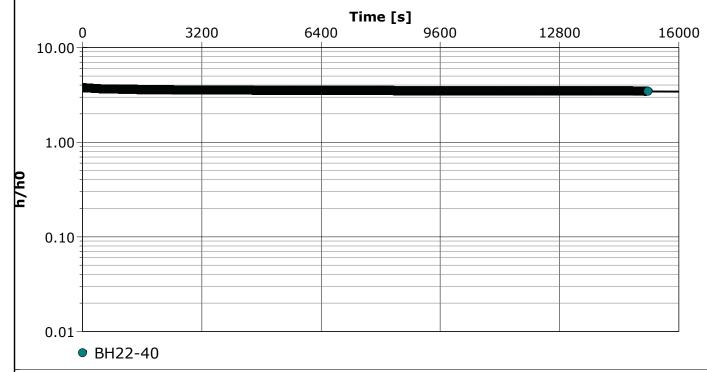
Location: Caledon StationSlug Test: BH22-42Test Well: BH22-42Test Conducted by: HSTest Date: 11/2/2022Analysis Performed by: DSBH22-42Analysis Date: 2/10/2023

Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-42	2.54 × 10 ⁻⁹	

Project: Hydrogeological Investigation

Number: 20-169-104


Client: Caledon Community Partners

Location: Caledon Station Slug Test: BH22-40 Test Well: BH22-40

Test Conducted by: HS Test Date: 11/2/2022

Analysis Performed by: DS BH22-40 Analysis Date: 2/10/2023

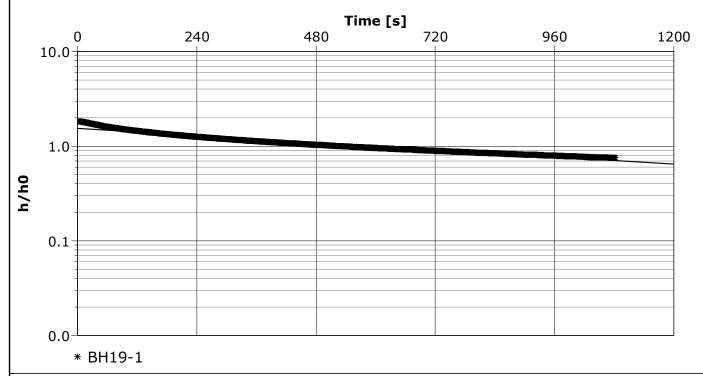
Aquifer Thickness: 30.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-40	1.06 × 10 ⁻⁹	

Appendix D-2 Argo King I & II

Project: 7675 King St

Number: 19-093-100


Client: Argo Development Corp.

 Location: Bolton, ON
 Slug Test: BH19-1
 Test Well: BH19-1

 Test Conducted by: DG
 Test Date: 6/27/2019

 Analysis Performed by: DG
 BH19-1
 Analysis Date: 6/28/2019

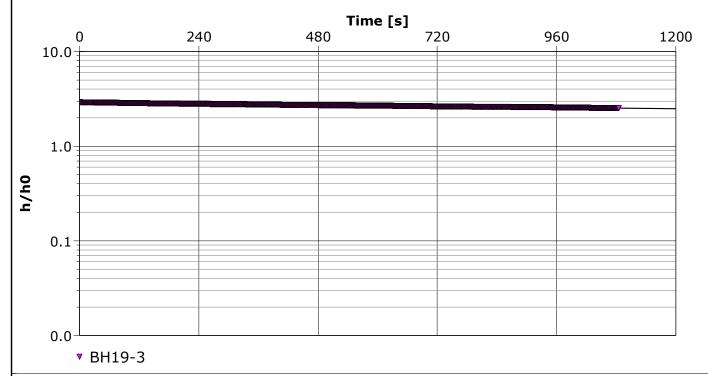
Aquifer Thickness: 36.00 m

Calculation	usina	Rouwer	& Rice
Calculation	using	Douwei	a rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH19-1	4.94 × 10 ⁻⁷	

Project: 7675 King St

Number: 19-093-100


Client: Argo Development Corp.

Location: Bolton, ON Slug Test: BH19-3 Test Well: BH19-3

Test Conducted by: DG Test Date: 6/27/2019

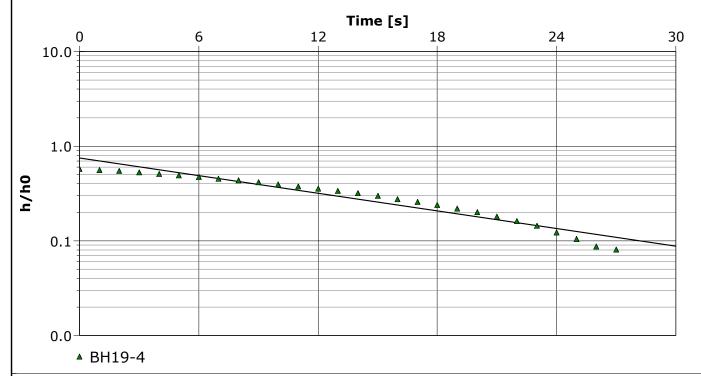
Analysis Performed by: DG BH19-3 Analysis Date: 6/28/2019

Aquifer Thickness: 36.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH19-3	8.51 × 10 ⁻⁸	

Project: 7675 King St

Number: 19-093-100


Client: Argo Development Corp.

Location: Bolton, ON Slug Test: BH19-4 Test Well: BH19-4

Test Conducted by: DG Test Date: 6/27/2019

Analysis Performed by: DG BH19-4 Analysis Date: 6/28/2019

Aquifer Thickness: 36.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH19-4	4.84 × 10 ⁻⁵	

Project: 7675 King St

Number: 19-093-100

Client: Argo Development Corp.

 Location: Bolton, ON
 Slug Test: BH19-5
 Test Well: BH19-5

 Test Conducted by: DG
 Test Date: 6/27/2019

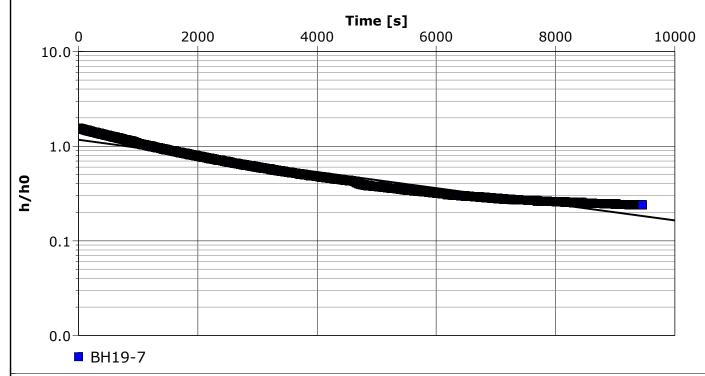
 Analysis Performed by: DG
 BH19-5
 Analysis Date: 6/28/2019

Aquifer Thickness: 36.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH19-5	1.18 × 10 ⁻⁸	

Project: 7675 King St

Number: 19-093-100


Client: Argo Development Corp.

 Location: Bolton, ON
 Slug Test: BH19-7
 Test Well: BH19-7

 Test Conducted by: DG
 Test Date: 6/27/2019

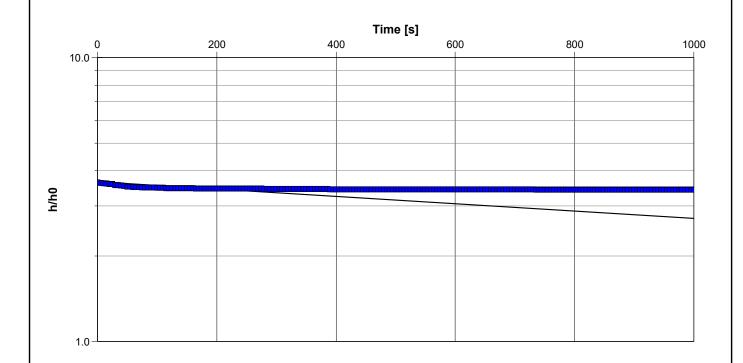
 Analysis Performed by: DG
 BH19-7
 Analysis Date: 6/28/2019

Aquifer Thickness: 36.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH19-7	1.33 × 10 ⁻⁷	

Project: Argo King

Number: 19-093-100


Client: Caledon Community Partners

 Location: Caledon, ON
 Slug Test: BH19-6
 Test Well: BH19-6

 Test Conducted by: DS
 Test Date: 10/26/2022

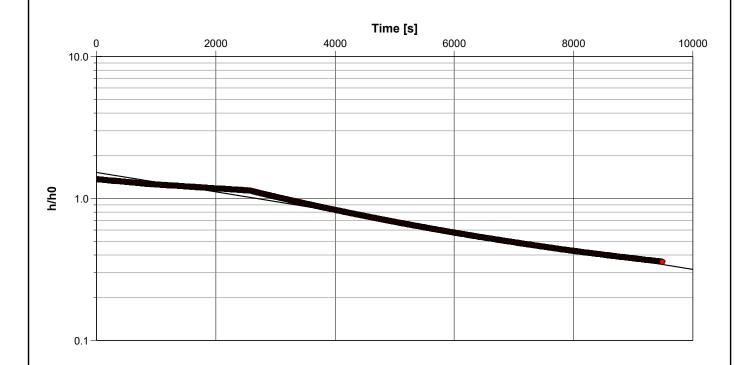
 Analysis Performed by: DS
 BH19-6
 Analysis Date: 10/31/2022

Aquifer Thickness: 7.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH19-6	1.04 × 10 ⁻⁷	

Project: Argo King

Number: 19-093-100


Client: Caledon Community Partners

 Location: Caledon, ON
 Slug Test: BH22-5
 Test Well: BH22-5

 Test Conducted by: DS
 Test Date: 10/26/2022

 Analysis Performed by: DS
 BH22-5
 Analysis Date: 10/31/2022

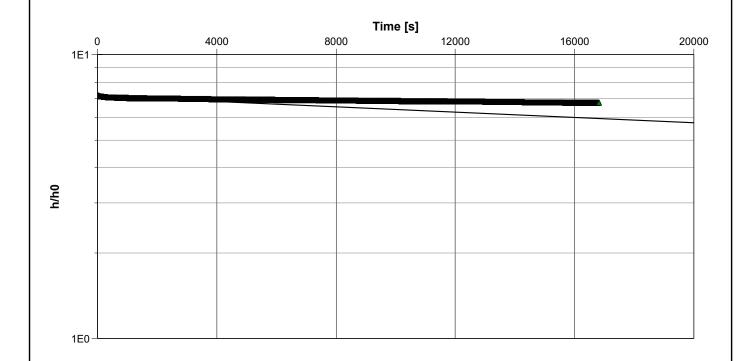
Aquifer Thickness: 11.20 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-5	5.54 × 10 ⁻⁸	

Slug Test Analysis Report

Project: Argo King

Number: 19-093-100


Client: Caledon Community Partners

 Location: Caledon, ON
 Slug Test: BH22-7
 Test Well: BH22-7

 Test Conducted by: DS
 Test Date: 10/26/2022

 Analysis Performed by: DS
 BH22-7
 Analysis Date: 10/31/2022

Aquifer Thickness: 11.20 m

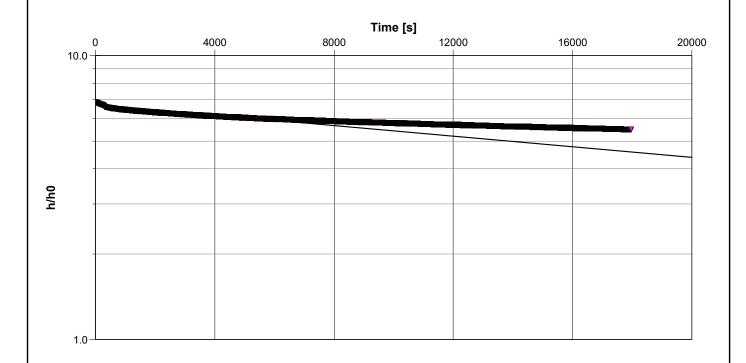
Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-7	3.79 × 10 ⁻⁹	

Slug Test Analysis Report

Project: Argo King

Number: 19-093-100

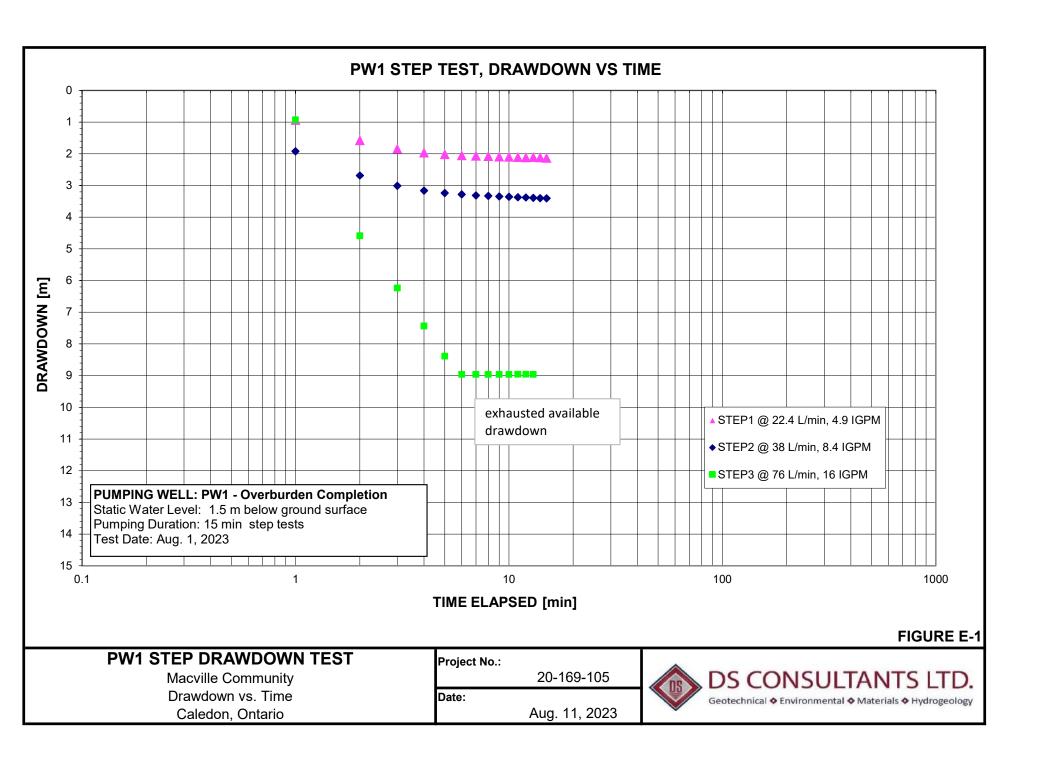

Client: Caledon Community Partners

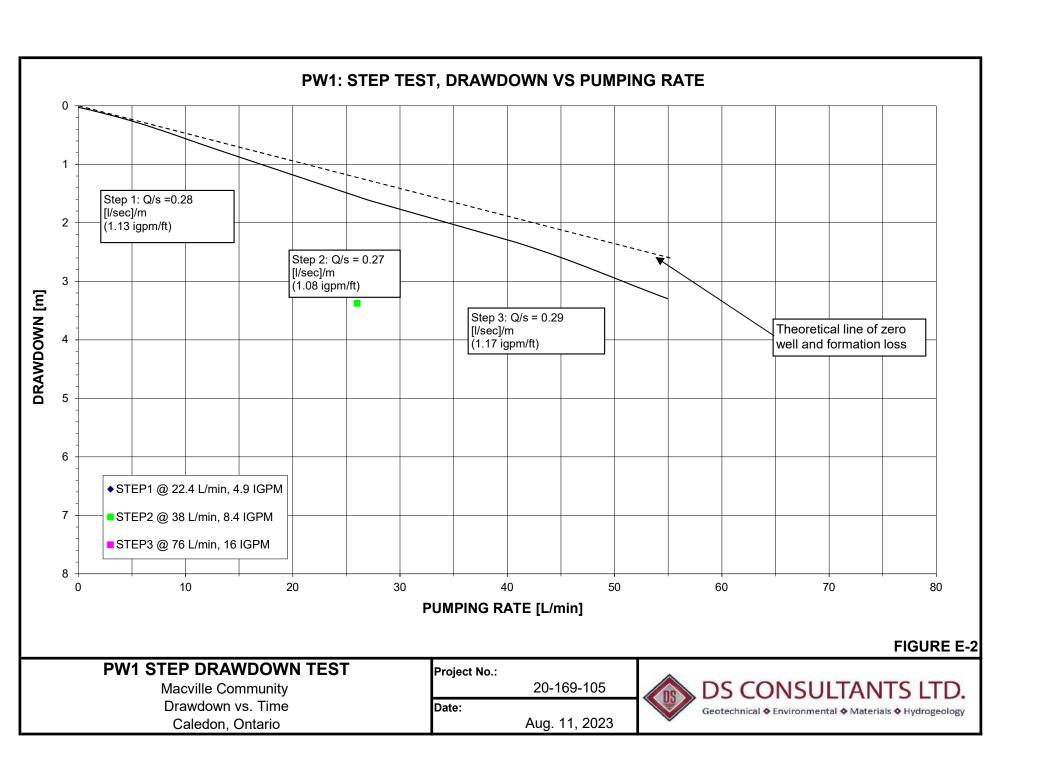
 Location: Caledon, ON
 Slug Test: BH22-8
 Test Well: BH22-8

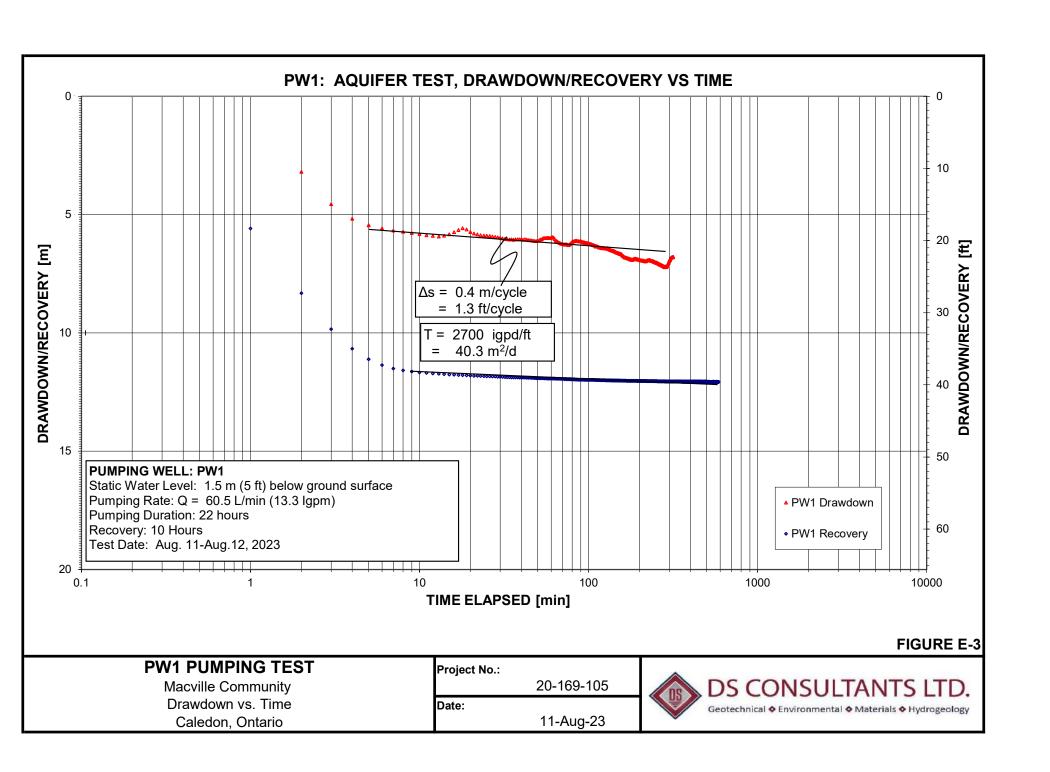
 Test Conducted by: DS
 Test Date: 10/26/2022

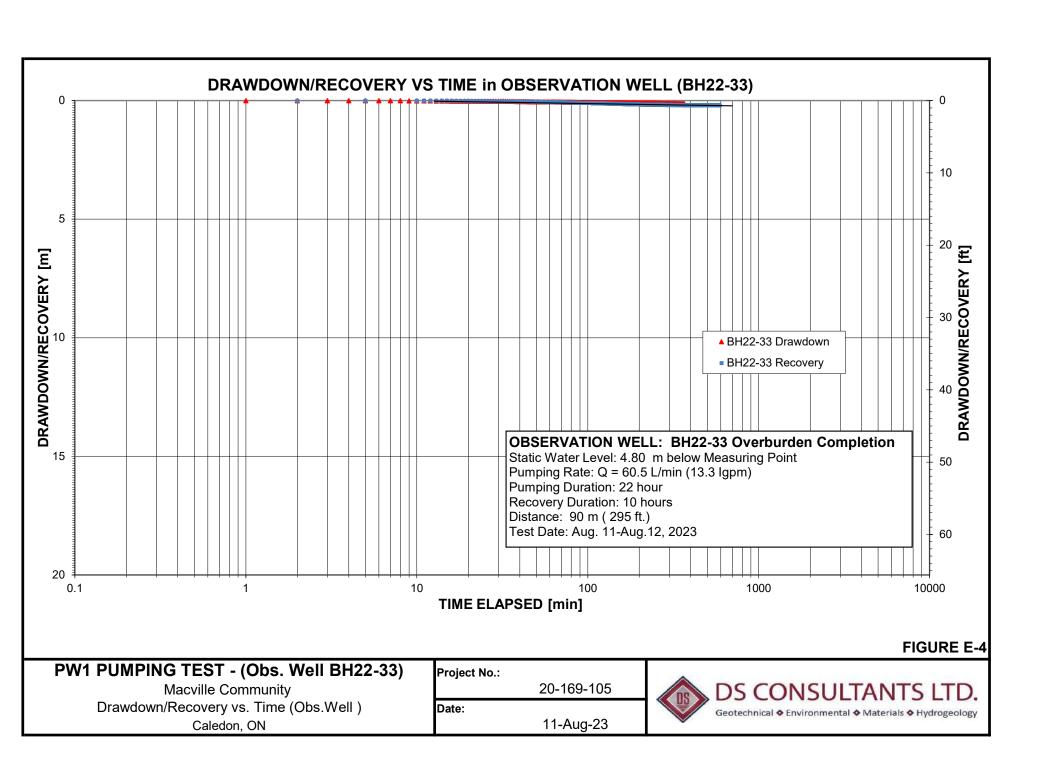
 Analysis Performed by: DS
 BH22-8
 Analysis Date: 10/31/2022

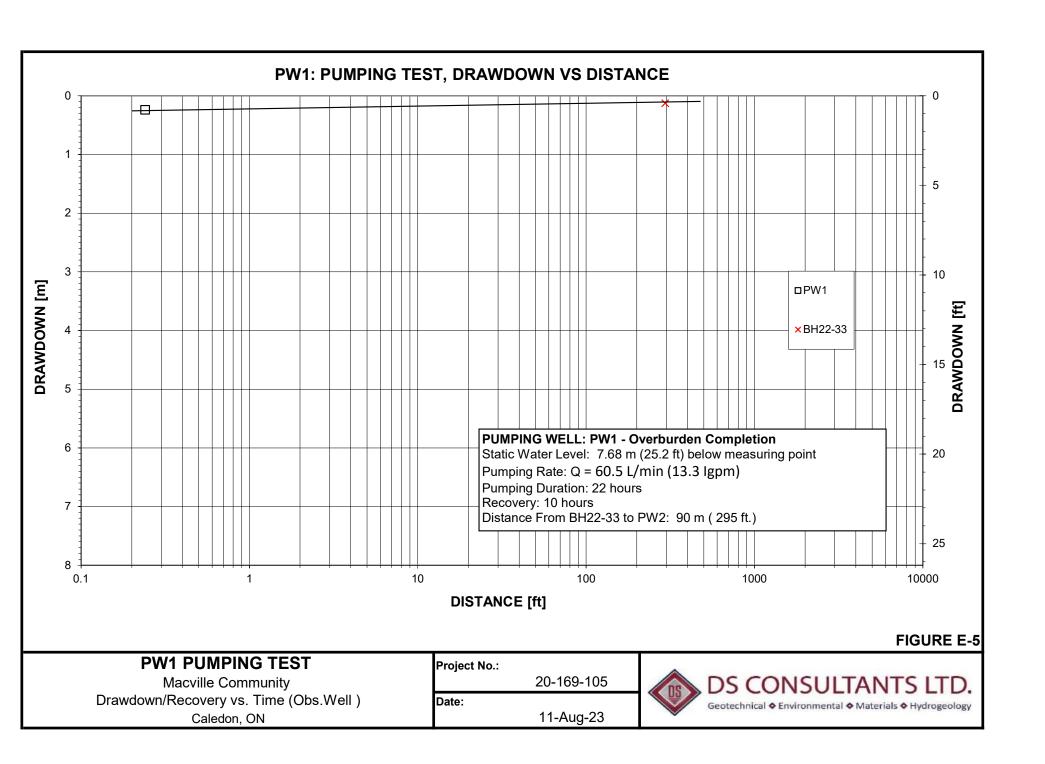
Aquifer Thickness: 11.30 m

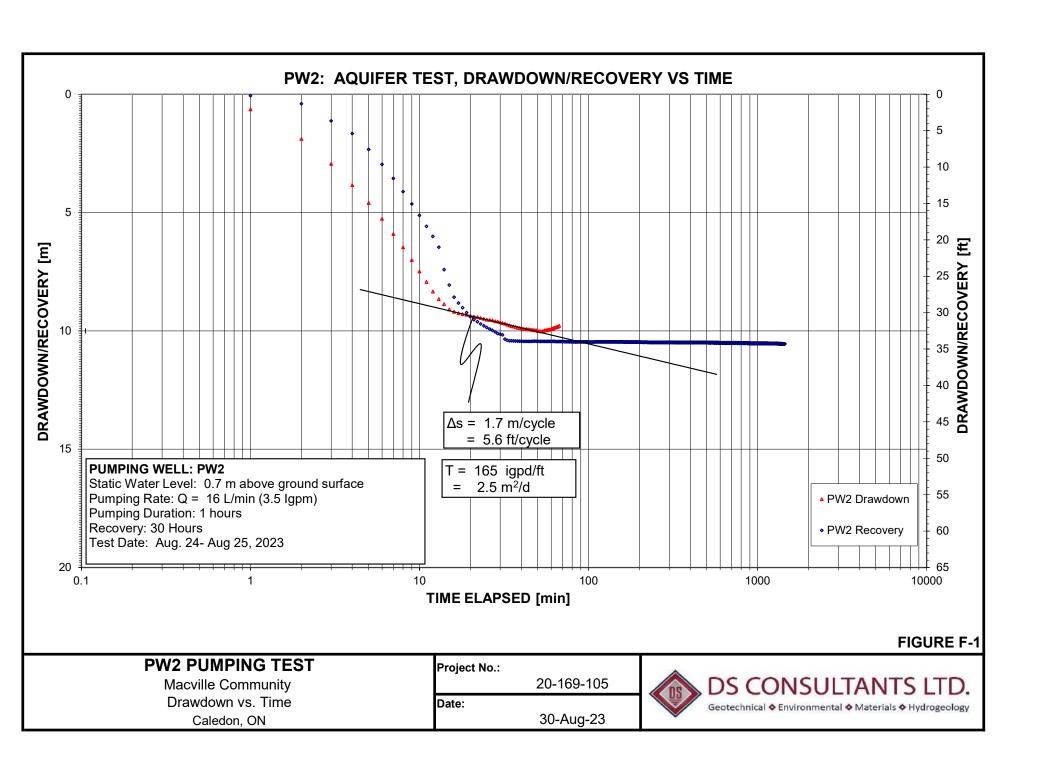


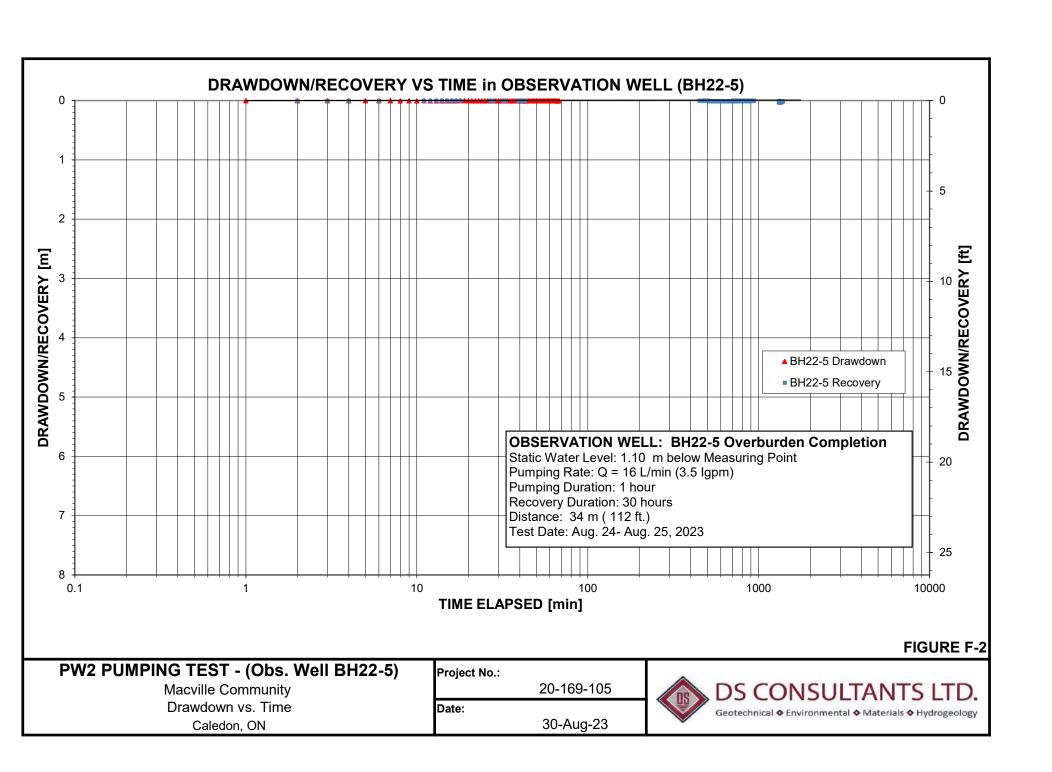

Calculation	ueina	Rouwer	& Rice
Calculation	using	Douwei	a rice

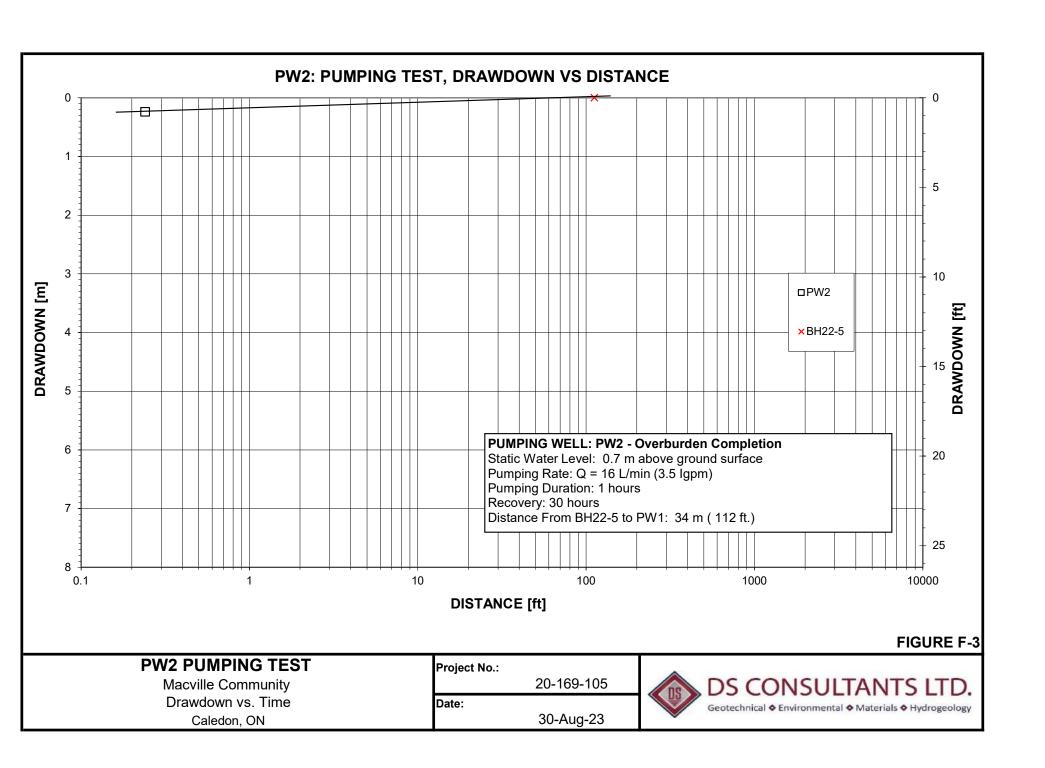

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH22-8	8.00 × 10 ⁻⁹	




Appendix E







Appendix F

Appendix G

THEORETICAL GROUNDWATER CONTROL MODEL

THEORETICAL GROUNDWATER CONTROL MODEL

Hydrogeological Investigation Macville Community- SWM Pond 1

Caledon, Ontario

Project No.: 20-169-105

Date: 15-Sep-23

FIGURE G-1

	Groundwater Control Model for Temporary Construction Dewatering - Drawdown and Interference at Theoretical Well Locations															
	PW1	PW2	PW3	PW4	PW5	PW6	PW7	PW8	PW9	PW10	PW11	PW12		OW1	OW2	
PW1	4.00	1.78	1.43	1.22	1.22	1.16	1.06	1.16	1.29	1.35	1.55	2.09		1.37	1.51	
PW2	1.78	4.00	1.88	1.49	1.47	1.34	1.17	1.26	1.32	1.27	1.42	1.66		1.51	1.86	
PW3	1.43	1.88	4.00	1.90	1.76	1.49	1.25	1.29	1.27	1.16	1.26	1.38		1.50	1.87	
PW4	1.22	1.49	1.90	4.00	2.01	1.58	1.30	1.28	1.18	1.06	1.13	1.20		1.39	1.59	
PW5	1.22	1.47	1.76	2.01	4.00	1.93	1.48	1.46	1.30	1.14	1.19	1.22		1.55	1.70	
PW6	1.16	1.34	1.49	1.58	1.93	4.00	1.83	1.72	1.41	1.19	1.21	1.19		1.66	1.60	
PW7	1.06	1.17	1.25	1.30	1.48	1.83	4.00	1.92	1.44	1.19	1.17	1.11		1.53	1.37	
PW8	1.16	1.26	1.29	1.28	1.46	1.72	1.92	4.00	1.76	1.34	1.23	0.00		1.82	1.49	
PW9	1.29	1.32	1.27	1.18	1.30	1.41	1.44	1.76	4.00	1.78	1.66	1.42		1.87	1.50	
PW10	1.35	1.27	1.16	1.06	1.14	1.19	1.19	1.37	1.78	4.00	2.02	1.53		1.50	1.35	
PW11	1.55	1.42	1.26	1.13	1.19	1.21	1.17	1.34	1.66	2.02	4.00	1.83		1.55	1.46	
PW12	2.09	1.66	1.38	1.20	1.22	1.19	1.11	1.23	1.42	1.53	1.83	4.00		1.47	1.54	
Total Drawdown at each location (ft)	19.30	20.04	20.07	19.35	20.17	20.03	18.89	19.78	19.82	19.02	19.68	18.64		18.71	18.85	
Total Drawdown at each location (m)	5.89	6.11	6.12	5.90	6.15	6.11	5.76	6.03	6.04	5.80	6.00	5.68		5.71	5.75	
Final Pumping Elev. (masl)	259.81	259.59	259.58	259.80	259.55	259.59	259.94	259.67	259.66	259.90	259.70	260.02		259.99	259.95	

Ground Level Elev. (masl)	267.2	Well	IGPM	Q (I/min)	Units		
Static Water Elev. (masl)	265.7	PW1-PW12	6.70	30.4	s	1.E-04	
Est. Bottom of SWM (261 masl)	261.0	Total	80.4	365	t	5	day(s)
Safety Factor (1 m)	1				Т	2700	igpd/ft
Target Pumping Water Level	260.00						

Notes: In Rows - Drawdown in feet at each location due to pumping of well in that row

In Columns - Drawdown in feet in each column due to interference from pumping indicated well W/L elevation at each location is shown in bottom of row of matrix.

Project No.:

GROUNDWATER CONTROL MODEL

Hydrogeological Investigation

Macville Community- SWM Pond 1

Caledon, Ontario

Date: 15-Sep-23

20-169-105

FIGURE G-2

	Groundwater Control Model for Permanent Drainage - Drawdown and Interference at Theoretical Well Locations															
	PW1	PW2	PW3	PW4	PW5	PW6	PW7	PW8	PW9	PW10	PW11	PW12		OW1	OW2	
PW1	2.00	1.60	1.35	1.20	1.20	1.16	1.08	1.16	1.25	1.29	1.44	1.83		1.31	1.41	
PW2	1.60	2.00	1.67	1.40	1.38	1.29	1.17	1.23	1.27	1.24	1.34	1.52		1.41	1.66	
PW3	1.35	1.67	2.00	1.69	1.59	1.39	1.22	1.26	1.23	1.16	1.23	1.32		1.40	1.67	
PW4	1.20	1.40	1.69	2.00	1.77	1.46	1.26	1.24	1.18	1.09	1.14	1.19		1.32	1.47	
PW5	1.20	1.38	1.59	1.77	2.00	1.71	1.39	1.37	1.26	1.14	1.18	1.20		1.44	1.55	
PW6	1.16	1.29	1.39	1.46	1.71	2.00	1.64	1.56	1.34	1.18	1.19	1.18		1.52	1.47	
PW7	1.08	1.17	1.22	1.26	1.39	1.64	2.00	1.70	1.36	1.18	1.16	1.12		1.42	1.31	
PW8	1.16	1.23	1.26	1.24	1.37	1.56	1.70	2.00	1.59	1.29	1.21	0.00		1.63	1.40	
PW9	1.25	1.27	1.23	1.18	1.26	1.34	1.36	1.59	2.00	1.60	1.52	1.35		1.67	1.41	
PW10	1.29	1.24	1.16	1.09	1.14	1.18	1.18	1.31	1.60	2.00	1.78	1.42		1.40	1.29	
PW11	1.44	1.34	1.23	1.14	1.18	1.19	1.16	1.29	1.52	1.78	2.00	1.64		1.44	1.37	
PW12	1.83	1.52	1.32	1.19	1.20	1.18	1.12	1.21	1.35	1.42	1.64	2.00		1.38	1.43	
Total Drawdown at each location (ft)	16.57	17.10	17.12	16.61	17.19	17.10	16.28	16.91	16.94	16.37	16.84	15.77		17.34	17.44	
Total Drawdown at each location (m)	5.05	5.21	5.22	5.06	5.24	5.21	4.96	5.16	5.16	4.99	5.13	4.81		5.29	5.32	
Final Pumping Elev. (masl)	260.65	260.49	260.48	260.64	260.46	260.49	260.74	260.54	260.54	260.71	260.57	260.89		260.41	260.38	

Ground Level Elev. (masl)	267.2	Well	IGPM	Q (I/min)	Units		
Static Water Elev. (masl)	265.7	PW1-PW12	4.80	21.8	s	1.E-04	
Est. Bottom of SWM Pond - 261 masl	261.0	Total	57.6	262	t	25	day(s)
					Т	2700	igpd/ft
Target Pumping Water Level	260.50						

Notes: In Rows - Drawdown in feet at each location due to pumping of well in that row

In Columns - Drawdown in feet in each column due to interference from pumping indicated well W/L elevation at each location is shown in bottom of row of matrix.

GROUNDWATER CONTROL MODEL

Hydrogeological Investigation Macville Community- SWM Pond 1

Community- SWM Pond 1

Caledon, Ontario

Project No.: 20-169-105

Date: 15-Sep-23

FIGURE G-3

Appendix H

THEORETICAL GROUNDWATER CONTROL MODEL

FIGURE H-1

THEORETICAL GROUNDWATER CONTROL MODEL Hydrogeological Investigation

Macville Community- SWM Pond 2B
Caledon, Ontario

Project No.: 20-169-105

Date: 15-Sep-23

ical
.ou.

	PW1	PW2	PW3	PW4	PW5	PW6	PW7	PW8	OW1	OW2	
PW1	4.00	2.09	1.85	1.25	1.30	1.27	0.99	2.27	2.03	1.44	
PW2	2.09	4.00	3.68	1.80	1.97	1.34	1.24	1.72	2.94	1.55	
PW3	1.85	3.68	4.00	1.96	2.20	1.32	1.29	1.58	2.80	1.53	
PW4	1.25	1.80	1.96	4.00	3.21	1.59	2.01	1.30	2.02	1.77	
PW5	1.30	1.97	2.20	3.21	4.00	1.40	1.69	1.27	2.07	1.58	
PW6	1.27	1.34	1.32	1.59	1.40	4.00	2.00	1.72	1.64	3.28	
PW7	0.99	1.24	1.29	2.01	1.69	2.00	4.00	1.19	1.46	1.98	
PW8	2.27	1.72	1.58	1.30	1.27	1.72	1.19	4.00	1.95	1.90	
Total Drawdown at each location (ft)	15.02	17.83	17.88	17.13	17.04	14.64	14.40	15.02	16.90	15.03	
Total Drawdown at each location (m)	4.58	5.44	5.45	5.22	5.20	4.46	4.39	4.58	5.15	4.58	
Final Pumping Elev. (masl)	255.42	254.56	254.55	254.78	254.80	255.54	255.61	255.42	254.85	255.42	

Ground Level Elev. (masl)	259.3	Well	IGPM	Q (I/min)	Units		
Static Water Elev. (masl)	260	PW1-PW8	0.80	3.6	S	1.E-04	
Est. Bottom of SWM Pond - 256 masl	256.0	Total	6.4	29	t	3	day(s)
Factor of safety 1 m	1				Т	165	igpd/ft
Target Pumping Water Level	255.00						

Notes: In Rows - Drawdown in feet at each location due to pumping of well in that row

In Columns - Drawdown in feet in each column due to interference from pumping indicated well W/L elevation at each location

GROUNDWATER CONTROL MODEL

Hydrogeological Investigation

Macville Community- SWM Pond 2B

Caledon, Ontario

Project No.: 20-169-105

Date: 47-6

15-Sep-23

Groundwater Control Model for Permanent Drainage - Drawdown and Interference at Theoretical Well Locations

	PW1	PW2	PW3	PW4	PW5	PW6	PW7	PW8	OW1	OW2	
PW1	4.00	2.01	1.85	1.47	1.50	1.48	1.30	2.12	1.96	1.59	
PW2	2.01	4.00	3.02	1.82	1.93	1.52	1.46	1.77	2.54	1.66	
PW3	1.85	3.02	4.00	1.92	2.08	1.51	1.49	1.68	2.46	1.65	
PW4	1.47	1.82	1.92	4.00	2.72	1.69	1.96	1.50	1.96	1.80	
PW5	1.50	1.93	2.08	2.72	4.00	1.57	1.75	1.48	1.99	1.68	
PW6	1.48	1.52	1.51	1.69	1.57	4.00	1.95	1.77	1.72	2.77	
PW7	1.30	1.46	1.49	1.96	1.75	1.95	4.00	1.43	1.61	1.93	
PW8	2.12	1.77	1.68	1.50	1.48	1.77	1.43	4.00	1.91	1.88	
Total											
Drawdown at each location (ft)	15.73	17.52	17.55	17.07	17.02	15.49	15.34	15.73	16.15	14.96	
Total Drawdown at each location (m)	4.80	5.34	5.35	5.21	5.19	4.72	4.68	4.80	4.92	4.56	
Final Pumping Elev. (masl)	255.20	254.66	254.65	254.79	254.81	255.28	255.32	255.20	255.08	255.44	

Ground Level Elev. (masl)	259.3	Well	IGPM	Q (I/min)	Units		
Static Water Elev. (masl)	260	PW1-PW8	0.51	2.3	S	1.E-04	
Est. Bottom of SWM - 256 masl	256.0	Total	4.1	19	t	20	day(s)
					Т	165	igpd/ft
Target Pumping Water Level	255.50						

Notes: In Rows - Drawdown in feet at each location due to pumping of well in that row

In Columns - Drawdown in feet in each column due to interference from pumping indicated well W/L elevation at each locati

GROUNDWATER CONTROL MODEL

Hydrogeological Investigation

Macville Community- SWM Pond 2B

Caledon, Ontario

Project No.: 20-169-105

Date:

15-Sep-23

FIGURE H-3

Appendix I-1 Caledon Station

CA15868-OCT20 R1

20-169-100

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Garda	Telephone	705-652-2143
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	brad.moore@sgs.com
Email	dorothy.garda@dsconsultants.ca	SGS Reference	CA15868-OCT20
Project	20-169-100	Received	10/29/2020
Order Number		Approved	10/30/2020
Samples	Surface Water (2)	Report Number	CA15868-OCT20 R1
		Date Reported	10/30/2020

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present:Yes

Custody Seal Present:Yes

Chain of Custody Number:018069

Hg spike reported as NV due to technician error. No spike used for the replicate sample. Data accepted as the spike blank met tolerance as well as secondary QC

SIGNATORIES

Brad Moore Hon. B.Sc Brad Mod

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

> Member of the SGS Group (SGS SA) 1 / 18

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

Client: DS Consultants

Project: 20-169-100

Project Manager: Dorothy Garda

Samplers: Dorothy Grada

PACKAGE: PWQO_L - General Chemistry

SGS

Sample Number

7

8

(WATER)

Sample Name SGW1 SGW6
Sample Matrix Surface Water Surface Wate

1 = PWQO_L / WATER / Table 2 - General - July 1999	9 PIBS 3303E		Sample Matrix	Surface Water	Surface Water
			Sample Date	29/10/2020	29/10/2020
Parameter	Units	RL	L1	Result	Result
eneral Chemistry					
Dissolved Oxygen	mg/L	1		8.8	9.1
Total Suspended Solids	mg/L	2		103	33
Alkalinity	mg/L as	2		247	375
	CaCO3				
Bicarbonate	mg/L as	2		247	375
	CaCO3				
Carbonate	mg/L as	2		< 2	< 2
	CaCO3				
ОН	mg/L as	2		< 2	< 2
	CaCO3				
Colour	TCU	3		9	13
Conductivity	uS/cm	2		889	2190
Turbidity	NTU	0.10		56.7	50.1
Ammonia+Ammonium (N)	as N mg/L	0.04		0.04	0.32
Phosphorus (total reactive)	mg/L	0.03		0.09	0.10
Total Organic Carbon	mg/L	1		4	8
Ion Ratio	-	-9999		1.58	1
Total Dissolved Solids (calculated)	mg/L	-9999		460	1155
Conductivity (calculated)	uS/cm	-9999		1020	2135
Langeliers Index 4° C	@ 4° C	-9999		0.46	0.77
Saturation pH 4°C	pHs @ 4°C	-9999		7.61	7.25

Molybdenum

Client: DS Consultants

Project: 20-169-100

Project Manager: Dorothy Garda

Samplers: Dorothy Grada

PACKAGE: PWQO_L - Metals and	Inorganice		Sample Number	7	8
(WATER)	morganics		Campio (vanibo)	•	· ·
(VVAIEK)			Sample Name	SGW1	SGW6
			Sample Matrix		Surface Water
1 = PWQO_L / WATER / Table 2 - General - July 19	1999 PIBS 3303E		Sample Matrix	29/10/2020	29/10/2020
Parameter	Units	RL	L1	Result	Result
Metals and Inorganics	Office	INE		Noouli	rteaut
_		2.22		0.12	0.67
Fluoride	mg/L	0.06			
Bromide	mg/L	0.05		<0.05	0.15
Nitrite (as N)	as N mg/L	0.003		<0.003	<0.003
Nitrate (as N)	as N mg/L	0.006		0.058	0.042
Sulphate	mg/L	0.04		20	14
Mercury	μg/L	0.01	0.2	< 0.01	< 0.01
Hardness	mg/L as	0.05		311	467
	CaCO3				
Aluminum	μg/L	1	75	2610	2400
Aluminum (0.2µm)	mg/L	0.001	0.015	0.034	0.096
Arsenic	μg/L	0.2	5	12.0	1.0
Boron	μg/L	2	200	17	32
Barium	μg/L	0.02		178	82.0
Beryllium	μg/L	0.007	1100	0.139	0.109
Cobalt	μg/L	0.004	0.9	1.86	1.87
Calcium	mg/L	0.01		93.0	153
Cadmium	μg/L	0.003	0.5	0.059	0.036
Copper	μg/L	0.2	5	5.9	3.2
Chromium	μg/L	0.08	100	3.82	2.80
			300	36800	4300
Iron	ug/L	7	300	2.69	7.23
Potassium	mg/L	0.009			
Magnesium	mg/L	0.001		19.1	20.8
Manganese	μg/L	0.01		1910	3270

1.53

1.34

μg/L

0.04

40

Zinc

Cation sum

Anion Sum

Anion-Cation Balance

μg/L

meq/L

meq/L

%

difference

2

-9999

-9999

-9999

20

FINAL REPORT

CA15868-OCT20 R1

Client: DS Consultants

Project: 20-169-100

Project Manager: Dorothy Garda

Samplers: Dorothy Grada

PACKAGE: PWQO_L - Metals and In	norganics		Sample Nu	ımber 7	8
(WATER)					
			Sample I	Name SGW1	SGW6
L1 = PWQO_L / WATER / Table 2 - General - July 1999	9 PIBS 3303E		Sample I	Matrix Surface Water	Surface Water
			Sample	Date 29/10/2020	29/10/2020
Parameter	Units	RL	L1	Result	Result
Metals and Inorganics (continued)					
Nickel	μg/L	0.1	25	1.8	2.8
Sodium	mg/L	0.01		87.3	254
Phosphorus	mg/L	0.003	0.01	1.93	0.358
Lead	μg/L	0.01	25	5.68	1.72
Silicon	ug/L	20		12800	9560
Silver	μg/L	0.05	0.1	< 0.05	< 0.05
Strontium	μg/L	0.02		306	466
Thallium	μg/L	0.005	0.3	0.034	0.026
Tin	μg/L	0.06		0.20	0.19
Titanium	ug/L	0.05		87.3	75.4
Antimony	μg/L	0.09	20	0.19	0.19
Selenium	μg/L	0.04	100	0.22	0.28
Uranium	μg/L	0.002	5	0.220	1.30
Vanadium	μg/L	0.01	6	5.20	3.92

19

21.35

21.36

-0.03

12.5

7.89

22.58

CA15868-OCT20 R1

Client: DS Consultants

Project: 20-169-100

Project Manager: Dorothy Garda

Samplers: Dorothy Grada

PACKAGE: PWQO_L - Other (ORP) (WATER)			Sample Numbe	r 7	8
					SGW6
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample Matri	Surface Water	Surface Water
			Sample Date	29/10/2020	29/10/2020
Parameter	Units	RL	L1	Result	Result
Other (ORP)					
pH	No unit	0.05	8.6	8.07	8.02

EXCEEDANCE SUMMARY

PWQO_L / WATER / - - Table 2 -

General - July 1999 PIBS 3303E

Parameter Method Units Result L1

SGW1

Aluminum	SM 3030/EPA 200.8	μg/L	2610	75
Aluminum (dissolved)	SM 3030/EPA 200.8	μg/L	0.034	0.015
Arsenic	SM 3030/EPA 200.8	μg/L	12.0	5
Cobalt	SM 3030/EPA 200.8	μg/L	1.86	0.9
Copper	SM 3030/EPA 200.8	μg/L	5.9	5
Iron	SM 3030/EPA 200.8	μg/L	36800	300
Phosphorus	SM 3030/EPA 200.8	μg/L	1.93	0.01
Zinc	SM 3030/EPA 200.8	μg/L	24	20

SGW6

Aluminum	SM 3030/EPA 200.8	μg/L	2400	75
Aluminum (dissolved)	SM 3030/EPA 200.8	μg/L	0.096	0.015
Cobalt	SM 3030/EPA 200.8	μg/L	1.87	0.9
Iron	SM 3030/EPA 200.8	μg/L	4300	300
Phosphorus	SM 3030/EPA 200.8	μg/L	0.358	0.01

20201030 7 / 18

QC SUMMARY

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0551-OCT20	mg/L as	2	< 2	1	20	102	80	120	NA		
		CaCO3										

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike (ry Limits %)	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0324-OCT20	mg/L	0.04	<0.04	0	10	100	90	110	99	75	125

20201030 8 / 18

QC SUMMARY

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	RL Method		Duplicate		S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	· .	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)		
						(%)	(%)	Low	High	(%)	Low	High	
Bromide	DIO0586-OCT20	mg/L	0.05	<0.05	ND	20	102	80	120	98	75	125	
Chloride	DIO0586-OCT20	mg/L	0.04	<0.04	8	20	100	80	120	94	75	125	
Nitrite (as N)	DIO0586-OCT20	mg/L	0.003	<0.003	ND	20	101	80	120	98	75	125	
Nitrate (as N)	DIO0586-OCT20	mg/L	0.006	<0.006	20	20	103	80	120	102	75	125	
Sulphate	DIO0586-OCT20	mg/L	0.04	<0.04	NV	20	98	80	120	91	75	125	
Chloride	DIO0590-OCT20	mg/L	0.04	<0.04	2	20	98	80	120	100	75	125	

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike Recovery	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Organic Carbon	SKA0327-OCT20	mg/L	1	<1	2	10	103	90	110	109	75	125

20201030 9 / 18

QC SUMMARY

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Carbonate	EWL0551-OCT20	mg/L as	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0551-OCT20	mg/L as CaCO3	2	< 2	1	10	NA	90	110	NA		
ОН	EWL0551-OCT20	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recovery Limits (%)	
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Colour	EWL0563-OCT20	TCU	3	< 3	ND	10	100	80	120	NA		

20201030 10 / 18

QC SUMMARY

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0551-OCT20	uS/cm	2	< 2	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0560-OCT20	mg/L	0.06	<0.06	ND	10	98	90	110	111	75	125

Mercury by CVAAS

Method: SM3112/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits Spike %) Recovery		Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EHG0029-OCT20	ug/L	0.01	-0.020	ND	20	90	80	120	NV	70	130

20201030 11 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(,	(%)	Low	High	(%)	Low	High
Silver	EMS0179-OCT20	ug/L	0.05	<0.00005	ND	20	101	90	110	98	70	130
Aluminum	EMS0179-OCT20	ug/L	1	<0.001	ND	20	99	90	110	115	70	130
Aluminum (0.2μm)	EMS0179-OCT20	mg/L	0.001	<0.001	ND	20	99	90	110	115	70	130
Arsenic	EMS0179-OCT20	ug/L	0.2	<0.0002	4	20	102	90	110	101	70	130
Barium	EMS0179-OCT20	ug/L	0.02	<0.00002	4	20	98	90	110	109	70	130
Beryllium	EMS0179-OCT20	ug/L	0.007	<0.000007	0	20	95	90	110	94	70	130
Boron	EMS0179-OCT20	ug/L	2	<0.002	6	20	91	90	110	NV	70	130
Calcium	EMS0179-OCT20	mg/L	0.01	<0.01	3	20	96	90	110	103	70	130
Cadmium	EMS0179-OCT20	ug/L	0.003	<0.000003	7	20	99	90	110	100	70	130
Cobalt	EMS0179-OCT20	ug/L	0.004	<0.000004	3	20	100	90	110	98	70	130
Chromium	EMS0179-OCT20	ug/L	0.08	<0.00008	ND	20	102	90	110	104	70	130
Copper	EMS0179-OCT20	ug/L	0.2	<0.0002	14	20	101	90	110	105	70	130
Iron	EMS0179-OCT20	ug/L	7	<0.007	18	20	97	90	110	NV	70	130
Potassium	EMS0179-OCT20	mg/L	0.009	<0.009	2	20	100	90	110	100	70	130
Magnesium	EMS0179-OCT20	mg/L	0.001	<0.001	4	20	95	90	110	97	70	130
Manganese	EMS0179-OCT20	ug/L	0.01	<0.00001	1	20	101	90	110	104	70	130
Molybdenum	EMS0179-OCT20	ug/L	0.04	<0.00004	ND	20	102	90	110	106	70	130
Sodium	EMS0179-OCT20	mg/L	0.01	<0.01	6	20	91	90	110	94	70	130
Nickel	EMS0179-OCT20	ug/L	0.1	<0.0001	18	20	101	90	110	83	70	130
Lead	EMS0179-OCT20	ug/L	0.01	<0.00001	2	20	96	90	110	105	70	130

20201030 12 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	-	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Phosphorus	EMS0179-OCT20	mg/L	0.003	<0.003	ND	20	96	90	110	NV	70	130
Antimony	EMS0179-OCT20	ug/L	0.09	<0.0009	ND	20	98	90	110	110	70	130
Selenium	EMS0179-OCT20	ug/L	0.04	<0.00004	ND	20	100	90	110	110	70	130
Silicon	EMS0179-OCT20	ug/L	20	<0.02	5	20	99	90	110	NV	70	130
Tin	EMS0179-OCT20	ug/L	0.06	<0.00006	ND	20	98	90	110	NV	70	130
Strontium	EMS0179-OCT20	ug/L	0.02	< 0.02	3	20	102	90	110	103	70	130
Titanium	EMS0179-OCT20	ug/L	0.05	<0.00005	ND	20	98	90	110	NV	70	130
Thallium	EMS0179-OCT20	ug/L	0.005	<0.000005	13	20	99	90	110	104	70	130
Uranium	EMS0179-OCT20	ug/L	0.002	<0.000002	4	20	97	90	110	102	70	130
Vanadium	EMS0179-OCT20	ug/L	0.01	<0.00001	8	20	99	90	110	87	70	130
Zinc	EMS0179-OCT20	ug/L	2	<0.002	ND	20	97	90	110	126	70	130

20201030 13 / 18

SGS FINAL REPORT

QC SUMMARY

Metals in aqueous samples - ICP-OES

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

Parameter	QC batch	QC batch Units		Units RL	Method	Dup	licate	LCS	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Hardness	EMS0179-OCT20	mg/L as	0.05		3	20							
		CaCO3											

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Du	Duplicate		S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)		Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
pH	EWL0551-OCT20	No unit	0.05	NA	0		101			NA		

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Phosphorus (total reactive)	SKA0319-OCT20	mg/L	0.03	<0.03	ND	10	97	90	110	NV	75	125

20201030 14 / 18

QC SUMMARY

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD AC Spike			Recovery Limits (%)		Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Suspended Solids	EWL0555-OCT20	mg/L	2	< 2	0	10	96	90	110	NA			

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duplicate I			LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Turbidity	EWL0554-OCT20	NTU	0.10	< 0.10	1	10	99	90	110	NA			

20201030 15 / 18

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20201030

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20201030 17 / 18

SGS

Request for Laboratory Services and CHAIN OF CUSTODY

No:018069

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Page 1 of 1

Received By: Suff		Received By ((signature): _	Labo	rator	y Info		on Sec																	
Received Date: 16 / 29 / 2020 (mm/dd/) Received Time: 16 20 (hr: min)	yy)			s No [Cooli	ng Agen erature	t Prese Upon I	ent: Y Receipt	es 🗾	No 1	96	Туре	ec.	14-4						LAB L	.IMS #:	CIAI	567-
REPORT INFORMATION	IN'	VOICE INFO	RMATION					30																(90+20
Company: DS	(same as Re	eport Informa	ition)		Quo	lation #												P.O. i	#:						
Contact: Dorothy Gerda Address: 16-6221 Avoy7	Company:	accaer	sing		Proje	ect#:				20	3-1	69	-10	00	Site Location/ID:										
Address: 16-6221 12047	Contact:		U	-									T	URNA	NAROUND TIME (TAT) REQUIRED										
Vewginn, ou	Address:				Regular TAT (5-7days)								TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day												
Vewginn, onl Phone: (905) 324-2735												Day 2 Days 3 Days 4 Days													
Fax:	Phone:				PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE																				
Email: do to my good docosse Hunts	Email: Ac co	Intimo	Acres	. Hents. ca	Spec	cify Due	e Date					_	*NO	TE: DI	DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY										
REGI	ULATIONS	9	Desco, S	4 40-11							- 1	ANA	LYS	SIS F	REC	UES			3						
O.Reg 153/04 O.Reg 406/19	Other Regulatio	ns:	Sewe	er By-Law:		M	&1		SV	/OC	PCB	P	НС	V	ОС	Pest		,	Otbe	r (plea	ase spe	ecify)		TCLP	
Table 1 Res/Park Soil Texture:	Name of the last o	558 (3 Day min TAT)		Sanitary						=111								-	C	7				Specify	
Table 2 Ind/Com Coarse	2.	MMER		Storm							100								Character				kg	TCLP	
Table 3 Agri/Other Medium/Fine	CCME [Other:	Munic	sipality:		(ii)	5				Aroclor								Neg		ate		ng .	tests	
Soil Volume	_	Reportable *Sec	e note			SARS	Ď PÍ	N.			Ā								2		acha		atic	□M&I	
RECORD OF SITE CONDITION (RSC)	YES	NO			N	ani S).EC.	ite anly)	Pb.M			1					other			Chem	4	9 Le		eriz	□voc	COMMENTS:
				7	P	O. B.	Sco	only		a S	otal	X				specifi		11	3	J's	1/90. Fls 1		act	□PCB	, r Y
A CONTROL PROPERTY SECTION	DATE	TIME	# OF		tere	E H	tals BERTY	als	à	BNs.	-	BT	ylt.		ş	Seor	_	3	0	5	2: 4 Lev	Jse	ha.	□B(a)P □ABN	
, SAMPLE IDENTIFICATION	SAMPLED	SAMPLED	the state of the same of the s	MATRIX	Field Filtered (Y/N)	Metals & Inorganics ind Crvi. CN. Hg pH. (8(HWS), EC. SAR (Cl. Na-water)	Full Metals Suite	ICP Metals only Sb.As.Ba.Be.B.Cd.Cr.Co.Cu.P	PAHS only	SVOCS all inci PAHs, ABNs,	PCBs Total	F1-F4 + BTEX	F1-F4 only	VOCs all incl BTEX	BTEX only	Pesticides Organochlorine or s	00	F	Gen	2	Appendix 2: 406/19 Leachate Screening Levels Table :	Sewer Use:	er	☐lgnit.	
					iel	/et	3,0	CP D. As. B	A	S	SCE	7	7-1- 9 BTE	100 Find B	3TE	Jes Organo			5	Ø	Appe	Sew	Nat	□lignit.	
1 56W1 2 56W6	20/29/20	8.30am	8	SW		250	I S	5		D) n	-	_	LE	7 6			X	X	X	la di	4 0)	0,0	-0		
2 SI-W6	6/29/20	9.am	8	SW				7		1.11							×	X	X						
3														Œ			1-				=7			1	
4																		VE I	\Box) E E			
5								7-1																	
6										110					tt				E			117	11		
7			1 == 1	J. Edit	11		15.7	E		5,11								_				J, I			
8								E				Ĭ							-4			511	4.0	1 = 1	
9						12																H		1 = 1	
10										11.						-		-					-		
11																	1.4	4	A N						L 1
12																				1					
Observations/Comments/Special Instructions																									
Sampled By (NAME):	DOWN	runda	Signature:	1	النوب	1	_		-					-	Date:	16	7	29/	2	0	Im	ım/dd/y	iv)		Pink Copy - Client
Sampled By (NAME): Relinquished by (NAME):	A 4 11	3 000	Signature:	6)	1	In	~	_						Date:	16		24	_	0		ım/dd/y	-		Yellow & White Copy - SGS
Revision 8 1.4 Note: Submission of samples to SGS Date of lisue 22 May 2020 the contract, or in an alternal	is acknowledgement the	at you have been													S is cor	sidered	authoriz				work. S	Signature	es may a	ppear on th	nis form or be retained on file in
		//www.sgs.com/ter																					-		

CA40078-NOV22 R1

20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Prepared for

DS Consultants

First Page

CLIENT DETAILS		LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Garda	Telephone	705-652-2000
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	Maarit.Wolfe@sgs.com
Email	dorothy.garda@dsconsultants.ca	SGS Reference	CA40078-NOV22
Project	20-169-104, 14275 The Gore Rd, Bolton (MacVille)	Received	11/03/2022
Order Number		Approved	11/11/2022
Samples	Ground Water (1)	Report Number	CA40078-NOV22 R1
		Date Reported	11/11/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 029791

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2000 f 705-652-6365

> Member of the SGS Group (SGS SA) 1 / 18

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes.	18

Silver (total)

mg/L 0.00005

0.0001

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

Samplers: Harry Chai Hanya

MATRIX: WATER			Sample Number	8
			Sample Name	BH 22-13
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS	S 3303E		Sample Matrix	Ground Water
			Sample Date	03/11/2022
Parameter	Units	RL	L1	Result
General Chemistry				
Biochemical Oxygen Demand (BOD5)	mg/L	2		< 4↑
Total Suspended Solids	mg/L	2		492
Total Kjeldahl Nitrogen	as N mg/L	0.5		0.6
Metals and Inorganics				
Fluoride	mg/L	0.06		0.11
Cyanide (total)	mg/L	0.01		< 0.01
Sulphate	mg/L	2		200
Aluminum (0.2μm)	mg/L	0.001	0.075	0.016
Aluminum (total)	mg/L	0.001		0.016
Antimony (total)	mg/L	0.0009	0.02	< 0.0009
Arsenic (total)	mg/L	0.0002	0.005	0.0010
Cadmium (total)	mg/L	0.000003	0.0001	< 0.000003
Chromium (total)	mg/L	0.00008	0.1	0.00009
Copper (total)	mg/L	0.0002	0.001	0.0005
Cobalt (total)	mg/L	0.000004	0.0009	0.000676
Lead (total)	mg/L	0.00009	0.005	< 0.00009
Manganese (total)	mg/L	0.00001		0.132
Molybdenum (total)	mg/L	0.00004	0.04	0.00234
Nickel (total)	mg/L	0.0001	0.025	0.0008
Phosphorus (total)	mg/L	0.003	0.01	0.011
Selenium (total)		0.00004	0.1	0.00012
. ,				

< 0.00005

CA40078-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

Samplers: Harry Chai Hanya

MATRIX: WATER			Sample Number	8
			Sample Name	BH 22-13
L1 = PWQO_L / WATER / Table 2 - General - July 1999 P	PIBS 3303E		Sample Matrix	Ground Water
			Sample Date	03/11/2022
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Tin (total)	mg/L	0.00006		0.00079
Titanium (total)	mg/L	0.00005		0.00133
Zinc (total)	mg/L	0.002	0.02	< 0.002
Microbiology				
E. Coli	cfu/100mL	0	100	0
Nonylphenol and Ethoxylates				
Nonylphenol	mg/L	0.001		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01		< 0.01
Nonylphenol diethoxylate	mg/L	0.01		< 0.01
Nonylphenol monoethoxylate	mg/L	0.01		< 0.01
Oil and Grease			'	
Oil & Grease (total)	mg/L	2		< 2
Oil & Grease (animal/vegetable)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4

CA40078-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

Samplers: Harry Chai Hanya

MATRIX: WATER			Sample Number	8
WALLEY THAT ELL			Sample Name	BH 22-13
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E	E		Sample Matrix	Ground Water
			Sample Date	03/11/2022
Parameter	Units	RL	L1	Result
Other (ORP)				
рН	No unit	0.05	8.6	7.46
Mercury (total)	mg/L	0.00001	0.0002	0.00001
PCBs				
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		< 0.0001
Phenols				
4AAP-Phenolics	mg/L	0.002	0.001	0.003
SVOCs			1	
di-n-Butyl Phthalate	mg/L	0.002		< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002		< 0.002
VOCs				
Chloroform	mg/L	0.0005		< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005		< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005		< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005		< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005		< 0.0005
Methylene Chloride	mg/L	0.0005	0.1	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	0.07	< 0.0005
Methyl ethyl ketone	mg/L	0.02		< 0.02
Styrene	mg/L	0.0005		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.05	< 0.0005
Trichloroethylene	mg/L	0.0005	0.02	< 0.0005

CA40078-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

Samplers: Harry Chai Hanya

MATRIX: WATER Sample Number 8

Sample Name BH 22-13

•	Ground Water
Sample Date	03/11/2022
L1	Result
0.1	< 0.0005
0.008	< 0.0005
0.0008	< 0.0005
	< 0.0005
0.002	< 0.0005
0.04	< 0.0005
	0.1 0.008 0.0008

EXCEEDANCE SUMMARY

PWQO_L / WATER
/ - - Table 2 General - July 1999
PIBS 3303E

Parameter Method Units Result L1

BH 22-13

Phosphorus	SM 3030/EPA 200.8	mg/L	0.011	0.01
4AAP-Phenolics	SM 5530B-D	mg/L	0.003	0.001

20221111 7 / 18

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5034-NOV22	mg/L	2	<2	1	20	103	80	120	104	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M		
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0008-NOV22	mg/L	2	< 2	9	30	105	70	130	115	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank R	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0057-NOV22	mg/L	0.01	<0.01	ND	10	100	90	110	106	75	125

20221111 8 / 18

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference	Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)		
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0127-NOV22	mg/L	0.06	<0.06	ND	10	103	90	110	105	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	=
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0012-NOV22	mg/L	0.00001	< 0.00001	15	20	90	80	120	95	70	130

20221111 9 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ма	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	•	Spike Recovery		ory Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0052-NOV22	mg/L	0.00005	<0.00005	ND	20	101	90	110	98	70	130
Aluminum (total)	EMS0052-NOV22	mg/L	0.001	<0.001	2	20	101	90	110	102	70	130
Aluminum (0.2µm)	EMS0052-NOV22	mg/L	0.001	<0.001	2	20	101	90	110	102	70	130
Arsenic (total)	EMS0052-NOV22	mg/L	0.0002	<0.0002	ND	20	101	90	110	104	70	130
Cadmium (total)	EMS0052-NOV22	mg/L	0.000003	<0.000003	5	20	99	90	110	98	70	130
Cobalt (total)	EMS0052-NOV22	mg/L	0.000004	<0.000004	1	20	98	90	110	95	70	130
Chromium (total)	EMS0052-NOV22	mg/L	0.00008	<0.00008	14	20	98	90	110	106	70	130
Copper (total)	EMS0052-NOV22	mg/L	0.0002	<0.0002	0	20	102	90	110	99	70	130
Manganese (total)	EMS0052-NOV22	mg/L	0.00001	<0.00001	0	20	101	90	110	95	70	130
Molybdenum (total)	EMS0052-NOV22	mg/L	0.00004	<0.00004	8	20	102	90	110	105	70	130
Nickel (total)	EMS0052-NOV22	mg/L	0.0001	<0.0001	2	20	99	90	110	96	70	130
Lead (total)	EMS0052-NOV22	mg/L	0.00009	<0.00001	2	20	98	90	110	86	70	130
Phosphorus (total)	EMS0052-NOV22	mg/L	0.003	<0.003	20	20	93	90	110	NV	70	130
Antimony (total)	EMS0052-NOV22	mg/L	0.0009	<0.0009	ND	20	104	90	110	112	70	130
Selenium (total)	EMS0052-NOV22	mg/L	0.00004	<0.00004	5	20	102	90	110	95	70	130
Tin (total)	EMS0052-NOV22	mg/L	0.00006	<0.00006	14	20	101	90	110	NV	70	130
Titanium (total)	EMS0052-NOV22	mg/L	0.00005	<0.00005	0	20	99	90	110	NV	70	130
Zinc (total)	EMS0052-NOV22	mg/L	0.002	<0.002	1	20	110	90	110	100	70	130

20221111 10 / 18

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9087-NOV22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0148-NOV22	mg/L	0.01	< 0.01			83	55	120			
Nonylphenol Ethoxylates	GCM0148-NOV22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0148-NOV22	mg/L	0.01	< 0.01			90	55	120			
Nonylphenol	GCM0148-NOV22	mg/L	0.001	< 0.001			91	55	120			

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM5174-NOV22	mg/L	2	<2	NSS	20	106	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM5174-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM5174-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		N	latrix Spike / Ref	•
	Reference	Reference		Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0124-NOV22	No unit	0.05	NA	0		99			NA		

20221111 12 / 18

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	<i>i.</i>
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0078-NOV22	mg/L	0.002	<0.002	ND	10	95	80	120	111	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0127-NOV22	mg/L	0.0001	<0.0001	NSS	30	87	60	140	NSS	60	140
Total												

20221111 13 / 18

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0113-NOV22	mg/L	0.002	< 0.002	NSS	30	129	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0113-NOV22	mg/L	0.002	< 0.002	NSS	30	117	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref		:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0148-NOV22	mg/L	2	< 2	1	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0094-NOV22	as N mg/L	0.5	<0.5	ND	10	102	90	110	103	75	125

20221111 14 / 18

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike Recovery		Recovery Limits (%)			ery Limits %)	
						(75)	(%)	Low	High	(%)	Low	High	
1,1,2,2-Tetrachloroethane	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	103	50	140	
1,2-Dichlorobenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140	
1,4-Dichlorobenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140	
Benzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	101	60	130	103	50	140	
Chloroform	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140	
cis-1,2-Dichloroethene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140	
Ethylbenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	104	50	140	
m-p-xylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	103	50	140	
Methyl ethyl ketone	GCM0117-NOV22	mg/L	0.02	<0.02	ND	30	97	50	140	100	50	140	
Methylene Chloride	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140	
o-xylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	105	50	140	
Styrene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	104	60	130	106	50	140	
Tetrachloroethylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140	
(perchloroethylene)													
Toluene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140	
trans-1,3-Dichloropropene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140	
Trichloroethylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140	

20221111 15 / 18

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20221111 16 / 18

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221111 17 / 18

Request for Laboratory Services and CHAIN OF CUSTODY

Request for Laboratory Services and CHAIN OF CUS

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web; www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Received By: Niele Brigant				Labo	rator	y Info	rmatio	on Sec	tion	- Lab	use	only												CM.
Received Date: Nov 1 2 122 (mm/dd/	(w)	Received By		Yes No [7		Cooli	ng Agen	t Prese	ent: Y	es M	No I		Type:	I	10								
Received Time: 17 : 30 (hr : min)	,,,	Custody Sea		Yes No [Temp	erature	Upon I	Receipt	(°C)_	9.	9	9							LAB	LIMS #:	(A-	40078-NOVZ
REPORT INFORMATION	IN	VOICE INFO	RMATION					-		-														
company: DS consultants Ital	same as R	eport Informa	ation)		Quo	tation #	ŧ											P.O. #						
Contact: Dorothy Sontos Address: 6221 Huy 7, unit 16, Vaughen, ON Phone: 905 329 2735	Company:	,				ect #:			20	11	69.	-10	14					Site Lo	cation/I	D: 14	17.7	< -	The 1	DA RALL
Address: 6221 Huy 7, unit 16	Contact: A	ccoun	Hiry			,		1						URNA	ROU	ND TI	ME (TA	AT) REC	QUIRED	1	(M	ecu	110	Fore Rd, Bestle
Vaugher, ON	Address:)			ØR.	egular	TAT (5	-7day	s)							TA	T's are	quoted in	busine	ess day	s (exclud	de statuto	ry holidays & weekends).
Phone: 905 329 2735	l tadioos.				RUS	н тат	(Addi	tional (Charo	es Ma	v Ann	lv).		T1	Day				ays			weeken	ds: TAT t	pegins next business day
Fax:	Phone:								_										SUBMI					
- relative to the					Spec	cify Due	Date						*NO	TE: D	RINKIN	IG (PO								ON MUST BE SUBMITTED
Email: doothy. Sen tos Edscensuiten	LEMBII:		_		-,-	,		-				ALA	. VC	IC F	200	UES	_		RINKING	WATE	R CHA	IN OF C	CUSTODY	
O.Reg 153/04 O.Reg 406/19	1	47	le.			M	& 1	-	SV	nc	PCB	_	HC	V		Pest	ILL					lopi s	J=0. =	
Table 1 Res/Park Soil Texture:	Other Regula			wer By-Law: Sanitary	-	IVI	OL I		SV	00	PCB	P		V	,,	Pest		Othe	er (pleas	e specify	1	SPLP	TCLP	
☐Table 2 ☐ Ind/Com ☐ Coarse		MMER		Storm		1	1				П												Specify	
Table 3 Agri/Other Medium/Fine		Other	M	unicipality:		113		Be,B,Cd,		13	5						13	214				tests	tests	
Table Appx	MISA			Pag 1		8-soll)	2 Z	a.Be.E			Araclor						33				Pkg	Dies	s DMs/	
Soil Volume <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a< td=""><td>ODWS Not I</td><td></td><td>e note</td><td></td><td>9</td><td>C,SAJ</td><td>y) Hg.</td><td>b,As,B</td><td></td><td></td><td></td><td>14</td><td></td><td></td><td></td><td></td><td>0.</td><td></td><td></td><td></td><td>5</td><td>Ovoc</td><td></td><td>COMMENTS:</td></a<>	ODWS Not I		e note		9	C,SAJ	y) Hg.	b,As,B				14					0.				5	Ovoc		COMMENTS:
RECORD OF SITE CONDITION (RSC)	YES	NO			3	'gai	uite	F. S. T. U.V.								cify othe	25	G			izat	D1,4-	□voc □pca	COMMENTS.
		11 1			Field Filtered (Y/N)	Metals & Inorganics ind CVI, CN, Hg pH. (B(HWS), EC, SAR	Full Metals Suite	ICP Metals only sb.As.Ba.		CP.	Total	F1-F4 + BTEX				9	26	0			ter Characterization Pkg	Distant	□в(а)Р	
SAMPLE IDENTIFICATION	DATE	TIME	# OF	MATRIX	ite	Ø ₽	etal	Mo.N	PAHs only	SVOCs all inci PAHs, ABNs, CPs		B	yluc	VOCs all incl BTEX	ylu	Pesticides Organochlorine or s	N-	3		Sewer Use:	hara	ОСР	DABN	J 1 Y
SAIN EL IDENTITION	SAMPLED	SAMPLED	BOTTLE	S	P	tais	■ Metals	Me Cu.Pb	T-S	OCS PARIS	SS	F4 .	FA X	SE	×	tici	Pecal	36		Dia	5 5 E	DABN	Olgnit.	
					Fiel	N DO	E S	CP	PAI	SK	PCBs	F1-	F1-1	N Inc	BTEX only	Des Organ	0			Sew	Vat		Gignit.	
1 BH 22-13	Nov 3rd, 22	PM	17	aw	N												V	4	3 1	0, 0				Non Filter
2		(13)					11								IL I									Sumple
3					iii.	0.7													1					
4																								
5																		7		1				
6																							- 7	
7									-:									\dashv						
8											l ni									T	T			
9																			1	+	1			
10																								
11																				H				
12					14											6		1						
Observations/Comments/Special Instructions															_						1			
Sampled By (NAME): Horry Chair	El nouls		Signature:	7	14	X	16	/							Del	11	, 0	31	21			- 3		
Delinquished by (NAME):	- Ight		Signature:		1/	Lance	A	1			-				Date:	(1		31	27	- 1	nm/dd/y	-		Pink Copy - Client
Revision # 1,6 Note: Submission of samples to SGS	is acknowledgement that	at you have been	provided dire	ection on sample co	allection/	handling	and Iran	sportation	of sam	ples. (2	Submis	sion of	samples	s to SGS	Date:	sidered a	authoriza	tion for co	omoletion	of work	nm/dd/y Signatu	res may ar	nnear on th	Yellow & White Copy - SGS is form or be retained on file in
Date of Issue: 02 May 2022 the contract, or in an alternat	live format (e.g. shipping	documents). (3	Results may	be sent by email to	an unli	mited nur	mber of a	addresses	for no	addition	al cost	Fax is a	vailable	upon re	equest.	This do	cument i	s issued b	y the Con	npany un	der its G	eneral Co	inditions of	Service accessible at

http://www.sgs.com/herms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

CA40078-NOV22 R1

20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Prepared for

DS Consultants

First Page

CLIENT DETAILS		LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Garda	Telephone	705-652-2000
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	Maarit.Wolfe@sgs.com
Email	dorothy.garda@dsconsultants.ca	SGS Reference	CA40078-NOV22
Project	20-169-104, 14275 The Gore Rd, Bolton (MacVille)	Received	11/03/2022
Order Number		Approved	11/11/2022
Samples	Ground Water (1)	Report Number	CA40078-NOV22 R1
		Date Reported	11/11/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 029791

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2000 f 705-652-6365

> Member of the SGS Group (SGS SA) 1 / 18

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes.	18

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

Samplers: Harry Chai Hanya

MATRIX: WATER			Sa	ample Number	8
			;	Sample Name	BH 22-13
.1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discha	arge - BL_53_2010		;	Sample Matrix	Ground Water
.2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge	ge - BL_53_2010			Sample Date	03/11/2022
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑
Total Suspended Solids	mg/L	2	350	15	492
Total Kjeldahl Nitrogen	as N mg/L	0.5	100	1	0.6
Wetals and Inorganics					
Fluoride	mg/L	0.06	10		0.11
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01
Sulphate	mg/L	2	1500		200
Aluminum (0.2μm)	mg/L	0.001			0.016
Aluminum (total)	mg/L	0.001	50		0.016
Antimony (total)	mg/L	0.0009	5		< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	0.0010
Cadmium (total)	mg/L	0.000003	0.7	0.008	< 0.000003
Chromium (total)	mg/L	0.00008	5	0.08	0.00009
Copper (total)	mg/L	0.0002	3	0.05	0.0005
Cobalt (total)	mg/L	0.000004	5		0.000676
Lead (total)	mg/L	0.00009	3	0.12	< 0.00009
Manganese (total)	mg/L	0.00001	5	0.05	0.132
Molybdenum (total)	mg/L	0.00004	5		0.00234
Nickel (total)	mg/L	0.0001	3	0.08	0.0008
Phosphorus (total)	mg/L	0.003	10	0.4	0.011
Selenium (total)	mg/L	0.00004	1	0.02	0.00012
Silver (total)	mg/L	0.00005	5	0.12	< 0.00005

CA40078-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

Samplers: Harry Chai Hanya

		;	Sample Number	8
			Sample Name	BH 22-13
ischarge - BL_53_2010			Sample Matrix	Ground Water
charge - BL_53_2010			Sample Date	03/11/2022
Units	RL	L1	L2	Result
mg/L	0.00006	5		0.00079
mg/L	0.00005	5		0.00133
mg/L	0.002	3	0.04	< 0.002
cfu/100mL	0		200	0
mg/L	0.001	0.02		< 0.001
mg/L	0.01	0.2		< 0.01
mg/L	0.01			< 0.01
mg/L	0.01			< 0.01
mg/L	2			< 2
mg/L	4	150		< 4
mg/L	4	15		< 4
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L 0.0001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.01 mg/L 0.01 mg/L 0.01 mg/L 0.01 mg/L 0.01	Marge - BL_53_2010 Marge -	Sample Matrix Sample Date

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

Samplers: Harry Chai Hanya

			_		•
MATRIX: WATER				ample Number	8
				Sample Name	BH 22-13
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Dis	scharge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disch				Sample Date	03/11/2022
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
рН	No unit	0.05	10	9	7.46
Mercury (total)	mg/L	0.00001	0.01	0.0004	0.00001
PCBs					
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001
Phenois				'	
4AAP-Phenolics	mg/L	0.002	1	0.008	0.003
SVOCs	<u> </u>				
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002
-					
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002
VOCs					
Chloroform	mg/L	0.0005	0.04	0.002	< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005	4	0.0056	< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005
Methyl ethyl ketone	mg/L	0.02	8		< 0.02
Styrene	mg/L	0.0005	0.2		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005
Trichloroethylene	mg/L	0.0005	0.4	0.008	< 0.0005
Thenloroethylene	IIIg/L	0.0005	0.4	0.006	< 0.0005

CA40078-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

Samplers: Harry Chai Hanya

MATRIX: WATER			5	Sample Number	8
				Sample Name	BH 22-13
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - B	BL_53_2010			Sample Matrix	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL	_53_2010			Sample Date	03/11/2022
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005
o-xylene	mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

NSEW / WATER SA	NSEW / WATER
- Peel Table 1 - / -	Peel Table 2 -
anitary Sewer	Storm Sewer
Discharge -	Discharge -
BL_53_2010	BL_53_2010
L1	L2
S	Sanitary Sewer Discharge - BL_53_2010

BH 22-13

Total Suspended Solids	SM 2540D	mg/L	492	350	15
Manganese	SM 3030/EPA 200.8	mg/L	0.132		0.05

20221111 7 / 18

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5034-NOV22	mg/L	2	<2	1	20	103	80	120	104	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD AC Spike (%) Recovery (%)	Recovery Limits (%)		Spike Recovery	Recover	-		
						(%)	1	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0008-NOV22	mg/L	2	< 2	9	30	105	70	130	115	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	RPD AC Spike		Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0057-NOV22	mg/L	0.01	<0.01	ND	10	100	90	110	106	75	125

20221111 8 / 18

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	.CS/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0127-NOV22	mg/L	0.06	<0.06	ND	10	103	90	110	105	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	•
	Reference		RPD AC Spike (%) Recovery	Spike Recovery	Recovery Limits (%)							
						(%)		Low	High	(%)	Low	High
Mercury (total)	EHG0012-NOV22	mg/L	0.00001	< 0.00001	15	20	90	80	120	95	70	130

20221111 9 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ма	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	•	Spike Recovery		ory Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0052-NOV22	mg/L	0.00005	<0.00005	ND	20	101	90	110	98	70	130
Aluminum (total)	EMS0052-NOV22	mg/L	0.001	<0.001	2	20	101	90	110	102	70	130
Aluminum (0.2μm)	EMS0052-NOV22	mg/L	0.001	<0.001	2	20	101	90	110	102	70	130
Arsenic (total)	EMS0052-NOV22	mg/L	0.0002	<0.0002	ND	20	101	90	110	104	70	130
Cadmium (total)	EMS0052-NOV22	mg/L	0.000003	<0.000003	5	20	99	90	110	98	70	130
Cobalt (total)	EMS0052-NOV22	mg/L	0.000004	<0.000004	1	20	98	90	110	95	70	130
Chromium (total)	EMS0052-NOV22	mg/L	0.00008	<0.00008	14	20	98	90	110	106	70	130
Copper (total)	EMS0052-NOV22	mg/L	0.0002	<0.0002	0	20	102	90	110	99	70	130
Manganese (total)	EMS0052-NOV22	mg/L	0.00001	<0.00001	0	20	101	90	110	95	70	130
Molybdenum (total)	EMS0052-NOV22	mg/L	0.00004	<0.00004	8	20	102	90	110	105	70	130
Nickel (total)	EMS0052-NOV22	mg/L	0.0001	<0.0001	2	20	99	90	110	96	70	130
Lead (total)	EMS0052-NOV22	mg/L	0.00009	<0.00001	2	20	98	90	110	86	70	130
Phosphorus (total)	EMS0052-NOV22	mg/L	0.003	<0.003	20	20	93	90	110	NV	70	130
Antimony (total)	EMS0052-NOV22	mg/L	0.0009	<0.0009	ND	20	104	90	110	112	70	130
Selenium (total)	EMS0052-NOV22	mg/L	0.00004	<0.00004	5	20	102	90	110	95	70	130
Tin (total)	EMS0052-NOV22	mg/L	0.00006	<0.00006	14	20	101	90	110	NV	70	130
Titanium (total)	EMS0052-NOV22	mg/L	0.00005	<0.00005	0	20	99	90	110	NV	70	130
Zinc (total)	EMS0052-NOV22	mg/L	0.002	<0.002	1	20	110	90	110	100	70	130

20221111 10 / 18

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		S/Spike Blank		M	atrix Spike / Re	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9087-NOV22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD AC (%)	Spike	Recover	-	Spike Recovery		ry Limits %)	
						(70)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0148-NOV22	mg/L	0.01	< 0.01			83	55	120			
Nonylphenol Ethoxylates	GCM0148-NOV22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0148-NOV22	mg/L	0.01	< 0.01			90	55	120			
Nonylphenol	GCM0148-NOV22	mg/L	0.001	< 0.001			91	55	120			

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM5174-NOV22	mg/L	2	<2	NSS	20	106	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	25,05		S/Spike Blank		м	atrix Spike / Re	Ref.				
	Reference	leference Bla	Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ery Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM5174-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM5174-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	QC batch Reference Re			N	latrix Spike / Ref	•					
	Reference			Blank					-	Spike Recovery	Recover	-
						(%)	(%)	Low	High	(%)	Low	High
рН	EWL0124-NOV22	No unit	0.05	NA	0		99			NA		

20221111 12 / 18

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	<i>i.</i>
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0078-NOV22	mg/L	0.002	<0.002	ND	10	95	80	120	111	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0127-NOV22	mg/L	0.0001	<0.0001	NSS	30	87	60	140	NSS	60	140
Total												

20221111 13 / 18

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0113-NOV22	mg/L	0.002	< 0.002	NSS	30	129	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0113-NOV22	mg/L	0.002	< 0.002	NSS	30	117	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0148-NOV22	mg/L	2	< 2	1	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0094-NOV22	as N mg/L	0.5	<0.5	ND	10	102	90	110	103	75	125

20221111 14 / 18

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(75)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	103	50	140
1,2-Dichlorobenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
1,4-Dichlorobenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140
Benzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	101	60	130	103	50	140
Chloroform	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
cis-1,2-Dichloroethene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Ethylbenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	104	50	140
m-p-xylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	103	50	140
Methyl ethyl ketone	GCM0117-NOV22	mg/L	0.02	<0.02	ND	30	97	50	140	100	50	140
Methylene Chloride	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
o-xylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	105	50	140
Styrene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	104	60	130	106	50	140
Tetrachloroethylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
(perchloroethylene)												
Toluene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
trans-1,3-Dichloropropene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
Trichloroethylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140

20221111 15 / 18

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20221111 16 / 18

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221111 17 / 18

Request for Laboratory Services and CHAIN OF CUSTODY

Request for Laboratory Services and CHAIN OF CUS

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web; www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Laboratory Information Section Laboratory

Received B	11/		Received By	(signature)	(h)	ator	y illioi						/			-									cr
Received D	Date: 10012 100 (mm/dd/	yy)	Custody Seal Custody Seal		Yes No No	_		Coolin	ng Agen erature	t Prese	ent: Ye	es 🕜	No [9	Type:_	L	Ce		-					(A-	40078-NOV2
INGCGIVEG I	REPORT INFORMATION	IN	VOICE INFO	-				remp	erature	Opon i	кесеірі	((0)_	7.		+							LAB	LIMS#	01	40018
Company	DS consultants Ital	same as R	eport Informa	ation)		Quot	ation #												P.O. #	t-					
Contact:	Dorothy Sontos	Company:	,				ect #:			20	11	69-	-10	ч							ID- 14	177	10	Th. (Fore Rd, Beatk
Address:	Dorothy Sontos 6221 Huy 7, unit 16,	Contact: A	count	H/va			-	,	1				-		URNA	ROU	ND TIM	ME (TA	T) RE	QUIRE	D	IN	tercu	110	ACIE RAY DESTRE
Va	ughein, ON	Address:)			DR	egular	TAT (5	5-7dav	/s)											ess day	s (exclu	de statuto	ry holidays & weekends).
Phone:	705 329 2735	Address,				DITE	H TAT						ha.		T141	Davi							i weeker	ids: TAT b	pegins next business day
Fax:		Phone:													_		_		-	ays SUBM	_				
							ify Due								_		_				7		AN CO	NSUMPTI	ON MUST BE SUBMITTED
Email: 04	protty. Sun tos @dsconsulten	Email: JEATIONS				opec	ny Due	Date	-					1110	10.5			_		DRINKIN	G WAT	ER CH	AIN OF	CUSTODY	
							8.0	0.1	-	CV	00			_		_		TEL	_				-	1	
-	g 153/04 O.Reg 406/19	Other Regula			wer By-Law:	-	IVI	&1		SV	ОС	PCB	PI	1C	VC)C	Pest		Oth	er (plea	se specif	y)	SPLI	TCLP	
Table Table		Reg 347/558	MMER		Sanitary															- 1			Specif	Specify	
Table			Other	M	funicipality:				, o		3	L						10	3 1	11.			tests	tests	
Table	Аррх	MISA		_ _	Paal		-30()	2	n.Be,B,Cd			Aroclor						33				skg		0	
Soil V	olume	ODWS Not I	Reportable *Se	e note		_	ics C,SAR	Hg. 0	As,Br			_	100					5				le L		is DM&I	COMMENTO
	RECORD OF SITE CONDITION (RSC)	YES	NO			N/A	gan vs),e	ite pit poly	y Sb							- 1	yothe	25	C	- 1		zati	Ovoc		COMMENTS:
			11 11) pe	JOH.	WS-8C	onl Se.Ag.		GP.	Total	BTEX			- 1	pecif	99	8	1.		cter	Distant		1
	CAMPI E IDENTIFICATION	DATE	TIME	# OF		Itere	Ø ₽	tals BEH	tals No.Ni.	nly	ABNs, CPs	-	BI	슬		γle	les	25	3			ara	Поср		7
	SAMPLE IDENTIFICATION	SAMPLED	SAMPLED	BOTTLE	MATRIX	Field Filtered	Metals & Inorganics inclovi, CN, Hg pH, (B(HWS), EC, SAR== (C), Na-water)	ull Me	ICP Metals only sp.As.Ba	PAHs only	SVOCs all incl PAHs. A	PCBs	F1-F4 + I	F1-F4 only	VOCs all incl BTEX	BTEX only	Pesticides Organochlorine or s	(Pera)	36		wer Us	Water Characterization Pkg	DABN	☐aBN ☐lgnit.	
1 B	H 22-13	Nov 3rd 22	PM	17	aw	N	≥ ₹6	ΙLO	25	0.	Ω#	۵	ш	™ 8	> =	8	O o	2	J		S S	8 8	1		Non Filter
2			(12)					7.1				1.													Sumple
3			LITI	TI		ii.	i i					-													201101100
4																									
5								- 1				-19													
6																				-11		10		F V	
7					11 _ 3																T				
8											4											T			
9																			\exists						
10																									
11																					1				
12									-							1	6		1						
	ns/Comments/Special Instructions									-										_		1	1		
	- ALL 1					11			1						-	_	,		. 0		_				
	y (NAME): Harry / Cheir	anyle	_	Signature:	1		A	,	/						- 1	Date:	11		31	2		mm/dd/	уу)		Pink Copy - Client
Relinquish tevision # 1.6	ed by (NAME): Herry	ic urknowlednement to		Signature:		14	an	dec	-	of co.	mine (m)	Cut	ning -		1= 000	Date:	((10	31	2	2 (mm/dd/	уу)		Yellow & White Copy - SGS is form or be retained on file in

es for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/ferms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

CA40079-NOV22 R1

20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAI	ILS
Client	DS Consultants	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Garda	Telephone	705-652-2000
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	Maarit.Wolfe@sgs.com
Email	dorothy.garda@dsconsultants.ca	SGS Reference	CA40079-NOV22
Project	20-169-104, 14275 The Gore Rd, Bolton (MacVille)	Received	11/03/2022
Order Number		Approved	11/11/2022
Samples	Ground Water (1)	Report Number	CA40079-NOV22 R1
		Date Reported	11/11/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 029792

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

MATRIX: WATER			Sample Number	8	
			Sample Name	BH 22-32	
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIB	S 3303E		Sample Matrix	Ground Water	
			Sample Date	03/11/2022	
Parameter	Units	RL	L1	Result	
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2		< 4↑	
Total Suspended Solids	mg/L	2		98	
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5	
letals and Inorganics					
Fluoride	mg/L	0.06		0.10	
Cyanide (total)	mg/L	0.01		< 0.01	
Sulphate	mg/L	2		63	
Aluminum (0.2µm)	mg/L	0.001	0.075	0.001	
Aluminum (total)	mg/L	0.001		0.608	
Antimony (total)	mg/L	0.0009	0.02	< 0.0009	
Arsenic (total)	mg/L	0.0002	0.005	< 0.0002	
Cadmium (total)	mg/L	0.000003	0.0001	0.000005	
Chromium (total)	mg/L	0.00008	0.1	0.00118	
Copper (total)	mg/L	0.0002	0.001	0.0011	
Cobalt (total)	mg/L	0.000004	0.0009	0.000342	
Lead (total)	mg/L	0.00009	0.005	0.00043	
Manganese (total)	mg/L	0.00001		0.0462	
Molybdenum (total)	mg/L	0.00004	0.04	0.00084	
Nickel (total)	mg/L	0.0001	0.025	0.0010	
Phosphorus (total)	mg/L	0.003	0.01	0.073	
Selenium (total)	mg/L	0.00004	0.1	< 0.00004	
Silver (total)	mg/L	0.00005	0.0001	< 0.00005	

CA40079-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

MATRIX: WATER			Sample Number	8
			Sample Name	BH 22-32
1 = PWQO_L / WATER / Table 2 - General - July 1999 Pl	BS 3303E		Sample Matrix	Ground Water
			Sample Date	03/11/2022
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Tin (total)	mg/L	0.00006		0.00128
Titanium (total)	mg/L	0.00005		0.0246
Zinc (total)	mg/L	0.002	0.02	0.004
Microbiology				
E. Coli	cfu/100mL	0	100	1
Nonylphenol and Ethoxylates				
Nonylphenol	mg/L	0.001		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01		< 0.01
Nonylphenol diethoxylate	mg/L	0.01		< 0.01
Nonylphenol monoethoxylate	mg/L	0.01		< 0.01
Oil and Grease				
Oil & Grease (total)	mg/L	2		< 2
Oil & Grease (animal/vegetable)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

				_
MATRIX: WATER			Sample Number	8
			Sample Name	BH 22-32
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample Matrix	Ground Water
			Sample Date	03/11/2022
Parameter	Units	RL	L1	Result
Other (ORP)				
рН	No unit	0.05	8.6	7.63
Mercury (total)	mg/L	0.00001	0.0002	< 0.00001
PCBs				
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		< 0.0001
Phenols			1	
4AAP-Phenolics	mg/L	0.002	0.001	< 0.002
SVOCs				0.002
		0.000		10.000
di-n-Butyl Phthalate	mg/L	0.002		< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002		< 0.002
VOCs				
Chloroform	mg/L	0.0005		< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005		< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005		< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005		< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005		< 0.0005
Methylene Chloride	mg/L	0.0005	0.1	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	0.07	< 0.0005
Methyl ethyl ketone	mg/L	0.02		< 0.02
Styrene	mg/L	0.0005		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.05	< 0.0005
Trichloroethylene	mg/L	0.0005	0.02	< 0.0005
Trichloroethylene	IIIg/L	0.0005	0.02	< 0.0005

CA40079-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

Samplers: Harry

MATRIX: WATER Sample Number 8

Sample Name BH 22-32

			Sample Name	BH 22-32
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample Matrix	x Ground Water
			Sample Date	e 03/11/2022
Parameter	Units	RL	L1	Result
VOCs - BTEX				
Benzene	mg/L	0.0005	0.1	< 0.0005
Ethylbenzene	mg/L	0.0005	0.008	< 0.0005
Toluene	mg/L	0.0005	0.0008	< 0.0005
Xylene (total)	mg/L	0.0005		< 0.0005
m-p-xylene	mg/L	0.0005	0.002	< 0.0005
o-xylene	mg/L	0.0005	0.04	< 0.0005

EXCEEDANCE SUMMARY

BH 22-32

Copper	SM 3030/EPA 200.8	mg/L	0.0011	0.001
Phosphorus	SM 3030/EPA 200.8	mg/L	0.073	0.01
4AAP-Phenolics	SM 5530B-D	mg/L	< 0.002	0.001

20221111 7 / 18

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike Recovery Limits Recovery (%)		•	Spike Recovery	Recover	ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Sulphate	DIO5034-NOV22	mg/L	2	<2	1	20	103	80	120	104	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	plicate	LC	S/Spike Blank		м	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0008-NOV22	mg/L	2	< 2	9	30	105	70	130	115	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0057-NOV22	mg/L	0.01	<0.01	ND	10	100	90	110	106	75	125

20221111 8 / 18

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0127-NOV22	mg/L	0.06	<0.06	ND	10	103	90	110	105	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	=
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0012-NOV22	mg/L	0.00001	< 0.00001	15	20	90	80	120	95	70	130

20221111 9 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ма	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	•	Spike Recovery		ory Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0052-NOV22	mg/L	0.00005	<0.00005	ND	20	101	90	110	98	70	130
Aluminum (total)	EMS0052-NOV22	mg/L	0.001	<0.001	2	20	101	90	110	102	70	130
Aluminum (0.2µm)	EMS0052-NOV22	mg/L	0.001	<0.001	2	20	101	90	110	102	70	130
Arsenic (total)	EMS0052-NOV22	mg/L	0.0002	<0.0002	ND	20	101	90	110	104	70	130
Cadmium (total)	EMS0052-NOV22	mg/L	0.000003	<0.000003	5	20	99	90	110	98	70	130
Cobalt (total)	EMS0052-NOV22	mg/L	0.000004	<0.000004	1	20	98	90	110	95	70	130
Chromium (total)	EMS0052-NOV22	mg/L	0.00008	<0.00008	14	20	98	90	110	106	70	130
Copper (total)	EMS0052-NOV22	mg/L	0.0002	<0.0002	0	20	102	90	110	99	70	130
Manganese (total)	EMS0052-NOV22	mg/L	0.00001	<0.00001	0	20	101	90	110	95	70	130
Molybdenum (total)	EMS0052-NOV22	mg/L	0.00004	<0.00004	8	20	102	90	110	105	70	130
Nickel (total)	EMS0052-NOV22	mg/L	0.0001	<0.0001	2	20	99	90	110	96	70	130
Lead (total)	EMS0052-NOV22	mg/L	0.00009	<0.00001	2	20	98	90	110	86	70	130
Phosphorus (total)	EMS0052-NOV22	mg/L	0.003	<0.003	20	20	93	90	110	NV	70	130
Antimony (total)	EMS0052-NOV22	mg/L	0.0009	<0.0009	ND	20	104	90	110	112	70	130
Selenium (total)	EMS0052-NOV22	mg/L	0.00004	<0.00004	5	20	102	90	110	95	70	130
Tin (total)	EMS0052-NOV22	mg/L	0.00006	<0.00006	14	20	101	90	110	NV	70	130
Titanium (total)	EMS0052-NOV22	mg/L	0.00005	<0.00005	0	20	99	90	110	NV	70	130
Zinc (total)	EMS0052-NOV22	mg/L	0.002	<0.002	1	20	110	90	110	100	70	130

20221111 10 / 18

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9087-NOV22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0148-NOV22	mg/L	0.01	< 0.01			83	55	120			
Nonylphenol Ethoxylates	GCM0148-NOV22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0148-NOV22	mg/L	0.01	< 0.01			90	55	120			
Nonylphenol	GCM0148-NOV22	mg/L	0.001	< 0.001			91	55	120			

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	CS/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM5174-NOV22	mg/L	2	<2	NSS	20	106	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM5174-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM5174-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		N	latrix Spike / Ref	•
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0124-NOV22	No unit	0.05	NA	0		99			NA		

20221111 12 / 18

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	I.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0078-NOV22	mg/L	0.002	<0.002	ND	10	95	80	120	111	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0127-NOV22	mg/L	0.0001	<0.0001	NSS	30	87	60	140	NSS	60	140
Total												

20221111 13 / 18

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0219-NOV22	mg/L	0.002	< 0.002	NSS	30	125	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0219-NOV22	mg/L	0.002	< 0.002	NSS	30	117	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0148-NOV22	mg/L	2	< 2	1	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0082-NOV22	as N mg/L	0.5	<0.5	ND	10	101	90	110	99	75	125

20221111 14 / 18

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(75)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	103	50	140
1,2-Dichlorobenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
1,4-Dichlorobenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140
Benzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	101	60	130	103	50	140
Chloroform	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
cis-1,2-Dichloroethene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Ethylbenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	104	50	140
m-p-xylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	103	50	140
Methyl ethyl ketone	GCM0117-NOV22	mg/L	0.02	<0.02	ND	30	97	50	140	100	50	140
Methylene Chloride	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
o-xylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	105	50	140
Styrene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	104	60	130	106	50	140
Tetrachloroethylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
(perchloroethylene)												
Toluene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
trans-1,3-Dichloropropene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
Trichloroethylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140

20221111 15 / 18

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20221111 16 / 18

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte

ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221111 17 / 18

SGS

Request for Laboratory Services and CHAIN OF CUSTODY

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

No: 029792

Received By: Nisle Bin 4.8		Received By	(sinnature	Labo	rator	y Info						1												Uno7	9 - 10/2012
Received Date: MIN 1 2 1 24 (mm/dd/ Received Time: 17 : 30 (hr:min)	(yy)	Custody Seal	Present:	Yes No No	7		Cooli	ng Agen erature	t Pres	ent: Y	es Z	No		Туре:	I	10		-			N.		- No	34	9-NOV:
REPORT INFORMATION	IN	VOICE INFO					remp	erature	Opon	Receip	((C)_	1	_	-				-			L L	BLIMS	-	-5 10	-
Company: DS Consultants It	1				1	tation #	t:	70	·) -	16	9-	los	a		_	_		P.O.		o/ID: I	L12"	16	π. (ion Rd,	D
Address: 6221 Huly 7, Unit 16, Voughan, ON Phone: 905 329 2735	Contact: AC	Coun	Fireq		RUS	TAT H	(Addi	TAT (5-7da Charg	ys) ges Ma	ау Арр	oly):	T	URNA	ROU Day	ND TI	ME (TA Sa Days	T's are amples	e quoteo receive Days [ED (in busi d after (ness d Spm or ays	CU i l	lude statu	atory holidays & T begins next t	& weekends).
Email: cloretty Santos de de constalto	Phone:					ASE C			on FE	ASIBI	LIIY	WITH					TABLE) WAT	ER SAN	IPLES F	OR HI		ONSUMP F CUSTO		E SUBMITTED
REG	ULATIONS							100			1	ANA	LYS	SIS F	REC	UE	STE) -							
O.Reg 153/04 O.Reg 406/19 Table 1 Res/Park Soil Texture:	Other Regula			ewer By-Law:		M	81		SV	/oc	PCB	P	HC	V	С	Pest		Oth	ner (ple	easé sper	cify)		LP TCL		
□ Table 2 □ Ind/Com □ Coarse □ Table 3 □ Agri/Other □ Medium/Fine □ Table Appx. Soil Volume □ <350m3	CCME MISA ODWS Not		_	Usform Municipality: Page 1	9	C,SAR-soll)	y) Hg, CrVI	/ Sb.As.Ba,Be.B.Cd,			Aroclor						anet (Johnson)	0			ion Pkg	Specites	sts test	s .	MENTS:
RECORD OF SITE CONDITION (RSC)	YES [NO		T	(N/Y) b	Orgar B(HWS),E	Suite	only si		2ps	Total	X				pecify othe	5 5	0			terizat	Extended	4- PO	4-1	WENTS.
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	# OF BOTTL	MATRIX	Field Filtered	Metals & Inorganics	UII Metals	ICP Metals	PAHs only	SVOCs all incl Parts, ABNs, CPs	PCBs Te	F1-F4 + BTEX	F1-F4 only	VOCs all incl BTEX	BTEX only		(Peci Ste	36		ewer Use:	Specify pkg: Water Characterization Pkg	□o □AI	Die	N	
1 BH 22-32	Nov 3, 22	pm	17	GW	N			_ 0		U) a			11.0	7 8		. 0	1			0	υσ >	0		No.	filtered
3								-								93				-	+	+			sple
4								- 10												+	+	+			
5		11 = 1						1																	
7			_			-	H								H			-		+	#	+			
8																									
9																					1	1			
10			- 1			-		-		3							\vdash	-	+	+	+	+		-	
12																				+	1	+			
Observations/Comments/Special Instructions																									4.7
Sampled By (NAME): Hary Chec to	urya	- 10	Signatur		con	10	Ay .	_							Date:	-		_			(mm/c	id/yy)		Pink Copy -	Client
Relinquished by (NAME): Revision # 1.6 Note: Submission of samples to SGS	is acknowledgement th	al you have been	Signature provided d	- 12	(lection	-	and tran	sportatio	n of san	mples. (2) Submi	ssion of	sample		Date:	nsidered			completi		(mm/a		av appear r	Yellow & Wi	hite Copy - SGS retained on file in
Date of Issue: 02 May 2022 (the contract, or in an alterna	tive format (e.g. shipping	g documents). (3	Results m	nay be sent by email to	an uni	imited nu	mber of	addresse	s for no	addition	nal cost.	Fax is	avadable	e upon r	equest.	This do	ocument	s issue	d by the (Company	under if	s Genera	Condition	of Service acce	ssible at

http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Aftention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CA40079-NOV22 R1

20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAI	ILS
Client	DS Consultants	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Garda	Telephone	705-652-2000
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	Maarit.Wolfe@sgs.com
Email	dorothy.garda@dsconsultants.ca	SGS Reference	CA40079-NOV22
Project	20-169-104, 14275 The Gore Rd, Bolton (MacVille)	Received	11/03/2022
Order Number		Approved	11/11/2022
Samples	Ground Water (1)	Report Number	CA40079-NOV22 R1
		Date Reported	11/11/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 029792

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

MATRIX: WATER				ample Number	8
				Sample Name	BH 22-32
1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53	_2010			Sample Matrix	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL_53_2	010			Sample Date	03/11/2022
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑
Total Suspended Solids	mg/L	2	350	15	98
Total Kjeldahl Nitrogen as N	mg/L	0.5	100	1	< 0.5
Vetals and Inorganics					
Fluoride	mg/L	0.06	10		0.10
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01
Sulphate	mg/L	2	1500		63
Aluminum (0.2μm)	mg/L	0.001			0.001
Aluminum (total)	mg/L	0.001	50		0.608
Antimony (total)	mg/L	0.0009	5		< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	< 0.0002
Cadmium (total)	mg/L	0.000003	0.7	0.008	0.000005
Chromium (total)	mg/L	0.00008	5	0.08	0.00118
Copper (total)	mg/L	0.0002	3	0.05	0.0011
Cobalt (total)	mg/L	0.000004	5		0.000342
Lead (total)	mg/L	0.00009	3	0.12	0.00043
Manganese (total)	mg/L	0.00001	5	0.05	0.0462
	mg/L	0.00004	5		0.00084
	mg/L	0.0001	3	0.08	0.0010
, ,	mg/L	0.003	10	0.4	0.073
	mg/L	0.00004	1	0.02	< 0.00004
, ,		0.00005	5	0.12	< 0.00005
On total)	g, L	0.00000		0.12	- 0.00000

CA40079-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

MATRIX: WATER				Sample Number	8
				Sample Name	BH 22-32
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discl	harge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discha	arge - BL_53_2010			Sample Date	03/11/2022
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Tin (total)	mg/L	0.00006	5		0.00128
Titanium (total)	mg/L	0.00005	5		0.0246
Zinc (total)	mg/L	0.002	3	0.04	0.004
Microbiology				'	
E. Coli	cfu/100mL	0		200	1
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001	0.02		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01	0.2		< 0.01
Nonylphenol diethoxylate	mg/L	0.01	0.2		< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
	IIIg/L	0.01			< 0.01
Oil and Grease					
Oil & Grease (total)	mg/L	2			< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

					_
MATRIX: WATER				ample Number	8
				Sample Name	BH 22-32
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discha	arge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharg	ge - BL_53_2010			Sample Date	03/11/2022
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
рН	No unit	0.05	10	9	7.63
Mercury (total)	mg/L	0.00001	0.01	0.0004	< 0.00001
PCBs				·	
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001
Phenols					
4AAP-Phenolics	mg/L	0.002	1	0.008	< 0.002
SVOCs			l		
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002
VOCs					
Chloroform	mg/L	0.0005	0.04	0.002	< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005	4	0.0056	< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005
Methyl ethyl ketone	mg/L	0.02	8		< 0.02
Styrene	mg/L	0.0005	0.2		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005
Trichloroethylene	mg/L	0.0005	0.4	0.008	< 0.0005

CA40079-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton (MacVille)

Project Manager: Dorothy Garda

MATRIX: WATER			s	ample Number	8
WAIRIA. WAIER				Sample Name	
				•	
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - B	BL_53_2010			Sample Matrix	
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL_	_53_2010			Sample Date	03/11/2022
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005
o-xylene	mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

SANSEW / WATER SANSEW / WATER / - - Peel Table 2 -/ - - Peel Table 1 -Sanitary Sewer Storm Sewer Discharge -Discharge -BL_53_2010 BL_53_2010 Method Units L1 L2 Parameter Result

BH 22-32

Total Suspended Solids SM 2540D mg/L 98

20221111 7 / 18

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5034-NOV22	mg/L	2	<2	1	20	103	80	120	104	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0008-NOV22	mg/L	2	< 2	9	30	105	70	130	115	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch Reference	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
					RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery		ry Limits %)
								Low	High	(%)	Low	High
Cyanide (total)	SKA0057-NOV22	mg/L	0.01	<0.01	ND	10	100	90	110	106	75	125

20221111 8 / 18

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0127-NOV22	mg/L	0.06	<0.06	ND	10	103	90	110	105	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch Reference	Units	RL	Method Blank	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
					RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits	
								Low	High	(%)	Low	High
Mercury (total)	EHG0012-NOV22	mg/L	0.00001	< 0.00001	15	20	90	80	120	95	70	130

20221111 9 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method Blank	Dup	licate	LCS	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike Recovery	Recove	•	Spike Recovery		ory Limits %)
						(76)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0052-NOV22	mg/L	0.00005	<0.00005	ND	20	101	90	110	98	70	130
Aluminum (total)	EMS0052-NOV22	mg/L	0.001	<0.001	2	20	101	90	110	102	70	130
Aluminum (0.2μm)	EMS0052-NOV22	mg/L	0.001	<0.001	2	20	101	90	110	102	70	130
Arsenic (total)	EMS0052-NOV22	mg/L	0.0002	<0.0002	ND	20	101	90	110	104	70	130
Cadmium (total)	EMS0052-NOV22	mg/L	0.000003	<0.000003	5	20	99	90	110	98	70	130
Cobalt (total)	EMS0052-NOV22	mg/L	0.000004	<0.000004	1	20	98	90	110	95	70	130
Chromium (total)	EMS0052-NOV22	mg/L	0.00008	<0.00008	14	20	98	90	110	106	70	130
Copper (total)	EMS0052-NOV22	mg/L	0.0002	<0.0002	0	20	102	90	110	99	70	130
Manganese (total)	EMS0052-NOV22	mg/L	0.00001	<0.00001	0	20	101	90	110	95	70	130
Molybdenum (total)	EMS0052-NOV22	mg/L	0.00004	<0.00004	8	20	102	90	110	105	70	130
Nickel (total)	EMS0052-NOV22	mg/L	0.0001	<0.0001	2	20	99	90	110	96	70	130
Lead (total)	EMS0052-NOV22	mg/L	0.00009	<0.00001	2	20	98	90	110	86	70	130
Phosphorus (total)	EMS0052-NOV22	mg/L	0.003	<0.003	20	20	93	90	110	NV	70	130
Antimony (total)	EMS0052-NOV22	mg/L	0.0009	<0.0009	ND	20	104	90	110	112	70	130
Selenium (total)	EMS0052-NOV22	mg/L	0.00004	<0.00004	5	20	102	90	110	95	70	130
Tin (total)	EMS0052-NOV22	mg/L	0.00006	<0.00006	14	20	101	90	110	NV	70	130
Titanium (total)	EMS0052-NOV22	mg/L	0.00005	<0.00005	0	20	99	90	110	NV	70	130
Zinc (total)	EMS0052-NOV22	mg/L	0.002	<0.002	1	20	110	90	110	100	70	130

20221111 10 / 18

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9087-NOV22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Ма	atrix Spike / Ref.	
	Reference			Blank	RPD AC (%)	Spike	Recover	•	Spike Recovery	Recover	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0148-NOV22	mg/L	0.01	< 0.01			83	55	120			
Nonylphenol Ethoxylates	GCM0148-NOV22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0148-NOV22	mg/L	0.01	< 0.01			90	55	120			
Nonylphenol	GCM0148-NOV22	mg/L	0.001	< 0.001			91	55	120			

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM5174-NOV22	mg/L	2	<2	NSS	20	106	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Oil & Grease (animal/vegetable)	GCM5174-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM5174-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike		ery Limits %)	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0124-NOV22	No unit	0.05	NA	0		99			NA		

20221111 12 / 18

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	00	RL	Method	Du	plicate	LC	S/Spike Blank		N	latrix Spike / Ref	I.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0078-NC	DV22 mg/L	0.002	<0.002	ND	10	95	80	120	111	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0127-NOV22	mg/L	0.0001	<0.0001	NSS	30	87	60	140	NSS	60	140
Total												

20221111 13 / 18

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch			Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0219-NOV22	mg/L	0.002	< 0.002	NSS	30	125	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0219-NOV22	mg/L	0.002	< 0.002	NSS	30	117	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC (%)	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0148-NOV22	mg/L	2	< 2	1	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	RPD AC (%)	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0082-NOV22	as N mg/L	0.5	<0.5	ND	10	101	90	110	99	75	125

20221111 14 / 18

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(75)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	103	50	140
1,2-Dichlorobenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
1,4-Dichlorobenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140
Benzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	101	60	130	103	50	140
Chloroform	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
cis-1,2-Dichloroethene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Ethylbenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	104	50	140
m-p-xylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	103	50	140
Methyl ethyl ketone	GCM0117-NOV22	mg/L	0.02	<0.02	ND	30	97	50	140	100	50	140
Methylene Chloride	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
o-xylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	105	50	140
Styrene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	104	60	130	106	50	140
Tetrachloroethylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
(perchloroethylene)												
Toluene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
trans-1,3-Dichloropropene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
Trichloroethylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140

20221111 15 / 18

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20221111 16 / 18

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte

ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221111 17 / 18

SGS

Request for Laboratory Services and CHAIN OF CUSTODY

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 No: 029792

Laboratory Information Section - Lab use only CA 40079-NOVEZ

NLAB LIMS # NOV 3 40074 Received By: Nicole Dintel Received By (signature): Cooling Agent Present: Yes No Type: Received Date: Nin 1 2 1124 Custody Seal Present: Yes No Received Time: 7 : 30 (hr : min) Custody Seal Intact: Yes P No T REPORT INFORMATION INVOICE INFORMATION Company: DS Consultants 15 [D(same as Report Information) Quotation #: P.O. #: 20 - 169 - 109 Site Location/ID: 19413 1100

TURNAROUND TIME (TAT) REQUIRED (Macville) Contact: Dorothy Santos Site Location/ID: 14275 The Got Rd. Beiton Project #: Regular TAT (5-7days) TAT's are quoted in business days (exclude statutory holidays & weekends). Voughan, ON Samples received after 6pm or on weekends: TAT begins next business day Phone: 905 329 2735 RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION *NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Specify Due Date: Email: clorutty, Santos & de Consulta Email: REGULATIONS WITH SGS DRINKING WATER CHAIN OF CUSTODY ANALYSIS REQUESTED O.Reg 406/19 M & I SVOC PCB PHC O.Reg 153/04 Other Regulations: VOC Pest Other (please specify) SPLP TCLP Sewer By-Law: Table 1 Res/Park Soil Texture: Ref 347/558 (3 Day min TAT) Sanitary Specify Specify ☐ Ind/Com ☐ Coarse Table 2 MPWQ0 1 Storm MMER tests Agri/Other Medium/Fine Table 3 CCME Other: Municipality: Aroclor Page Characterization Pkg MISA Table Аррх. Metals DMR Metals & Inorganics nel CVI, CN, Hg pH,(B(HWS), EC, SAR-(Ci, Na-water) Soil Volume <350m3 >350m3 ODWS Not Reportable *See note Field Filtered (Y/N) COMMENTS: Dvoc □voc Full Metals Suite RECORD OF SITE CONDITION (RSC) YES ICP Metals only a 1,4-□ PCB Total F1-F4 + BTEX SVOCs all incl PAHs, ABNs, CPs Pesticides
Organochlorine or s
(PCC) SEC □6(a)F DOCP Sewer Use: Specify pkg: Water Chara F1-F4 only PAHS only DATE TIME # OF SAMPLE IDENTIFICATION DABN MATRIX DABN SAMPLED SAMPLED BOTTLES PCBs VOCs ☐ ignit BH 22-32 PM GW Sample 5 9 11 12 Observations/Comments/Special Instructions Harry /chei tanya Sampled By (NAME): Date: 11 103122 Signature: Pink Copy - Client Relinquished by (NAME): 11,03,22 (mm/dd/yv) vision # 1.E Note: Submission of samplies to SGS is acknowledgement that you have been provided direction on sample collection/handling and transportation of samples. [2] Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at tate of Issue: 02 May 2022

http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Aftention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CA40080-NOV22 R1

20-169-104, 14275 The Gore Rd, Bolton, ON. (Macville)

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAI	ILS
Client	DS Consultants	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Garda	Telephone	705-652-2000
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	Maarit.Wolfe@sgs.com
Email	dorothy.garda@dsconsultants.ca	SGS Reference	CA40080-NOV22
Project	20-169-104, 14275 The Gore Rd, Bolton, ON. (Macville)	Received	11/03/2022
Order Number		Approved	11/11/2022
Samples	Ground Water (1)	Report Number	CA40080-NOV22 R1
		Date Reported	11/11/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 029793

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

Phosphorus (total)

Selenium (total)

Silver (total)

mg/L

0.003

mg/L 0.00004

mg/L 0.00005

0.01

0.0001

FINAL REPORT

CA40080-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton, ON. (Macville)

Project Manager: Dorothy Garda

Samplers: Chaitanya Harry

MATRIX: WATER			Sample Number	8
			Sample Name	BH 22-17
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS	S 3303E		Sample Matrix	Ground Water
			Sample Date	03/11/2022
Parameter	Units	RL	L1	Result
General Chemistry				
Biochemical Oxygen Demand (BOD5)	mg/L	2		< 4↑
Total Suspended Solids	mg/L	2		169
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5
Metals and Inorganics				
Fluoride	mg/L	0.06		0.12
Cyanide (total)	mg/L	0.01		< 0.01
Sulphate	mg/L	2		50
Aluminum (0.2µm)	mg/L	0.001	0.075	0.003
Aluminum (total)	mg/L	0.001		1.64
Antimony (total)	mg/L	0.0009	0.02	< 0.0009
Arsenic (total)	mg/L	0.0002	0.005	0.0009
Cadmium (total)	mg/L	0.000003	0.0001	0.000013
Chromium (total)	mg/L	0.00008	0.1	0.00283
Copper (total)	mg/L	0.0002	0.001	0.0025
Cobalt (total)	mg/L	0.000004	0.0009	0.00106
Lead (total)	mg/L	0.00009	0.005	0.00108
Manganese (total)	mg/L	0.00001		0.101
Molybdenum (total)	mg/L	0.00004	0.04	0.00151
Nickel (total)	mg/L	0.0001	0.025	0.0021

0.00015

< 0.00005

CA40080-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton, ON. (Macville)

Project Manager: Dorothy Garda

Samplers: Chaitanya Harry

MATRIX: MATER			Sample Number	8
MATRIX: WATER			•	
			Sample Name	BH 22-17
L1 = PWQO_L / WATER / Table 2 - General - July 1999	9 PIBS 3303E		Sample Matrix	
			Sample Date	03/11/2022
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Tin (total)	mg/L	0.00006		0.00188
Titanium (total)	mg/L	0.00005		0.0409
Zinc (total)	mg/L	0.002	0.02	0.006
Microbiology				
E. Coli	cfu/100mL	0	100	0
Nonylphenol and Ethoxylates				
Nonylphenol	mg/L	0.001		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01		< 0.01
Nonylphenol diethoxylate	mg/L	0.01		< 0.01
Nonylphenol monoethoxylate	mg/L	0.01		< 0.01
Oil and Grease				
Oil & Grease (total)	mg/L	2		< 2
Oil & Grease (animal/vegetable)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4

CA40080-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton, ON. (Macville)

Project Manager: Dorothy Garda

Samplers: Chaitanya Harry

MATRIX: WATER			Sample Number	8
			Sample Name	BH 22-17
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 330:)3E		Sample Matrix	Ground Water
			Sample Date	03/11/2022
Parameter	Units	RL	L1	Result
Other (ORP)				
рН	No unit	0.05	8.6	7.61
Mercury (total)	mg/L	0.00001	0.0002	0.00001
PCBs				
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		< 0.0001
Phenols				
4AAP-Phenolics	mg/L	0.002	0.001	0.002
SVOCs]	
di-n-Butyl Phthalate	mg/L	0.002		< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002		< 0.002
	mg/L	0.002		- 0.002
VOCs Chloroform		0.0005		- 0.0005
	mg/L	0.0005		< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005		< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005		< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005		< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005		< 0.0005
Methylene Chloride	mg/L	0.0005	0.1	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	0.07	< 0.0005
Methyl ethyl ketone	mg/L	0.02		< 0.02
Styrene	mg/L	0.0005		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.05	< 0.0005
Trichloroethylene	mg/L	0.0005	0.02	< 0.0005

CA40080-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton, ON. (Macville)

Project Manager: Dorothy Garda

Samplers: Chaitanya Harry

MATRIX: WATER Sample Number 8

Sample Name BH 22-17

				Campio Hamo	D1122 17
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E	E			Sample Matrix	Ground Water
				Sample Date	03/11/2022
Parameter	Units	RL	L1		Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.1		< 0.0005
Ethylbenzene	mg/L	0.0005	0.008		< 0.0005
Toluene	mg/L	0.0005	0.0008		< 0.0005
Xylene (total)	mg/L	0.0005			< 0.0005
m-p-xylene	mg/L	0.0005	0.002		< 0.0005
o-xylene	mg/L	0.0005	0.04		< 0.0005

EXCEEDANCE SUMMARY

BH 22-17

Cobalt	SM 3030/EPA 200.8	mg/L	0.00106	0.0009
Copper	SM 3030/EPA 200.8	mg/L	0.0025	0.001
Phosphorus	SM 3030/EPA 200.8	mg/L	0.098	0.01
4AAP-Phenolics	SM 5530B-D	mg/L	0.002	0.001

20221111 7 / 18

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				Spike	(Spike Recovery	Recover	-		
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5034-NOV22	mg/L	2	<2	1	20	103	80	120	104	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	plicate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC Spike (%) Recovery (%)	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)		
							_	Low	High	(%)	Low	High	
Biochemical Oxygen Demand (BOD5)	BOD0008-NOV22	mg/L	2	< 2	9	30	105	70	130	115	70	130	

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference	ice [Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Cyanide (total)	SKA0057-NOV22	mg/L	0.01	<0.01	ND	10	100	90	110	106	75	125	

20221111 8 / 18

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank RPD AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)		
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0127-NOV22	mg/L	0.06	<0.06	ND	10	103	90	110	105	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	Duplicate LCS		S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
							Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0012-NOV22	mg/L	0.00001	< 0.00001	15	20	90	80	120	95	70	130

20221111 9 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0052-NOV22	mg/L	0.00005	<0.00005	ND	20	101	90	110	98	70	130
Aluminum (total)	EMS0052-NOV22	mg/L	0.001	<0.001	2	20	101	90	110	102	70	130
Aluminum (0.2µm)	EMS0052-NOV22	mg/L	0.001	<0.001	2	20	101	90	110	102	70	130
Arsenic (total)	EMS0052-NOV22	mg/L	0.0002	<0.0002	ND	20	101	90	110	104	70	130
Cadmium (total)	EMS0052-NOV22	mg/L	0.000003	<0.000003	5	20	99	90	110	98	70	130
Cobalt (total)	EMS0052-NOV22	mg/L	0.000004	<0.000004	1	20	98	90	110	95	70	130
Chromium (total)	EMS0052-NOV22	mg/L	0.00008	<0.00008	14	20	98	90	110	106	70	130
Copper (total)	EMS0052-NOV22	mg/L	0.0002	<0.0002	0	20	102	90	110	99	70	130
Manganese (total)	EMS0052-NOV22	mg/L	0.00001	<0.00001	0	20	101	90	110	95	70	130
Molybdenum (total)	EMS0052-NOV22	mg/L	0.00004	<0.00004	8	20	102	90	110	105	70	130
Nickel (total)	EMS0052-NOV22	mg/L	0.0001	<0.0001	2	20	99	90	110	96	70	130
Lead (total)	EMS0052-NOV22	mg/L	0.00009	<0.00001	2	20	98	90	110	86	70	130
Phosphorus (total)	EMS0052-NOV22	mg/L	0.003	<0.003	20	20	93	90	110	NV	70	130
Antimony (total)	EMS0052-NOV22	mg/L	0.0009	<0.0009	ND	20	104	90	110	112	70	130
Selenium (total)	EMS0052-NOV22	mg/L	0.00004	<0.00004	5	20	102	90	110	95	70	130
Tin (total)	EMS0052-NOV22	mg/L	0.00006	<0.00006	14	20	101	90	110	NV	70	130
Titanium (total)	EMS0052-NOV22	mg/L	0.00005	<0.00005	0	20	99	90	110	NV	70	130
Zinc (total)	EMS0052-NOV22	mg/L	0.002	<0.002	1	20	110	90	110	100	70	130

20221111 10 / 18

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	ī.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9087-NOV22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref.	•
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0148-NOV22	mg/L	0.01	< 0.01			83	55	120			
Nonylphenol Ethoxylates	GCM0148-NOV22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0148-NOV22	mg/L	0.01	< 0.01			90	55	120			
Nonylphenol	GCM0148-NOV22	mg/L	0.001	< 0.001			91	55	120			

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	:
	Reference			Blank	RPD	RPD AC S	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM5174-NOV22	mg/L	2	<2	NSS	20	106	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference		(%) Reco	Spike	Recove	•	Spike Recovery		ry Limits %)			
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM5174-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM5174-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		N	latrix Spike / Ref	•
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0124-NOV22	No unit	0.05	NA	0		99			NA		

20221111 12 / 18

CA40080-NOV22 R1

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank RPD AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits 6)		
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0078-NOV22	mg/L	0.002	<0.002	ND	10	95	80	120	111	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
olychlorinated Biphenyls (PCBs) -						(%)	Recovery (%)	Low	High	(%)	Low	High
	GCM0127-NOV22	mg/L	0.0001	<0.0001	NSS	30	87	60	140	NSS	60	140
Total												

20221111 13 / 18

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference		Blank RPD (AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)		
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0113-NOV22	mg/L	0.002	< 0.002	NSS	30	129	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0113-NOV22	mg/L	0.002	< 0.002	NSS	30	117	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD AC	Spike		•	Spike Recovery	Recover	ry Limits 6)	
						(%)	(%)	(%) Recovery Low High	Low	High		
Total Suspended Solids	EWL0148-NOV22	mg/L	2	< 2	1	10	Recovery (%)	NA				

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0082-NOV22	as N mg/L	0.5	<0.5	ND	10	101	90	110	99	75	125

20221111 14 / 18

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	103	50	140
1,2-Dichlorobenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
1,4-Dichlorobenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140
Benzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	101	60	130	103	50	140
Chloroform	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
cis-1,2-Dichloroethene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Ethylbenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	104	50	140
m-p-xylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	103	50	140
Methyl ethyl ketone	GCM0117-NOV22	mg/L	0.02	<0.02	ND	30	97	50	140	100	50	140
Methylene Chloride	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
o-xylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	105	50	140
Styrene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	104	60	130	106	50	140
Tetrachloroethylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
(perchloroethylene)												
Toluene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
trans-1,3-Dichloropropene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
Trichloroethylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140

20221111 15 / 18

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20221111 16 / 18

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221111 17 / 18

Request for Laboratory Services and CHAIN OF CUSTODY

Request for Laboratory Services and CHAIN OF CUS
Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON KOL 2HO Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

Received By: Nicule Brigant Received Date: MN / 3 / 21 (mm/dd/) Received Time: 17 : 10 (hr: min)	yy)	Received By (Custody Seal	Present: Y	0.	rator	Infor	matio		ction	- Lab	use	only		Type:_	Î	C					LAB	LIMS #:	CA-	Cn - 40080 - NOV22
REPORT INFORMATION		NVOICE INFO						91-										3						
Company: DS consultents 11d	(same as F	Report Informat	tion)		Quot	ation #												P.O. #	ŧ					1100
Contact: Ociotina Scientios	Company:					ct#:		2-1	69	-10	26							Site L	ocation/l	D: 14	221	Th	E 010	eville)
Contact Opening Scentos Address: 6221 Higg-7, United Vaugham ON	Gontact: As	roumbn	Q				1	55					TU	JRNA	ROU	ND TI	ME (TA	T) RE	QUIRED)			CAR	crite)
Vaughan ON	Address:		1			PR	egular	TAT (5	-7day	s)							TA	T's are	quoted in	busine	ss days	s (exclud	le statuto	ry holidays & weekends).
Phone:	11001000				RUS	H TAT					v Ann	lv).		— 11	Day	□21			ays			weeken	ds: TATE	begins next business day
Fax:	Phone:																		SUBMI					
1. 1. 1. 1. 1. 1.						ify Due		_														AN CON	SUMPTI	ON MUST BE SUBMITTED
Email: dorthy, suntos Godsconsid	Email:				Орес	ny Duc	Date					ALA	12/0	10.5		LIE	_		DRINKING	WATE	R CHA	IN OF C	USTODY	
	ULATIONS						0.1	D-	01/	00		_	_				TEI					Tana a		
O.Reg 153/04 O.Reg 406/19 Table 1 Res/Park Soil Texture:	Other Regula			ver By-Law:		IVI	81		SV	UC.	PCB	PI	10	VC)C	Pest		Oth	er (pleas	e specify)	SPLP	TCLP	
Table 2 Ind/Com Coarse	PWQO	58 (3 Day min TA MMER	17	Sanitary													1						Specify	
Table 3. Agri/Other Medium/Fine		Other:	Mu	unicipality:		I V		P)			5						20					tests	tests	
Table Appx.	MISA.			reel		-soll)	2 S	Sb.As.Ba.Be,B.Cd			Aroclar		1				20				by C		-	
Soil Volume <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a< td=""><td>ODWS Not</td><td>Reportable *See</td><td>e note</td><td></td><td>-</td><td>ics C,SAR</td><td>Hg.</td><td>As.B</td><td></td><td></td><td>-</td><td></td><td>1</td><td></td><td></td><td></td><td>10</td><td></td><td></td><td></td><td>8 L</td><td>Metals</td><td>TOTAL VI</td><td>COMMENTS</td></a<>	ODWS Not	Reportable *See	e note		-	ics C,SAR	Hg.	As.B			-		1				10				8 L	Metals	TOTAL VI	COMMENTS
RECORD OF SITE CONDITION (RSC)	YES [NO			(N/K)	gar NS),E	uite oli only	y st								yothe	1	3			izati			COMMENTS:
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	# OF BOTTLES	MATRIX	Field Filtered	Metals & Inorganics ind Civi. Ch. Hg pH.(B(HWS),EC.SAR (C). Na-water)	Full Metals Suite	ICP Metals only s Cr.Co,Cu,Pb,Mo,NiSe,Ap,Ti,U,V	PAHs only	SVOCs all incl PAHs, ABNs, CPs	PCBs Total	F1-F4 + BTEX	F1-F4 only	VOCs	BTEX only	Pesticides Organochlorine or speci	Peel son	PW/Q.C		Sewer Use:	Water Characterization Pkg	□1,4- Discrete □OCP □ABN	□PCB □B(a)P □ABN □Ignit.	
1 BH 22-12	Nov 03	Pm	17	Gul	N	71.1											1	1						New-filtere
2		5				1																		to inp. ¿
3		01				Jer a									-									-
4								=										\neg		+				
5		1 = 3										H							+	+	-			
6			-											\dashv				+		+				
7											-			\dashv		-	\vdash	\dashv	-	+	-			
8		-						1						\dashv	-		\vdash	-	+	+	-			
9			-		-				2.7		-			-				-	-	+	-			
		1	-								-		-					-	-	+	-			
10									V. 7									-		\vdash				
11			-					2																
12									L				12				3							51
Observations/Comments/Special Instructions																	4	7	22					
Sampled By (NAME): Chartanga / 1	WITTY		Signature:	dhey	arri										Date:	₩	34	9 1	10	1.	nm/dd/y	(vv)		Pink Copy - Client
Relinquished by (NAME):			Signature:		ing	170	/				_				Date:	77	11, 1	93	27					
Revision # 1.6 Note: Submission of samples to SGS	is acknowledgement to						and trans	sportation	of sam	ples. (2)	Submis	sion of	samples			sidered	authoriza	ation for	completion		nm/dd/y Signatu		ppear on t	Yellow & White Copy - SGS his form or be retained on file in

the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CA40080-NOV22 R1

20-169-104, 14275 The Gore Rd, Bolton, ON. (Macville)

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAI	ILS
Client	DS Consultants	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Garda	Telephone	705-652-2000
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	Maarit.Wolfe@sgs.com
Email	dorothy.garda@dsconsultants.ca	SGS Reference	CA40080-NOV22
Project	20-169-104, 14275 The Gore Rd, Bolton, ON. (Macville)	Received	11/03/2022
Order Number		Approved	11/11/2022
Samples	Ground Water (1)	Report Number	CA40080-NOV22 R1
		Date Reported	11/11/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 029793

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton, ON. (Macville)

Project Manager: Dorothy Garda

Samplers: Chaitanya Harry

MATRIX: WATER			Sa	ample Number	8
				Sample Name	BH 22-17
1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Di	scharge - BL_53_2010			Sample Matrix	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc	harge - BL_53_2010			Sample Date	03/11/2022
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑
Total Suspended Solids	mg/L	2	350	15	169
Total Kjeldahl Nitrogen	as N mg/L	0.5	100	1	< 0.5
Metals and Inorganics					
Fluoride	mg/L	0.06	10		0.12
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01
Sulphate	mg/L	2	1500		50
Aluminum (0.2µm)	mg/L	0.001			0.003
Aluminum (total)	mg/L	0.001	50		1.64
Antimony (total)	mg/L	0.0009	5		< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	0.0009
Cadmium (total)	mg/L	0.000003	0.7	0.008	0.000013
Chromium (total)	mg/L	0.00008	5	0.08	0.00283
Copper (total)	mg/L	0.0002	3	0.05	0.0025
Cobalt (total)	mg/L	0.000004	5		0.00106
Lead (total)	mg/L	0.00009	3	0.12	0.00108
Manganese (total)	mg/L	0.00001	5	0.05	0.101
Molybdenum (total)	mg/L	0.00004	5		0.00151
Nickel (total)	mg/L	0.0001	3	0.08	0.0021
Phosphorus (total)	mg/L	0.003	10	0.4	0.098
Selenium (total)	mg/L	0.00004	1	0.02	0.00015
Silver (total)	mg/L	0.00005	5	0.12	< 0.00005

CA40080-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton, ON. (Macville)

Project Manager: Dorothy Garda

Samplers: Chaitanya Harry

MATRIX: WATER			;	Sample Number	8
				Sample Name	BH 22-17
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disc	charge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discha	arge - BL_53_2010			Sample Date	03/11/2022
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Tin (total)	mg/L	0.00006	5		0.00188
Titanium (total)	mg/L	0.00005	5		0.0409
Zinc (total)	mg/L	0.002	3	0.04	0.006
Microbiology					
E. Coli	cfu/100mL	0		200	0
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001	0.02		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01	0.2		< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
Oil and Grease				'	
Oil & Grease (total)	mg/L	2			< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4

CA40080-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton, ON. (Macville)

Project Manager: Dorothy Garda

Samplers: Chaitanya Harry

MATRIX: WATER			Sa	ample Number	8
			;	Sample Name	BH 22-17
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disch	arge - BL_53_2010		;	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Dischar	ge - BL_53_2010			Sample Date	03/11/2022
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
pH	No unit	0.05	10	9	7.61
Mercury (total)	mg/L	0.00001	0.01	0.0004	0.00001
PCBs				'	
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001
Phenois					
4AAP-Phenolics	mg/L	0.002	1	0.008	0.002
	mg/L	0.002	ı	0.006	0.002
SVOCs			I		
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002
VOCs					
Chloroform	mg/L	0.0005	0.04	0.002	< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005	4	0.0056	< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005
Methyl ethyl ketone	mg/L	0.02	8	0.011	< 0.02
		0.002			< 0.002
Styrene Take the later (country to the later)	mg/L		0.2	0.0044	
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005
Trichloroethylene	mg/L	0.0005	0.4	0.008	< 0.0005

CA40080-NOV22 R1

Client: DS Consultants

Project: 20-169-104, 14275 The Gore Rd, Bolton, ON. (Macville)

Project Manager: Dorothy Garda

Samplers: Chaitanya Harry

MATRIX: WATER			;	Sample Number	8
				Sample Name	BH 22-17
_1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_′	010			Sample Matrix	Ground Water
.2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL_53_20	0			Sample Date	03/11/2022
Parameter L	nits	RL	L1	L2	Result
VOCs - BTEX					
Benzene	ng/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	ng/L	0.0005	0.16	0.002	< 0.0005
Toluene	ng/L	0.0005	0.27	0.002	< 0.0005
Xylene (total)	ng/L	0.0005	1.4	0.0044	< 0.0005
m-p-xylene n	ng/L	0.0005			< 0.0005
o-xylene n	ng/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

SANSEW / WATER SANSEW / WATER / - - Peel Table 2 -/ - - Peel Table 1 -Sanitary Sewer Storm Sewer Discharge -Discharge -BL_53_2010 BL_53_2010 Method Units L1 L2 Result Parameter

BH 22-17

Total Suspended Solids	SM 2540D	mg/L	169
Manganese	SM 3030/EPA 200.8	mg/L	0.101

15 0.05

20221111 7 / 18

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	.CS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5034-NOV22	mg/L	2	<2	1	20	103	80	120	104	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		ī.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0008-NOV22	mg/L	2	< 2	9	30	105	70	130	115	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LCS/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0057-NOV22	mg/L	0.01	<0.01	ND	10	100	90	110	106	75	125

20221111 8 / 18

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	RPD AC (%)			ery Limits %)	Spike Recovery	Recover	ry Limits %)
				(%)	Recovery (%)	Low	High	(%)	Low	High		
Fluoride	EWL0127-NOV22	mg/L	0.06	<0.06	ND	10	103	90	110	105	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		S/Spike Blank		М	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0012-NOV22	mg/L	0.00001	< 0.00001	15	20	90	80	120	95	70	130

20221111 9 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0052-NOV22	mg/L	0.00005	<0.00005	ND	20	101	90	110	98	70	130
Aluminum (total)	EMS0052-NOV22	mg/L	0.001	<0.001	2	20	101	90	110	102	70	130
Aluminum (0.2µm)	EMS0052-NOV22	mg/L	0.001	<0.001	2	20	101	90	110	102	70	130
Arsenic (total)	EMS0052-NOV22	mg/L	0.0002	<0.0002	ND	20	101	90	110	104	70	130
Cadmium (total)	EMS0052-NOV22	mg/L	0.000003	<0.000003	5	20	99	90	110	98	70	130
Cobalt (total)	EMS0052-NOV22	mg/L	0.000004	<0.000004	1	20	98	90	110	95	70	130
Chromium (total)	EMS0052-NOV22	mg/L	0.00008	<0.00008	14	20	98	90	110	106	70	130
Copper (total)	EMS0052-NOV22	mg/L	0.0002	<0.0002	0	20	102	90	110	99	70	130
Manganese (total)	EMS0052-NOV22	mg/L	0.00001	<0.00001	0	20	101	90	110	95	70	130
Molybdenum (total)	EMS0052-NOV22	mg/L	0.00004	<0.00004	8	20	102	90	110	105	70	130
Nickel (total)	EMS0052-NOV22	mg/L	0.0001	<0.0001	2	20	99	90	110	96	70	130
Lead (total)	EMS0052-NOV22	mg/L	0.00009	<0.00001	2	20	98	90	110	86	70	130
Phosphorus (total)	EMS0052-NOV22	mg/L	0.003	<0.003	20	20	93	90	110	NV	70	130
Antimony (total)	EMS0052-NOV22	mg/L	0.0009	<0.0009	ND	20	104	90	110	112	70	130
Selenium (total)	EMS0052-NOV22	mg/L	0.00004	<0.00004	5	20	102	90	110	95	70	130
Tin (total)	EMS0052-NOV22	mg/L	0.00006	<0.00006	14	20	101	90	110	NV	70	130
Titanium (total)	EMS0052-NOV22	mg/L	0.00005	<0.00005	0	20	99	90	110	NV	70	130
Zinc (total)	EMS0052-NOV22	mg/L	0.002	<0.002	1	20	110	90	110	100	70	130

20221111 10 / 18

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	ī.
	Reference	Reference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9087-NOV22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref.	•
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0148-NOV22	mg/L	0.01	< 0.01			83	55	120			
Nonylphenol Ethoxylates	GCM0148-NOV22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0148-NOV22	mg/L	0.01	< 0.01			90	55	120			
Nonylphenol	GCM0148-NOV22	mg/L	0.001	< 0.001			91	55	120			

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Oil & Grease (total)	GCM5174-NOV22	mg/L	2	<2	NSS	20	106	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM5174-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM5174-NOV22	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		N	latrix Spike / Ref	•
	Reference	Reference		Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0124-NOV22	No unit	0.05	NA	0		99			NA		

20221111 12 / 18

CA40080-NOV22 R1

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	RPD AC (%)			ry Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0078-NOV22	mg/L	0.002	<0.002	ND	10	95	80	120	111	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0127-NOV22	mg/L	0.0001	<0.0001	NSS	30	87	60	140	NSS	60	140
Total												

20221111 13 / 18

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0113-NOV22	mg/L	0.002	< 0.002	NSS	30	129	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0113-NOV22	mg/L	0.002	< 0.002	NSS	30	117	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank RPD AC (%)		Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0148-NOV22	mg/L	2	< 2	1	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch Units Reference	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.			
			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0082-NOV22	as N mg/L	0.5	<0.5	ND	10	101	90	110	99	75	125

20221111 14 / 18

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)	
						(70)	(%)	Low	High	(%)	Low	High	
1,1,2,2-Tetrachloroethane	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	103	50	140	
1,2-Dichlorobenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140	
1,4-Dichlorobenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140	
Benzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	101	60	130	103	50	140	
Chloroform	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140	
cis-1,2-Dichloroethene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140	
Ethylbenzene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	104	50	140	
m-p-xylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	103	50	140	
Methyl ethyl ketone	GCM0117-NOV22	mg/L	0.02	<0.02	ND	30	97	50	140	100	50	140	
Methylene Chloride	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140	
o-xylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	102	60	130	105	50	140	
Styrene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	104	60	130	106	50	140	
Tetrachloroethylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140	
(perchloroethylene)													
Toluene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140	
trans-1,3-Dichloropropene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140	
Trichloroethylene	GCM0117-NOV22	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140	

20221111 15 / 18

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20221111 16 / 18

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221111 17 / 18

Request for Laboratory Services and CHAIN OF CUSTODY

Request for Laboratory Services and CHAIN OF CUS
Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON KOL 2HO Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

Received By: Nicule Brigant Received Date: MN / 3 / 21 (mm/dd/) Received Time: 17 : 10 (hr: min)	yy)	Received By (Custody Seal	Present: Y	0.	rator	Infor	matio		ction	- Lab	use	only		Type:_	Î	C					LAB	LIMS #:	CA-	Cn - 40080 - NOV22
REPORT INFORMATION		NVOICE INFO						95-										3						
Company: DS consultents 11d	(same as F	Report Informat	tion)		Quot	ation #												P.O. #	ŧ					1100
Contact: Ociotina Scientios	Company:							2-1	69	-10	26							Site L	ocation/l	D: 14	221	Th	e Cie	me Kal, botto
Contact Opening Scentos Address: 6221 Higg-7, United Vaugham ON	Gontact: As	roumbn	Q			Quotation #: P.O. #: Project #: 20 -169 -104 Site Location/ID: 142 - 15 The Grove Rd , Bo TURNAROUND TIME (TAT) REQUIRED CASE (THE COURSE)										crite)								
Vaughan ON	Address:		1			D/R	egular	TAT (5	-7day	s)							TA	T's are	quoted in	busine	ss days	s (exclud	le statuto	ry holidays & weekends).
Phone:	11001000	R				Regular TAT (5-7days) TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days																		
Fax:	Phone:																		SUBMI					
1. 1. 1. 1. 1. 1.						ify Due		_														AN CON	SUMPTI	ON MUST BE SUBMITTED
Email: dorthy, suntos Godsconsid	Email:				Орес	ny Duc	Date					ALA	12/0	10.5		LIE	_		DRINKING	WATE	R CHA	IN OF C	USTODY	
	ULATIONS						0.1	D-	01/	00		_	_				TEI					Tara a		
O.Reg 153/04 O.Reg 406/19 Table 1 Res/Park Soil Texture:	Other Regula			ver By-Law:		IVI	81		SV	UC.	PCB	PI	10	VC)C	Pest		Oth	er (pleas	e specify)	SPLP	TCLP	
Table 2 Ind/Com Coarse	Reg 347/558 (3 Day min TAT) Sanitary PWQO MMER Storm																1						Specify	
Table 3. Agri/Other Medium/Fine		Other:	Mu	unicipality:		l V		P)			5						20					tests	tests	
Table Appx.	MISA.			reel		-soll)	2 S	Sb.As.Ba.Be,B.Cd			Aroclar		1				20			1	by C		-	
Soil Volume <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a< td=""><td>ODWS Not</td><td>Reportable *See</td><td>e note</td><td></td><td>-</td><td>ics C,SAR</td><td>Hg.</td><td>As.B</td><td></td><td></td><td>-</td><td></td><td>1</td><td></td><td></td><td></td><td>10</td><td></td><td></td><td></td><td>8 L</td><td>Metals</td><td>13 EV</td><td>COMMENTS</td></a<>	ODWS Not	Reportable *See	e note		-	ics C,SAR	Hg.	As.B			-		1				10				8 L	Metals	13 EV	COMMENTS
RECORD OF SITE CONDITION (RSC)	YES [NO			(N/K)	gar NS),E	uite oli only	y st								yothe	1	3			izati			COMMENTS:
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	# OF BOTTLES	MATRIX	Field Filtered	Metals & Inorganics ind Civi. Ch. Hg pH.(B(HWS),EC.SAR (C). Na-water)	Full Metals Suite	ICP Metals only s Cr.Co,Cu,Pb,Mo,NiSe,Ap,Ti,U,V	PAHs only	SVOCs all incl PAHs, ABNs, CPs	PCBs Total	F1-F4 + BTEX	F1-F4 only	VOCs	BTEX only	Pesticides Organochlorine or speci	Peel son	PW/Q.C		Sewer Use:	Water Characterization Pkg	□1,4- Discrete □OCP □ABN	□PCB □B(a)P □ABN □Ignit.	
1 BH 22-12	Nov 03	Pm	17	Gul	N	71.1											1	1						New-filtere
2		5 7 1				1																		to inp. ¿
3		01				Jer a									-									-
4								=							Н			\neg		+				
5		1 = 3										H							+	+	-			
6			-											\dashv				+		+				
7		-									-			\dashv		-	\vdash	\dashv	-	+	-			
8		-						1						\dashv	-		\vdash	-	+	+	-			
9			-		-				2.7		-			-				-	-	+	-			
		1	-								-		-					-	-	+	-			
10									V. 7									-		\vdash				
11			-					2																
12									L				12				3							51
Observations/Comments/Special Instructions																	4	7	22					
Sampled By (NAME): Chartanga / 1	WITTY		Signature:	dhey	arri										Date:	₩	34	9 1	10	1.	nm/dd/y	(vv)		Pink Copy - Client
Relinquished by (NAME):			Signature:		ing	170	/				_				Date:	77	11, 1	93	27					
Revision # 1.6 Note: Submission of samples to SGS	is acknowledgement to						and trans	sportation	of sam	ples. (2)	Submis	sion of	samples			sidered	authoriza	ation for	completion		nm/dd/y Signatu		ppear on t	Yellow & White Copy - SGS his form or be retained on file in

the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CA40033-JUL23 R1

20-169-105, 14155 The Gore Rd, C aledon Macville Properties

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETA	ILS
Client	DS Consultants	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Santos	Telephone	705-652-2143
Telephone	905-329-2735	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	brad.moore@sgs.com
Email	dorothy.santos@dsconsultants.ca	SGS Reference	CA40033-JUL23
Project	20-169-105, 14155 The Gore Rd, C aledon Macville Properties	Received	07/07/2023
Order Number		Approved	07/14/2023
Samples	Ground Water (1)	Report Number	CA40033-JUL23 R1
		Date Reported	07/14/2023

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 036524

Spike rep slightly high, accepted results based off other QC

SIGNATORIES

Brad Moore Hon. B.Sc Brad Mod

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

> Member of the SGS Group (SGS SA) 1 / 18

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

CA40033-JUL23 R1

Client: DS Consultants

Project: 20-169-105, 14155 The Gore Rd, C aledon Macville Properties

Project Manager: Dorothy Santos

MATRIX: WATER			S	ample Number	8
				Sample Name	BH23-1D
1 = SANSEW / WATER / Peel Sewer Use ByLaw - Sanitary S	Sewer Discharge - BL_	53_2010		Sample Matrix	Ground Water
2 = SANSEW / WATER / Peel Sewer Use ByLaw - Storm Sev	wer Discharge - BL_53	3_2010		Sample Date	07/07/2023
Parameter	Units	RL	L1	L2	Result
Seneral Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑
Total Suspended Solids	mg/L	2	350	15	139
Total Kjeldahl Nitrogen	as N mg/L	0.5	100	1	< 0.5
Metals and Inorganics					
Fluoride	mg/L	0.06	10		0.12
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01
Sulphate	mg/L	2	1500		9
Aluminum (total)	mg/L	0.001	50		1.91
Antimony (total)	mg/L	0.0009	5		< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	0.0012
Cadmium (total)		0.000003	0.7	0.008	0.000014
Chromium (total)		0.00008	5	0.08	0.00216
	mg/L				
Copper (total)	mg/L	0.0002	3	0.05	0.0042
Cobalt (total)		0.000004	5		0.00108
Lead (total)	mg/L	0.00009	3	0.12	0.00157
Manganese (total)	mg/L	0.00001	5	0.05	0.0849
Molybdenum (total)	mg/L	0.00004	5		0.00148
Nickel (total)	mg/L	0.0001	3	0.08	0.0027
Phosphorus (total)	mg/L	0.003	10	0.4	0.129
Selenium (total)	mg/L	0.00004	1	0.02	< 0.00004
Silver (total)	mg/L	0.00005	5	0.12	< 0.00005
Tin (total)	mg/L	0.00006	5		0.00035

CA40033-JUL23 R1

Client: DS Consultants

Project: 20-169-105, 14155 The Gore Rd, C aledon Macville Properties

Project Manager: Dorothy Santos

MATRIX: WATER			\$	Sample Number	8
				Sample Name	BH23-1D
L1 = SANSEW / WATER / Peel Sewer Use ByLaw - Sanit	tary Sewer Discharge - BL_5	53_2010		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Sewer Use ByLaw - Storm	m Sewer Discharge - BL_53	_2010		Sample Date	07/07/2023
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Titanium (total)	mg/L	0.00007	5		0.0562
Zinc (total)	mg/L	0.002	3	0.04	0.012
Microbiology				'	
E. Coli	cfu/100mL	0		200	4
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001	0.02		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01	0.2		< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
Oil and Grease				1	
Oil & Grease (total)	mg/L	2			< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4

CA40033-JUL23 R1

Client: DS Consultants

Project: 20-169-105, 14155 The Gore Rd, C aledon Macville Properties

Project Manager: Dorothy Santos

MATDIV: MATCO			9	ample Number	8
MATRIX: WATER				Sample Name	BH23-1D
IA - CANCEW/WATER / Parl Commeller D. I	auras Diagharras - D'	E2 2040		Sample Matrix	Ground Water
L1 = SANSEW / WATER / Peel Sewer Use ByLaw - Sanitary Si L2 = SANSEW / WATER / Peel Sewer Use ByLaw - Storm Sew	-			Sample Date	07/07/2023
Parameter	Units	_2010 RL	L1	L2	Result
Other (ORP)	01110				rtooun
pH	No unit	0.05	10	9	7.95
Mercury (total)	mg/L	0.00001	0.01	0.0004	< 0.00001
PCBs					
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001
	mg/L	0.0001	0.001	0.0004	- 0.0001
Phenois			l .		
4AAP-Phenolics	mg/L	0.002	1	0.008	< 0.002
SVOCs					
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002
VOCs					
Chloroform	mg/L	0.0005	0.04	0.002	< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005	4	0.0056	< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005
Methyl ethyl ketone	mg/L	0.02	8		< 0.02
Styrene	mg/L	0.0005	0.2		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005
Trichloroethylene	mg/L	0.0005	0.4	0.008	< 0.0005

CA40033-JUL23 R1

Client: DS Consultants

Project: 20-169-105, 14155 The Gore Rd, C aledon Macville Properties

Project Manager: Dorothy Santos

MATRIX: WATER			s	ample Number	8
				Sample Name	BH23-1D
L1 = SANSEW / WATER / Peel Sewer Use ByLaw - San	itary Sewer Discharge - BL_53	3_2010		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Sewer Use ByLaw - Stor	rm Sewer Discharge - BL_53_2	2010		Sample Date	07/07/2023
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005
o-xylene	mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

SANSEW / WATER SANSEW / WATER / - - Peel Sewer / - - Peel Sewer Use ByLaw -Use ByLaw - Storm Sanitary Sewer Sewer Discharge -Discharge -BL_53_2010 BL_53_2010 Parameter Method Units Result L1 L2

BH23-1D

Total Suspended Solids	SM 2540D	mg/L	139
Manganese	SM 3030/EPA 200.8	mg/L	0.0849

15 0.05

20230714 7 / 18

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Sulphate	DIO5026-JUL23	mg/L	2	<2	1	20	106	80	120	110	75	125	

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Biochemical Oxygen Demand (BOD5)	BOD0013-JUL23	mg/L	2	< 2	1	30	101	70	130	131	70	130	

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	ī.
	Reference			Blank	RPD AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0065-JUL23	mg/L	0.01	<0.01	ND	10	101	90	110	NV	75	125

20230714 8 / 18

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0144-JUL23	mg/L	0.06	<0.06	3	10	101	90	110	104	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	!.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0016-JUL23	mg/L	0.00001	< 0.00001	0	20	105	80	120	104	70	130

20230714 9 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(75)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0048-JUL23	mg/L	0.00005	<0.00005	ND	20	96	90	110	93	70	130
Aluminum (total)	EMS0048-JUL23	mg/L	0.001	<0.001	2	20	93	90	110	88	70	130
Arsenic (total)	EMS0048-JUL23	mg/L	0.0002	<0.0002	4	20	98	90	110	107	70	130
Cadmium (total)	EMS0048-JUL23	mg/L	0.000003	<0.000003	4	20	95	90	110	108	70	130
Cobalt (total)	EMS0048-JUL23	mg/L	0.000004	<0.000004	5	20	94	90	110	103	70	130
Chromium (total)	EMS0048-JUL23	mg/L	0.00008	<0.00008	1	20	98	90	110	110	70	130
Copper (total)	EMS0048-JUL23	mg/L	0.0002	<0.0002	4	20	98	90	110	112	70	130
Manganese (total)	EMS0048-JUL23	mg/L	0.00001	<0.00001	3	20	100	90	110	115	70	130
Molybdenum (total)	EMS0048-JUL23	mg/L	0.00004	<0.00004	2	20	103	90	110	116	70	130
Nickel (total)	EMS0048-JUL23	mg/L	0.0001	<0.0001	1	20	99	90	110	106	70	130
Lead (total)	EMS0048-JUL23	mg/L	0.00009	<0.00009	1	20	98	90	110	107	70	130
Phosphorus (total)	EMS0048-JUL23	mg/L	0.003	<0.003	5	20	102	90	110	NV	70	130
Antimony (total)	EMS0048-JUL23	mg/L	0.0009	<0.0009	ND	20	109	90	110	103	70	130
Selenium (total)	EMS0048-JUL23	mg/L	0.00004	<0.00004	0	20	96	90	110	110	70	130
Tin (total)	EMS0048-JUL23	mg/L	0.00006	<0.00006	ND	20	99	90	110	NV	70	130
Titanium (total)	EMS0048-JUL23	mg/L	0.00007	<0.00005	1	20	99	90	110	NV	70	130
Zinc (total)	EMS0048-JUL23	mg/L	0.002	<0.002	1	20	94	90	110	112	70	130

20230714 10 / 18

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9121-JUL23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0145-JUL23	mg/L	0.01	<0.01			84	55	120			
Nonylphenol Ethoxylates	GCM0145-JUL23	mg/L	0.01	0								
Nonylphenol monoethoxylate	GCM0145-JUL23	mg/L	0.01	<0.01			82	55	120			
Nonylphenol	GCM0145-JUL23	mg/L	0.001	<0.001			63	55	120			

20230714 11 / 18

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD AC Spike (%) Recover		_		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0167-JUL23	mg/L	2	<2	NSS	20	102	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0167-JUL23	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0167-JUL23	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0227-JUL23	No unit	0.05	NA	1		99			NA		

20230714 12 / 18

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank RPD AC (%)		Spike		ry Limits %)	Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0094-JUL23	mg/L	0.002	<0.002	ND	10	91	80	120	101	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Du	plicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0105-JUL23	mg/L	0.0001	<0.0001	NSS	30	136	60	140	NSS	60	140
Total												

20230714 13 / 18

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0110-JUL23	mg/L	0.002	< 0.002	NSS	30	116	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0110-JUL23	mg/L	0.002	< 0.002	NSS	30	105	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0250-JUL23	mg/L	2	< 2	1	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0074-JUL23	as N mg/L	0.5	<0.5	6	10	97	90	110	92	75	125

20230714 14 / 18

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(75)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	103	60	130	111	50	140
1,2-Dichlorobenzene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	86	60	130	92	50	140
1,4-Dichlorobenzene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	86	60	130	90	50	140
Benzene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	88	60	130	94	50	140
Chloroform	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	84	60	130	91	50	140
cis-1,2-Dichloroethene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	91	60	130	96	50	140
Ethylbenzene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	91	60	130	95	50	140
m-p-xylene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	92	60	130	97	50	140
Methyl ethyl ketone	GCM0120-JUL23	mg/L	0.02	<0.02	ND	30	105	50	140	112	50	140
Methylene Chloride	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	90	60	130	97	50	140
o-xylene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	93	60	130	97	50	140
Styrene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	91	60	130	95	50	140
Tetrachloroethylene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	93	60	130	96	50	140
(perchloroethylene)												
Toluene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	95	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	79	60	130	90	50	140
Trichloroethylene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	102	60	130	106	50	140

20230714 15 / 18

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20230714 16 / 18

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20230714 17 / 18

Request for Laboratory Services and CHAIN OF CUSTODY

Laboratory Information Section - Lab use only

No: 036524

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

Received By (signature):

- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Received By: Atmeev

Received Date: 07/07/23 (mm/dd/yy)

Received Time: 10:30 (hr:min) CA 40633-54133 Cooling Agent Present: Yes No Type: Type: Type: Temperature Upon Receipt (°C) 9×3 Custody Seal Present: Yes No Custody Seal Intact: Yes No REPORT INFORMATION INVOICE INFORMATION Company: DS (consultants Ltd. Desame as Report Information)
Contact: Desatty Sentes Company: Site Location/ID: 14155 The Good Rd.
AT) REQUIRED Caledon Project#: 20-169-105 Address: 6221 Herry 7, TURNAROUND TIME (TAT) REQUIRED TAT's are quoted in business days texclude statutory holidays & weakends. Samples received after 6pm or on weekends: VAT the instructions and Regular TAT (5-7days) Unit 16, Vaughern Phone: 905 - 329 - 2735 RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION Email: DS embos @ do consultar Email: REGULATIONS *NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Specify Due Date: WITH SGS DRINKING WATER CHAIN OF CUSTODY **ANALYSIS REQUESTED** SVOC PCB PHC VOC Pest 1.8 M Other (please specify) SPLP TCLP O.Reg 153/04 O.Reg 406/19 Other Regulations: Sewer By-Law: Table 1 Res/Park Soil Texture: Reg 347/558 (3 Day min TAT) Sanitary Table 2 Ind/Com Coarse PWQO MMER - Storm tests (sorters) Agri/Other Medium/Fine Municipality: Table 3 CCME Other: MISA Table Metals Characterization F Soil Volume <350m3 >350m3 ODWS Not Reportable *See note Metals & Inorganics Dvoc COMMENTS: Full Metals Suite RECORD OF SITE CONDITION (RSC) YES NO F1-F4 only Pesticides PAHs only DATE TIME # OF DABN SAMPLE IDENTIFICATION MATRIX SVOCS all inci PAHS. VOCs all incl BTEX SAMPLED SAMPLED BOTTLES Specify pk ☐ lanit Am BH 23-1 D 717123 Gu Non hillerer Observations/Comments/Special Instructions Sampled By (NAME): Signature: Relinquished by (NAME): the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at ate of Issue 07 JUNE 2023 http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

CA40033-JUL23 R1

20-169-105, 14155 The Gore Rd, C aledon Macville Properties

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAI	ILS
Client	DS Consultants	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Santos	Telephone	705-652-2143
Telephone	905-329-2735	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	brad.moore@sgs.com
Email	dorothy.santos@dsconsultants.ca	SGS Reference	CA40033-JUL23
Project	20-169-105, 14155 The Gore Rd, C aledon Macville Properties	Received	07/07/2023
Order Number		Approved	07/14/2023
Samples	Ground Water (1)	Report Number	CA40033-JUL23 R1
		Date Reported	10/11/2023

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 036524

Spike rep slightly high, accepted results based off other QC

SIGNATORIES

Brad Moore Hon. B.Sc Brad Mod

1 / 18

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

Member of the SGS Group (SGS SA)

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

CA40033-JUL23 R1

Client: DS Consultants

Project: 20-169-105, 14155 The Gore Rd, C aledon Macville Properties

Project Manager: Dorothy Santos

		Sample Number	8
		Sample Name	BH23-1D
3303E		Sample Matrix	Ground Water
		•	07/07/2023
Units	RL	L1	Result
mg/L	2		< 4↑
mg/L	2		139
as N mg/L	0.5		< 0.5
mg/L	0.06		0.12
mg/L	0.01		< 0.01
mg/L	2		9
mg/L	0.001		1.91
mg/L	0.0009	0.02	< 0.0009
mg/L	0.0002	0.005	0.0012
mg/L	0.000003	0.0001	0.000014
mg/L	0.00008	0.1	0.00216
mg/L	0.0002	0.001	0.0042
mg/L	0.000004	0.0009	0.00108
mg/L	0.00009	0.005	0.00157
mg/L	0.00001		0.0849
mg/L	0.00004	0.04	0.00148
mg/L	0.0001	0.025	0.0027
mg/L	0.003	0.01	0.129
mg/L	0.00004	0.1	< 0.00004
mg/L	0.00005	0.0001	< 0.00005
			0.00035
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Units RL mg/L 2 mg/L 2 as N mg/L 0.5 mg/L 0.06 mg/L 0.01 mg/L 0.001 mg/L 0.0009 mg/L 0.00002 mg/L 0.00008 mg/L 0.00004 mg/L 0.00001 mg/L 0.00004 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0004 mg/L 0.00004 mg/L 0.00004 mg/L 0.00005	Sample Name Sample Matrix Sample Date Units RL L1 mg/L 2 mg/L 2 as N mg/L 0.05 mg/L 0.001 mg/L 0.0001 mg/L 0.0002 mg/L 0.0002 mg/L 0.00008 0.1 mg/L 0.0002 mg/L 0.00008 0.1 mg/L 0.00009 mg/L 0.00009 mg/L 0.00009 mg/L 0.00009 mg/L 0.00009 mg/L 0.00009 mg/L 0.00009 mg/L 0.00009 mg/L 0.00001 mg/L 0.00009 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00001 mg/L 0.00004 0.004 mg/L 0.00004 0.005 mg/L 0.00004 0.001 mg/L 0.00004 0.001 mg/L 0.00004 0.001

CA40033-JUL23 R1

Client: DS Consultants

Project: 20-169-105, 14155 The Gore Rd, C aledon Macville Properties

Project Manager: Dorothy Santos

MATRIX: WATER			Sample Numb	er 8
WAIRIA. WAIER			Sample Nar	
IA DWOO LUWATER / Table 0 Occupal 11 1000 SID	0.0005		Sample Nat	
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIB	S 3303E		Sample Ma	
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Titanium (total)	mg/L	0.00007		0.0562
Zinc (total)	mg/L	0.002	0.02	0.012
Microbiology				
E. Coli	cfu/100mL	0	100	4
Nonylphenol and Ethoxylates				
Nonylphenol	mg/L	0.001		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01		< 0.01
Nonylphenol diethoxylate	mg/L	0.01		< 0.01
Nonylphenol monoethoxylate	mg/L	0.01		< 0.01
Oil and Grease				
Oil & Grease (total)	mg/L	2		< 2
Oil & Grease (animal/vegetable)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4

CA40033-JUL23 R1

Client: DS Consultants

Project: 20-169-105, 14155 The Gore Rd, C aledon Macville Properties

Project Manager: Dorothy Santos

MATRIX: WATER			Sample Number	8
			Sample Name	BH23-1D
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample Matrix	Ground Water
			Sample Date	07/07/2023
Parameter	Units	RL	L1	Result
Other (ORP)				
pH	No unit	0.05	8.6	7.95
Mercury (total)	mg/L	0.00001	0.0002	< 0.00001
PCBs				
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		< 0.0001
Phenols			1	
4AAP-Phenolics	mg/L	0.002	0.001	< 0.002
SVOCs	<u> </u>			
		0.000		40.000
di-n-Butyl Phthalate	mg/L	0.002		< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002		< 0.002
VOCs				
Chloroform	mg/L	0.0005		< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005		< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005		< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005		< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005		< 0.0005
Methylene Chloride	mg/L	0.0005	0.1	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	0.07	< 0.0005
Methyl ethyl ketone	mg/L	0.02		< 0.02
Styrene	mg/L	0.0005		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.05	< 0.0005
Trichloroethylene	mg/L	0.0005	0.02	< 0.0005
Thomoroethylene	my/L	0.0005	0.02	< 0.0005

CA40033-JUL23 R1

Client: DS Consultants

Project: 20-169-105, 14155 The Gore Rd, C aledon Macville Properties

Project Manager: Dorothy Santos

Samplers: Ken

MATRIX: WATER Sample Number 8

Sample Name BH23-1D

				Sample Name	DU59-1D	
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E				Sample Matrix	Ground Water	
				Sample Date	07/07/2023	
Parameter	Units	RL	L1		Result	
VOCs - BTEX						
Benzene	mg/L	0.0005	0.1		< 0.0005	
Ethylbenzene	mg/L	0.0005	0.008		< 0.0005	
Toluene	mg/L	0.0005	0.0008		< 0.0005	
Xylene (total)	mg/L	0.0005			< 0.0005	
m-p-xylene	mg/L	0.0005	0.002		< 0.0005	
o-xylene	mg/L	0.0005	0.04		< 0.0005	

EXCEEDANCE SUMMARY

BH23-1D

Cobalt	SM 3030/EPA 200.8	mg/L	0.00108	0.0009
Copper	SM 3030/EPA 200.8	mg/L	0.0042	0.001
Phosphorus	SM 3030/EPA 200.8	mg/L	0.129	0.01
4AAP-Phenolics	SM 5530B-D	mg/L	< 0.002	0.001

20231011 7 / 18

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5026-JUL23	mg/L	2	<2	1	20	106	80	120	110	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	i.
	Reference	Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)		
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0013-JUL23	mg/L	2	< 2	1	30	101	70	130	131	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter QC batch Reference	QC batch	Units	RL	Method	Du	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	f.
			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0065-JUL23	mg/L	0.01	<0.01	ND	10	101	90	110	NV	75	125

20231011 8 / 18

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duplicate LC			S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0144-JUL23	mg/L	0.06	<0.06	3	10	101	90	110	104	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter QC batch Reference	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	•
	Reference			Blank	RPD	AC (V)	Spike	Recove	ry Limits %)	Spike Recovery	Recove	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0016-JUL23	mg/L	0.00001	< 0.00001	0	20	105	80	120	104	70	130

20231011 9 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	ry Limits 6)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0048-JUL23	mg/L	0.00005	<0.00005	ND	20	96	90	110	93	70	130
Aluminum (total)	EMS0048-JUL23	mg/L	0.001	<0.001	2	20	93	90	110	88	70	130
Arsenic (total)	EMS0048-JUL23	mg/L	0.0002	<0.0002	4	20	98	90	110	107	70	130
Cadmium (total)	EMS0048-JUL23	mg/L	0.000003	<0.000003	4	20	95	90	110	108	70	130
Cobalt (total)	EMS0048-JUL23	mg/L	0.000004	<0.000004	5	20	94	90	110	103	70	130
Chromium (total)	EMS0048-JUL23	mg/L	0.00008	<0.00008	1	20	98	90	110	110	70	130
Copper (total)	EMS0048-JUL23	mg/L	0.0002	<0.0002	4	20	98	90	110	112	70	130
Manganese (total)	EMS0048-JUL23	mg/L	0.00001	<0.00001	3	20	100	90	110	115	70	130
Molybdenum (total)	EMS0048-JUL23	mg/L	0.00004	<0.00004	2	20	103	90	110	116	70	130
Nickel (total)	EMS0048-JUL23	mg/L	0.0001	<0.0001	1	20	99	90	110	106	70	130
Lead (total)	EMS0048-JUL23	mg/L	0.00009	<0.00009	1	20	98	90	110	107	70	130
Phosphorus (total)	EMS0048-JUL23	mg/L	0.003	<0.003	5	20	102	90	110	NV	70	130
Antimony (total)	EMS0048-JUL23	mg/L	0.0009	<0.0009	ND	20	109	90	110	103	70	130
Selenium (total)	EMS0048-JUL23	mg/L	0.00004	<0.00004	0	20	96	90	110	110	70	130
Tin (total)	EMS0048-JUL23	mg/L	0.00006	<0.00006	ND	20	99	90	110	NV	70	130
Titanium (total)	EMS0048-JUL23	mg/L	0.00007	<0.00005	1	20	99	90	110	NV	70	130
Zinc (total)	EMS0048-JUL23	mg/L	0.002	<0.002	1	20	94	90	110	112	70	130

20231011 10 / 18

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
Refu	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9121-JUL23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	<u> </u>		LC	S/Spike Blank		Ma	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0145-JUL23	mg/L	0.01	<0.01			84	55	120			
Nonylphenol Ethoxylates	GCM0145-JUL23	mg/L	0.01	0								
Nonylphenol monoethoxylate	GCM0145-JUL23	mg/L	0.01	<0.01			82	55	120			
Nonylphenol	GCM0145-JUL23	mg/L	0.001	<0.001			63	55	120			

20231011 11 / 18

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0167-JUL23	mg/L	2	<2	NSS	20	102	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0167-JUL23	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0167-JUL23	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	•
	Reference	Reference		Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0227-JUL23	No unit	0.05	NA	1		99			NA		

20231011 12 / 18

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0094-JUL23	mg/L	0.002	<0.002	ND	10	91	80	120	101	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Du	plicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0105-JUL23	mg/L	0.0001	<0.0001	NSS	30	136	60	140	NSS	60	140
Total												

20231011 13 / 18

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0110-JUL23	mg/L	0.002	< 0.002	NSS	30	116	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0110-JUL23	mg/L	0.002	< 0.002	NSS	30	105	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0250-JUL23	mg/L	2	< 2	1	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0074-JUL23	as N mg/L	0.5	<0.5	6	10	97	90	110	92	75	125

20231011 14 / 18

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(7.5)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	103	60	130	111	50	140
1,2-Dichlorobenzene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	86	60	130	92	50	140
1,4-Dichlorobenzene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	86	60	130	90	50	140
Benzene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	88	60	130	94	50	140
Chloroform	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	84	60	130	91	50	140
cis-1,2-Dichloroethene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	91	60	130	96	50	140
Ethylbenzene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	91	60	130	95	50	140
m-p-xylene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	92	60	130	97	50	140
Methyl ethyl ketone	GCM0120-JUL23	mg/L	0.02	<0.02	ND	30	105	50	140	112	50	140
Methylene Chloride	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	90	60	130	97	50	140
o-xylene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	93	60	130	97	50	140
Styrene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	91	60	130	95	50	140
Tetrachloroethylene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	93	60	130	96	50	140
(perchloroethylene)												
Toluene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	95	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	79	60	130	90	50	140
Trichloroethylene	GCM0120-JUL23	mg/L	0.0005	<0.0005	ND	30	102	60	130	106	50	140

20231011 15 / 18

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20231011 16 / 18

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

-- End of Analytical Report --

20231011 17 / 18

SGS

Received By: Atmeev

Received Date: 07/07/23 (mm/dd/yy)

Received Time: 10:30 (hr:min)

Request for Laboratory Services and CHAIN OF CUSTODY

Laboratory Information Section - Lab use only

Cooling Agent Present: Yes No Type: Type: Type: Temperature Upon Receipt (°C) 9×3

No:036524

CA 40633-54133

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

Custody Seal Present: Yes No Custody Seal Intact: Yes No No

Received By (signature):

- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

REPORT INFORMATION INVOICE INFORMATION Company: DS (consultants Ltd. Desame as Report Information)
Contact: Desatty Sentes Company: Site Location/ID: 14155 The Good Rd.
AT) REQUIRED Caledon Project#: 20-169-105 Address: 6221 Herry 7, TURNAROUND TIME (TAT) REQUIRED TAT's are quoted in business days texclude statutory holidays & weakends. Samples received after 6pm or on weekends: VAT the instructions and Regular TAT (5-7days) Unit 16, Vaughern Phone: 905 - 329 - 2735 RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION Email: DS embos @ do consultar Email: REGULATIONS *NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Specify Due Date: WITH SGS DRINKING WATER CHAIN OF CUSTODY **ANALYSIS REQUESTED** SVOC PCB PHC VOC Pest 1.8 M Other (please specify) SPLP TCLP O.Reg 153/04 O.Reg 406/19 Other Regulations: Sewer By-Law: Table 1 Res/Park Soil Texture: Reg 347/558 (3 Day min TAT) Sanitary Table 2 Ind/Com Coarse PWQO MMER - Storm tests (sorters) Agri/Other Medium/Fine Municipality: Table 3 CCME Other: MISA Table Metals Characterization F Soil Volume <350m3 >350m3 ODWS Not Reportable *See note Metals & Inorganics Dvoc COMMENTS: Full Metals Suite RECORD OF SITE CONDITION (RSC) YES NO F1-F4 only Pesticides PAHs only DATE TIME # OF DABN SAMPLE IDENTIFICATION MATRIX SVOCS all inci PAHS. VOCs all incl BTEX SAMPLED SAMPLED BOTTLES Specify pk ☐ lanit Am BH 23-1 D 717123 (au) Non hillerer Observations/Comments/Special Instructions Sampled By (NAME): Signature: Relinquished by (NAME): the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at ate of Issue 07 JUNE 2023 http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

CA40149-AUG23 RFinal 2

20-169-105, Macville

Prepared for

DS Consultants

First Page

CLIENT DETAILS	s	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Santos	Telephone	705-652-2000
Telephone	905-329-2735	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	Maarit.Wolfe@sgs.com
Email	dorothy.santos@dsconsultants.ca	SGS Reference	CA40149-AUG23
Project	20-169-105, Macville	Received	08/14/2023
Order Number		Approved	08/21/2023
Samples	Ground Water (1)	Report Number	CA40149-AUG23 RFinal 2
		Date Reported	10/10/2023

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 036525

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

Client: DS Consultants

Project: 20-169-105, Macville

Project Manager: Dorothy Santos

MATRIX: WATER			Sa	ample Number	8
				Sample Name	PW1
1 = SANSEW / WATER / Peel Sewer Use ByLaw - Sanitary Sev	wer Discharge - BL_	53_2010	;	Sample Matrix	Ground Water
2 = SANSEW / WATER / Peel Sewer Use ByLaw - Storm Sewe	er Discharge - BL_53	3_2010		Sample Date	14/08/2023
Parameter	Units	RL	L1	L2	Result
Seneral Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑
Total Suspended Solids	mg/L	2	350	15	3
Total Kjeldahl Nitrogen	as N mg/L	0.5	100	1	< 0.5
Metals and Inorganics					
Fluoride	mg/L	0.06	10		0.09
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01
Sulphate	mg/L	2	1500		63
Aluminum (total)	mg/L	0.001	50		0.020
Antimony (total)	mg/L	0.0009	5		< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	0.0004
Cadmium (total)	mg/L	0.000003	0.7	0.008	0.000004
Chromium (total)	mg/L	0.00008	5	0.08	0.00017
Copper (total)	mg/L	0.0002	3	0.05	0.0024
Cobalt (total)	mg/L	0.000004	5		0.000365
Lead (total)	mg/L	0.00009	3	0.12	< 0.00009
Manganese (total)	mg/L	0.00001	5	0.05	0.0449
Molybdenum (total)	mg/L	0.00004	5		0.00106
Nickel (total)	mg/L	0.0001	3	0.08	0.0010
Phosphorus (total)	mg/L	0.003	10	0.4	0.006
Selenium (total)	mg/L	0.00004	1	0.02	0.00005
Silver (total)	mg/L	0.00005	5	0.12	< 0.00005
Tin (total)	mg/L	0.00006	5		0.00463

Client: DS Consultants

Project: 20-169-105, Macville

Project Manager: Dorothy Santos

MATRIX: WATER			8	Sample Number	8
				Sample Name	PW1
L1 = SANSEW / WATER / Peel Sewer Use ByLaw - Sanitary Se	ewer Discharge - BL_	53_2010		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Sewer Use ByLaw - Storm Sew				Sample Date	14/08/2023
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Titanium (total)	mg/L	0.00007	5		0.00062
Zinc (total)	mg/L	0.002	3	0.04	0.023
Microbiology					
E. Coli	cfu/100mL	0		200	0
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001	0.02		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01	0.2		< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
Oil and Grease					
Oil & Grease (total)	mg/L	2			< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4

Client: DS Consultants

Project: 20-169-105, Macville

Project Manager: Dorothy Santos

				ample Number	8
MATRIX: WATER				•	
				Sample Name	PW1
L1 = SANSEW / WATER / Peel Sewer Use ByLaw - Sanitary S	-			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Sewer Use ByLaw - Storm Sev				Sample Date	14/08/2023
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
рН	No unit	0.05	10	9	7.70
Mercury (total)	mg/L	0.00001	0.01	0.0004	< 0.00001
PCBs					
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001
Phenois					
4AAP-Phenolics	mg/L	0.002	1	0.008	< 0.002
SVOCs					
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002
VOCs					
Chloroform	mg/L	0.0005	0.04	0.002	< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005	4	0.0056	< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005
Methyl ethyl ketone	mg/L	0.02	8		< 0.02
Styrene	mg/L	0.0005	0.2		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005
Trichloroethylene	mg/L	0.0005	0.4	0.008	< 0.0005

Client: DS Consultants

Project: 20-169-105, Macville

Project Manager: Dorothy Santos

MATRIX: WATER			S	ample Number	8
				Sample Name	PW1
L1 = SANSEW / WATER / Peel Sewer Use ByLaw - Sanit	itary Sewer Discharge - BL_53	3_2010		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Sewer Use ByLaw - Storm	m Sewer Discharge - BL_53_2	2010		Sample Date	14/08/2023
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005
o-xylene	mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20231010 7 / 18

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Sulphate	DIO5041-AUG23	mg/L	2	<2	ND	20	103	80	120	106	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	I.
	Reference			Blank	RPD	PD AC Spike (%) Recovery			ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0027-AUG23	mg/L	2	< 2	6	30	97	70	130	NV	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD AC (%)	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0141-AUG23	mg/L	0.01	<0.01	ND	10	93	90	110	90	75	125

20231010 8 / 18

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits 6)
					IXFD	(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0310-AUG23	mg/L	0.06	<0.06	ND	10	100	90	110	108	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recove	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0026-AUG23	mg/L	0.00001	< 0.00001	0	20	103	80	120	93	70	130

20231010 9 / 18

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	F.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ory Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0090-AUG23	mg/L	0.00005	<0.00005	ND	20	98	90	110	70	70	130
Aluminum (total)	EMS0090-AUG23	mg/L	0.001	<0.001	1	20	100	90	110	94	70	130
Arsenic (total)	EMS0090-AUG23	mg/L	0.0002	<0.0002	2	20	96	90	110	94	70	130
Cadmium (total)	EMS0090-AUG23	mg/L	0.000003	<0.000003	11	20	98	90	110	80	70	130
Cobalt (total)	EMS0090-AUG23	mg/L	0.000004	<0.000004	0	20	96	90	110	76	70	130
Chromium (total)	EMS0090-AUG23	mg/L	0.00008	<0.00008	9	20	95	90	110	96	70	130
Copper (total)	EMS0090-AUG23	mg/L	0.0002	<0.0002	4	20	97	90	110	98	70	130
Manganese (total)	EMS0090-AUG23	mg/L	0.00001	<0.00001	1	20	102	90	110	101	70	130
Molybdenum (total)	EMS0090-AUG23	mg/L	0.00004	<0.00004	3	20	98	90	110	101	70	130
Nickel (total)	EMS0090-AUG23	mg/L	0.0001	<0.0001	1	20	98	90	110	91	70	130
Lead (total)	EMS0090-AUG23	mg/L	0.00009	<0.00009	2	20	103	90	110	84	70	130
Phosphorus (total)	EMS0090-AUG23	mg/L	0.003	<0.003	2	20	104	90	110	NV	70	130
Antimony (total)	EMS0090-AUG23	mg/L	0.0009	<0.0009	ND	20	101	90	110	103	70	130
Selenium (total)	EMS0090-AUG23	mg/L	0.00004	<0.00004	16	20	101	90	110	109	70	130
Tin (total)	EMS0090-AUG23	mg/L	0.00006	<0.00006	17	20	103	90	110	NV	70	130
Titanium (total)	EMS0090-AUG23	mg/L	0.00007	<0.00005	1	20	99	90	110	NV	70	130
Zinc (total)	EMS0090-AUG23	mg/L	0.002	<0.002	1	20	95	90	110	87	70	130

20231010 10 / 18

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference	Blank	Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9234-AUG23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD (AC	Spike Recovery	Recover	-	Spike Recovery		ery Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0217-AUG23	mg/L	0.01	<0.01			93	55	120			
Nonylphenol Ethoxylates	GCM0217-AUG23	mg/L	0.01	0								
Nonylphenol monoethoxylate	GCM0217-AUG23	mg/L	0.01	<0.01			94	55	120			
Nonylphenol	GCM0217-AUG23	mg/L	0.001	<0.001			94	55	120			

20231010 11 / 18

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
				(%)	Recovery (%)	Low	High	(%)	Low	High		
Oil & Grease (total)	GCM0236-AUG23	mg/L	2	<2	NSS	20	96	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0236-AUG23	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0236-AUG23	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike	Recove	ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0288-AUG23	No unit	0.05	NA	0		100			NA		

20231010 12 / 18

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	I.
	Reference			Blank	RPD	RPD AC Spike (%) Recovery			ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0145-AUG23	mg/L	0.002	<0.002	ND	10	110	80	120	90	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Du	plicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0298-AUG23	mg/L	0.0001	<0.0001	NSS	30	105	60	140	NSS	60	140
Total												

20231010 13 / 18

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0262-AUG23	mg/L	0.002	< 0.002	NSS	30	111	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0262-AUG23	mg/L	0.002	< 0.002	NSS	30	108	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0303-AUG23	mg/L	2	< 2	0	10	97	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0150-AUG23	as N mg/L	0.5	<0.5	ND	10	100	90	110	97	75	125

20231010 14 / 18

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	-	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	106	60	130	100	50	140
1,2-Dichlorobenzene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	103	60	130	99	50	140
1,4-Dichlorobenzene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	100	60	130	97	50	140
Benzene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	98	60	130	99	50	140
Chloroform	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	97	60	130	98	50	140
cis-1,2-Dichloroethene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140
Ethylbenzene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	100	60	130	99	50	140
m-p-xylene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	101	60	130	100	50	140
Methyl ethyl ketone	GCM0269-AUG23	mg/L	0.02	<0.02	ND	30	95	50	140	93	50	140
Methylene Chloride	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	97	60	130	96	50	140
o-xylene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	102	60	130	102	50	140
Styrene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	102	60	130	98	50	140
Tetrachloroethylene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	98	60	130	98	50	140
(perchloroethylene)												
Toluene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	98	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	98	60	130	99	50	140
Trichloroethylene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	96	60	130	97	50	140

20231010 15 / 18

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20231010 16 / 18

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20231010 17 / 18

Request for Laboratory Services and CHAIN OF CUSTODY

No:036525 Page **1** of *W*

Request for Laboratory Services and CHAIN OF CUS
Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

REPORT INFORMATION	l l	NVOICE INFORM	ATION				13000							Vi de											
Company: DS Consultants	(same as F	Report Information)		Quo	ation #:				UN S	MS COL	51.1	1		-			P.O.	#:	,070			E158	1075	3 Annuary
Contact: Downtry Soundos	Company:	45%	100		Proje	ect#:		20	2-10	59-	10	25	NO.				The second second	A STATE OF THE PARTY OF THE PAR	ocatio		7	Mac	انن	10	
Address: Make Address:	Contact:	1 y dy 1 2 4	7.5		2000	EM D		TAT		SER			1	URNA	ROU	ND TI	MARKET FOR				siness	s days	(exclud	e statuto	ry holidays & weekends).
6221- Huy 7, Un. 16, Uhizhan Phone: (905) 329-2735	Address:	40.5			183			TAT (5						i.			Sa	mples	receive	ed afte	r 6pm	or on			egins next business day
		A STATE OF				H TAT					-		909			TATIV									
Fax:	Phone:		77/-	T N	-		3 //	-	n rea	ASIDII	LILLY	VIIII.		21525211016								HUMA	AN CON	SUMPTI	ON MUST BE SUBMITTED
Email: dscintusodsconsultants.ca	Email:	100 m 1 (100 m	nace state	1000	Spec	ify Due	Date:	107										_	DRINK	ING W	ATER	R CHAI	N OF C	USTODY	
	JLATIONS		10000	Mark and the	100	0.0	0.1	95356	CV	00	A12500511	20110000		1		UES	IEL	111121111			82.83	MON.	loni p		
O.Reg 153/04 O.Reg 406/19 Table 1 Res/Park Soil Texture: Table 2 Ind/Com Coarse Table 3 Agri/Other Medium/Fine Table Appx. Soil Volume Soil Volume S350m3 >350m3	CCME MISA	ations: 68 (3 Day min TAT) MMER Other: Reportable *See no	Munic	Sanitary Storm Storm		CS SAR-spil)	e	As,Ba,Be,B,Cd,		OC	PCB roloonA	Pi	нс	V	OC	Pest		Ott	ner (pl	ease s		n Pkg	SPLP Specify tests	tests	
RECORD OF SITE CONDITION (RSC)	YES [] NO			(N/N)	rgani HWS),EC,	Suite	nly sb,				×				cify other		19			Dec	erizatio	□voc □1,4-	□voc □pcs	COMMENTS:
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED BO		MATRIX	Field Filtered (Y/N)	Metals & Inorganics indication (C), Narwater)	Full Metals SICP metals plus BICHWS	ICP Metals only sp.as.Bo.Be.B.	PAHs only	SVOCS sel inci PAHS, ABNS, CPs	PCBs Total	F1-F4 + BTEX	F1-F4 only	VOCs all incl BTEX	BTEX only	Pesticides Organochlarine or spe		A.				Water Characterizatio	□ocp □abn	□B(a)P □ABN □Igoil	
1 PW1	14/8/23		17	GW	N										3						X	- 2	. 8		Mon filtered
2				- 4	0.74		Trans.	1000						2						-		120	-		
3							5															1	1 2		
4																			7		14.	1.5	453		
5							Y	100									0-					100	100	150	
6						E 160	,	180			177		100			160			478			E N	E .		在 新疆
7		V 15 13 12	-		N.	1000	gly 3	86				783			Es.				0			***	2 1		174
8		37 5 9 1				5.5		100											85		T		85		y Alexander
9			-37	258.51		05		980											2	9 .	1.00	7003			C. A. C. C. C. C. C. C. C. C. C. C. C. C. C.
10								100			e N	Walk		200			-		-	-	- 6		1500 1500 1500 1500	2000 2000	
11	TANK SAME	177	7.75					-980 (123)					0.025	Mar I	38	11-91 S	-	-	+	-			600 m		
The second secon	AND THE PROPERTY OF	Arry 1 Comment			100014	Section 1	K(2, 5)	10%			150	10.32		10			-	3	-	-	-	3745	ESTAN		
12	The Party	THE CONTRACTOR	100	2007-100-707	SH:53	1 -2	53070	255	1000	STORE	1.365	CHES	15073			ATTER STATE							5000	V 100 15	

CA40149-AUG23 RFinal 2

20-169-105, Macville

Prepared for

DS Consultants

First Page

CLIENT DETAIL	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Santos	Telephone	705-652-2000
Telephone	905-329-2735	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	Maarit.Wolfe@sgs.com
Email	dsantos@dsconsultants.ca	SGS Reference	CA40149-AUG23
Project	20-169-105, Macville	Received	08/14/2023
Order Number		Approved	08/21/2023
Samples	Ground Water (1)	Report Number	CA40149-AUG23 RFinal 2
		Date Reported	05/28/2024

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 036525

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

Client: DS Consultants

Project: 20-169-105, Macville

Project Manager: Dorothy Santos

		Sample Number	8
		Sample Name	PW1
3 3303E		Sample Matrix	Ground Water
		Sample Date	14/08/2023
Units	RL	L1	Result
mg/L	2		< 4↑
mg/L	2		3
as N mg/L	0.5		< 0.5
mg/L	0.06		0.09
mg/L	0.01		< 0.01
mg/L	2		63
mg/L	0.001		0.020
mg/L	0.0009	0.02	< 0.0009
mg/L	0.0002	0.005	0.0004
mg/L	0.000003	0.0001	0.000004
mg/L	0.00008	0.1	0.00017
mg/L	0.0002	0.001	0.0024
mg/L	0.000004	0.0009	0.000365
mg/L	0.00009	0.005	< 0.00009
mg/L	0.00001		0.0449
mg/L	0.00004	0.04	0.00106
mg/L	0.0001	0.025	0.0010
mg/L	0.003	0.01	0.006
mg/L	0.00004	0.1	0.00005
mg/L	0.00005	0.0001	< 0.00005
mg/L	0.00006		0.00463
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	wg/L 2 mg/L 2 as N mg/L 0.5 mg/L 0.06 mg/L 0.01 mg/L 0.001 mg/L 0.0009 mg/L 0.00002 mg/L 0.00003 mg/L 0.00008 mg/L 0.00004 mg/L 0.00001 mg/L 0.00004 mg/L 0.00001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0001 mg/L 0.0003 mg/L 0.00004	Sample Name Sample Matrix Sample Date Units RL L1 mg/L 2 mg/L 2 as N mg/L 0.05 mg/L 0.001 mg/L 0.0001 mg/L 0.0002 mg/L 0.0002 mg/L 0.00003 0.0001 mg/L 0.00008 0.1 mg/L 0.00008 0.1 mg/L 0.00009 mg/L 0.00009 mg/L 0.00009 mg/L 0.00009 mg/L 0.00009 mg/L 0.00009 mg/L 0.00009 mg/L 0.00009 mg/L 0.000001 mg/L 0.000001 mg/L 0.000004 0.0009 mg/L 0.00001 mg/L 0.00004 0.005 mg/L 0.00001 mg/L 0.00004 0.005 mg/L 0.00004 0.005 mg/L 0.00004 0.005 mg/L 0.00004 0.005 mg/L 0.00004 0.005 mg/L 0.00004 0.005 mg/L 0.00004 0.005 mg/L 0.00004 0.001

Client: DS Consultants

Project: 20-169-105, Macville

Project Manager: Dorothy Santos

MATRIX: WATER			Sample Nun	iber 8
			Sample Na	ame PW1
_1 = PWQO_L / WATER / Table 2 - General - July 1999 PIE	BS 3303E		Sample Ma	atrix Ground Water
			Sample I	Date 14/08/2023
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Titanium (total)	mg/L	0.00007		0.00062
Zinc (total)	mg/L	0.002	0.02	0.023
Microbiology				
E. Coli	cfu/100mL	0	100	0
Nonylphenol and Ethoxylates				
Nonylphenol	mg/L	0.001		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01		< 0.01
Nonylphenol diethoxylate	mg/L	0.01		< 0.01
Nonylphenol monoethoxylate	mg/L	0.01		< 0.01
Oil and Grease				
Oil & Grease (total)	mg/L	2		< 2
Oil & Grease (animal/vegetable)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4


Client: DS Consultants

Project: 20-169-105, Macville

Project Manager: Dorothy Santos

Samplers: Dorothy Santos

				_	
MATRIX: WATER			Sample Number	8	
			Sample Name	PW1	
.1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E	Ē		Sample Matrix	Ground Water	
			Sample Date	14/08/2023	3
Parameter	Units	RL	L1	Result	
Other (ORP)					
рН	No unit	0.05	8.6	7.70	
Mercury (total)	mg/L	0.00001	0.0002	< 0.00001	1
PCBs					
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		< 0.0001	
Phenols					
4AAP-Phenolics	mg/L	0.002	0.001	< 0.002	
SVOCs					
di-n-Butyl Phthalate	mg/L	0.002		< 0.002	
Bis(2-ethylhexyl)phthalate	mg/L	0.002		< 0.002	
	9, =	0.002		0.002	
/OCs		0.0005		10.0005	
Chloroform	mg/L	0.0005		< 0.0005	
1,2-Dichlorobenzene	mg/L	0.0005		< 0.0005	
1,4-Dichlorobenzene	mg/L	0.0005		< 0.0005	
cis-1,2-Dichloroethene	mg/L	0.0005		< 0.0005	
trans-1,3-Dichloropropene	mg/L	0.0005		< 0.0005	
Methylene Chloride	mg/L	0.0005	0.1	< 0.0005	
1,1,2,2-Tetrachloroethane	mg/L	0.0005	0.07	< 0.0005	
Methyl ethyl ketone	mg/L	0.02		< 0.02	
Styrene	mg/L	0.0005		< 0.0005	
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.05	< 0.0005	
Trichloroethylene	mg/L	0.0005	0.02	< 0.0005	

Client: DS Consultants

Project: 20-169-105, Macville

Project Manager: Dorothy Santos

Samplers: Dorothy Santos

MATRIX: WATER Sample Number 8

				Sample Name	PW1
= PWQO_L / WATER / Table 2 - General - July 1999 PIBS 33038	E			Sample Matrix	Ground Water
				Sample Date	14/08/2023
Parameter	Units	RL	L1		Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.1		< 0.0005
Ethylbenzene	mg/L	0.0005	0.008		< 0.0005
Toluene	mg/L	0.0005	0.0008		< 0.0005
Xylene (total)	mg/L	0.0005			< 0.0005
m-p-xylene	mg/L	0.0005	0.002		< 0.0005
o-xylene	mg/L	0.0005	0.04		< 0.0005

EXCEEDANCE SUMMARY

PW1

Copper	SM 3030/EPA 200.8	mg/L	0.0024	0.001
Zinc	SM 3030/EPA 200.8	mg/L	0.023	0.02
4AAP-Phenolics	SM 5530B-D	mg/L	< 0.002	0.001

20240528 7 / 18

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5041-AUG23	mg/L	2	<2	ND	20	103	80	120	106	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	I.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0027-AUG23	mg/L	2	< 2	6	30	97	70	130	NV	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	Duplicate		S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0141-AUG23	mg/L	0.01	<0.01	ND	10	93	90	110	90	75	125

20240528 8 / 18

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0310-AUG23	mg/L	0.06	<0.06	ND	10	100	90	110	108	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		S/Spike Blank		M	atrix Spike / Re	·.
	Reference				AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)		
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0026-AUG23	mg/L	0.00001	< 0.00001	0	20	103	80	120	93	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	ł.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(75)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0090-AUG23	mg/L	0.00005	<0.00005	ND	20	98	90	110	70	70	130
Aluminum (total)	EMS0090-AUG23	mg/L	0.001	<0.001	1	20	100	90	110	94	70	130
Arsenic (total)	EMS0090-AUG23	mg/L	0.0002	<0.0002	2	20	96	90	110	94	70	130
Cadmium (total)	EMS0090-AUG23	mg/L	0.000003	<0.000003	11	20	98	90	110	80	70	130
Cobalt (total)	EMS0090-AUG23	mg/L	0.000004	<0.000004	0	20	96	90	110	76	70	130
Chromium (total)	EMS0090-AUG23	mg/L	0.00008	<0.00008	9	20	95	90	110	96	70	130
Copper (total)	EMS0090-AUG23	mg/L	0.0002	<0.0002	4	20	97	90	110	98	70	130
Manganese (total)	EMS0090-AUG23	mg/L	0.00001	<0.00001	1	20	102	90	110	101	70	130
Molybdenum (total)	EMS0090-AUG23	mg/L	0.00004	<0.00004	3	20	98	90	110	101	70	130
Nickel (total)	EMS0090-AUG23	mg/L	0.0001	<0.0001	1	20	98	90	110	91	70	130
Lead (total)	EMS0090-AUG23	mg/L	0.00009	<0.00009	2	20	103	90	110	84	70	130
Phosphorus (total)	EMS0090-AUG23	mg/L	0.003	<0.003	2	20	104	90	110	NV	70	130
Antimony (total)	EMS0090-AUG23	mg/L	0.0009	<0.0009	ND	20	101	90	110	103	70	130
Selenium (total)	EMS0090-AUG23	mg/L	0.00004	<0.00004	16	20	101	90	110	109	70	130
Tin (total)	EMS0090-AUG23	mg/L	0.00006	<0.00006	17	20	103	90	110	NV	70	130
Titanium (total)	EMS0090-AUG23	mg/L	0.00007	<0.00005	1	20	99	90	110	NV	70	130
Zinc (total)	EMS0090-AUG23	mg/L	0.002	<0.002	1	20	95	90	110	87	70	130

20240528 10 / 18

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9234-AUG23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery		ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0217-AUG23	mg/L	0.01	<0.01			93	55	120			
Nonylphenol Ethoxylates	GCM0217-AUG23	mg/L	0.01	0								
Nonylphenol monoethoxylate	GCM0217-AUG23	mg/L	0.01	<0.01			94	55	120			
Nonylphenol	GCM0217-AUG23	mg/L	0.001	<0.001			94	55	120			

20240528 11 / 18

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0236-AUG23	mg/L	2	<2	NSS	20	96	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0236-AUG23	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0236-AUG23	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0288-AUG23	No unit	0.05	NA	0		100			NA		

20240528 12 / 18

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	I.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0145-AUG23	mg/L	0.002	<0.002	ND	10	110	80	120	90	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Du	plicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0298-AUG23	mg/L	0.0001	<0.0001	NSS	30	105	60	140	NSS	60	140
Total												

20240528 13 / 18

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0262-AUG23	mg/L	0.002	< 0.002	NSS	30	111	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0262-AUG23	mg/L	0.002	< 0.002	NSS	30	108	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0303-AUG23	mg/L	2	< 2	0	10	97	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0150-AUG23	as N mg/L	0.5	<0.5	ND	10	100	90	110	97	75	125

20240528 14 / 18

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Re	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(7.5)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	106	60	130	100	50	140
1,2-Dichlorobenzene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	103	60	130	99	50	140
1,4-Dichlorobenzene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	100	60	130	97	50	140
Benzene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	98	60	130	99	50	140
Chloroform	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	97	60	130	98	50	140
cis-1,2-Dichloroethene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140
Ethylbenzene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	100	60	130	99	50	140
m-p-xylene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	101	60	130	100	50	140
Methyl ethyl ketone	GCM0269-AUG23	mg/L	0.02	<0.02	ND	30	95	50	140	93	50	140
Methylene Chloride	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	97	60	130	96	50	140
o-xylene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	102	60	130	102	50	140
Styrene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	102	60	130	98	50	140
Tetrachloroethylene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	98	60	130	98	50	140
(perchloroethylene)												
Toluene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	98	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	98	60	130	99	50	140
Trichloroethylene	GCM0269-AUG23	mg/L	0.0005	<0.0005	ND	30	96	60	130	97	50	140

20240528 15 / 18

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

-- End of Analytical Report --

20240528 17 / 18

Request for Laboratory Services and CHAIN OF CUSTODY

No:036525 Page **1** of *W*

Request for Laboratory Services and CHAIN OF CUS
Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

REPORT INFORMATION	11	VOICE INFORM	ATION				10000							of the last											
Company: DS Consultants	(same as F	Report Information)		Quo	tation #				UN S	MS COL	51.1	1		-			P.O.	#:	,070			E158	1075	A success
Contact: Downtry Soundos	Company:	45%	100		Proje	act#:		20	2-10	59-	10	25	SACASO.				the same of the same of	A STATE OF THE PARTY OF THE PAR	ocatio		7	Mac	انن	10	- 16 ZEL
Address: Make Address:	Contact:	1 y dy 1244	7.5		1000	₩.		TAT		SER			S I	URNA	ROU	ND TIM					siness	s days	(exclud	e statuto	ry holidays & weekends).
6221- Huy 7, Un. 16, Uhizhan Phone: (905) 329-2735	Address:	40.47			18	100		TAT (5									Sa	mples	receive	ed afte	r 6pm	or on			egins next business day
		4.050				H TAT					-		202			TATIV									
Fax:	Phone:		77/-	T N			3 //	-	n rea	ASIDII	LILLY	VIIII.		211222								HUMA	AN CON	SUMPTI	ON MUST BE SUBMITTE
Email: dscintusodsconsultants.ca	Email:	100 m 100 m	nace state	1000	Spec	ify Due	Date:	107									-	_	DRINK	ING W	ATER	R CHAI	N OF C	USTODY	
	JLATIONS		10000	Mark and the	100	D.O.	0.1	95356	CV	00	A12500511	20110000				UES	IEL	11112111			82.83	MON.	loni p		
O.Reg 153/04 O.Reg 406/19 Table 1 Res/Park Soil Texture: Table 2 Ind/Com Coarse Table 3 Agri/Other Medium/Fine Table Appx. Soil Volume Soil Volume S350m3 >350m3	CCME MISA	ations: 68 (3 Day min TAT) MMER Other: Reportable *See no	Munic	Sanitary Storm Storm		(f)	49. CVI	As,Ba,Be,B,Cd,		OC	PCB roloonA	Pi	НС	V	OC	Pest		Ott	ner (pl	ease s		n Pkg	SPLP Specify tests	tests	
RECORD OF SITE CONDITION (RSC)	YES] NO			(N/N)	rgani HWS),EC,	Suite	nly sb,				×				cify other		19			Dec	erizatio	□voc □1,4-	□voc □pcs	COMMENTS:
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED BO		MATRIX	Field Filtered (Y/N)	Metals & Inorganics and Control of the Control of t	Full Metals S	ICP Metals only sp.as.Bo.Be.B.	PAHs only	SVOCS sel inci PAHS, ABNS, CPs	PCBs Total	F1-F4 + BTEX	F1-F4 only	VOCs all incl BTEX	BTEX only	Pesticides Organochilorins or spe		A.				Water Characterizatio	□ocp □abn	□B(a)P □ABN □Igoil	
1 PW1	14/8/23	- 10	17	GW	N																X	- 2	. 8		Non filtered
2				- 4	0.74		10.00	1000						2						-		120	-		
3							5															1	1 2		
4																			7		14.	1.5	434		
5							Y	100									0-1		M			100	100	150	
6						6	,	180			177					265			4/18			# N	E .		在初期
7	- William	V 1 000	-				gly .	86				783							0			***	2 1		174
8		37 3 4			200			100											85		T		85		
9			-37	258.51	1000	2		980						Y			-		7	9 .	1.00	7003			C. V. C. C. C. C. C. C. C. C. C. C. C. C. C.
10		F						100			e W	3/11/20	105 TO	Service.			-		\dashv	-	- 6		#305		
11	Control Control of	179				91.5		480					6 5 2 4	REPT.	97.09		-	-	-	-		7	830) - I		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PROPERTY OF	Lange Company	7/5		1800 to	Comp.	#(C. 5)	1000 (SER)		100 TF	150	0.39	\$30.00 500.00	10			-	- 1	-	-	-	1940	ESTATE OF		
12	对于一个不是	· 阿尔兰 大学学	100	2007-100-100	SH93	0 42	SOF	1000		STYLE:	130	CHES	16.75			NOTE:			1					3 12 n Est	

Appendix |-2 Argo King I & II

CA40196-OCT22 R1

19-093-100, 7675 King St., Bolton

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Santos	Telephone	2165
Telephone	905-329-2735	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	dorothy.santos@dsconsultants.ca	SGS Reference	CA40196-OCT22
Project	19-093-100, 7675 King St., Bolton	Received	10/26/2022
Order Number		Approved	11/03/2022
Samples	Ground Water (1)	Report Number	CA40196-OCT22 R1
		Date Reported	11/03/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 029795

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-7
Exceedance Summary	8
QC Summary	9-17
Legend	18
Annexes	19

Client: DS Consultants

Project: 19-093-100, 7675 King St., Bolton

Project Manager: Dorothy Santos

Samplers: Harry/ Chaitemya

MATRIX MATER				Sample Number	8
MATRIX: WATER			3	Sample Name	o BH 22-5
				Sample Name Sample Matrix	Ground Water
_1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_201 _2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL_53_2010	0			Sample Date	26/10/2022
Parameter Unit	ts	RL	L1	L2	Result
General Chemistry					1.000
Biochemical Oxygen Demand (BOD5) mg/	/L	2	300	15	5
Total Suspended Solids mg/		2	350	15	94
Total Kjeldahl Nitrogen as N mg/		0.5	100	1	< 0.5
Metals and Inorganics					
Fluoride mg/	/I	0.06	10		0.27
Cyanide (total) mg/		0.01	2	0.02	< 0.01
Sulphate mg/		2	1500	0.02	22
		0.001	50		4.96
		0.0009	50		< 0.0009
Antimony (total) mg/				0.00	
Arsenic (total) mg/		0.0002	1	0.02	0.0061
		.000003	0.7	0.008	0.000024
		80000.0	5	0.08	0.00591
Copper (total) mg/		0.0002	3	0.05	0.0056
Cobalt (total) mg/		.000004	5		0.00314
Lead (total) mg/	/L 0.	0.00009	3	0.12	0.00155
Manganese (total) mg/	/L 0.	0.00001	5	0.05	0.148
Molybdenum (total) mg/	/L 0.	0.00004	5		0.00761
Nickel (total) mg/	/L 0	0.0001	3	0.08	0.0064
Phosphorus (total) mg/	/L (0.003	10	0.4	0.171
Selenium (total) mg/	/L 0.	0.00004	1	0.02	0.00023
Silver (total) mg/	/L 0.	0.00005	5	0.12	< 0.00005
Tin (total) mg/	/L 0.	0.00006	5		0.00340

CA40196-OCT22 R1

Client: DS Consultants

Project: 19-093-100, 7675 King St., Bolton

Project Manager: Dorothy Santos

Samplers: Harry/ Chaitemya

MATRIX: WATER			8	Sample Number	8
				Sample Name	BH 22-5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer D	ischarge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc	charge - BL_53_2010			Sample Date	26/10/2022
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Titanium (total)	mg/L	0.00005	5		0.0707
Zinc (total)	mg/L	0.002	3	0.04	0.019
Microbiology					
E. Coli	cfu/100mL	0		200	2
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001	0.02		0.001
Nonylphenol Ethoxylates	mg/L	0.01	0.2		< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
Oil and Grease			'		
Oil & Grease (total)	mg/L	2			< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4

Client: DS Consultants

Project: 19-093-100, 7675 King St., Bolton

Project Manager: Dorothy Santos

Samplers: Harry/ Chaitemya

8 Sample Number MATRIX: WATER Sample Name BH 22-5 Sample Matrix Ground Water L1 = SANSEW / WATER / - - Peel Table 1 - Sanitary Sewer Discharge - BL 53 2010 Sample Date 26/10/2022 L2 = SANSEW / WATER / - - Peel Table 2 - Storm Sewer Discharge - BL_53_2010 RL L1 L2 Parameter Units Result Other (ORP) рН No unit 0.05 10 9 8.04 Mercury (total) mg/L 0.00001 0.01 0.0004 < 0.00001 **PCBs** Polychlorinated Biphenyls (PCBs) - Total mg/L 0.0001 0.001 0.0004 < 0.0001 **Phenois** 4AAP-Phenolics 0.002 0.008 mg/L < 0.002 **SVOCs** di-n-Butyl Phthalate 0.002 0.015 mg/L 0.08 < 0.002 Bis(2-ethylhexyl)phthalate 0.002 0.012 0.0088 < 0.002 mg/L **VOCs** Chloroform 0.0005 0.04 0.002 < 0.0005 mg/L 1.2-Dichlorobenzene mg/L 0.0005 0.05 0.0056 < 0.0005 1,4-Dichlorobenzene 0.0005 0.08 0.0068 < 0.0005 mg/L cis-1.2-Dichloroethene 0.0005 0.0056 < 0.0005 mg/L 4 0.0056 < 0.0005 trans-1,3-Dichloropropene 0.0005 0.14 mg/L Methylene Chloride mg/L 0.0005 2 0.0052 < 0.0005 1.1.2.2-Tetrachloroethane mg/L 0.0005 1.4 0.017 < 0.0005 Methyl ethyl ketone 0.02 8 < 0.02 mg/L Styrene 0.0005 0.2 < 0.0005 mg/L Tetrachloroethylene (perchloroethylene) 0.0005 0.0044 < 0.0005 mg/L 1 < 0.0005 Trichloroethylene mg/L 0.0005 0.4 0.008

CA40196-OCT22 R1

Client: DS Consultants

Project: 19-093-100, 7675 King St., Bolton

Project Manager: Dorothy Santos

Samplers: Harry/ Chaitemya

MATRIX: WATER			;	Sample Number	8
				Sample Name	BH 22-5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53	_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL_53_2	2010			Sample Date	26/10/2022
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005
o-xylene	mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

SANSEW / WATER SANSEW / WATER / - - Peel Table 2 -/ - - Peel Table 1 -Sanitary Sewer Storm Sewer Discharge -Discharge -BL_53_2010 BL_53_2010 Method Units L1 L2 Parameter Result

BH 22-5

Total Suspended Solids	SM 2540D	mg/L	94
Manganese	SM 3030/EPA 200.8	mg/L	0.148

15 0.05

20221103 8 / 19

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5002-NOV22	mg/L	2	<2	ND	20	106	80	120	106	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Biochemical Oxygen Demand (BOD5)	BOD0054-OCT22	mg/L	2	< 2	18	30	99	70	130	NV	70	130	

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank	S/Spike Blank		latrix Spike / Ref	f.
	Reference			Blank	RPD	RPD AC Sp (%) Reco		Recovery Limits (%)		Spike Recovery		ry Limits %)
								Low	High	(%)	Low	High
Cyanide (total)	SKA0285-OCT22	mg/L	0.01	<0.01	ND	10	98	90	110	101	75	125

20221103 9 / 19

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	•		ry Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0664-OCT22	mg/L	0.06	<0.06	ND	10	104	90	110	100	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	LCS/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike Recovery	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)		Low	High	(%)	Low	High
Mercury (total)	EHG0051-OCT22	mg/L	0.00001	< 0.00001	4	20	115	80	120	106	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ry Limits %)
						(75)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0224-OCT22	mg/L	0.00005	<0.00005	ND	20	106	90	110	98	70	130
Aluminum (total)	EMS0224-OCT22	mg/L	0.001	<0.001	1	20	107	90	110	110	70	130
Arsenic (total)	EMS0224-OCT22	mg/L	0.0002	<0.0002	11	20	109	90	110	105	70	130
Cadmium (total)	EMS0224-OCT22	mg/L	0.000003	<0.000003	ND	20	106	90	110	101	70	130
Cobalt (total)	EMS0224-OCT22	mg/L	0.000004	<0.000004	0	20	106	90	110	93	70	130
Chromium (total)	EMS0224-OCT22	mg/L	0.00008	<0.00008	19	20	106	90	110	113	70	130
Copper (total)	EMS0224-OCT22	mg/L	0.0002	<0.0002	6	20	105	90	110	97	70	130
Manganese (total)	EMS0224-OCT22	mg/L	0.00001	<0.00001	1	20	109	90	110	108	70	130
Molybdenum (total)	EMS0224-OCT22	mg/L	0.00004	<0.00004	5	20	105	90	110	105	70	130
Nickel (total)	EMS0224-OCT22	mg/L	0.0001	<0.0001	5	20	102	90	110	94	70	130
Lead (total)	EMS0224-OCT22	mg/L	0.00009	<0.00001	18	20	106	90	110	95	70	130
Phosphorus (total)	EMS0224-OCT22	mg/L	0.003	<0.003	0	20	108	90	110	NV	70	130
Antimony (total)	EMS0224-OCT22	mg/L	0.0009	<0.0009	ND	20	101	90	110	94	70	130
Selenium (total)	EMS0224-OCT22	mg/L	0.00004	<0.00004	11	20	109	90	110	108	70	130
Tin (total)	EMS0224-OCT22	mg/L	0.00006	<0.00006	ND	20	104	90	110	NV	70	130
Titanium (total)	EMS0224-OCT22	mg/L	0.00005	<0.00005	13	20	106	90	110	NV	70	130
Zinc (total)	EMS0224-OCT22	mg/L	0.002	<0.002	1	20	103	90	110	121	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		S/Spike Blank		Matrix Spike / Ref.		
	Reference	Reference		Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9419-OCT22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0431-OCT22	mg/L	0.01	<0.01			113	55	120			
Nonylphenol Ethoxylates	GCM0431-OCT22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0431-OCT22	mg/L	0.01	<0.01			115	55	120			
Nonylphenol	GCM0431-OCT22	mg/L	0.001	<0.001			115	55	120			

20221103 12 / 19

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank	S/Spike Blank		atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	(%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0410-OCT22	mg/L	2	<2	NSS	20	100	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch Reference	Units	RL	RL Method Blank	Duplicate		LCS/Spike Blank			LCS/Spike Blank		Matrix Spike / Ref.		f.
Reference					RPD	AC (%)	•	Recovery Limits (%)		Spike Recovery		ry Limits %)		
								Low	High	(%)	Low	High		
Oil & Grease (animal/vegetable)	GCM0410-OCT22	mg/L	4	< 4	NSS	20	NA	70	130					
Oil & Grease (mineral/synthetic)	GCM0410-OCT22	mg/L	4	< 4	NSS	20	NA	70	130					

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch Units		Units RL	RL Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference	RPD			AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)		
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0681-OCT22	No unit	0.05	NA	0		101			NA		

20221103 13 / 19

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		I.
	Reference	Blank F	RPD AC	•	Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)			
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0318-OCT22	mg/L	0.002	<0.002	ND	10	100	80	120	100	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference				RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery		ery Limits %)
							Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0377-OCT22	mg/L	0.0001	<0.0001	NSS	30	84	60	140	NSS	60	140
Total												

20221103 14 / 19

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Bis(2-ethylhexyl)phthalate	GCM0391-OCT22	mg/L	0.002	< 0.002	NSS	30	123	50	140	NSS	50	140	
di-n-Butyl Phthalate	GCM0391-OCT22	mg/L	0.002	< 0.002	NSS	30	113	50	140	NSS	50	140	

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Suspended Solids	EWL0006-NOV22	mg/L	2	< 2	0	10	93	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
							Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0015-NOV22	as N mg/L	0.5	<0.5	2	10	100	90	110	107	75	125

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)	
						(76)	(%)	Low	High	(%)	Low	High	
1,1,2,2-Tetrachloroethane	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	92	60	130	94	50	140	
1,2-Dichlorobenzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	95	60	130	98	50	140	
1,4-Dichlorobenzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	94	60	130	96	50	140	
Benzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140	
Chloroform	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140	
cis-1,2-Dichloroethene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140	
Ethylbenzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	102	50	140	
m-p-xylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140	
Methyl ethyl ketone	GCM0375-OCT22	mg/L	0.02	<0.02	ND	30	93	50	140	95	50	140	
Methylene Chloride	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	98	50	140	
o-xylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	102	50	140	
Styrene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	101	50	140	
Tetrachloroethylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	96	60	130	100	50	140	
(perchloroethylene)													
Toluene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	99	50	140	
trans-1,3-Dichloropropene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	96	60	130	97	50	140	
Trichloroethylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	99	50	140	

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221103 18 / 19

Request for Laboratory Services and CHAIN OF CUSTODY Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, NGE 288 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Laboratory Information Section - Lab use only Received By (signature LAB LIMS #: Ca4019 6-00 Cooling Agent Present: Yes No Type: Type: Temperature Upon Receipt (*C) Received Date: 18 /21/2 (mm/dd/yy) Custody Seal Present: Yes No Received Time: 12: (hr:min) Custody Seal Intact: Yes No REPORT INFORMATION INVOICE INFORMATION Company: 05 Consultants Ltd. (same as Report Information) Contact: Dosthy Santos Company:
Address: 622 1 Hwy - 7, Unit-16 Contact: Accounting Project #: 19-093-100 TURNAROUND TIME (TAT) REQUIRED TAT's are quoted in business days (exclude statutory holidays & weekends). Regular TAT (5-7days) Vaugham, UN
Phone: 905-264-9393 Samples received after 6pm or on weekends: TAT begins next business day 1 Day 2 Days 3 Days 4 Days RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION 'NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Email: dorty santes @ claronsultarts ca Specify Due Date: WITH SGS DRINKING WATER CHAIN OF CUSTODY ANALYSIS REQUESTED SPLP TCLP M & I SVOC PCB PHC VOC Pest Other (please specify) O.Reg 153/04 O.Reg 406/19 Other Regulations: Sewer By-Law: Table 1 Sanitary Res/Park Soil Texture: Reg 347/558 (3 Day min TAT) Specify Specifi 5-6080 Storm PWQO Table 2 Ind/Com Coarse MMER tests Agri/Other Medium/Fine Municipality: CCME Table 3 Sewer Use: Specifypkg Water Characterization Pkg Table Metals & Inorganics ing CAU, CAL Hg ph.(B(1)WS),EG,SAR-4¢ (CL, Na-waser) EG,SAR-4¢ Full Metals Suite (CP metals pius B(HWS-46) only) Hg, CAV Dues ODWS Not Reportable "See note COMMENTS: Dvoc Dvoc Field Filtered (Y/N) YES RECORD OF SITE CONDITION (RSC) NO 114-□PCB BTEX ICP Metals o OB(a) Docp PAHs only Pesticides # OF DATE TIME F1-F4 + E SVOCs all incl PAHs, Al MATRIX VOCs all incl BTEX DABN SAMPLE IDENTIFICATION SAMPLED BOTTLES SAMPLED F1-F4 on BTEX PCBs Digna Non-filtered Oct 25 12 PM (Gu) BH 22-5 N 3 5 6

Observations/Comments/Special Instructions

Sampled By (NAME): Chartenya Relinquished by (NAME):

Signature:

(mm/dd/yy)

Pink Copy - Client

ate of Issue: 02 May 2022

11 12

> Sample collection/handling and transportation of samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability indemnification and independent of the limitation of liability indemnification and independent of liability indemnification and liability indemnification and liability indemnification and liability independent of liability independ

CA40196-OCT22 R1

19-093-100, 7675 King St., Bolton

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Santos	Telephone	2165
Telephone	905-329-2735	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	dorothy.santos@dsconsultants.ca	SGS Reference	CA40196-OCT22
Project	19-093-100, 7675 King St., Bolton	Received	10/26/2022
Order Number		Approved	11/03/2022
Samples	Ground Water (1)	Report Number	CA40196-OCT22 R1
		Date Reported	11/03/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 029795

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-7
Exceedance Summary	8
QC Summary	9-17
Legend	18
Annexes	19

MATRIX: WATER

Client: DS Consultants

Project: 19-093-100, 7675 King St., Bolton

Project Manager: Dorothy Santos Samplers: Harry/ Chaitemya

Sample Number

Sample Name BH 22-5

L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 330	03E		Sample Matrix	Ground Water
			Sample Date	26/10/2022
Parameter	Units	RL	L1	Result
General Chemistry				
Biochemical Oxygen Demand (BOD5)	mg/L	2		5
Total Suspended Solids	mg/L	2		94
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5
Metals and Inorganics				
Fluoride	mg/L	0.06		0.27
Cyanide (total)	mg/L	0.01		< 0.01
Sulphate	mg/L	2		22
Aluminum (total)	mg/L	0.001		4.96
Antimony (total)	mg/L	0.0009	0.02	< 0.0009
Arsenic (total)	mg/L	0.0002	0.005	0.0061
Cadmium (total)	mg/L	0.000003	0.0001	0.000024
Chromium (total)	mg/L	0.00008	0.1	0.00591
Copper (total)	mg/L	0.0002	0.001	0.0056
Cobalt (total)	mg/L	0.000004	0.0009	0.00314
Lead (total)	mg/L	0.00009	0.005	0.00155
Manganese (total)	mg/L	0.00001		0.148
Molybdenum (total)	mg/L	0.00004	0.04	0.00761
Nickel (total)	mg/L	0.0001	0.025	0.0064
Phosphorus (total)	mg/L	0.003	0.01	0.171
Selenium (total)	mg/L	0.00004	0.1	0.00023
Silver (total)	mg/L	0.00005	0.0001	< 0.00005
Tin (total)	mg/L	0.00006		0.00340

CA40196-OCT22 R1

Client: DS Consultants

Project: 19-093-100, 7675 King St., Bolton

Project Manager: Dorothy Santos

Samplers: Harry/ Chaitemya

MATDIY: WATED			Sample Number	8
MATRIX: WATER			-	
			Sample Name	
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIB	S 3303E		Sample Matrix	
			Sample Date	26/10/2022
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Titanium (total)	mg/L	0.00005		0.0707
Zinc (total)	mg/L	0.002	0.02	0.019
Microbiology				
E. Coli	cfu/100mL	0	100	2
Nonylphenol and Ethoxylates				
Nonylphenol	mg/L	0.001		0.001
Nonylphenol Ethoxylates	mg/L	0.01		< 0.01
Nonylphenol diethoxylate	mg/L	0.01		< 0.01
Nonylphenol monoethoxylate	mg/L	0.01		< 0.01
Oil and Grease			_	
Oil & Grease (total)	mg/L	2		< 2
Oil & Grease (animal/vegetable)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4

SGS

Client: DS Consultants

Project: 19-093-100, 7675 King St., Bolton

Project Manager: Dorothy Santos

Samplers: Harry/ Chaitemya

MATRIX: WATER			Sample Number	8
			Sample Name	BH 22-5
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 330)3E		Sample Matrix	Ground Water
			Sample Date	26/10/2022
Parameter	Units	RL	L1	Result
Other (ORP)				
рН	No unit	0.05	8.6	8.04
Mercury (total)	mg/L	0.00001	0.0002	< 0.00001
PCBs				
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		< 0.0001
Phenols				
4AAP-Phenolics	mg/L	0.002	0.001	< 0.002
SVOCs				
di-n-Butyl Phthalate	mg/L	0.002		< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002		< 0.002
	mg/L	0.002		- 0.002
VOCs Chloroform		0.0005		10.0005
	mg/L	0.0005		< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005		< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005		< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005		< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005		< 0.0005
Methylene Chloride	mg/L	0.0005	0.1	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	0.07	< 0.0005
Methyl ethyl ketone	mg/L	0.02		< 0.02
Styrene	mg/L	0.0005		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.05	< 0.0005
Trichloroethylene	mg/L	0.0005	0.02	< 0.0005

CA40196-OCT22 R1

Client: DS Consultants

Project: 19-093-100, 7675 King St., Bolton

Project Manager: Dorothy Santos

Samplers: Harry/ Chaitemya

MATRIX: WATER Sample Number 8

Sample Name BH 22-5

			Campie Hame	D1122 0
			Sample Matrix	Ground Water
			Sample Date	26/10/2022
Units	RL	L1		Result
mg/L	0.0005	0.1		< 0.0005
mg/L	0.0005	0.008		< 0.0005
mg/L	0.0005	0.0008		< 0.0005
mg/L	0.0005			< 0.0005
mg/L	0.0005	0.002		< 0.0005
mg/L	0.0005	0.04		< 0.0005
	mg/L mg/L mg/L mg/L	mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005	Units RL L1 mg/L 0.0005 0.1 mg/L 0.0005 0.008 mg/L 0.0005 0.0008 mg/L 0.0005 0.002	Sample Matrix Sample Date

EXCEEDANCE SUMMARY

PWQO_L / WATER / - - Table 2 -General - July 1999 PIBS 3303E

Parameter Method Units Result L1

BH 22-5

Arsenic	SM 3030/EPA 200.8	mg/L	0.0061	0.005
Cobalt	SM 3030/EPA 200.8	mg/L	0.00314	0.0009
Copper	SM 3030/EPA 200.8	mg/L	0.0056	0.001
Phosphorus	SM 3030/EPA 200.8	mg/L	0.171	0.01
4AAP-Phenolics	SM 5530B-D	mg/L	< 0.002	0.001

20221103 8 / 19

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5002-NOV22	mg/L	2	<2	ND	20	106	80	120	106	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)			ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0054-OCT22	mg/L	2	< 2	18	30	99	70	130	NV	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method Duplicate LCS/Spike Blank					Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)	Spike Recovery		ry Limits %)	
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Cyanide (total)	SKA0285-OCT22	mg/L	0.01	<0.01	ND	10	98	90	110	101	75	125

20221103 9 / 19

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0664-OCT22	mg/L	0.06	<0.06	ND	10	104	90	110	100	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (M)	Spike		ery Limits %)	Spike Recovery		ery Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Mercury (total)	EHG0051-OCT22	mg/L	0.00001	< 0.00001	4	20	115	80	120	106	70	130	

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ry Limits %)
						(75)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0224-OCT22	mg/L	0.00005	<0.00005	ND	20	106	90	110	98	70	130
Aluminum (total)	EMS0224-OCT22	mg/L	0.001	<0.001	1	20	107	90	110	110	70	130
Arsenic (total)	EMS0224-OCT22	mg/L	0.0002	<0.0002	11	20	109	90	110	105	70	130
Cadmium (total)	EMS0224-OCT22	mg/L	0.000003	<0.000003	ND	20	106	90	110	101	70	130
Cobalt (total)	EMS0224-OCT22	mg/L	0.000004	<0.000004	0	20	106	90	110	93	70	130
Chromium (total)	EMS0224-OCT22	mg/L	0.00008	<0.00008	19	20	106	90	110	113	70	130
Copper (total)	EMS0224-OCT22	mg/L	0.0002	<0.0002	6	20	105	90	110	97	70	130
Manganese (total)	EMS0224-OCT22	mg/L	0.00001	<0.00001	1	20	109	90	110	108	70	130
Molybdenum (total)	EMS0224-OCT22	mg/L	0.00004	<0.00004	5	20	105	90	110	105	70	130
Nickel (total)	EMS0224-OCT22	mg/L	0.0001	<0.0001	5	20	102	90	110	94	70	130
Lead (total)	EMS0224-OCT22	mg/L	0.00009	<0.00001	18	20	106	90	110	95	70	130
Phosphorus (total)	EMS0224-OCT22	mg/L	0.003	<0.003	0	20	108	90	110	NV	70	130
Antimony (total)	EMS0224-OCT22	mg/L	0.0009	<0.0009	ND	20	101	90	110	94	70	130
Selenium (total)	EMS0224-OCT22	mg/L	0.00004	<0.00004	11	20	109	90	110	108	70	130
Tin (total)	EMS0224-OCT22	mg/L	0.00006	<0.00006	ND	20	104	90	110	NV	70	130
Titanium (total)	EMS0224-OCT22	mg/L	0.00005	<0.00005	13	20	106	90	110	NV	70	130
Zinc (total)	EMS0224-OCT22	mg/L	0.002	<0.002	1	20	103	90	110	121	70	130

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Ref	ī.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9419-OCT22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Method Duplic	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0431-OCT22	mg/L	0.01	<0.01			113	55	120			
Nonylphenol Ethoxylates	GCM0431-OCT22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0431-OCT22	mg/L	0.01	<0.01			115	55	120			
Nonylphenol	GCM0431-OCT22	mg/L	0.001	<0.001			115	55	120			

20221103 12 / 19

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0410-OCT22	mg/L	2	<2	NSS	20	100	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	rf.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0410-OCT22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0410-OCT22	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference	Reference		Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0681-OCT22	No unit	0.05	NA	0		101			NA		

20221103 13 / 19

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	I.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0318-OCT22	mg/L	0.002	<0.002	ND	10	100	80	120	100	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0377-OCT22	mg/L	0.0001	<0.0001	NSS	30	84	60	140	NSS	60	140
Total												

20221103 14 / 19

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0391-OCT22	mg/L	0.002	< 0.002	NSS	30	123	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0391-OCT22	mg/L	0.002	< 0.002	NSS	30	113	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0006-NOV22	mg/L	2	< 2	0	10	93	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0015-NOV22	as N mg/L	0.5	<0.5	2	10	100	90	110	107	75	125

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(75)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	92	60	130	94	50	140
1,2-Dichlorobenzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	95	60	130	98	50	140
1,4-Dichlorobenzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	94	60	130	96	50	140
Benzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Chloroform	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140
cis-1,2-Dichloroethene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Ethylbenzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	102	50	140
m-p-xylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
Methyl ethyl ketone	GCM0375-OCT22	mg/L	0.02	<0.02	ND	30	93	50	140	95	50	140
Methylene Chloride	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	98	50	140
o-xylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	102	50	140
Styrene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	101	50	140
Tetrachloroethylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	96	60	130	100	50	140
(perchloroethylene)												
Toluene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	96	60	130	97	50	140
Trichloroethylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	99	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221103 18 / 19

Request for Laboratory Services and CHAIN OF CUSTODY Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, NGE 288 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Laboratory Information Section - Lab use only Received By (signature LAB LIMS #: Ca4019 6-00 Cooling Agent Present: Yes No Type: Type: Temperature Upon Receipt (*C) Received Date: 18 /21/2 (mm/dd/yy) Custody Seal Present: Yes No Received Time: 12: (hr:min) Custody Seal Intact: Yes No REPORT INFORMATION INVOICE INFORMATION Company: 05 Consultants Ltd. (same as Report Information) Contact: Dosthy Santos Company:
Address: 622 1 Hwy - 7, Unit-16 Contact: Accounting Project #: 19-093-100 TURNAROUND TIME (TAT) REQUIRED TAT's are quoted in business days (exclude statutory holidays & weekends). Regular TAT (5-7days) Vaugham, UN
Phone: 905-264-9393 Samples received after 6pm or on weekends: TAT begins next business day 1 Day 2 Days 3 Days 4 Days RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION 'NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Email: dorty santes @ claronsultarts ca Specify Due Date: WITH SGS DRINKING WATER CHAIN OF CUSTODY ANALYSIS REQUESTED SPLP TCLP M & I SVOC PCB PHC VOC Pest Other (please specify) O.Reg 153/04 O.Reg 406/19 Other Regulations: Sewer By-Law: Table 1 Sanitary Res/Park Soil Texture: Reg 347/558 (3 Day min TAT) Specify Specifi 5-6080 Storm PWQO Table 2 Ind/Com Coarse MMER tests Agri/Other Medium/Fine Municipality: CCME Table 3 Sewer Use: Specifypkg Water Characterization Pkg Table Metals & Inorganics ing CAU, CAL Hg ph.(B(1)WS),EG,SAR-4¢ (CL, Na-waser) EG,SAR-4¢ Full Metals Suite (CP metals pius B(HWS-46) only) Hg, CAV Dues ODWS Not Reportable "See note COMMENTS: Dvoc Dvoc Field Filtered (Y/N) YES RECORD OF SITE CONDITION (RSC) NO 114-□PCB BTEX ICP Metals o OB(a) Docp PAHs only Pesticides # OF DATE TIME F1-F4 + E SVOCs all incl PAHs, Al MATRIX VOCs all incl BTEX DABN SAMPLE IDENTIFICATION SAMPLED BOTTLES SAMPLED F1-F4 on BTEX PCBs Digna Non-filtered Oct 25 12 PM (Gu) BH 22-5 N 3 5 6

Observations/Comments/Special Instructions

Sampled By (NAME): Chartenya Relinquished by (NAME):

Signature:

(mm/dd/yy)

Pink Copy - Client

ate of Issue: 02 May 2022

11 12

> Sample collection/handling and transportation of samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability indemnification and independent of the limitation of liability indemnification and independent of liability indemnification and liability indemnification and liability indemnification and liability independent of liability independ

CA40197-OCT22 R1

19-093-100, 7675 King St, Bolton

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Santos	Telephone	2165
Telephone	905-329-2735	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	dorothy.santos@dsconsultants.ca	SGS Reference	CA40197-OCT22
Project	19-093-100, 7675 King St, Bolton	Received	10/26/2022
Order Number		Approved	11/03/2022
Samples	Ground Water (1)	Report Number	CA40197-OCT22 R1
		Date Reported	11/03/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 029796

Note: Elevated E coli reporting limit due to excessive growth of bacteria at higher volumes.

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-7
Exceedance Summary	8
QC Summary	9-17
Legend	18
Annexes	19

Client: DS Consultants

Project: 19-093-100, 7675 King St, Bolton

Project Manager: Dorothy Santos

Samplers: Harry/Chaitanyo

MATRIX: WATER			S	ample Number	8
···· ··· ··· ·· · · · · · · · · · · ·				Sample Name	BH 22-1
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_	_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL_53	3_2010			Sample Date	26/10/2022
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑
Total Suspended Solids	mg/L	2	350	15	38300
Total Kjeldahl Nitrogen as	N mg/L	0.5	100	1	< 0.5
Metals and Inorganics					
Fluoride	mg/L	0.06	10		0.14
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01
Sulphate	mg/L	2	1500		24
Aluminum (total)	mg/L	0.001	50		15.7
Antimony (total)	mg/L	0.0009	5		< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	0.0072
Cadmium (total)	mg/L	0.000003	0.7	0.008	0.000178
Chromium (total)	mg/L	0.00008	5	0.08	0.0326
Copper (total)	mg/L	0.0002	3	0.05	0.0266
Cobalt (total)	mg/L	0.000004	5		0.0125
Lead (total)	mg/L	0.00009	3	0.12	0.0180
Manganese (total)	mg/L	0.00001	5	0.05	2.17
Molybdenum (total)	mg/L	0.00004	5		0.00230
Nickel (total)	mg/L	0.0001	3	0.08	0.0248
Phosphorus (total)	mg/L	0.003	10	0.4	3.12
Selenium (total)	mg/L	0.00004	1	0.02	0.00022
Silver (total)	mg/L	0.00005	5	0.12	0.00006
Tin (total)	mg/L	0.00006	5		0.00227

CA40197-OCT22 R1

Client: DS Consultants

Project: 19-093-100, 7675 King St, Bolton

Project Manager: Dorothy Santos

Samplers: Harry/Chaitanyo

MATRIX: WATER			;	Sample Number	8
				Sample Name	BH 22-1
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Dis	scharge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disch	narge - BL_53_2010			Sample Date	26/10/2022
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Titanium (total)	mg/L	0.00005	5		0.576
Zinc (total)	mg/L	0.002	3	0.04	0.057
Microbiology				,	
E. Coli	cfu/100mL	0		200	< 20↑
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001	0.02		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01	0.2		< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
	9/2	0.01			- 0.01
Oil and Grease					
Oil & Grease (total)	mg/L	2			< 4↑
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4

Client: DS Consultants

Project: 19-093-100, 7675 King St, Bolton

Project Manager: Dorothy Santos

Samplers: Harry/Chaitanyo

MATRIX: WATER		Sa	ample Number	8
			Sample Name	BH 22-1
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL_53_2010			Sample Date	26/10/2022
Parameter Units	s RL	L1	L2	Result
Other (ORP)				
pH No uni	t 0.05	10	9	7.72
Mercury (total) mg/l	0.00001	0.01	0.0004	0.00002
PCBs				
Polychlorinated Biphenyls (PCBs) - Total mg/l	0.0001	0.001	0.0004	< 0.0001
Phenois			'	
4AAP-Phenolics mg/l	0.002	1	0.008	< 0.002
SVOCs				
di-n-Butyl Phthalate mg/l	_ 0.002	0.08	0.015	< 0.002
,		0.012	0.0088	< 0.002
	0.002	0.012	0.0000	V 0.002
VOCs				
Chloroform mg/l		0.04	0.002	< 0.0005
1,2-Dichlorobenzene mg/l	0.0005	0.05	0.0056	< 0.0005
1,4-Dichlorobenzene mg/l	0.0005	0.08	0.0068	< 0.0005
cis-1,2-Dichloroethene mg/l	0.0005	4	0.0056	< 0.0005
trans-1,3-Dichloropropene mg/l	0.0005	0.14	0.0056	< 0.0005
Methylene Chloride mg/l	0.0005	2	0.0052	< 0.0005
Methylene Chloride mg/l 1,1,2,2-Tetrachloroethane mg/l		1.4	0.0052	< 0.0005 < 0.0005
-	0.0005			
1,1,2,2-Tetrachloroethane mg/l	0.0005	1.4		< 0.0005
1,1,2,2-Tetrachloroethane mg/l Methyl ethyl ketone mg/l	0.0005	1.4		< 0.0005 < 0.02

CA40197-OCT22 R1

Client: DS Consultants

Project: 19-093-100, 7675 King St, Bolton

Project Manager: Dorothy Santos

Samplers: Harry/Chaitanyo

MATRIX: WATER			s	Sample Number	8
				Sample Name	BH 22-1
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Di	Discharge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc	scharge - BL_53_2010			Sample Date	26/10/2022
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005
o-xylene	mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

SANSEW / WATER SANSEW / WATER / - - Peel Table 2 -/ - - Peel Table 1 -Sanitary Sewer Storm Sewer Discharge -Discharge -BL_53_2010 BL_53_2010 Method Units L1 L2 Parameter Result

BH 22-1

Total Suspended Solids	SM 2540D	mg/L	38300	350	15
Manganese	SM 3030/EPA 200.8	mg/L	2.17		0.05
Phosphorus	SM 3030/EPA 200.8	mg/L	3.12		0.4
Zinc	SM 3030/EPA 200.8	mg/L	0.057		0.04

20221103 8 / 19

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5002-NOV22	mg/L	2	<2	ND	20	106	80	120	106	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0054-OCT22	mg/L	2	< 2	18	30	99	70	130	NV	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0285-OCT22	mg/L	0.01	<0.01	ND	10	98	90	110	101	75	125

20221103 9 / 19

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0664-OCT22	mg/L	0.06	<0.06	ND	10	104	90	110	100	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		f.
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0051-OCT22	mg/L	0.00001	< 0.00001	4	20	115	80	120	106	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0217-OCT22	mg/L	0.00005	<0.00005	ND	20	104	90	110	102	70	130
Aluminum (total)	EMS0217-OCT22	mg/L	0.001	<0.001	3	20	103	90	110	107	70	130
Arsenic (total)	EMS0217-OCT22	mg/L	0.0002	<0.0002	ND	20	110	90	110	106	70	130
Cadmium (total)	EMS0217-OCT22	mg/L	0.000003	<0.000003	ND	20	103	90	110	102	70	130
Cobalt (total)	EMS0217-OCT22	mg/L	0.000004	<0.000004	2	20	104	90	110	99	70	130
Chromium (total)	EMS0217-OCT22	mg/L	0.00008	<0.00008	4	20	105	90	110	104	70	130
Copper (total)	EMS0217-OCT22	mg/L	0.0002	<0.0002	5	20	105	90	110	92	70	130
Manganese (total)	EMS0217-OCT22	mg/L	0.00001	<0.00001	ND	20	107	90	110	83	70	130
Molybdenum (total)	EMS0217-OCT22	mg/L	0.00004	<0.00004	ND	20	105	90	110	105	70	130
Nickel (total)	EMS0217-OCT22	mg/L	0.0001	<0.0001	ND	20	105	90	110	90	70	130
Lead (total)	EMS0217-OCT22	mg/L	0.00009	<0.00001	3	20	103	90	110	93	70	130
Phosphorus (total)	EMS0217-OCT22	mg/L	0.003	<0.003	ND	20	97	90	110	NV	70	130
Antimony (total)	EMS0217-OCT22	mg/L	0.0009	<0.0009	ND	20	103	90	110	106	70	130
Selenium (total)	EMS0217-OCT22	mg/L	0.00004	<0.00004	ND	20	110	90	110	100	70	130
Tin (total)	EMS0217-OCT22	mg/L	0.00006	<0.00006	ND	20	106	90	110	NV	70	130
Titanium (total)	EMS0217-OCT22	mg/L	0.00005	<0.00005	ND	20	105	90	110	NV	70	130
Zinc (total)	EMS0217-OCT22	mg/L	0.002	<0.002	1	20	102	90	110	104	70	130

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9419-OCT22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0431-OCT22	mg/L	0.01	<0.01			113	55	120			
Nonylphenol Ethoxylates	GCM0431-OCT22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0431-OCT22	mg/L	0.01	<0.01			115	55	120			
Nonylphenol	GCM0431-OCT22	mg/L	0.001	<0.001			115	55	120			

20221103 12 / 19

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter		QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	I.
		Reference			Blank	RPD	AC	Spike		ery Limits (%)	Spike Recovery	Recove	-
							(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease	total)	GCM0410-OCT22	mg/L	2	<2	NSS	20	100	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0410-OCT22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0410-OCT22	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0681-OCT22	No unit	0.05	NA	0		101			NA		

20221103 13 / 19

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0318-OCT22	mg/L	0.002	<0.002	ND	10	100	80	120	100	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0377-OCT22	mg/L	0.0001	<0.0001	NSS	30	84	60	140	NSS	60	140
Total												

20221103 14 / 19

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0391-OCT22	mg/L	0.002	< 0.002	NSS	30	123	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0391-OCT22	mg/L	0.002	< 0.002	NSS	30	113	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0006-NOV22	mg/L	2	< 2	0	10	93	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	Blank RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0004-NOV22	as N mg/L	0.5	<0.5	2	10	98	90	110	106	75	125

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(75)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	92	60	130	94	50	140
1,2-Dichlorobenzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	95	60	130	98	50	140
1,4-Dichlorobenzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	94	60	130	96	50	140
Benzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Chloroform	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140
cis-1,2-Dichloroethene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Ethylbenzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	102	50	140
m-p-xylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
Methyl ethyl ketone	GCM0375-OCT22	mg/L	0.02	<0.02	ND	30	93	50	140	95	50	140
Methylene Chloride	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	98	50	140
o-xylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	102	50	140
Styrene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	101	50	140
Tetrachloroethylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	96	60	130	100	50	140
(perchloroethylene)												
Toluene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	96	60	130	97	50	140
Trichloroethylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	99	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221103 18 / 19

Request for Laboratory Services and CHAIN OF CUSTODY Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Laboratory Information Section - Lab use only Received By (signature): Received By: Cooling Agent Present: Yes No Type: (CC)
Temperature Upon Receipt (*C) Received Date: 19 Custody Seal Present: Yes No Received Time: Custody Seal Intact: REPORT INFORMATION INVOICE INFORMATION (same as Report Information) Quotation # Site Location/ID: 7675 19-093-100 Project # Company TURNAROUND TIME (TAT) REQUIRED Address: 6721 counting How Contact: TAT's are quoted in business days (exclude statutory holidays & weekends) Samples received after 6pm or on weekends: TAT begins next business day Regular TAT (5-7days) wit 16 Vougher, on Address: 1 Day 2 Days 3 Days 4 Days RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION *NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY Specify Due Date: Email: Lorote Gontos @de. ANALYSIS REQUESTED SPLP TCLP SVOC PHC VOC Pest Other (please specify) PCB M & I O.Reg 153/04 O.Reg 406/19 Other Regulations: Sewer By-Law: Table 1 Res/Park Soil Texture: Reg 347/558 (3 Day min TAT) Sanitary Specify Specify 200 [LPWQO MMER Storm tests tests Table 2 Coarse Ind/Com Table 3 Agri/Other Medium/Fine CCME Other: Municipality: Specify pkg: Water Characterization Pkg PCCI MISA Table Metal □_{M&I} Metals & Inorganics inclovi, cn. Hg ph.(B(HWS),EC.SAR (C), Na-water) COMMENTS: Soil Volume <a> <350m3 <a>>350m3 ODWS Not Reportable "See note Dvoc Dvoc Field Filtered (Y/N) Suite RECORD OF SITE CONDITION (RSC) YES NO 1,4-□ PCS + BTEX Total □B(a)F Full Metals ICP Metals Pesticides Sewer Use: PAHS only only DABN DATE TIME # OF DABN SAMPLE IDENTIFICATION MATRIX SVOCs all incl PAHs. SAMPLED BOTTLES F1-F4 VOCS SAMPLED F1-F4 BTEX PCBs ☐(grit. (TW) BH 22-Oct 26,2 L PM 2 3 5 6 8 10 12 Observations/Comments/Special Instructions Pink Copy - Client (mm/dd/yy) Date: 10 / 26/ Yellow & White Copy Sampled By (NAME): Signature: har inner o any liftee a Copy

Relinquished by (NAME): Signature

CA40197-OCT22 R1

19-093-100, 7675 King St, Bolton

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Santos	Telephone	2165
Telephone	905-329-2735	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	dorothy.santos@dsconsultants.ca	SGS Reference	CA40197-OCT22
Project	19-093-100, 7675 King St, Bolton	Received	10/26/2022
Order Number		Approved	11/03/2022
Samples	Ground Water (1)	Report Number	CA40197-OCT22 R1
		Date Reported	11/03/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 029796

Note: Elevated E coli reporting limit due to excessive growth of bacteria at higher volumes.

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-7
Exceedance Summary	8
QC Summary	9-17
Legend	18
Annexes	19

Client: DS Consultants

Project: 19-093-100, 7675 King St, Bolton

Project Manager: Dorothy Santos

Samplers: Harry/Chaitanyo

MATRIX: WATER			Sample Number	8
			Sample Name	BH 22-1
1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample Matrix	
			Sample Date	26/10/2022
Parameter	Units	RL	L1	Result
eneral Chemistry				
Biochemical Oxygen Demand (BOD5)	mg/L	2		< 4↑
Total Suspended Solids	mg/L	2		38300
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5
Metals and Inorganics				
Fluoride	mg/L	0.06		0.14
Cyanide (total)	mg/L	0.01		< 0.01
Sulphate	mg/L	2		24
Aluminum (total)	mg/L	0.001		15.7
Antimony (total)	mg/L	0.0009	0.02	< 0.0009
Arsenic (total)	mg/L	0.0002	0.005	0.0072
Cadmium (total)	mg/L	0.000003	0.0001	0.000178
Chromium (total)	mg/L	0.00008	0.1	0.0326
Copper (total)	mg/L	0.0002	0.001	0.0266
Cobalt (total)	mg/L	0.000004	0.0009	0.0125
Lead (total)	mg/L	0.00009	0.005	0.0180
Manganese (total)	mg/L	0.00001		2.17
Molybdenum (total)	mg/L	0.00004	0.04	0.00230
Nickel (total)	mg/L	0.0001	0.025	0.0248
Phosphorus (total)	mg/L	0.003	0.01	3.12
Selenium (total)	mg/L	0.00004	0.1	0.00022
Silver (total)		0.00005	0.0001	0.00006
Tin (total)	mg/L	0.00006		0.00227

CA40197-OCT22 R1

Client: DS Consultants

Project: 19-093-100, 7675 King St, Bolton

Project Manager: Dorothy Santos

Samplers: Harry/Chaitanyo

MATRIX: WATER			Sample Numbe	r 8
			Sample Name	BH 22-1
.1 = PWQO_L / WATER / Table 2 - General - July 1999 P	PIBS 3303E		Sample Matrix	Ground Water
			Sample Date	26/10/2022
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Titanium (total)	mg/L	0.00005		0.576
Zinc (total)	mg/L	0.002	0.02	0.057
Microbiology				
E. Coli	cfu/100mL	0	100	< 20↑
Nonylphenol and Ethoxylates				
Nonylphenol	mg/L	0.001		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01		< 0.01
Nonylphenol diethoxylate	mg/L	0.01		< 0.01
Nonylphenol monoethoxylate	mg/L	0.01		< 0.01
Oil and Grease				
Oil & Grease (total)	mg/L	2		< 4↑
Oil & Grease (animal/vegetable)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4

Client: DS Consultants

Project: 19-093-100, 7675 King St, Bolton

Project Manager: Dorothy Santos **Samplers:** Harry/Chaitanyo

MATRIX: WATER			Sample Number	8
			Sample Name	BH 22-1
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E	E		Sample Matrix	Ground Water
			Sample Date	26/10/2022
Parameter	Units	RL	L1	Result
Other (ORP)				
рН	No unit	0.05	8.6	7.72
Mercury (total)	mg/L	0.00001	0.0002	0.00002
PCBs				
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		< 0.0001
Phenols				
4AAP-Phenolics	mg/L	0.002	0.001	< 0.002
SVOCs				
di-n-Butyl Phthalate	ma/l	0.002		< 0.002
	mg/L			
Bis(2-ethylhexyl)phthalate	mg/L	0.002		< 0.002
VOCs				
Chloroform	mg/L	0.0005		< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005		< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005		< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005		< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005		< 0.0005
Methylene Chloride	mg/L	0.0005	0.1	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	0.07	< 0.0005
Methyl ethyl ketone	mg/L	0.02		< 0.02
Styrene	mg/L	0.0005		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.05	< 0.0005
Trichloroethylene		0.0005	0.02	< 0.0005
	g/L	3.0000	3.02	- 0.0000

CA40197-OCT22 R1

Client: DS Consultants

Project: 19-093-100, 7675 King St, Bolton

Project Manager: Dorothy Santos

Samplers: Harry/Chaitanyo

MATRIX: WATER Sample Number 8

Sample Name BH 22-1

1999 PIBS 3303E				Sample Matrix	Ground Water
				Sample Date	26/10/2022
U	nits	RL	L1		Result
m	ıg/L	0.0005	0.1		< 0.0005
m	ng/L	0.0005	0.008		< 0.0005
m	ng/L	0.0005	0.0008		0.0005
m	ng/L	0.0005			< 0.0005
m	ng/L	0.0005	0.002		< 0.0005
m	ng/L	0.0005	0.04		< 0.0005
	m m m	mg/L mg/L mg/L mg/L mg/L	Units RL mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005	Units RL L1 mg/L 0.0005 0.1 mg/L 0.0005 0.0008 mg/L 0.0005 0.0008 mg/L 0.0005 0.002	Nample Matrix Sample Matrix Sample Date

EXCEEDANCE SUMMARY

PWQO_L / WATER / - - Table 2 -General - July 1999

PIBS 3303E

Parameter Method Units Result L1

BH 22-1

Arsenic	SM 3030/EPA 200.8	mg/L	0.0072	0.005
Cadmium	SM 3030/EPA 200.8	mg/L	0.000178	0.0001
Cobalt	SM 3030/EPA 200.8	mg/L	0.0125	0.0009
Copper	SM 3030/EPA 200.8	mg/L	0.0266	0.001
Lead	SM 3030/EPA 200.8	mg/L	0.0180	0.005
Phosphorus	SM 3030/EPA 200.8	mg/L	3.12	0.01
Zinc	SM 3030/EPA 200.8	mg/L	0.057	0.02
4AAP-Phenolics	SM 5530B-D	mg/L	< 0.002	0.001

20221103 8 / 19

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Sulphate	DIO5002-NOV22	mg/L	2	<2	ND	20	106	80	120	106	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0054-OCT22	mg/L	2	< 2	18	30	99	70	130	NV	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Limits Spike Recovery		ry Limits %)
				(%)	Recovery (%)	Low	High	(%)	Low	High		
Cyanide (total)	SKA0285-OCT22	mg/L	0.01	<0.01	ND	10	98	90	110	101	75	125

20221103 9 / 19

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)		Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0664-OCT22	mg/L	0.06	<0.06	ND	10	104	90	110	100	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	Duplicate LCS			М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	·	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0051-OCT22	mg/L	0.00001	< 0.00001	4	20	115	80	120	106	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0217-OCT22	mg/L	0.00005	<0.00005	ND	20	104	90	110	102	70	130
Aluminum (total)	EMS0217-OCT22	mg/L	0.001	<0.001	3	20	103	90	110	107	70	130
Arsenic (total)	EMS0217-OCT22	mg/L	0.0002	<0.0002	ND	20	110	90	110	106	70	130
Cadmium (total)	EMS0217-OCT22	mg/L	0.000003	<0.000003	ND	20	103	90	110	102	70	130
Cobalt (total)	EMS0217-OCT22	mg/L	0.000004	<0.000004	2	20	104	90	110	99	70	130
Chromium (total)	EMS0217-OCT22	mg/L	0.00008	<0.00008	4	20	105	90	110	104	70	130
Copper (total)	EMS0217-OCT22	mg/L	0.0002	<0.0002	5	20	105	90	110	92	70	130
Manganese (total)	EMS0217-OCT22	mg/L	0.00001	<0.00001	ND	20	107	90	110	83	70	130
Molybdenum (total)	EMS0217-OCT22	mg/L	0.00004	<0.00004	ND	20	105	90	110	105	70	130
Nickel (total)	EMS0217-OCT22	mg/L	0.0001	<0.0001	ND	20	105	90	110	90	70	130
Lead (total)	EMS0217-OCT22	mg/L	0.00009	<0.00001	3	20	103	90	110	93	70	130
Phosphorus (total)	EMS0217-OCT22	mg/L	0.003	<0.003	ND	20	97	90	110	NV	70	130
Antimony (total)	EMS0217-OCT22	mg/L	0.0009	<0.0009	ND	20	103	90	110	106	70	130
Selenium (total)	EMS0217-OCT22	mg/L	0.00004	<0.00004	ND	20	110	90	110	100	70	130
Tin (total)	EMS0217-OCT22	mg/L	0.00006	<0.00006	ND	20	106	90	110	NV	70	130
Titanium (total)	EMS0217-OCT22	mg/L	0.00005	<0.00005	ND	20	105	90	110	NV	70	130
Zinc (total)	EMS0217-OCT22	mg/L	0.002	<0.002	1	20	102	90	110	104	70	130

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9419-OCT22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0431-OCT22	mg/L	0.01	<0.01			113	55	120			
Nonylphenol Ethoxylates	GCM0431-OCT22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0431-OCT22	mg/L	0.01	<0.01			115	55	120			
Nonylphenol	GCM0431-OCT22	mg/L	0.001	<0.001			115	55	120			

20221103 12 / 19

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter		QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	I.
		Reference			Blank	RPD	AC	Spike		ery Limits (%)	Spike Recovery	Recove	-
							(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease	total)	GCM0410-OCT22	mg/L	2	<2	NSS	20	100	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0410-OCT22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0410-OCT22	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0681-OCT22	No unit	0.05	NA	0		101			NA		

20221103 13 / 19

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference		Blank RPD	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0318-OCT22	mg/L	0.002	<0.002	ND	10	100	80	120	100	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0377-OCT22	mg/L	0.0001	<0.0001	NSS	30	84	60	140	NSS	60	140
Total												

20221103 14 / 19

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0391-OCT22	mg/L	0.002	< 0.002	NSS	30	123	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0391-OCT22	mg/L	0.002	< 0.002	NSS	30	113	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0006-NOV22	mg/L	2	< 2	0	10	93	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0004-NOV22	as N mg/L	0.5	<0.5	2	10	98	90	110	106	75	125

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	-	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	92	60	130	94	50	140
1,2-Dichlorobenzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	95	60	130	98	50	140
1,4-Dichlorobenzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	94	60	130	96	50	140
Benzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Chloroform	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140
cis-1,2-Dichloroethene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Ethylbenzene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	102	50	140
m-p-xylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
Methyl ethyl ketone	GCM0375-OCT22	mg/L	0.02	<0.02	ND	30	93	50	140	95	50	140
Methylene Chloride	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	98	50	140
o-xylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	102	50	140
Styrene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	98	60	130	101	50	140
Tetrachloroethylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	96	60	130	100	50	140
(perchloroethylene)												
Toluene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	96	60	130	97	50	140
Trichloroethylene	GCM0375-OCT22	mg/L	0.0005	<0.0005	ND	30	97	60	130	99	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

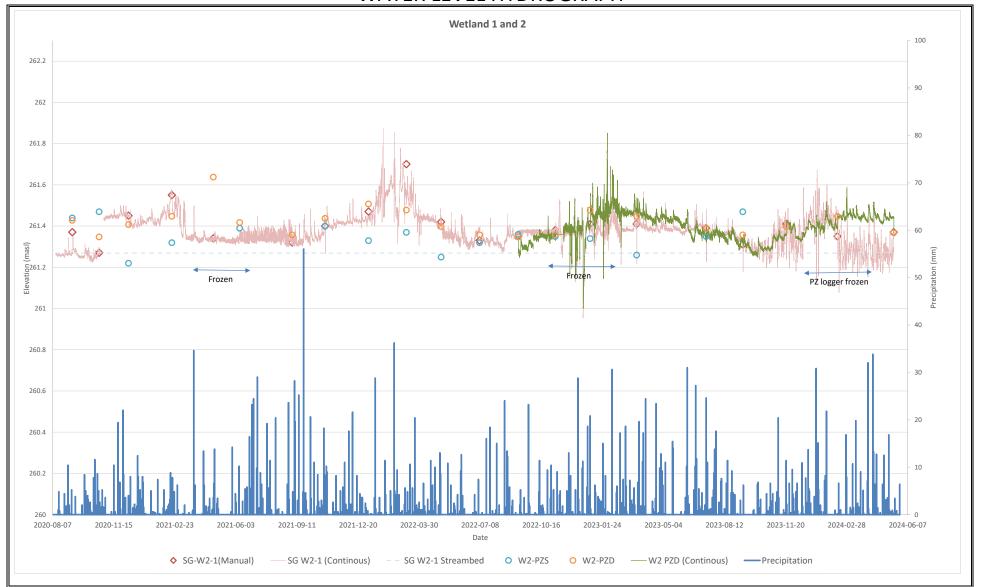
SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

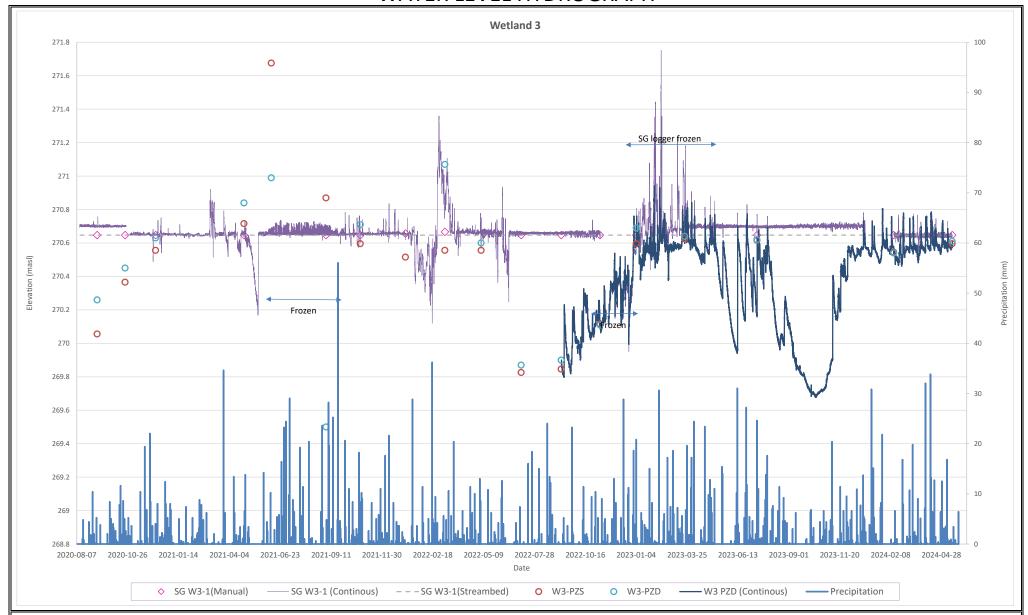
-- End of Analytical Report --


20221103 18 / 19

Request for Laboratory Services and CHAIN OF CUSTODY Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Laboratory Information Section - Lab use only Received By (signature): Received By: Cooling Agent Present: Yes No Type: (CC)
Temperature Upon Receipt (*C) Received Date: 19 Custody Seal Present: Yes No Received Time: Custody Seal Intact: REPORT INFORMATION INVOICE INFORMATION (same as Report Information) Quotation # Site Location/ID: 7675 19-093-100 Project # Company TURNAROUND TIME (TAT) REQUIRED Address: 6721 counting How Contact: TAT's are quoted in business days (exclude statutory holidays & weekends) Samples received after 6pm or on weekends: TAT begins next business day Regular TAT (5-7days) wit 16 Vougher, on Address: 1 Day 2 Days 3 Days 4 Days RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION *NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY Specify Due Date: Email: Lorote Gontos @de. ANALYSIS REQUESTED SPLP TCLP SVOC PHC VOC Pest Other (please specify) PCB M & I O.Reg 153/04 O.Reg 406/19 Other Regulations: Sewer By-Law: Table 1 Res/Park Soil Texture: Reg 347/558 (3 Day min TAT) Sanitary Specify Specify 200 [LPWQO MMER Storm tests tests Table 2 Coarse Ind/Com Table 3 Agri/Other Medium/Fine CCME Other: Municipality: Specify pkg: Water Characterization Pkg PCCI MISA Table Metal □_{M&I} Metals & Inorganics inclovi, cn. Hg ph.(B(HWS),EC.SAR (C), Na-water) COMMENTS: Soil Volume <a> <350m3 <a>>350m3 ODWS Not Reportable "See note Dvoc Dvoc Field Filtered (Y/N) Suite RECORD OF SITE CONDITION (RSC) YES NO 1,4-□ PCS + BTEX Total □B(a)F Full Metals ICP Metals Pesticides Sewer Use: PAHS only only DABN DATE TIME # OF DABN SAMPLE IDENTIFICATION MATRIX SVOCs all incl PAHs. SAMPLED BOTTLES F1-F4 VOCS SAMPLED F1-F4 BTEX PCBs ☐(grit. (TW) BH 22-Oct 26,2 L PM 2 3 5 6 8 10 12 Observations/Comments/Special Instructions Pink Copy - Client (mm/dd/yy) Date: 10 / 26/ Yellow & White Copy Sampled By (NAME): Signature: har inner o any liftee a Copy

Relinquished by (NAME): Signature

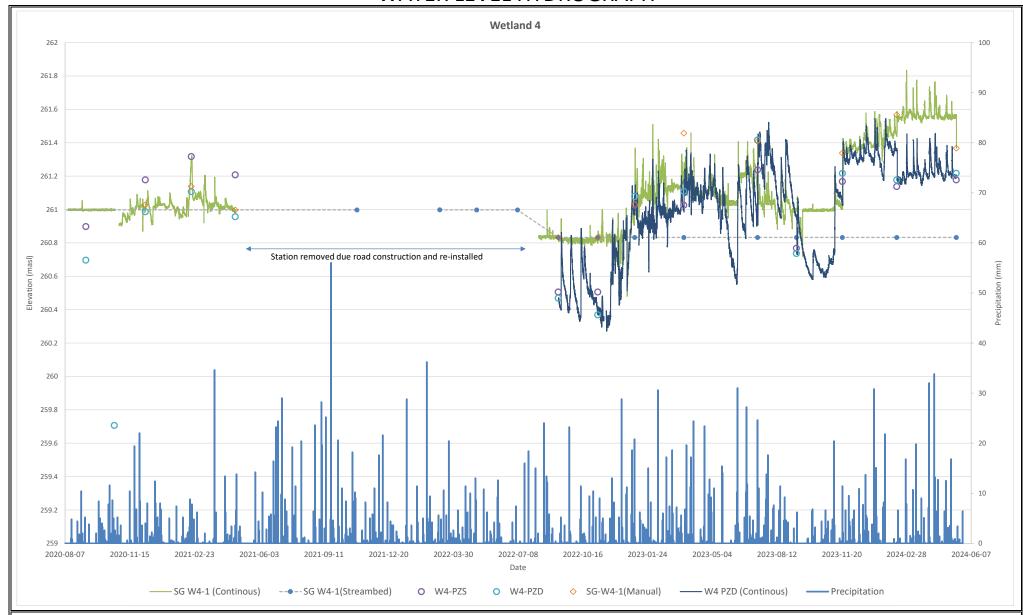
Appendix J



Caledon Station

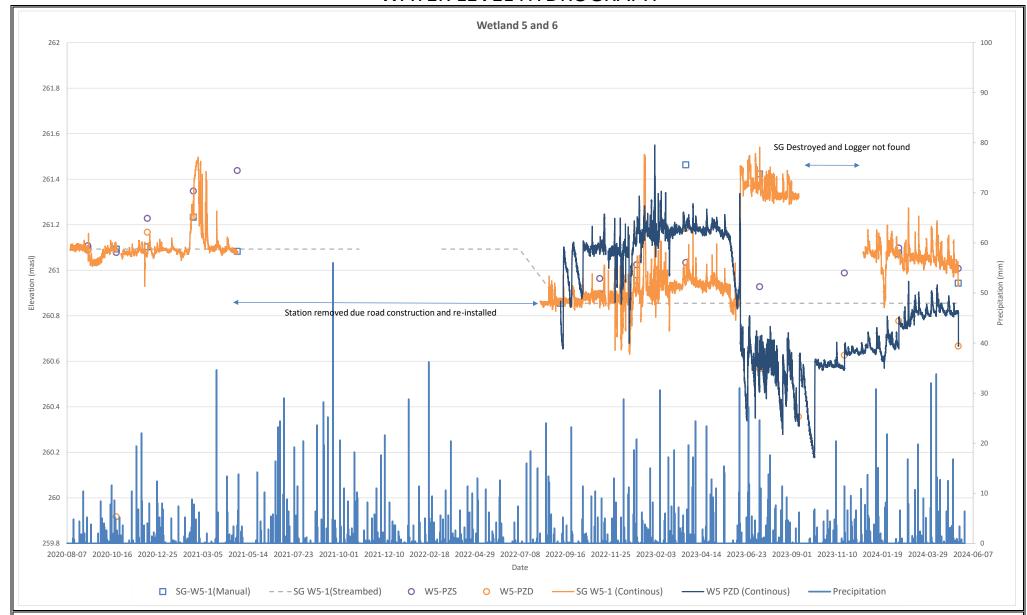
WETLAND 1 & 2 HYDROGRAPH

August 2020 -May 2024


J.

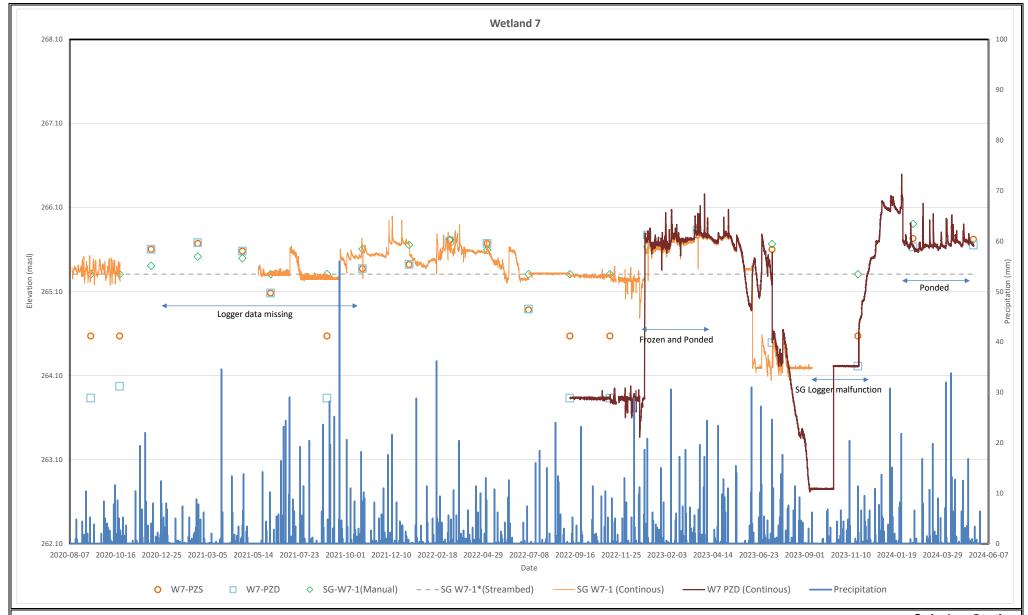
Caledon Station

WETLAND 3 HYDROGRAPH

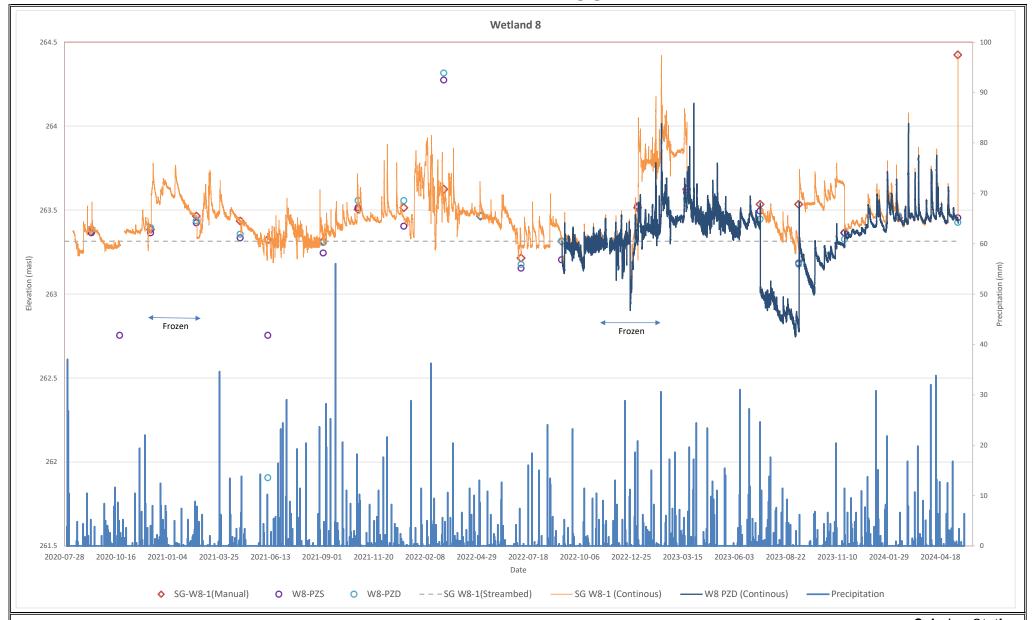


Caledon Station

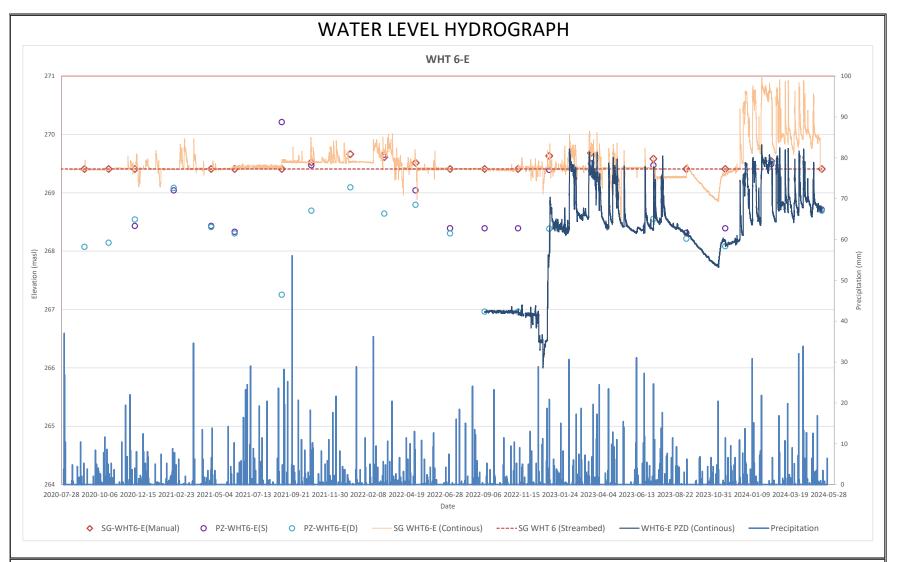
WETLAND 4 HYDROGRAPH


August 2020 - May 2024

Caledon Station

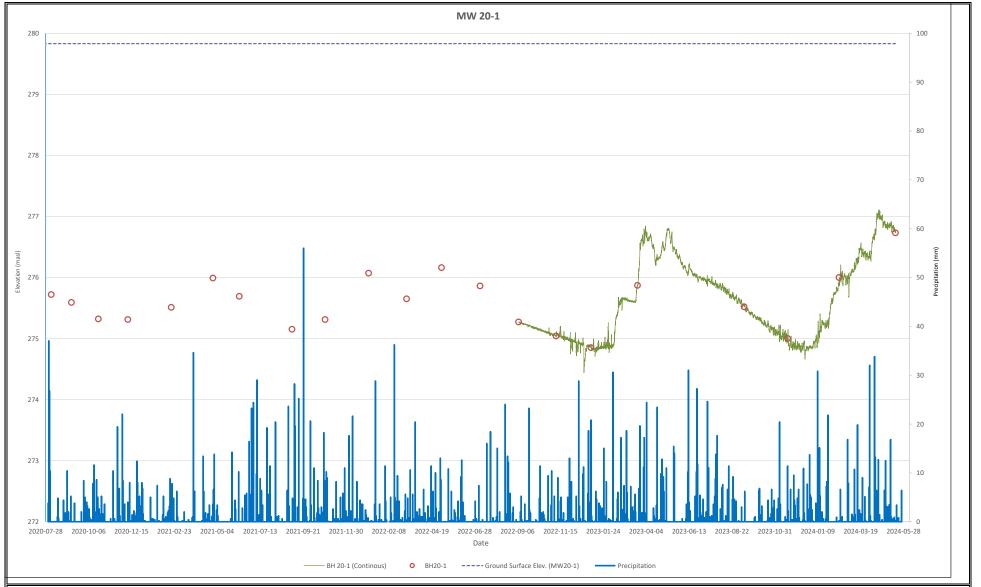

WETLANDS 5 & 6 HYDROGRAPH

Caledon Station


WETLAND 7 HYDROGRAPH

Caledon Station WETLAND 8 HYDROGRAPH

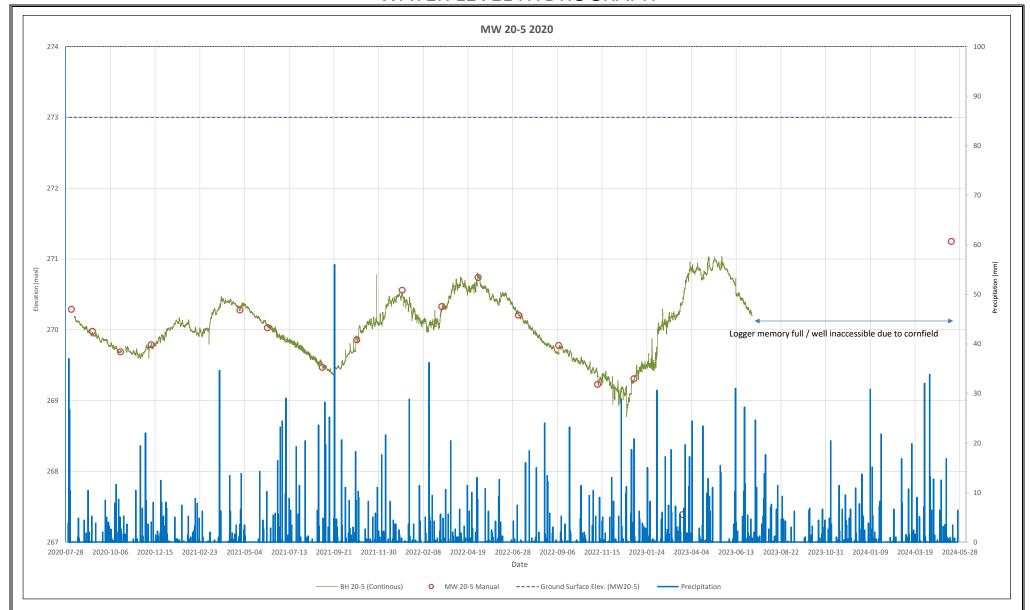
August 2020 - May 2024



Caledon Station

WHT 6-E HYDROGRAPH

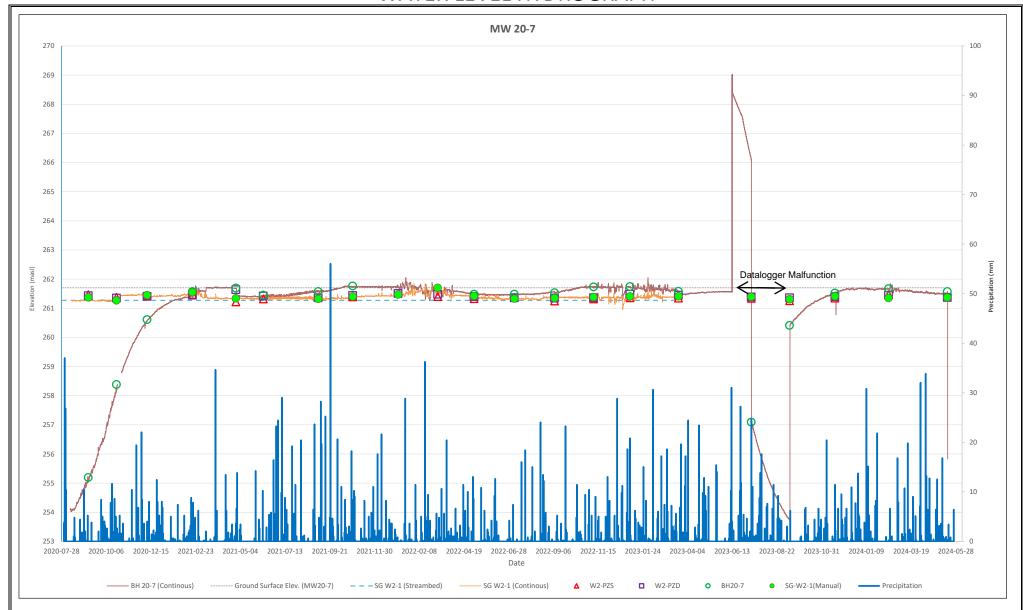
August 2020 - May 2024



Caledon Station

MW 20-1 HYDROGRAPH

August 2020 - May 2024


J-

Caledon Station

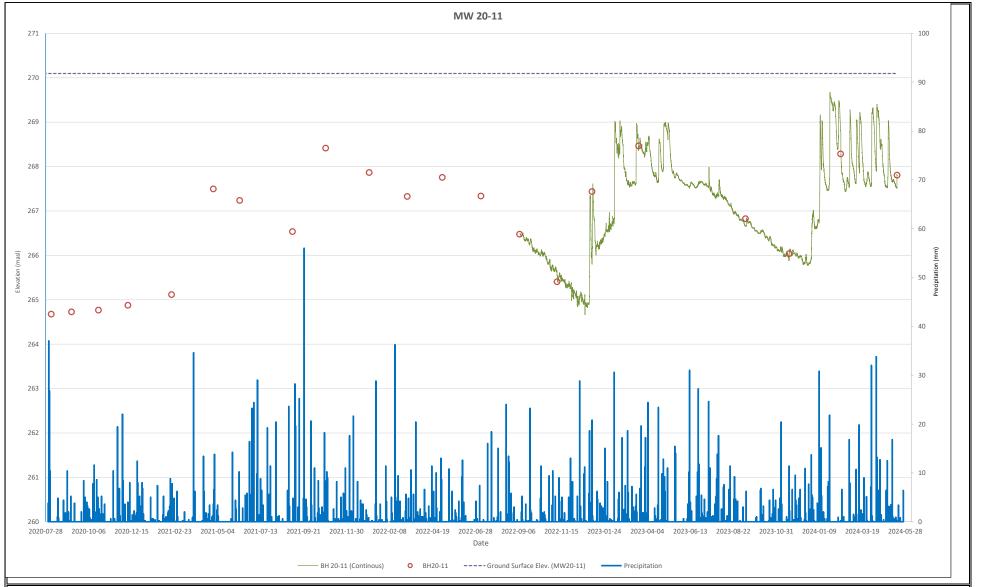
MW 20-5 HYDROGRAPH



Caledon Station MW

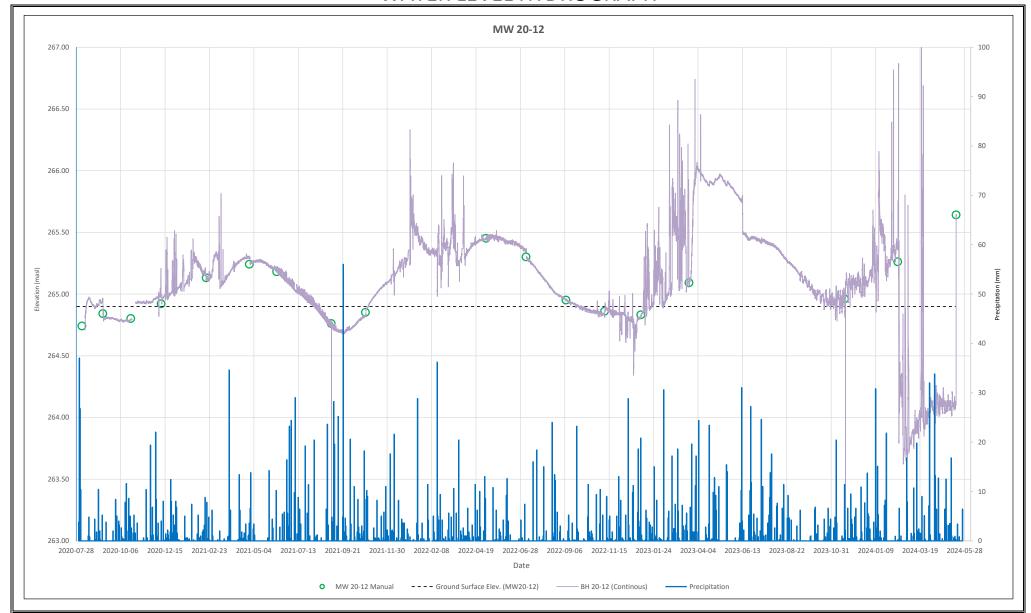
20-7 HYDROGRAPH

August 2020 - May 2024


1-10

Caledon Station
MW 20-9 HYDROGRAPH

August 2020 -May 2024

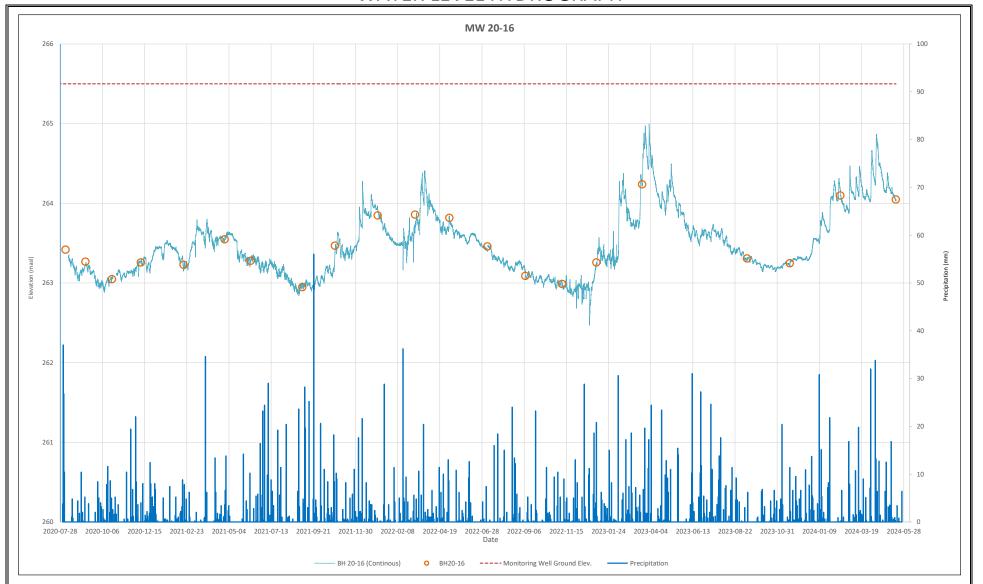


Caledon Station

MW 20-11 HYDROGRAPH

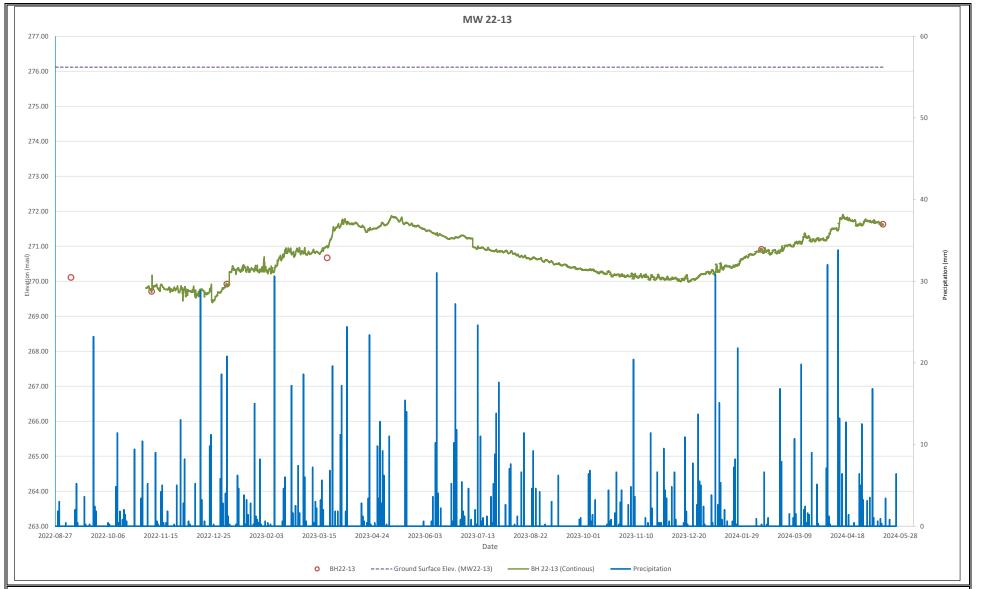
August 2020 - May 2024

J**-12**

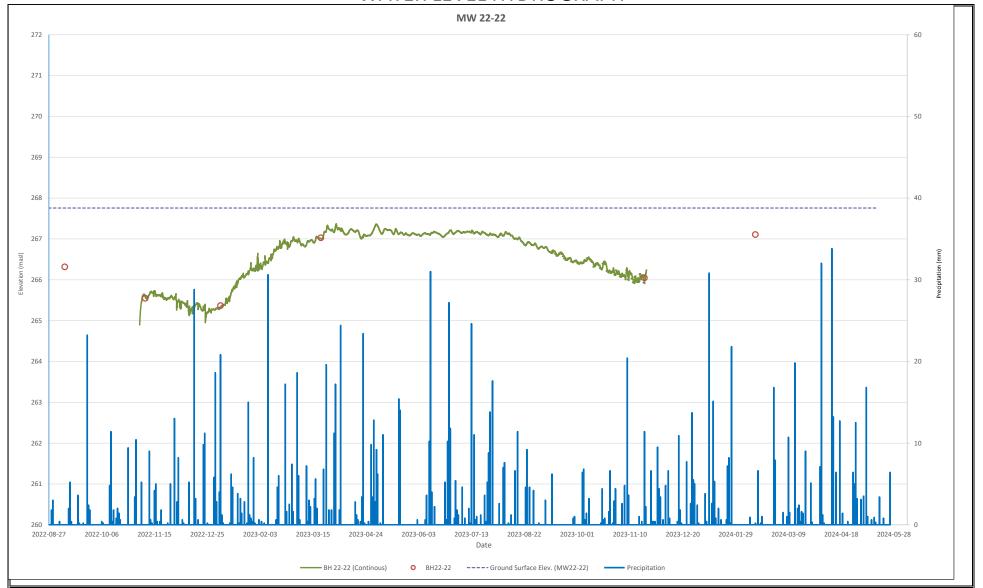


Caledon Station

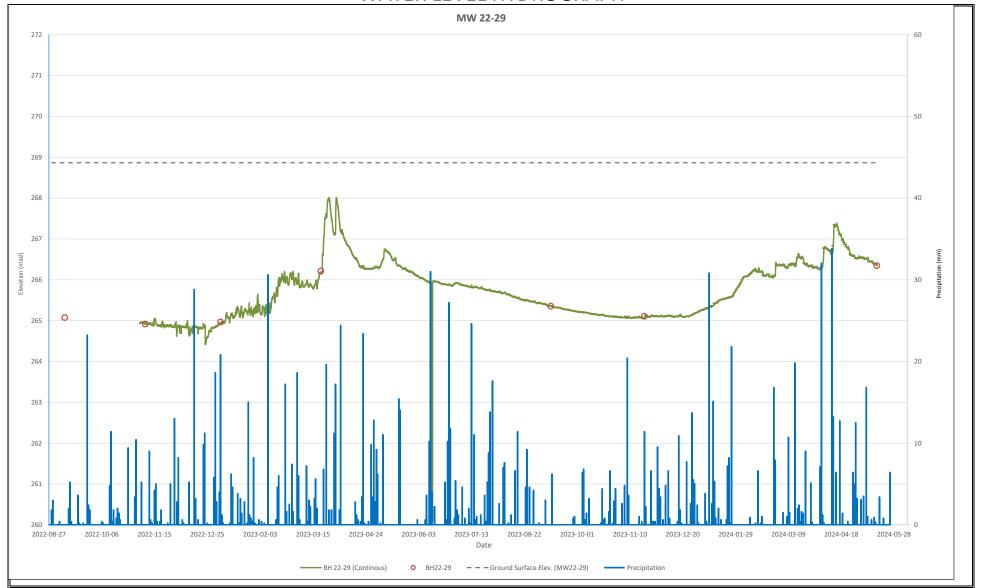
MW 20-12 HYDROGRAPH


August 2020 -May 2024

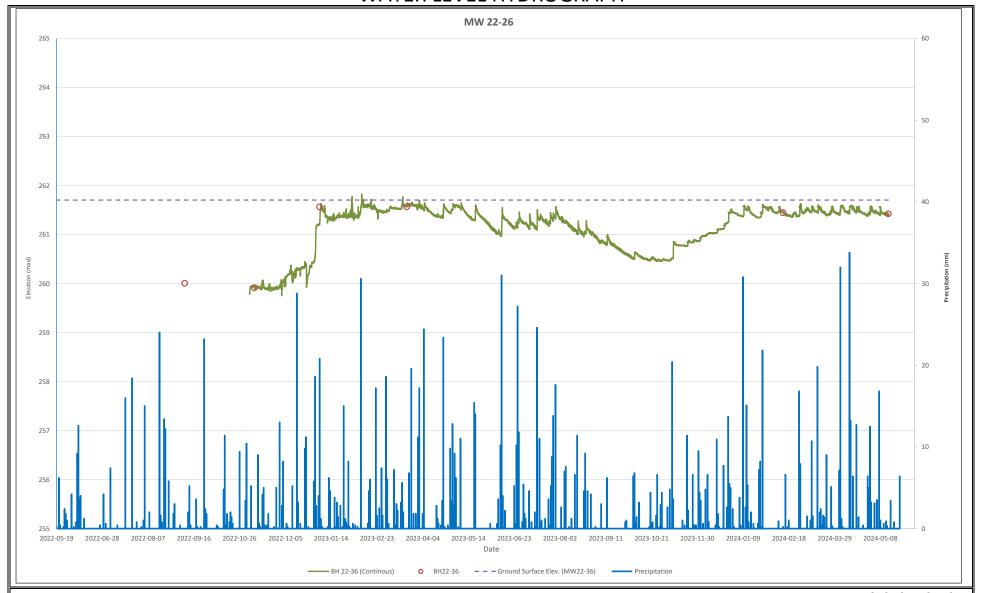
Caledon Station
MW 20-16 HYDROGRAPH


August 2020 - May 2024

Caledon Station
MW 22-13 HYDROGRAPH

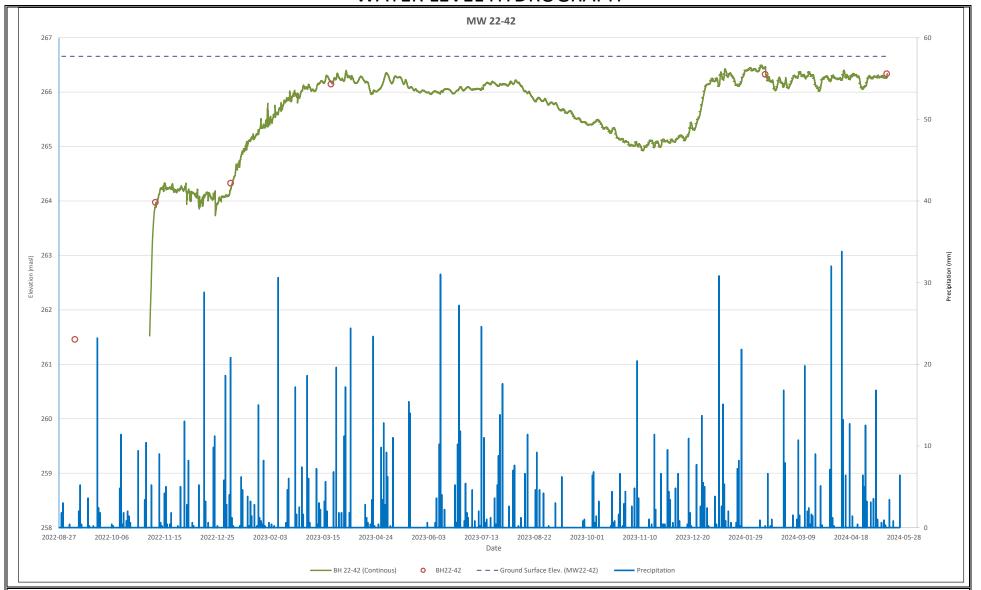

August 2022 - May 2024

Caledon Station
MW 22-22 HYDROGRAPH


August 2022 - May 2024

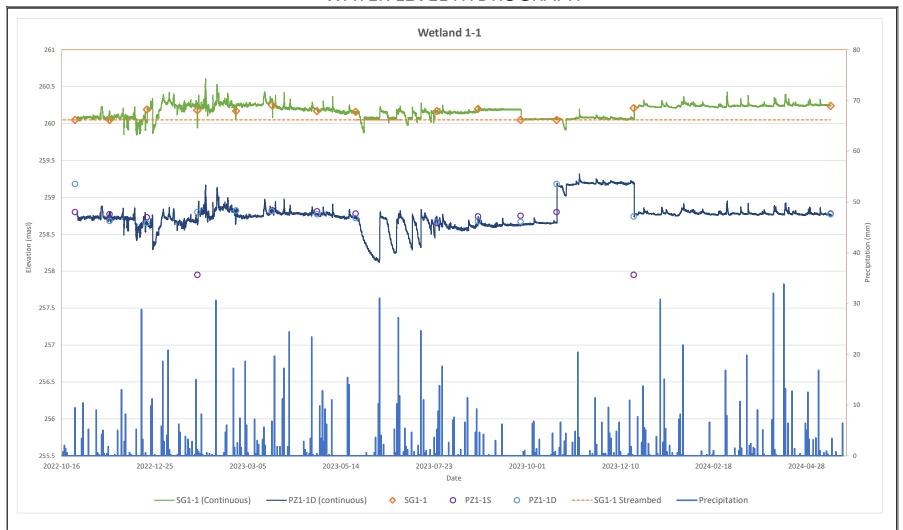
Caledon Station
MW 22-29 HYDROGRAPH

August 2022 - May 2024



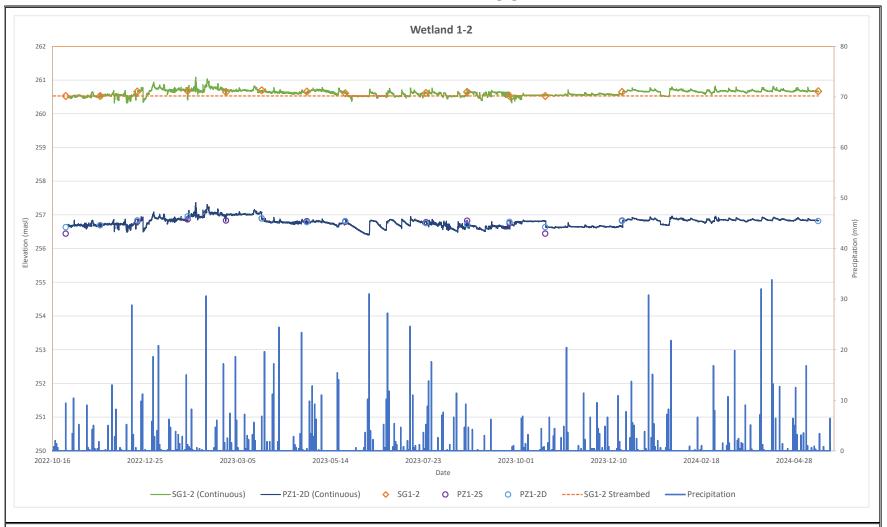
Caledon Station

MW 22-26 HYDROGRAPH

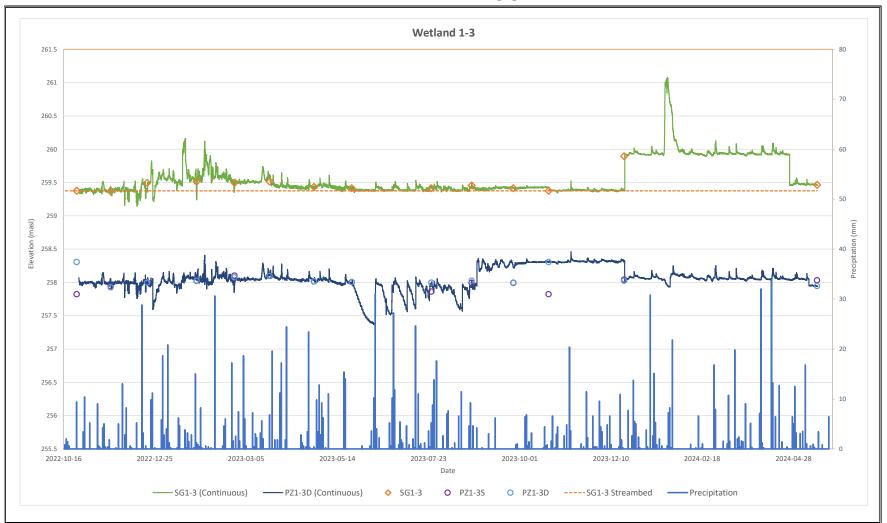

August 2022 - May 2024

Caledon Station
MW 22-42 HYDROGRAPH

August 2022 - May 2024



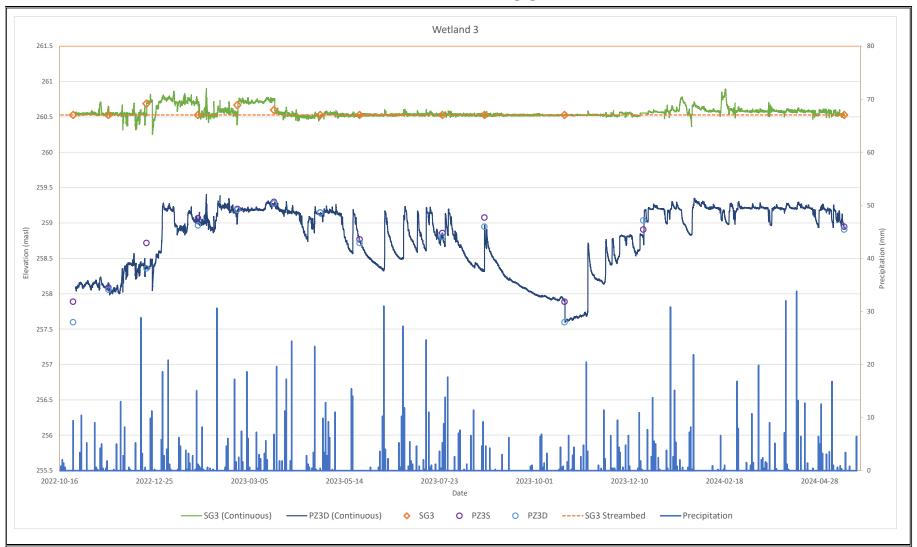
Argo King I & II
WETLAND 1-1 HYDROGRAPH


October 2022 - May 2024

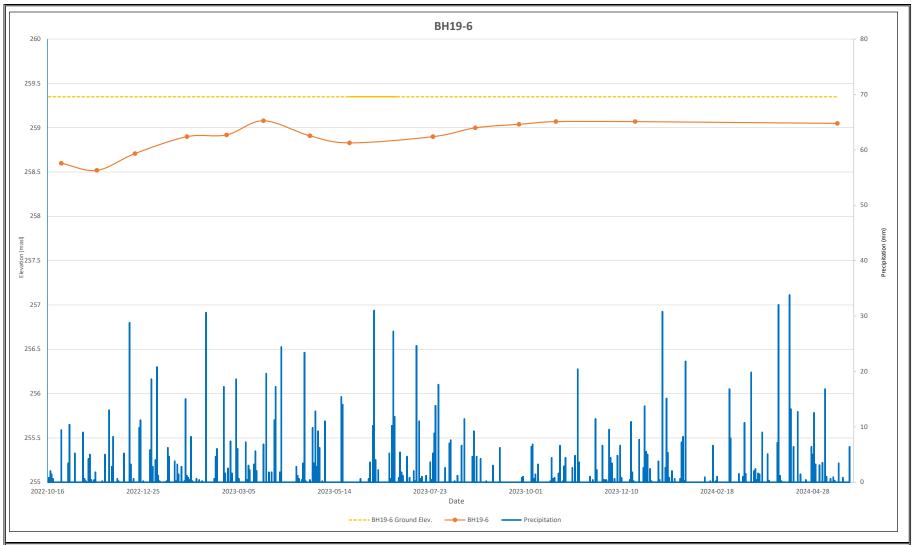
Argo King I & II
WETLAND 1-2 HYDROGRAPH

October 2022 - May 2024

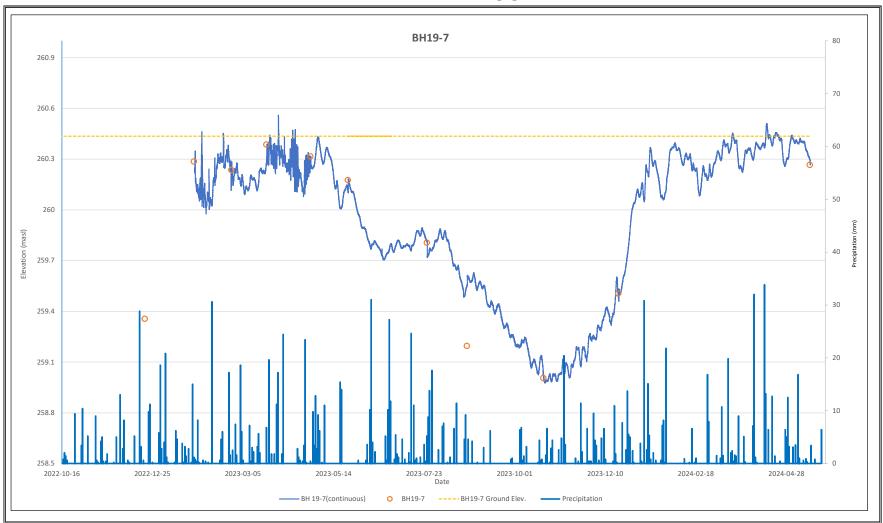
Argo King I & II
WETLAND 1-3 HYDROGRAPH


October 2022 - May 2024

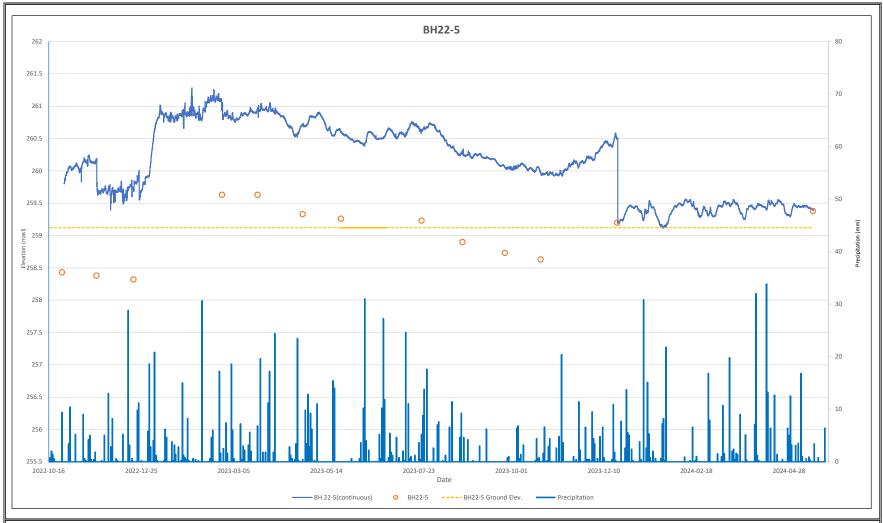
Argo King I & II
WETLAND 2 HYDROGRAPH


October 2022 - May 2024

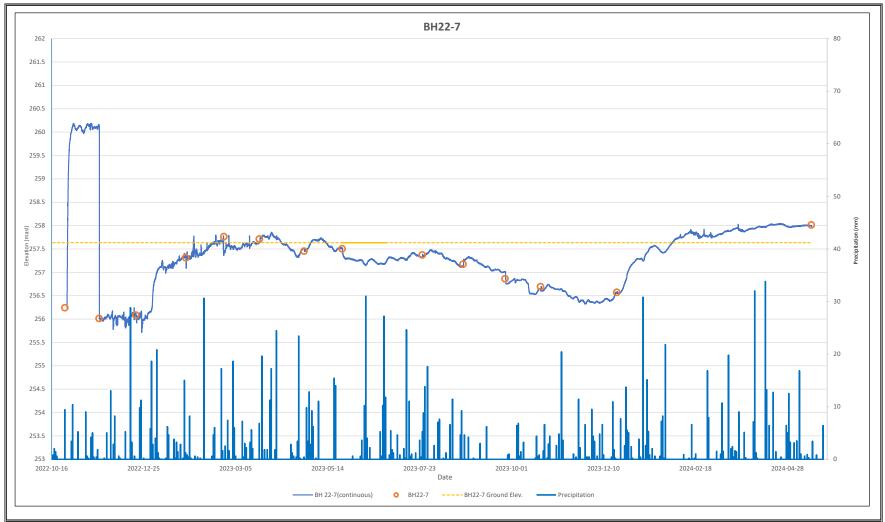
Argo King I & II
WETLAND 3 HYDROGRAPH


October 2022 - May 2024

Argo King I & II
BH19-6 HYDROGRAPH


October 2022 - May 2022

Argo King I & II
BH19-7 HYDROGRAPH


October 2022 - May 2024

Argo King I & II
BH22-5 HYDROGRAPH

October 2022 - May 2024

Argo King I & II
BH22-7 HYDROGRAPH

October 2022 - May 2024

$\textbf{Appendix} \; \mathsf{K}$

			Thornthy	waite (1948)		
Month	Mean		Unadjusted Potential	Daylight	Adjusted Potential	Total Precipitation
	Temperature	Heat Index	Evapotranspiration	Correction	Evapotranspiration	(mm)
	(°C)		(mm)	Value	(mm)	(111111)
January	-5.5	0.0	0.0	0.78	0.0	51.8
February	-4.5	0.0	0.0	0.88	0.0	47.7
March	0.1	0.0	0.2	0.99	0.2	49.8
April	7.1	1.7	30.4	1.12	34.1	68.5
May	13.1	4.3	60.7	1.22	74.1	74.3
June	18.6	7.3	90.2	1.28	115.4	71.5
July	21.5	9.1	106.2	1.25	132.7	75.7
August	20.6	8.5	101.2	1.16	117.4	78.1
September	16.2	5.9	77.2	1.04	80.2	74.5
October	9.5	2.6	42.3	0.92	38.9	61.1
November	3.7	0.6	14.6	0.81	11.8	75.1
December	-2.2	0.0	0.0	0.75	0.0	57.9
TOTALS		40.1	522.9		604.8	786.0

Notes: Daylight Correction values obtained from Instruction and Tables For Computing Potential Evapotranspiration and The Water Balance (Thornthwaite & Mather, 1957)

	Catchments and	d Hydrologic Components	March	April	May	June	July	Month August	September	October	November	December	January	February	1
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	60
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	1 7
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	+
		Soil Moisture Storage (mm)	200.00	200.00	200.00	156.09	99.08	59.83	54.09	76.31	139.58	197.48	200.00	200.00	+
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	110.59	112.07	93.70	76.14	38.88	11.82	0.00	0.00	0.00	1
		P-AET (mm)	49.55	34.41	0.22	-39.09	-36.37	-15.60	-1.64	22.22	63.28	57.90	51.80	47.70	+
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-39.09	-75.46	-91.05	-92.69	-70.47	-7.19	0.00	0.00	0.00	+
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	39.09	36.37	15.60	1.64	-70.47	-7.19	-7.19	0.00	0.00	+
								_						-	+
	Dont (Charab	Precipitation Surplus (mm) Infiltration Factor	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	0.00	50.71	51.80	47.70	╀
	Pasture/Shrub, Silty Clay Soils		0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	+
	Silty Clay Sulls	Run-Off Coefficient	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-
		Infiltration (mm)	19.82	13.77	0.09	0.00	0.00	0.00	0.00	0.00	0.00	20.28	20.72	19.08	+
		Run-Off (mm)	29.73	20.65	0.13	0.00	0.00	0.00	0.00	0.00	0.00	30.43	31.08	28.62	丄
		Catchment Area (m ²) = 191092.70						Monthly Volume							
		AET (m³)	47.05	6513.62	14156.19	21132.56	21415.29	17904.51	14548.87	7430.31	2258.85	0.00	0.00	0.00	10
		Infiltration (m ³)	3787.75	2630.49	16.80	0.00	0.00	0.00	0.00	0.00	0.00	3876.12	3959.44	3646.05	1
		Run-Off (m ³)	5681.62	3945.74	25.20	0.00	0.00	0.00	0.00	0.00	0.00	5814.18	5939.16	5469.07	2
		Soil Moisture Storage (mm)	150.00	150.00	150.00	106.09	49.08	9.83	4.09	26.31	89.58	147.48	150.00	150.00	丄
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	108.98	105.19	85.81	74.77	38.88	11.82	0.00	0.00	0.00	
		P-AET (mm)	49.55	34.41	0.22	-37.48	-29.49	-7.71	-0.27	22.22	63.28	57.90	51.80	47.70	
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-37.48	-66.97	-74.68	-74.94	-52.73	0.00	0.00	0.00	0.00	
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	37.48	29.49	7.71	0.27	-22.22	-52.73	0.00	0.00	0.00	
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	10.55	57.90	51.80	47.70	
	Moderately Rooted Crop.	Infiltration Factor	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	Т
	Silty Clay Soils	Run-Off Coefficient	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	Т
	Silty Clay Solis	Infiltration (mm)	17.34	12.04	0.08	0.00	0.00	0.00	0.00	0.00	3.69	20.27	18.13	16.70	Т
		Run-Off (mm)	32.21	22.37	0.14	0.00	0.00	0.00	0.00	0.00	6.86	37.64	33.67	31.01	
		Catchment Area (m ²) = 1168287.32						Monthly Volume	s						
		AET (m³)	287.67	39822.47	86546.98	127321.61	122889.29	100249.50	87348.60	45426.83	13809.98	0.00	0.00	0.00	62
		Infiltration (m³)	20262.57	14071.82	89.87	0.00	0.00	0.00	0.00	0.00	4314.61	23675.34	21181.05	19504.56	10
		Run-Off (m³)	37630.48	26133.39	166.90	0.00	0.00	0.00	0.00	0.00	8012.85	43968.49	39336.23	36222.75	19
		Soil Moisture Storage (mm)	150.00	150.00	150.00	106.09	49.08	9.83	4.09	26.31	89.58	147.48	150.00	150.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	108.98	105.19	85.81	74.77	38.88	11.82	0.00	0.00	0.00	+
		P-AET (mm)	49.55	34.41	0.22	-37.48	-29.49	-7.71	-0.27	22.22	63.28	57.90	51.80	47.70	+
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-37.48	-66.97	-74.68	-74.94	-52.73	0.00	0.00	0.00	0.00	+
Site		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	37.48	29.49	7.71	0.27	-32.73	-52.73	0.00	0.00	0.00	+
		Precipitation Surplus (mm)	49.55	34.41	0.00	0.00	0.00	0.00	0.27	0.00	10.55	57.90	51.80	47.70	╁
	Tile Drained	Infiltration Factor	0.15	0.15	0.22	0.00	0.00	0.00	0.00	0.00	0.15	0.15	0.15	0.15	+
	Cultivated lands,	Run-Off Coefficient	0.15	0.15	0.15			0.15		0.15	0.15	0.15	0.15	0.15	+
	Silty Clay Soils	Infiltration (mm)	0.00	5.16	0.85	0.85	0.85	0.85	0.85	0.00	1.58	8.69	7.77	0.00	+
		Run-Off (mm)	7.43						0.00	0.00				7.16	+
		The state of the s	42.12	29.25	0.19	0.00	0.00	0.00	0.00	0.00	8.97	49.22	44.03	40.55	上
		Catchment Area (m ²) = 388529.98						Monthly Volume							_
		AET (m³)	95.67	13243.51	28782.39	42342.55	40868.52	33339.35	29048.98	15107.32	4592.70	0.00	0.00	0.00	2
		Infiltration (m³)	2887.97	2005.62	12.81	0.00	0.00	0.00	0.00	0.00	614.95	3374.38	3018.88	2779.93	1
		Run-Off (m ³)	16365.16	11365.18	72.58	0.00	0.00	0.00	0.00	0.00	3484.72	19121.50	17106.98	15752.95	8
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	┺
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	┺
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	+
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	_
	Urban Lawn -	Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	╄
	Pervious	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	┺
	Development	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	1
		Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	\perp
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	\Box
		Catchment Area (m ²) 102064.98						Monthly Volume							
		AET (m³)	25.13	3479.01	7561.00	10467.29	8932.38	7971.28	7603.84	3968.62	1206.48	0.00	0.00	0.00	5
		Infiltration (m ³)	1517.31	1053.73	6.73	0.00	0.00	0.00	0.00	0.00	1305.13	1772.87	1586.09	1460.55	8
		Run-Off (m ³)	3540.39	2458.71	15.70	0.00	0.00	0.00	0.00	0.00	3045.31	4136.69	3700.88	3407.95	2
	lmr	Catchment Area (m²) = 37177.65						Monthly Volume	s						
	Impervious Development	Evaporation from Imperv. (m ³) - 15% of P.	277.72	382.00	414.34	398.73	422.15	435.54	415.46	340.73	418.81	322.89	288.87	266.01	
	Development	Run-Off from Imperv. (m ³) - with 15% evap.	1573.73	2164.67	2347.95	2259.47	2392.20	2468.04	2354.27	1930.82	2373.24	1829.70	1636.93	1507.37	2
								al Catchment Vol							
						398.73	422.15	435.54	415.46	340.73	418.81	322.89	288.87	266.01	Т.
		Total ET (m³)	277.72	382.00	414.34	398./3	422.13								
		Total ET (m³) Total AET (m³)	277.72 455.52	382.00 63058.61	414.34 137046.56	201264.00	194105.48	159464.63	138550.29	71933.08	21868.02	0.00	0.00	0.00	
															98

NOTE:

1) PET and P Taken from Table 1

2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET

3) Water Holding Capacity (mm) of Soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March

4) Actual Evaportanspiration (AET) is a function of Adjusted Potential Evaportanspiration (PET) and change in Groundwater Storage (aST) for a given soil type

								Month							
	Catchments ar	nd Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development -	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
	Pervious Landscape	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
Catchment 101	Lunuscape	Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m ²) 22062.86	Imperv coeff.	. 0.84				Monthly Volume	s						
		AET (m³)	5.43	752.04	1634.42	2262.66	1930.87	1723.11	1643.68	857.88	260.80	0.00	0.00	0.00	11070.89
Devel Pe Lan Catchment 102 Devel Pe Lan Devel Pe Devel Pe Devel Pe Devel Pe Devel Pe Devel De		Infiltration (m³)	327.99	227.78	1.45	0.00	0.00	0.00	0.00	0.00	282.12	383.23	342.86	315.72	1881.16
		Run-Off (m ³)	765.31	531.49	3.39	0.00	0.00	0.00	0.00	0.00	658.29	894.21	800.00	736.68	4389.36
		Catchment Area (m²) = 118337.14						Monthly Volume	s						
	Development -	Evaporation from Imperv. (m³) - 15% of P.	883.98	1215.91	1318.87	1269.17	1343.72	1386.32	1322.42	1084.56	1333.07	1027.76	919.48	846.70	13951.95
	Impervious Area	Run-Off from Imperv. (m³) - with 15% evap.	5009.21	6890.18	7473.58	7191.94	7614.40	7855.81	7493.70	6145.84	7554.05	5823.96	5210.38	4797.98	79061.05
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development -	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Pervious	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
Catchment 102	Landscape	Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m²) 29200.00	Imperv coeff.					Monthly Volume							
		AET (m³)	7.19	995.32	2163.14	2994.61	2555.49	2280.52	2175.40	1135.39	345.16	0.00	0.00	0.00	14652.22
		Infiltration (m ³)	434.09	301.46	1.93	0.00	0.00	0.00	0.00	0.00	373.39	507.20	453,77	417.85	2489.69
		Run-Off (m ³)	1012.88	703.42	4.49	0.00	0.00	0.00	0.00	0.00	871.24	1183.48	1058.79	974.99	5809.29
		Catchment Area (m²) = 73000.00						Monthly Volume							
	Development -	Evaporation from Imperv. (m³) - 15% of P.	545.31	750.08	813.59	782.93	828.92	855.20	815.78	669.05	822.35	634.01	567.21	522.32	8606.70
	Impervious Area	Run-Off from Imperv. (m³) - with 15% evap.	3090.09	4250,43	4610.32	4436.58	4697.19	4846.11	4622.73	3791.26	4659.96	3592.70	3214.19	2959.79	48771.30
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development -	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Pervious	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
Catchment 103	Landscape	Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m²) 11960.00	Imperv coeff.		0.13	0.00		Monthly Volume		0.00	25.04	40.55	30.20	33.33	130.33
		AET (m³)	2.94	407.67	886.00	1226.56	1046.70	934.08	891.02	465.04	141.38	0.00	0.00	0.00	6001.39
		Infiltration (m³)	177.80	123.48	0.79	0.00	0.00	0.00	0.00	0.00	152.94	207.75	185.86	171.15	1019.75
		Run-Off (m³)	414.86	288.11	1.84	0.00	0.00	0.00	0.00	0.00	356.85	484.74	433.67	399.34	2379.42
		Catchment Area (m²) = 107640.00		100.11	1.01	0.00		Monthly Volume		0.00	330.03		-133.07	333.34	2575.42
	Development -	Evaporation from Imperv. (m ³) - 15% of P.	804.07	1106.00	1199.65	1154.44	1222.25	1261.00	1202.88	986.52	1212.56	934.85	836.36	770.16	12690.76
															1 22030.70
	Impervious Area	Run-Off from Imperv. (m ³) - with 15% evap.	4556.40	6267.34	6798.00	6541.82	6926.10	7145.68	6816.30	5590.28	6871.20	5297.50	4739.39	4364.26	71914.28

NOTES: 1) PET and P Taken from Table 1

¹⁾ PE1 and P Taken from Table 1
2) Soll Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET
3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SVMN Planning & Design Manual (MOE, March 2003) and applied to March
4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (ΔST) for a given soil type

								Month							
	Catchments ar	nd Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development -	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Pervious Landscape	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
Catchment 104	Lanuscape	Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m²) 186634.29	Imperv coeff	0.74				Monthly Volume	s						
		AET (m³)	45.95	6361.65	13825.91	19140.30	16333.61	14576.14	13904.25	7256.95	2206.15	0.00	0.00	0.00	93650.92
Catchment 104 Devel Impen		Infiltration (m³)	2774.53	1926.84	12.31	0.00	0.00	0.00	0.00	0.00	2386.54	3241.84	2900.30	2670.74	15913.09
		Run-Off (m ³)	6473.90	4495.96	28.71	0.00	0.00	0.00	0.00	0.00	5568.60	7564.29	6767.36	6231.72	37130.54
		Catchment Area (m²) = 539165.71						Monthly Volume	s						
	Development - Impervious Area	Evaporation from Imperv. (m³) - 15% of P.	4027.57	5539.93	6009.00	5782.55	6122.23	6316.33	6025.18	4941.45	6073.70	4682.65	4189.32	3857.73	63567.64
	Impervious Area	Run-Off from Imperv. (m ³) - with 15% evap.	22822.88	31392.92	34051.01	32767.80	34692.62	35792.52	34142.67	28001.57	34417.64	26535.04	23739.47	21860.47	360216.61
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development - Pervious	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Landscape	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
Catchment 105	Lanuscape	Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m²) 72514.29	Imperv coeff	0.74				Monthly Volume	s						
		AET (m³)	17.86	2471.74	5371.87	7436.71	6346.21	5663.37	5402.31	2819.59	857.17	0.00	0.00	0.00	36386.83
		Infiltration (m ³)	1078.01	748.65	4.78	0.00	0.00	0.00	0.00	0.00	927.26	1259.57	1126.87	1037.68	6182.82
		Run-Off (m ³)	2515.35	1746.84	11.16	0.00	0.00	0.00	0.00	0.00	2163.61	2939.00	2629.37	2421.25	14426.58
		Catchment Area (m²) = 209485.71						Monthly Volume	s						
	Development - Impervious Area	Evaporation from Imperv. (m ³) - 15% of P.	1564.86	2152.47	2334.72	2246.73	2378.71	2454.13	2341.00	1919.94	2359.86	1819.38	1627.70	1498.87	24698.37
	impervious Area	Run-Off from Imperv. (m ³) - with 15% evap.	8867.53	12197.31	13230.07	12731.49	13479.36	13906.71	13265.68	10879.64	13372.52	10309.84	9223.66	8493.60	139957.41
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
	Davida	Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development - Pervious	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Landscape	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
Catchment 106		Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
Catchinent 100		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
Catchinent 106				0.77				Monthly Volume	s						
Catcriment 106		Catchment Area (m²) 59954.29	Imperv coeff	0.77						2224 22	708.70	0.00	0.00	0.00	30084.37
Catchinent 100		Catchment Area (m²) 59954.29 AET (m³)	Imperv coeff 14.76	2043.61	4441.43	6148.62	5247.00	4682.43	4466.59	2331.22	708.70	0.00	0.00	0.00	
Caterinient 100					4441.43 3.95	6148.62 0.00	5247.00 0.00	4682.43 0.00	0.00	0.00	766.65	1041.41	931.69	857.95	5111.91
Catchinent 106		AET (m³)	14.76	2043.61			0.00	0.00	0.00						
Catolinent 100	Development	AET (m³) Infiltration (m³)	14.76 891.29	2043.61 618.98	3.95	0.00	0.00	0.00	0.00	0.00	766.65	1041.41	931.69	857.95	5111.91 11927.79
Catoline it 100	Development -	AET (m³) Infiltration (m³) Run-Off (m³)	14.76 891.29	2043.61 618.98	3.95	0.00	0.00	0.00	0.00	0.00	766.65	1041.41	931.69	857.95	

¹⁾ PET and P Taken from Table 1
2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET
3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March
4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

								Month							
	Catchments an	d Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	
	1 1	Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
	1	P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
	1 1	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	
	1 1	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	<u> </u>
	1 1	Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development -	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
	Pervious -	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
Channel 1 & 2	Landscape .	Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
	1 1	Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
	1	Catchment Area (m²) 26640.00	Imperv coeff		0.13	0.00		Monthly Volume		0.00	25.04	40.55	30.20	33.55	130.33
		Catchment Area (m) 20040.00 AET (m³)	6.56	908.06	1973.50	2732.07	2331.44	2080.58	1984.68	1035.85	314.90	0.00	0.00	0.00	13367.64
		Infiltration (m³)	396.03	275.04	1.76	0.00	0.00	0.00	0.00	0.00	340.65	462.74	413.99	381.22	2271.42
		Run-Off (m³)	924.08	641.75	4.10	0.00	0.00	0.00	0.00	0.00	794.86	1079.72	965.97	889.51	5299.98
		Catchment Area (m²) = 2960.00	324.00	041.73	4.10	0.00		Monthly Volume		0.00	7.54.00	10/3./2	303.37	303.31	3233.30
	Development -	Evaporation from Imperv. (m ³) - 15% of P.	22.11	30.41	32.99	31.75	33.61	34.68	33.08	27.13	33.34	25.71	23.00	21.18	348.98
	Impervious Area	Run-Off from Imperv. (m³) - with 15% evap.	125.30	172.35	186.94	179.89	190.46	196.50	187.44	153.73	188.95	145.68	130.33	120.01	1977.58
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	1377.30
	l -	Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	301.75
	I -	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.22	-31.06	-11.82	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
	I +	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-20.00	-20.66	0.00	0.00	0.00	-
	I -	Precipitation Surplus (mm)	49.55	34.41	0.00	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development -	Infiltration Factor	0.30	0.30	0.22	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	204.21
	Pervious -	Run-Off Coefficient	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
Pond 2A	Landscape .	Infiltration (mm)	14.87	10.32	0.70	0.70	0.70	0.70		0.70				14.31	85.26
Poliu ZA	-	Run-Off (mm)	34.69	24.09	0.07	0.00	0.00	0.00	0.00	0.00	12.79 29.84	17.37 40.53	15.54 36.26	33.39	198.95
	I -				0.15	0.00		Monthly Volume		0.00	29.84	40.53	30.20	33.39	198.95
	I -	Catchment Area (m²) 18650.00	Imperv coeff		1201.50	1040.55				705.47	1 222.45	1 000	I 0.00	0.00	0050.05
	-	AET (m³)	4.59	635.71	1381.60	1912.65	1632.19	1456.57	1389.43	725.17	220.46	0.00	0.00	0.00	9358.35
	I .	Infiltration (m³)	277.25	192.55	1.23	0.00	0.00	0.00	0.00	0.00	238.48	323.95	289.82	266.88	1590.16
		Run-Off (m ³)	646.92	449.27	2.87	0.00	0.00	0.00	0.00	0.00	556.46	755.88	676.25	622.72	3710.38
	Development -	Catchment Area (m²) = 18650.00		1				Monthly Volume					T		
	Impervious Area	Evaporation from Imperv. (m³) - 15% of P.	139.32	191.63	207.85	200.02	211.77	218.48	208.41	170.93	210.09	161.98	144.91	133.44	2198.84
		Run-Off from Imperv. (m³) - with 15% evap.	789.45	1085.90	1177.84	1133.45	1200.03	1238.08	1181.01	968.59	1190.52	917.86	821.16	756.16	12460.07
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	<u> </u>
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
	Development -	Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Pervious -	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	<u> </u>
D 10D	Landscape	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
Pond 2B		Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m²) 28620.00	Imperv coeff					Monthly Volume							
		AET (m³)	7.05	975.55	2120.18	2935.13	2504.73	2235.22	2132.19	1112.84	338.31	0.00	0.00	0.00	14361.18
		Infiltration (m ³)	425.47	295.48	1.89	0.00	0.00	0.00	0.00	0.00	365.97	497.13	444.75	409.55	2440.24
		Run-Off (m³)	992.76	689.45	4.40	0.00	0.00	0.00	0.00	0.00	853.93	1159.97	1037.76	955.62	5693.90
		Catchment Area (m²) = 62280.00						Monthly Volume							
	Development	Catchment Area (m) = 62280.00													
	Development -	Evaporation from Imperv. (m ³) - 15% of P.	465.23	639.93	694.11	667.95	707.19	729.61	695.98	570.80	701.58	540.90	483.92	445.61	7342.81

NOTES:

1) PET and P Taken from Table 1
2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET
3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March
4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (&ST) for a given soil type

TABLE K-3 POST-DEVELOPMENT WATER BALANCE CALED ON STATION & ARGO KING I & II

	Catchmonts and	Hydrologic Components						Month							Total
	Catchinients and	a Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Soil Moisture Storage (mm)	200.00	200.00	200.00	156.09	99.08	59.83	54.09	76.31	75.00	132.90	135.42	135.42	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	110.59	112.07	93.70	76.14	38.88	11.82	0.00	0.00	0.00	551.60
		P-AET (mm)	49.55	34.41	0.22	-39.09	-36.37	-15.60	-1.64	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-39.09	-75.46	-91.05	-92.69	-70.47	-7.19	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	39.09	36.37	15.60	1.64	-22.22	-63.28	-7.19	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	0.00	50.71	51.80	47.70	234.40
	Pasture/Shrub,	Infiltration Factor	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	-
	Silty Clay Soils	Run-Off Coefficient	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-
NHS		Infiltration (mm)	19.82	13.77	0.09	0.00	0.00	0.00	0.00	0.00	0.00	20.28	20.72	19.08	93.76
		Run-Off (mm)	29.73	20.65	0.13	0.00	0.00	0.00	0.00	0.00	0.00	30.43	31.08	28.62	140.64
		Catchment Area (m ²) 97052.63	Imperv coeff.	. 0.00				Monthly Volume	S						
		AET (m³)	23.90	3308.16	7189.68	10732.86	10876.45	9093.39	7389.12	3773.72	1147.23	0.00	0.00	0.00	53534.50
		Infiltration (m³)	1923.73	1335.98	8.53	0.00	0.00	0.00	0.00	0.00	0.00	1968.61	2010.93	1851.76	9099.55
		Run-Off (m³)	2885.59	2003.97	12.80	0.00	0.00	0.00	0.00	0.00	0.00	2952.92	3016.40	2777.65	13649.32
	Development -	Catchment Area (m ²) = 0.00						Monthly Volume	s						
	Impervious Area	Evaporation from Imperv. (m ³) - 15% of P.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	,	Run-Off from Imperv. (m ³) - with 15% evap.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								I Catchment Vol							
		Total ET (m³)	9963.97	13705.46	14865.92	14305.69	15146.03	15626.22	14905.93	12224.87	15025.98	11584.61	10364.13	9543.80	157262.60
Total Site		Total AET (m³)	136.24	18859.50	40987.72	57522.17	50804.67	44725.40	41378.68	21513.66	6540.26	0.00	0.00	0.00	282468.29
		Total Infiltration (m ³)	8706.19	6046.22	38.61	0.00	0.00	0.00	0.00	0.00	5834.01	9893.43	9100.83	8380.50	47999.79
		Total Runoff (m³)	75173.81	90658.78	84323.19	81065.60	85827.50	88548.58	84466.96	69274.24	98759.92	87090.28	78289.55	72092.88	995571.29

NOTES:

1) PET and P Taken from Table 1

1) Fe1 and Fraker from Fabre 2.

2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET

3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March

4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (ΔST) for a given soil type

	C-1-111	I Hardwall and a Community						Month							Total
	Catchments and	Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development - Unconnected Pervious	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Landscape	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m ²) 13942.86						Monthly Volume	es						
		AET (m³)	3.43	475.26	1032.89	1429.91	1220.23	1088.94	1038.74	542.14	164.81	0.00	0.00	0.00	6996.36
		Infiltration (m³)	207.28	143.95	0.92	0.00	0.00	0.00	0.00	0.00	178.29	242.19	216.67	199.52	1188.82
		Run-Off (m³)	483.64	335.88	2.15	0.00	0.00	0.00	0.00	0.00	416.01	565.10	505.57	465.55	2773.91
	Development -	Catchment Area (m²) = 115107.14	Imperv coeff	. 0.84			l	Monthly Volume	es						
	Unconnected	Evaporation from Imperv. (m ³) - 15% of P.	859.85	1182.73	1282.87	1234.52	1307.04	1348.48	1286.32	1054.96	1296.68	999.71	894.38	823.59	13571.13
	Impervious Area	Run-Off from Imperv. (m³) - with 15% evap.	4872.49	6702.11	7269.59	6995.64	7406.57	7641.39	7289.16	5978.09	7347.86	5665.00	5068.17	4667.02	76903.08
		P - Total Precipitation plus irrigation (mm)	54.03	74.32	80.62	77.58	82.13	84.74	80.83	66.29	81.48	62.82	56.20	51.75	852.81
Catchment 101		P-PET (mm)	53.79	40.24	6.54	-37.83	-50.57	-32.62	0.59	27.41	69.66	62.82	56.20	51.75	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-37.83	-88.40	-121.02	-120.43	-93.02	-23.36	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	37.17	0.00	0.00	0.59	28.00	75.00	75.00	75.00	75.00	-
		Actual Potential Evapotranspiration (mm)	0.25	34.09	74.08	104.33	89.83	78.10	74.52	38.88	11.82	0.00	0.00	0.00	505.90
		P-AET (mm)	53.79	40.24	6.54	-26.76	-7.69	6.64	6.31	27.41	69.66	62.82	56.20	51.75	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.76	-34.45	-27.81	-21.50	0.00	0.00	0.00	0.00	0.00	-
	Mitigation -	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.76	7.69	-6.64	-6.31	-21.50	0.00	0.00	0.00	0.00	-
	Connected Pervious	Precipitation Surplus (mm)	53.79	40.24	6.54	0.00	0.00	0.00	0.00	5.91	69.66	62.82	56.20	51.75	346.91
	Park Area	MOECC Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
		Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	16.14	12.07	1.96	0.00	0.00	0.00	0.00	1.77	20.90	18.85	16.86	15.53	104.07
		Run-Off (mm)	37.65	28.17	4.57	0.00	0.00	0.00	0.00	4.14	48.76	43.98	39.34	36.23	242.84
		Catchment Area (m ²) 7500.00					Monthly	Volumes (Pervi	ous Area)						
		AET (m³)	1.85	255.65	555.60	782.51	673.70	585.75	558.92	291.62	88.66	0.00	0.00	0.00	3794.25
		Infiltration (m³)	121.02	90.53	14.70	0.00	0.00	0.00	0.00	13.30	156.74	141.35	126.46	116.45	780.55
		Run-Off (m³)	282.38	211.24	34.31	0.00	0.00	0.00	0.00	31.03	365.73	329.81	295.07	271.71	1821.28
	Mitigation -	Catchment Area (m ²) = 750.00	Imperv coeff	. 0.10				Monthly Volume	es						
	Connected Impervious	Evaporation from Imperv. (m ³) - 15% of P.	5.60	7.71	8.36	8.04	8.52	8.79	8.38	6.87	8.45	6.51	5.83	5.37	88.43
	Park Area	Run-Off Directed to Pervious Area (m³)	31.75	43.67	47.37	45.58	48.26	49.79	47.49	38.95	47.88	36.91	33.02	30.41	501.08

- 1) PET and P Taken from Table 1
- 2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET
- 3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March
- 4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

	C-1-b	- d the developed - Commence to						Month							Total
	Catchments ai	nd Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
	Mitigation ROWs - Pervious Area to Silva Cells	P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
		Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
		Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
	Silva Celis	Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m ²) 620.00						Monthly Volume	es						
		AET (m³)	0.15	21.13	45.93	63.58	54.26	48.42	46.19	24.11	7.33	0.00	0.00	0.00	311.11
		Infiltration (m ³)	9.22	6.40	0.04	0.00	0.00	0.00	0.00	0.00	7.93	10.77	9.63	8.87	52.86
Catchment 101 (Continued)		Run-Off Directed to Silva Cells (m ³)	21.51	14.94	0.10	0.00	0.00	0.00	0.00	0.00	18.50	25.13	22.48	20.70	123.35
(Continued)		Infiltration via Silva Cells (Sized for 25mm capture) (m³)	19.36	13.44	0.09	0.00	0.00	0.00	0.00	0.00	16.65	22.62	20.23	18.63	111.01
		Run-Off (m³)	2.15	1.49	0.01	0.00	0.00	0.00	0.00	0.00	1.85	2.51	2.25	2.07	12.33
		Catchment Area (m ²) = 2480.00	Imperv coeff.	0.80				Monthly Volume	ıs						
	Mitigation ROWs -	Evaporation from Imperv. (m³) - 15% of P.	18.53	25.48	27.64	26.60	28.16	29.05	27.71	22.73	27.94	21.54	19.27	17.74	292.39
	Impervious Area to	Run-Off Directed to Silva Cells (m ³)	104.98	144.40	156.62	150.72	159.58	164.63	157.05	128.80	158.31	122.05	109.19	100.55	1656.89
	Silva Cells	Infiltration via Silva Cells (Sized for 25mm capture) (m³)	94.48	129.96	140.96	135.65	143.62	148.17	141.34	115.92	142.48	109.85	98.27	90.50	1491.20
		Run-Off (m³)	10.50	14.44	15.66	15.07	15.96	16.46	15.70	12.88	15.83	12.21	10.92	10.06	165.69
							Tota	al Catchment Vol	umes						
		Total ET (m³)	883.98	1215.91	1318.87	1269.17	1343.72	1386.32	1322.42	1084.56	1333.07	1027.76	919.48	846.70	13951.95
		Total AET (m³)	5.43	752.04	1634.42	2276.00	1948.19	1723.11	1643.85	857.88	260.80	0.00	0.00	0.00	11101.72
		Total Infiltration (m³)	451.35	384.28	156.71	135.65	143.62	148.17	141.34	129.22	502.09	526.77	471.27	433.97	3624.44
		Total Runoff (m³)	5651.16	7265.17	7321.72	7010.71	7422.53	7657.85	7304.86	6022.00	8147.29	6574.63	5881.97	5416.41	81676.29

¹⁾ PET and P Taken from Table 1

²⁾ Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET

³⁾ Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March

⁴⁾ Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

	C-1-1	d Underlands Comments						Month							Total
	Catchments ar	nd Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	iotai
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development -	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Pervious Landscape	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m ²) 26590.00					l	Monthly Volume	es						
		AET (m³)	6.55	906.35	1969.79	2726.94	2327.07	2076.68	1980.96	1033.91	314.31	0.00	0.00	0.00	13342.55
		Infiltration (m³)	395.29	274.52	1.75	0.00	0.00	0.00	0.00	0.00	340.01	461.87	413.21	380.50	2267.16
		Run-Off (m³)	922.34	640.54	4.09	0.00	0.00	0.00	0.00	0.00	793.37	1077.69	964.15	887.84	5290.03
	Davidson	Catchment Area (m²) = 64710.00	Imperv coeff	. 0.71			l	Monthly Volume	es						
	Development - Impervious Area	Evaporation from Imperv. (m ³) - 15% of P.	483.38	664.90	721.19	694.01	734.78	758.08	723.13	593.07	728.96	562.01	502.80	463.00	7629.31
	,	Run-Off from Imperv. (m ³) - with 15% evap.	2739.17	3767.74	4086.76	3932.75	4163.76	4295.77	4097.76	3360.71	4130.76	3184.70	2849.18	2623.67	43232.75
Catchment 102		P - Total Precipitation plus irrigation (mm)	54.50	74.97	81.32	78.25	82.85	85.48	81.54	66.87	82.19	63.37	56.69	52.21	860.23
Odtominent 102		P-PET (mm)	-50.48	-69.43	-75.31	-72.47	-76.73	-79.16	-75.51	-61.93	-76.12	-58.68	-52.50	-48.35	-
		Soil Moisture Deficit (mm)	0.00	-69.43	-144.74	-217.20	-293.93	-373.09	-448.60	-510.53	-586.65	-645.33	-697.83	-746.18	-
		Soil Moisture Storage (mm)	75.00	5.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
		Actual Potential Evapotranspiration (mm)	0.25	34.09	74.08	71.50	75.70	78.10	74.50	38.88	11.82	0.00	0.00	0.00	458.92
		P-AET (mm)	54.26	40.88	7.24	6.75	7.15	7.38	7.04	27.99	70.37	63.37	56.69	52.21	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
	Mitigation LNPARK 2 -	Precipitation Surplus (mm)	54.26	40.88	7.24	6.75	7.15	7.38	7.04	27.99	70.37	63.37	56.69	52.21	401.32
	Connected Pervious	MOECC Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Park Area to Silva Cells	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	16.28	12.26	2.17	2.03	2.14	2.21	2.11	8.40	21.11	19.01	17.01	15.66	120.40
		Run-Off (mm)	37.98	28.62	5.07	4.73	5.00	5.16	4.93	19.59	49.26	44.36	39.68	36.54	280.92
		Catchment Area (m ²) 2610.00						Monthly Volume	es						
		AET (m³)	0.64	88.96	193.35	186.62	197.58	203.84	194.45	101.49	30.85	0.00	0.00	0.00	1197.77
		Infiltration (m³)	42.48	32.01	5.67	5.29	5.60	5.78	5.51	21.91	55.10	49.62	44.39	40.88	314.23
		Run-Off to Silva Cells (m³)	99.13	74.69	13.22	12.34	13.06	13.48	12.85	51.13	128.57	115.77	103.58	95.38	733.21
		Infiltration via Silva Cells (Sized for 25mm capture) (m3)	89.21	67.22	11.90	11.10	11.76	12.13	11.57	46.02	115.71	104.20	93.22	85.84	659.89

1) PET and P Taken from Table 1

2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET
3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March

4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

	C-1-b	-d the declarate Commence to						Month							Total
	Catchments ar	nd Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	TOLAT
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
	Mitigation LNPARK 2 -	Catchment Area (m²) = 290.00	Imperv coeff.	0.10				Monthly Volume	25						
	Connected Impervious	Evaporation from Imperv. (m³) - 15% of P.	2.17	2.98	3.23	3.11	3.29	3.40	3.24	2.66	3.27	2.52	2.25	2.07	34.19
	Park Area	Run-Off Directed to Pervious Area (m³)	12.28	16.89	18.31	17.62	18.66	19.25	18.36	15.06	18.51	14.27	12.77	11.76	193.75
		Catchment Area (m ²) = 8000.00						Monthly Volume	es						
	Mitigation LNPARK 2-	Evaporation from Imperv. (m ³) - 15% of P.	59.76	82.20	89.16	85.80	90.84	93.72	89.40	73.32	90.12	69.48	62.16	57.24	943.20
	Impervious Area to	Run-Off Directed to Pervious Area (m ³)	338.64	465.80	505.24	486.20	514.76	531.08	506.60	415.48	510.68	393.72	352.24	324.36	5344.80
Catchment 102 (Continued)	Silva Cells	Infiltration via Silva Cells (Sized for 25mm capture) (m³)	304.78	419.22	454.72	437.58	463.28	477.97	455.94	373.93	459.61	354.35	317.02	291.92	4810.32
		Run-Off (m³)	33.86	46.58	50.52	48.62	51.48	53.11	50.66	41.55	51.07	39.37	35.22	32.44	534.48
							Tota	I Catchment Vol	lumes						
		Total ET (m³)	545.31	750.08	813.59	782.93	828.92	855.20	815.78	669.05	822.35	634.01	567.21	522.32	8606.70
		Total AET (m³)	7.19	995.32	2163.14	2913.56	2524.64	2280.52	2175.40	1135.39	345.16	0.00	0.00	0.00	14540.33
		Total Infiltration (m ³)	831.76	792.97	474.04	453.97	480.64	495.88	473.02	441.87	970.44	970.03	867.83	799.14	8051.59
		Total Runoff (m³)	3705.30	4462.33	4142.70	3982.60	4216.55	4350.23	4149.71	3407.38	4988.05	4313.34	3858.92	3553.48	49130.58

- 1) PET and P Taken from Table 1
- 2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET
- 3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March
- 4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

								Month							Total
	Catchments ar	d Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development -	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Pervious Landscape	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m²) 11820.00						Monthly Volume	es						
		AET (m³)	2.91	402.90	875.63	1212.20	1034.45	923.14	880.59	459.60	139.72	0.00	0.00	0.00	5931.14
		Infiltration (m³)	175.72	122.03	0.78	0.00	0.00	0.00	0.00	0.00	151.15	205.31	183.68	169.14	1007.81
		Run-Off (m³)	410.01	284.74	1.82	0.00	0.00	0.00	0.00	0.00	352.67	479.06	428.59	394.67	2351.57
		Catchment Area (m²) = 107080.00	Imperv coeff.	0.90			-	Monthly Volume	es						
	Development - Impervious Area	Evaporation from Imperv. (m ³) - 15% of P.	799.89	1100.25	1193.41	1148.43	1215.89	1254.44	1196.62	981.39	1206.26	929.99	832.01	766.16	12624.73
	impervious/irea	Run-Off from Imperv. (m³) - with 15% evap.	4532.70	6234.73	6762.64	6507.79	6890.06	7108.51	6780.84	5561.20	6835.45	5269.94	4714.73	4341.56	71540.15
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
Catchment 103		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
		Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Mitigation ROWs -	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
	Pervious Area to	Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
	Silva Cells	Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m²) 140.00					ı	Monthly Volume	es						
		AET (m³)	0.03	4.77	10.37	14.36	12.25	10.93	10.43	5.44	1.65	0.00	0.00	0.00	70.25
		Infiltration (m³)	2.08	1.45	0.01	0.00	0.00	0.00	0.00	0.00	1.79	2.43	2.18	2.00	11.94
		Run-Off Directed to Silva Cells (m³)	4.86	3.37	0.02	0.00	0.00	0.00	0.00	0.00	4.18	5.67	5.08	4.67	27.85
		Infiltration via Silva Cells (Sized for 25mm capture) (m³)	4.37	3.04	0.02	0.00	0.00	0.00	0.00	0.00	3.76	5.11	4.57	4.21	25.07
		Run-Off (m³)	0.49	0.34	0.00	0.00	0.00	0.00	0.00	0.00	0.42	0.57	0.51	0.47	2.79
		Catchment Area (m²) = 560.00	Imperv coeff.	0.80			ı	Monthly Volume	es						
	Mitigation ROWs -	Evaporation from Imperv. (m³) - 15% of P.	4.18	5.75	6.24	6.01	6.36	6.56	6.26	5.13	6.31	4.86	4.35	4.01	66.02
	Impervious Area to	Run-Off Directed to Silva Cells (m³)	23.70	32.61	35.37	34.03	36.03	37.18	35.46	29.08	35.75	27.56	24.66	22.71	374.14
	Silva Cells	Infiltration via Silva Cells (Sized for 25mm capture) (m³)	21.33	29.35	31.83	30.63	32.43	33.46	31.92	26.18	32.17	24.80	22.19	20.43	336.72
		Run-Off (m³)	2.37	3.26	3.54	3.40	3.60	3.72	3.55	2.91	3.57	2.76	2.47	2.27	37.41
							Tota	l Catchment Vo	lumes						
		Total ET (m³)	804.07	1106.00	1199.65	1154.44	1222.25	1261.00	1202.88	986.52	1212.56	934.85	836.36	770.16	12690.76
		Total AET (m³)	2.94	407.67	886.00	1226.56	1046.70	934.08	891.02	465.04	141.38	0.00	0.00	0.00	6001.39
		Total Infiltration (m³)	203.50	155.86	32.64	30.63	32.43	33.46	31.92	26.18	188.87	237.66	212.62	195.79	1381.54
			4945.56		6767.99		6893.67	7112.22	6784.39					4738.97	73931.91

NOTES: 1) PET and P Taken from Table 1

²⁾ Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET

³⁾ Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March

⁴⁾ Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

	C-1-h1	d the dealers's Commence to						Month							Total
	Catchments ar	d Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	lotai
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development -	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Unconnected Pervious Landscape	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
	Lariascape	Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m²) 99894.29			•			Monthly Volume	is				•		•
		AET (m³)	24.60	3405.02	7400.19	10244.67	8742.41	7801.74	7442.12	3884.22	1180.82	0.00	0.00	0.00	50125.79
		Infiltration (m³)	1485.04	1031.32	6.59	0.00	0.00	0.00	0.00	0.00	1277.38	1735.16	1552.36	1429.49	8517.33
		Run-Off (m³)	3465.10	2406.42	15.37	0.00	0.00	0.00	0.00	0.00	2980.54	4048.72	3622.17	3335.47	19873.78
	Development -	Catchment Area (m²) = 462205.71	Imperv coeff.	0.74			ı	Monthly Volume	is						
	Unconnected	Evaporation from Imperv. (m ³) - 15% of P.	3452.68	4749.16	5151.28	4957.16	5248.35	5414.74	5165.15	4236.12	5206.75	4014.26	3591.34	3307.08	54494.05
	Impervious Area	Run-Off from Imperv. (m³) - with 15% evap.	19565.17	26911.93	29190.60	28090.55	29740.63	30683.53	29269.18	24004.65	29504.90	22747.45	20350.92	18740.13	308799.64
		P - Total Precipitation plus irrigation (mm)	54.50	74.97	81.32	78.25	82.85	85.48	81.54	66.87	82.19	63.37	56.69	52.21	860.23
		P-PET (mm)	54.26	40.88	7.24	-37.15	-49.86	-31.88	1.29	27.99	70.37	63.37	56.69	52.21	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-37.15	-87.01	-118.89	-117.60	-89.61	-19.24	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	37.85	0.00	0.00	1.29	29.28	75.00	75.00	75.00	75.00	-
0.1.1		Actual Potential Evapotranspiration (mm)	0.25	34.09	74.08	104.53	90.08	78.10	74.55	38.88	11.82	0.00	0.00	0.00	506.38
Catchment 104		P-AET (mm)	54.26	40.88	7.24	-26.28	-7.23	7.38	6.99	27.99	70.37	63.37	56.69	52.21	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.28	-33.51	-26.14	-19.15	0.00	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.28	7.23	-7.38	-6.99	-19.15	0.00	0.00	0.00	0.00	-
	Mitigation -	Precipitation Surplus (mm)	54.26	40.88	7.24	0.00	0.00	0.00	0.00	8.84	70.37	63.37	56.69	52.21	353.85
	Connected Pervious	MOECC Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Park Area	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	16.28	12.26	2.17	0.00	0.00	0.00	0.00	2.65	21.11	19.01	17.01	15.66	106.16
		Run-Off (mm)	37.98	28.62	5.07	0.00	0.00	0.00	0.00	6.19	49.26	44.36	39.68	36.54	247.70
		Catchment Area (m²) 35100.00					Monthly	Volumes (Pervi	ous Area)						
		AET (m³)	8.64	1196.43	2600.22	3669.07	3161.91	2741.31	2616.69	1364.80	414.91	0.00	0.00	0.00	17773.97
		Infiltration (m³)	571.33	430.50	76.21	0.00	0.00	0.00	0.00	93.06	741.02	667.27	596.97	549.72	3726.06
		Run-Off Directed to Silva Cells (m³)	1333.10	1004.50	177.81	0.00	0.00	0.00	0.00	217.13	1729.04	1556.96	1392.93	1282.68	8694.15
		Infiltration via Silva Cells (Sized for 25mm capture) (m³)	1199.79	904.05	160.03	0.00	0.00	0.00	0.00	195.42	1556.14	1401.26	1253.64	1154.41	7824.74
		Run-Off (m³)	133.31	100.45	17.78	0.00	0.00	0.00	0.00	21.71	172.90	155.70	139.29	128.27	869.42
	Mitigation -	Catchment Area (m²) = 3900.00	Imperv coeff.	0.10				Monthly Volume	ıs						
	Connected Impervious	Evaporation from Imperv. (m ³) - 15% of P.	29.13	40.07	43.47	41.83	44.28	45.69	43.58	35.74	43.93	33.87	30.30	27.90	459.81
	Park Area	Run-Off Directed to Pervious Area (m ³)	165.09	227.08	246.30	237.02	250.95	258.90	246.97	202.55	248.96	191.94	171.72	158.13	2605.59
		Catchment Area (m²) = 7200.00						Monthly Volume	es						
	Mitigation - Additional	Evaporation from Imperv. (m ³) - 15% of P.	53.78	73.98	80.24	77.22	81.76	84.35	80.46	65.99	81.11	62.53	55.94	51.52	848.88
	Impervious Area	Run-Off Directed to Silva Cells (m ³)	304.78	419.22	454.72	437.58	463.28	477.97	455.94	373.93	459.61	354.35	317.02	291.92	
	(LNPARK) to Silva Cells	Run-Off stored in Silva Cells (m³)	274.30	377.30	409.24	393.82	416.96	430.17	410.35	336.54	413.65	318.91	285.31	262.73	4329.29

1) PET and P Taken from Table 1

2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET
3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March

4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

	Catchmonts and	Hydrologic Components						Month							Total
	Catchments and i		March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		P - Total Precipitation plus irrigation (mm)	92.13	126.73	137.46	132.28	140.05	144.49	137.83	113.04	138.94	107.12	95.83	88.25	1454.10
		P-PET (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	-
	I _	Actual Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.8
		P-AET (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	-
	I _	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
	Mitigation -	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
	Connected Pervious	Precipitation Surplus (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	849.2
	Pond Area	MOECC Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
		Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	27.57	27.79	19.01	5.06	2.20	8.14	17.28	22.25	38.13	32.13	28.75	26.47	254.7
	I _	Run-Off (mm)	64.32	64.85	44.36	11.81	5.14	18.99	40.31	51.91	88.98	74.98	67.08	61.77	594.49
	I _	Catchment Area (m²) 24100.00					Monthly	Volumes (Pervi	ous Area)						
	I _	AET (m³)	5.93	821.48	1785.33	2781.33	3198.25	2828.25	1933.82	937.09	284.88	0.00	0.00	0.00	14576.
	I _	Infiltration (m³)	664.32	669.78	458.20	121.95	53.05	196.15	416.33	536.12	919.04	774.44	692.85	638.01	6140.2
		Run-Off (m³)	1550.08	1562.82	1069.13	284.55	123.78	457.69	971.43	1250.94	2144.42	1807.03	1616.65	1488.69	14327.
	Mitigation -	Catchment Area (m²) = 24100.00	Imperv coeff.	0.50				Monthly Volume	es						
	Connected Impervious Pond Area	Evaporation from Imperv. (m ³) - 15% of P.	180.03	247.63	268.59	258.47	273.66	282.33	269.32	220.88	271.49	209.31	187.26	172.44	2841.3
Catchment 104	Pond Area	Run-Off Directed to Pervious Area (m ³)	1020.15	1403.22	1522.04	1464.68	1550.71	1599.88	1526.13	1251.63	1538.42	1186.08	1061.12	977.13	16101.
(continued)	_	P - Total Precipitation plus irrigation (mm)	92.13	126.73	137.46	132.28	140.05	144.49	137.83	113.04	138.94	107.12	95.83	88.25	1454.1
	_	P-PET (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	<u> </u>
	_	Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
	_	Soil Moisture Storage (mm)	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	-
	_	Actual Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.8
	_	P-AET (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	-
	_	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	<u> </u>
	Mitigation -	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
	Connected Pervious Rear Yard Area	Precipitation Surplus (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	849.2
	Real falu Alea	MOECC Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	_	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
	_	Infiltration (mm)	27.57	27.79	19.01	5.06	2.20	8.14	17.28	22.25	38.13	32.13	28.75	26.47	254.7
	_	Run-Off (mm)	64.32	64.85	44.36	11.81	5.14	18.99	40.31	51.91	88.98	74.98	67.08	61.77	594.4
		Catchment Area (m²) 22800.00						Volumes (Pervi							
		AET (m³)	5.61	777.17	1689.03	2631.30	3025.73	2675.69	1829.50	886.54	269.51	0.00	0.00	0.00	13790.
		Infiltration (m ³)	628.48	633.65	433.48	115.37	50.19	185.57	393.87	507.20	869.46	732.67	655.48	603.60	5809.0
		Run-Off (m ³)	1466.46	1478.52	1011.46	269.20	117.11	433.00	919.03	1183.46	2028.74	1709.56	1529.45	1408.39	13554.
	Mitigation -	Catchment Area (m ²) = 22800.00	Imperv coeff.					Monthly Volume							
	Connected Impervious	Evaporation from Imperv. (m ³) - 15% of P.	170.32	234.27	254.11	244.53	258.89	267.10	254.79	208.96	256.84	198.02	177.16	163.13	2688.1
	Roof Area							1513.58	1443.81				1003.88	924.43	15232.68

- 1) PET and P Taken from Table 1
- 2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET
- 3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March
 4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

	Catalum auto au	nd Hydrologic Components						Month							Total
	Catchments ar	na Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Catchment Area (m²) = 18960.00	Imperv coeff.	0.80				Monthly Volume	es .						
	Mitigation -	Evaporation from Imperv. (m³) - 15% of P.	141.63	194.81	211.31	203.35	215.29	222.12	211.88	173.77	213.58	164.67	147.32	135.66	2235.38
	Impervious ROW Area	Run-Off Directed to Pervious Area (m³)	802.58	1103.95	1197.42	1152.29	1219.98	1258.66	1200.64	984.69	1210.31	933.12	834.81	768.73	12667.18
	to Silva Cells	Infiltration via Silva Cells (Sized for 25mm capture) (m³)	802.58	1103.95	1197.42	1152.29	1219.98	1258.66	1200.64	984.69	1210.31	933.12	834.81	768.73	12667.18
		Run-Off (m³)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Mitigation - Pervious ROW Area to Silva	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
Catchment 104	Cells	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
(continued)		Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m ²) 4740.00						Monthly Volume	ıs						
		AET (m³)	1.17	161.57	351.14	486.11	414.83	370.19	353.13	184.31	56.03	0.00	0.00	0.00	2378.48
		Infiltration (m ³)	70.47	48.94	0.31	0.00	0.00	0.00	0.00	0.00	60.61	82.33	73.66	67.83	404.15
		Run-Off Directed to Silva Cells (m ³)	164.42	114.18	0.73	0.00	0.00	0.00	0.00	0.00	141.43	192.11	171.87	158.27	943.01
		Infiltration via Silva Cells (Sized for 25mm capture) (m³)	147.98	102.77	0.66	0.00	0.00	0.00	0.00	0.00	127.28	172.90	154.69	142.44	848.71
		Run-Off (m³)	16.44	11.42	0.07	0.00	0.00	0.00	0.00	0.00	14.14	19.21	17.19	15.83	94.30
							Tota	Il Catchment Vol	umes						
		Total ET (m³)	4027.57	5539.93	6009.00	5782.55	6122.23	6316.33	6025.18	4941.45	6073.70	4682.65	4189.32	3857.73	63567.64
		Total AET (m³)	45.95	6361.65	13825.91	19812.47	18543.14	16417.19	14175.27	7256.95	2206.15	0.00	0.00	0.00	98644.69
		Total Infiltration (m ³)	5844.28	5302.25	2742.14	1783.44	1740.17	2070.56	2421.19	2653.02	7174.89	6818.07	6099.76	5616.96	50266.72
		Total Runoff (m³)	26227.04	32513.47	31349.89	28688.06	30027.84	31622.01	31205.24	26498.16	36891.62	30523.10	27307.36	25145.97	357999.76

- 1) PET and P Taken from Table 1
- 2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET
- 3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March
 4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (\(\Delta \text{ ST} \) for a given soil type

								Month							
	Catchments and F	Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development -	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Unconnected Pervious Landscape	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
	Lanuscape	Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m²) 7166.29						Monthly Volume	es						
		AET (m³)	1.76	244.27	530.88	734.94	627.17	559.69	533.89	278.65	84.71	0.00	0.00	0.00	3595.9
		Infiltration (m³)	106.53	73.99	0.47	0.00	0.00	0.00	0.00	0.00	91.64	124.48	111.36	102.55	611.02
		Run-Off (m³)	248.58	172.63	1.10	0.00	0.00	0.00	0.00	0.00	213.82	290.45	259.85	239.28	1425.7
	Development -	Catchment Area (m²) = 184243.71	Imperv coeff.	0.74				Monthly Volume	es						
	Unconnected	Evaporation from Imperv. (m³) - 15% of P.	1376.30	1893.10	2053.40	1976.01	2092.09	2158.42	2058.92	1688.59	2075.51	1600.16	1431.57	1318.26	21722.3
	Impervious Area	Run-Off from Imperv. (m³) - with 15% evap.	7799.04	10727.59	11635.91	11197.41	11855.16	12231.02	11667.23	9568.70	11761.20	9067.55	8112.25	7470.16	123093.
		P - Total Precipitation + Impervious runoff (mm)	54.50	74.97	81.32	78.25	82.85	85.48	81.54	66.87	82.19	63.37	56.69	52.21	860.2
Catchment 105		P-PET (mm)	54.26	40.88	7.24	-37.15	-49.86	-31.88	1.29	27.99	70.37	63.37	56.69	52.21	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-37.15	-87.01	-118.89	-117.60	-89.61	-19.24	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	37.85	0.00	0.00	1.29	29.28	75.00	75.00	75.00	75.00	-
		Actual Potential Evapotranspiration (mm)	0.25	34.09	74.08	104.53	90.08	78.10	74.55	38.88	11.82	0.00	0.00	0.00	506.3
		P-AET (mm)	54.26	40.88	7.24	-26.28	-7.23	7.38	6.99	27.99	70.37	63.37	56.69	52.21	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.28	-33.51	-26.14	-19.15	0.00	0.00	0.00	0.00	0.00	-
	Mitigation -	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.28	7.23	-7.38	-6.99	-19.15	0.00	0.00	0.00	0.00	-
	Connected Pervious	Precipitation Surplus (mm)	54.26	40.88	7.24	0.00	0.00	0.00	0.00	8.84	70.37	63.37	56.69	52.21	353.85
	Park Area	MOECC Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
		Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	16.28	12.26	2.17	0.00	0.00	0.00	0.00	2.65	21.11	19.01	17.01	15.66	106.16
		Run-Off (mm)	37.98	28.62	5.07	0.00	0.00	0.00	0.00	6.19	49.26	44.36	39.68	36.54	247.70
		Catchment Area (m ²) 50850.00					Monthly	Volumes (Pervi	ous Area)						
		AET (m³)	12.52	1733.28	3766.98	5315.44	4580.72	3971.39	3790.84	1977.21	601.08	0.00	0.00	0.00	25749.4
		Infiltration (m³)	827.69	623.67	110.40	0.00	0.00	0.00	0.00	134.81	1073.53	966.68	864.84	796.39	5398.0
		Run-Off (m³)	1931.28	1455.24	257.60	0.00	0.00	0.00	0.00	314.57	2504.89	2255.60	2017.96	1858.24	12595.
	Mitigation -	Catchment Area (m²) = 5650.00	Imperv coeff.	. 0.10				Monthly Volume	es						
	Connected Impervious	Evaporation from Imperv. (m ³) - 15% of P.	42.21	58.05	62.97	60.60	64.16	66.19	63.14	51.78	63.65	49.07	43.90	40.43	666.14
	Park Area	Run-Off Directed to Pervious Area (m³)	239.16	328.97	356.83	343.38	363.55	375.08	357.79	293.43	360.67	278.06	248.77	229.08	3774.77

NOTES: 1) PET and P Taken from Table 1

²⁾ Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET

³⁾ Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March

⁴⁾ Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

	Catabasanta an	d Underlania Commonante						Month							Total
	Catchments an	nd Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		P - Total Precipitation plus irrigation (mm)	92.13	126.73	137.46	132.28	140.05	144.49	137.83	113.04	138.94	107.12	95.83	88.25	1454.10
		P-PET (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	-
		Actual Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P-AET (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
	Mitigation -	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
	Connected Pervious	Precipitation Surplus (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	849.27
	Rear Yard Area	MOECC Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
		Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	27.57	27.79	19.01	5.06	2.20	8.14	17.28	22.25	38.13	32.13	28.75	26.47	254.78
		Run-Off (mm)	64.32	64.85	44.36	11.81	5.14	18.99	40.31	51.91	88.98	74.98	67.08	61.77	594.49
		Catchment Area (m ²) 12800.00					Monthly	Volumes (Pervi	ous Area)						
		AET (m³)	3.15	436.30	948.23	1477.22	1698.66	1502.14	1027.09	497.71	151.31	0.00	0.00	0.00	7741.80
		Infiltration (m³)	352.83	355.73	243.36	64.77	28.18	104.18	221.12	284.74	488.12	411.32	367.99	338.86	3261.20
		Run-Off (m³)	823.28	830.04	567.84	151.13	65.74	243.09	515.95	664.40	1138.94	959.75	858.64	790.68	7609.48
	Mitigation -	Catchment Area (m²) = 12800.00	Imperv coeff.	. 0.50				Monthly Volume	es						
	Connected Impervious	Evaporation from Imperv. (m ³) - 15% of P.	95.62	131.52	142.66	137.28	145.34	149.95	143.04	117.31	144.19	111.17	99.46	91.58	1509.12
	Roof Area	Run-Off Directed to Pervious Area (m³)	541.82	745.28	808.38	777.92	823.62	849.73	810.56	664.77	817.09	629.95	563.58	518.98	8551.68
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
Catchment 105		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
(continued)		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
		Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Mitigation - Pervious ROW Area to Silva	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
	Cells	Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m ²) 1698.00						Monthly Volume	es						
		AET (m³)	0.42	57.88	125.79	174.14	148.60	132.61	126.50	66.02	20.07	0.00	0.00	0.00	852.04
		Infiltration (m³)	25.24	17.53	0.11	0.00	0.00	0.00	0.00	0.00	21.71	29.49	26.39	24.30	144.78
		Run-Off (m³)	58.90	40.90	0.26	0.00	0.00	0.00	0.00	0.00	50.66	68.82	61.57	56.70	337.81
		Infiltration via Silva Cells (Sized for 25mm capture) (m³)	53.01	36.81	0.24	0.00	0.00	0.00	0.00	0.00	45.60	61.94	55.41	51.03	304.03
		Run-Off (m³)	5.89	4.09	0.03	0.00	0.00	0.00	0.00	0.00	5.07	6.88	6.16	5.67	33.78
		Catchment Area (m²) = 6792.00	Imperv coeff.	. 0.80				Monthly Volume	es						
	Mitigation -	Evaporation from Imperv. (m ³) - 15% of P.	50.74	69.79	75.70	72.84	77.12	79.57	75.90	62.25	76.51	58.99	52.77	48.60	800.78
	Impervious ROW Area	Run-Off Directed to Silva Cells (m³)	287.51	395.46	428.95	412.78	437.03	450.89	430.10	352.74	433.57	334.27	299.05	275.38	4537.74
	to Silva Cells	Infiltration via Silva Cells (Sized for 25mm capture) (m³)	258.75	355.92	386.05	371.51	393.33	405.80	387.09	317.47	390.21	300.84	269.15	247.84	4083.96
		Run-Off (m³)	28.75	39.55	42.89	41.28	43.70	45.09	43.01	35.27	43.36	33.43	29.91	27.54	453.77
							Tota	l Catchment Vol	lumes						
		Total ET (m³)	1564.86	2152.47	2334.72	2246.73	2378.71	2454.13	2341.00	1919.94	2359.86	1819.38	1627.70	1498.87	24698.37
		Total AET (m³)	17.86	2471.74	5371.87	7701.74	7055.15	6165.83	5478.32	2819.59	857.17	0.00	0.00	0.00	37939.27
		Total Infiltration (m³)	1624.07	1463.65	740.63	436.28	421.50	509.98	608.21	737.02	2110.80	1894.76	1695.14	1560.97	13803.01
			10836.82	13229.14	12505.37	11389.82	11964.61	12519.19	12226.19	10582.94	15667.28	12613.66	11284.76	10391.56	145211.35

- 1) PET and P Taken from Table 1
- 2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET
- 3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March
- 4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

	C-1-h1	difficient of Comments						Month							Total
	Catchments and	d Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Iotai
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
	Development - Unconnected Pervious	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
	Landscape	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m ²) 33620.29						Monthly Volume	es						
		AET (m³)	8.28	1145.99	2490.60	3447.93	2942.33	2625.74	2504.71	1307.27	397.42	0.00	0.00	0.00	16870.27
		Infiltration (m³)	499.80	347.10	2.22	0.00	0.00	0.00	0.00	0.00	429.91	583.98	522.46	481.11	2866.58
		Run-Off (m³)	1166.21	809.90	5.17	0.00	0.00	0.00	0.00	0.00	1003.13	1362.63	1219.07	1122.58	6688.69
	Development -	Catchment Area (m²) = 192209.71	Imperv coeff.	0.77			l	Monthly Volume	es						
	Unconnected	Evaporation from Imperv. (m ³) - 15% of P.	1435.81	1974.95	2142.18	2061.45	2182.54	2251.74	2147.94	1761.60	2165.24	1669.34	1493.47	1375.26	22661.53
	Impervious Area	Run-Off from Imperv. (m³) - with 15% evap.	8136.24	11191.41	12139.00	11681.55	12367.73	12759.84	12171.68	9982.41	12269.71	9459.60	8462.99	7793.14	128415.31
		P - Total Precipitation plus irrigation (mm)	54.50	74.97	81.32	78.25	82.85	85.48	81.54	66.87	82.19	63.37	56.69	52.21	860.23
Catchment 106		P-PET (mm)	54.26	40.88	7.24	-37.15	-49.86	-31.88	1.29	27.99	70.37	63.37	56.69	52.21	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-37.15	-87.01	-118.89	-117.60	-89.61	-19.24	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	37.85	0.00	0.00	1.29	29.28	75.00	75.00	75.00	75.00	-
		Actual Potential Evapotranspiration (mm)	0.25	34.09	74.08	104.53	90.08	78.10	74.55	38.88	11.82	0.00	0.00	0.00	506.38
		P-AET (mm)	54.26	40.88	7.24	-26.28	-7.23	7.38	6.99	27.99	70.37	63.37	56.69	52.21	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.28	-33.51	-26.14	-19.15	0.00	0.00	0.00	0.00	0.00	-
	Mitigation -	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.28	7.23	-7.38	-6.99	-19.15	0.00	0.00	0.00	0.00	-
	Connected Pervious	Precipitation Surplus (mm)	54.26	40.88	7.24	0.00	0.00	0.00	0.00	8.84	70.37	63.37	56.69	52.21	353.85
	Rear Yard Area	MOECC Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
		Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	16.28	12.26	2.17	0.00	0.00	0.00	0.00	2.65	21.11	19.01	17.01	15.66	106.16
		Run-Off (mm)	37.98	28.62	5.07	0.00	0.00	0.00	0.00	6.19	49.26	44.36	39.68	36.54	247.70
		Catchment Area (m²) 24480.00					Monthly	Volumes (Pervi	ous Area)						
		AET (m³)	6.03	834.43	1813.48	2558.94	2205.23	1911.89	1824.97	951.86	289.37	0.00	0.00	0.00	12396.21
		Infiltration (m³)	398.46	300.25	53.15	0.00	0.00	0.00	0.00	64.90	516.81	465.38	416.35	383.39	2598.69
		Run-Off (m³)	929.75	700.58	124.01	0.00	0.00	0.00	0.00	151.44	1205.90	1085.88	971.48	894.58	6063.61
	Mitigation -	Catchment Area (m²) = 2720.00	Imperv coeff.	0.10				Monthly Volume	es						
	Connected Impervious	Evaporation from Imperv. (m ³) - 15% of P.	20.32	27.95	30.31	29.17	30.89	31.86	30.40	24.93	30.64	23.62	21.13	19.46	320.69
	Roof Area	Run-Off Directed to Pervious Area (m³)	115.14	158.37	171.78	165.31	175.02	180.57	172.24	141.26	173.63	133.86	119.76	110.28	1817.23

NOTES:

PET and P Taken from Table 1

²⁾ Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET

³⁾ Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March

⁴⁾ Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

	Catalumanta a	nd Hydrologic Components						Month							Total
	Catchments ar	na Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501.79
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284.21
		Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Mitigation - Pervious ROW Area to Silva	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
	Cells	Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.26
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198.95
		Catchment Area (m²) 1854.00						Monthly Volume	s						
		AET (m³)	0.46	63.20	137.34	190.14	162.26	144.80	138.12	72.09	21.92	0.00	0.00	0.00	930.32
Catchment 106		Infiltration (m ³)	27.56	19.14	0.12	0.00	0.00	0.00	0.00	0.00	23.71	32.20	28.81	26.53	158.08
(continued)		Run-Off Directed to Silva Cells (m ³)	64.31	44.66	0.29	0.00	0.00	0.00	0.00	0.00	55.32	75.14	67.23	61.91	368.85
		Infiltration via Silva Cells (Sized for 25mm capture) (m³)	57.88	40.20	0.26	0.00	0.00	0.00	0.00	0.00	49.79	67.63	60.50	55.71	331.96
		Run-Off (m ³)	6.43	4.47	0.03	0.00	0.00	0.00	0.00	0.00	5.53	7.51	6.72	6.19	36.88
		Catchment Area (m²) = 7416.00	Imperv coeff.	0.80				Monthly Volume	es						
	Mitigation -	Evaporation from Imperv. (m³) - 15% of P.	55.40	76.20	82.65	79.54	84.21	86.88	82.87	67.97	83.54	64.41	57.62	53.06	874.35
	Impervious ROW Area	Run-Off Directed to Silva Cells (m ³)	313.92	431.80	468.36	450.71	477.18	492.31	469.62	385.15	473.40	364.98	326.53	300.68	4954.63
	to Silva Cells	Infiltration via Silva Cells (Sized for 25mm capture) (m ³)	282.53	388.62	421.52	405.64	429.46	443.08	422.66	346.63	426.06	328.48	293.87	270.61	4459.17
		Run-Off (m³)	31.39	43.18	46.84	45.07	47.72	49.23	46.96	38.51	47.34	36.50	32.65	30.07	495.46
								I Catchment Vol							
		Total ET (m³)	1511.52	2079.10	2255.14	2170.16	2297.64	2370.48	2261.21	1854.50	2279.42	1757.37	1572.23	1447.78	23856.56
		Total AET (m³)	14.76	2043.61	4441.43	6197.01	5309.82	4682.43	4467.81	2331.22	708.70	0.00	0.00	0.00	30196.79
		Total Infiltration (m³)	1266.24	1095.30	477.27	405.64	429.46	443.08	422.66	411.54	1446.28	1477.67	1322.00	1217.36	10414.48
		Total Runoff (m ³)	10270.02	12749.53	12315.05	11726.62	12415.45	12809.07	12218.64	10172.36	14531.60	11952.12	10692.92	9846.57	141699.96

¹⁾ PET and P Taken from Table 1

²⁾ Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET

³⁾ Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March

⁴⁾ Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

	Catabasanta and	d Hudralagia Communita						Month							Total
	Catchments and	d Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
	Mitigation -	Catchment Area (m²) = 2960.00	Imperv coeff.	0.10			1	Monthly Volume	es						
	Connected Impervious	Evaporation from Imperv. (m ³) - 15% of P.	22.11	30.41	32.99	31.75	33.61	34.68	33.08	27.13	33.34	25.71	23.00	21.18	348.98
	Area	Run-Off Directed to Pervious Area (m³)	125.30	172.35	186.94	179.89	190.46	196.50	187.44	153.73	188.95	145.68	130.33	120.01	1977.58
		P - Total Precipitation plus irrigation (mm)	54.50	74.97	81.32	78.25	82.85	85.48	81.54	66.87	82.19	63.37	56.69	52.21	860.23
		P-PET (mm)	54.26	40.88	7.24	-37.15	-49.86	-31.88	1.29	27.99	70.37	63.37	56.69	52.21	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-37.15	-87.01	-118.89	-117.60	-89.61	-19.24	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	37.85	0.00	0.00	1.29	29.28	75.00	75.00	75.00	75.00	-
		Actual Potential Evapotranspiration (mm)	0.25	34.09	74.08	104.53	90.08	78.10	74.55	38.88	11.82	0.00	0.00	0.00	506.38
		P-AET (mm)	54.26	40.88	7.24	-26.28	-7.23	7.38	6.99	27.99	70.37	63.37	56.69	52.21	-
Channels		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.28	-33.51	-26.14	-19.15	0.00	0.00	0.00	0.00	0.00	-
Onarincis	Mitigation -	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.28	7.23	-7.38	-6.99	-19.15	0.00	0.00	0.00	0.00	-
	Connected Pervious	Precipitation Surplus (mm)	54.26	40.88	7.24	0.00	0.00	0.00	0.00	8.84	70.37	63.37	56.69	52.21	353.85
	Area	MOECC Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
		Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	16.28	12.26	2.17	0.00	0.00	0.00	0.00	2.65	21.11	19.01	17.01	15.66	106.16
		Run-Off (mm)	37.98	28.62	5.07	0.00	0.00	0.00	0.00	6.19	49.26	44.36	39.68	36.54	247.70
		Catchment Area (m ²) 26640.00					Monthly	Volumes (Pervi	ous Area)						
		AET (m³)	6.56	908.06	1973.50	2784.73	2399.81	2080.58	1986.00	1035.85	314.90	0.00	0.00	0.00	13489.99
		Infiltration (m³)	433.62	326.74	57.84	0.00	0.00	0.00	0.00	70.63	562.41	506.44	453.08	417.22	2827.99
		Run-Off (m³)	1011.79	762.39	134.96	0.00	0.00	0.00	0.00	164.80	1312.30	1181.69	1057.20	973.52	6598.64
	Mitigation -	Catchment Area (m²) = 18650.00	Imperv coeff.	0.50				Monthly Volume	es						
	Connected Impervious	Evaporation from Imperv. (m³) - 15% of P.	139.32	191.63	207.85	200.02	211.77	218.48	208.41	170.93	210.09	161.98	144.91	133.44	2198.84
	Area	Run-Off from Imperv. (m³) - with 15% evap.	789.45	1085.90	1177.84	1133.45	1200.03	1238.08	1181.01	968.59	1190.52	917.86	821.16	756.16	12460.0
	_	P - Total Precipitation plus irrigation (mm)	92.13	126.73	137.46	132.28	140.05	144.49	137.83	113.04	138.94	107.12	95.83	88.25	1454.10
	_	P-PET (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	-
	_	Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	-
	_	Actual Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P-AET (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	-
Pond 2A	_	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
1 0114 25 1	Mitigation -	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
	Connected Pervious	Precipitation Surplus (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	849.27
	Area	MOECC Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
		Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
		Infiltration (mm)	27.57	27.79	19.01	5.06	2.20	8.14	17.28	22.25	38.13	32.13	28.75	26.47	254.78
		Run-Off (mm)	64.32	64.85	44.36	11.81	5.14	18.99	40.31	51.91	88.98	74.98	67.08	61.77	594.49
		Catchment Area (m ²) 18650.00					Monthly	Volumes (Pervi	ous Area)						
		AET (m³)	4.59	635.71	1381.60	2152.35	2475.00	2188.67	1496.50	725.17	220.46	0.00	0.00	0.00	11280.0
		Infiltration (m³)	514.09	518.31	354.58	94.37	41.05	151.79	322.18	414.88	711.20	599.31	536.17	493.73	4751.68
			1199.54	1209.40	827.36	220.20	95.79	354.18	751.75	968.05	1659.48	1398.39	1251.06	1152.04	11087.24

- 1) PET and P Taken from Table 1
- 2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET
- 3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March
 4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

	Catalana and	Underlands Comments						Month							Total
	Catchments and	Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.8
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.0
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.1
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
	Development -	Catchment Area (m²) = 44880.00	Imperv coeff.	0.80			l	Monthly Volume	25						
	Unconnected	Evaporation from Imperv. (m ³) - 15% of P.	335.25	461.14	500.19	481.34	509.61	525.77	501.53	411.33	505.57	389.78	348.72	321.12	5291.
	Impervious Area	Run-Off from Imperv. (m³) - with 15% evap.	1899.77	2613.14	2834.40	2727.58	2887.80	2979.36	2842.03	2330.84	2864.91	2208.77	1976.07	1819.66	2998
		Soil Moisture Storage (mm)	75.00	75.00	75.00	31.09	0.00	0.00	0.00	22.22	75.00	75.00	75.00	75.00	-
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	102.56	87.52	78.10	74.50	38.88	11.82	0.00	0.00	0.00	501
		P-AET (mm)	49.55	34.41	0.22	-31.06	-11.82	0.00	0.00	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-31.06	-42.87	-42.87	-42.87	-20.66	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	31.06	11.82	0.00	0.00	-22.22	-20.66	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	42.62	57.90	51.80	47.70	284
	Development - Unconnected Pervious	Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
	Landscape	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
		Infiltration (mm)	14.87	10.32	0.07	0.00	0.00	0.00	0.00	0.00	12.79	17.37	15.54	14.31	85.
		Run-Off (mm)	34.69	24.09	0.15	0.00	0.00	0.00	0.00	0.00	29.84	40.53	36.26	33.39	198
		Catchment Area (m ²) 11220.00						Monthly Volume	es						
		AET (m³)	2.76	382.45	831.18	1150.67	981.94	876.28	835.89	436.27	132.63	0.00	0.00	0.00	5630
		Infiltration (m³)	166.80	115.84	0.74	0.00	0.00	0.00	0.00	0.00	143.47	194.89	174.36	160.56	956
		Run-Off (m³)	389.20	270.29	1.73	0.00	0.00	0.00	0.00	0.00	334.77	454.75	406.84	374.64	223
	Mitigation -	Catchment Area (m²) = 17400.00	Imperv coeff.	0.50			l	Monthly Volume	es						
	Connected Impervious	Evaporation from Imperv. (m³) - 15% of P.	129.98	178.79	193.92	186.62	197.58	203.84	194.45	159.47	196.01	151.12	135.20	124.50	205
	Area	Run-Off from Imperv. (m³) - with 15% evap.	736.54	1013.12	1098.90	1057.49	1119.60	1155.10	1101.86	903.67	1110.73	856.34	766.12	705.48	1162
Pond 2B		P - Total Precipitation plus irrigation (mm)	92.13	126.73	137.46	132.28	140.05	144.49	137.83	113.04	138.94	107.12	95.83	88.25	145
Folia 2B		P-PET (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
		Soil Moisture Storage (mm)	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	
		Actual Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604
		P-AET (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Mitigation -	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Connected Pervious	Precipitation Surplus (mm)	91.88	92.64	63.37	16.87	7.34	27.13	57.58	74.15	127.11	107.12	95.83	88.25	849
	Area	MOECC Infiltration Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
		Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
		Infiltration (mm)	27.57	27.79	19.01	5.06	2.20	8.14	17.28	22.25	38.13	32.13	28.75	26.47	254
		Run-Off (mm)	64.32	64.85	44.36	11.81	5.14	18.99	40.31	51.91	88.98	74.98	67.08	61.77	594
		Catchment Area (m ²) 17400.00					Monthly	Volumes (Pervi	ous Area)						
		AET (m³)	4.28	593.10	1289.00	2008.09	2309.11	2041.97	1396.20	676.57	205.68	0.00	0.00	0.00	1052
		Infiltration (m ³)	479.63	483.57	330.82	88.05	38.30	141.62	300.59	387.07	663.54	559.14	500.23	460.64	443
		Run-Off (m³)	1119.14	1128.34	771.90	205.44	89.37	330.45	701.37	903.17	1548.25	1304.66	1167.21	1074.82	1034
								I Catchment Vo							
		Total ET (m³)	465.23	639.93	694.11	667.95	707.19	729.61	695.98	570.80	701.58	540.90	483.92	445.61	734
		Total AET (m³)	7.05	975.55	2120.18	3158.76	3291.05	2918.26	2232.09	1112.84	338.31	0.00	0.00	0.00	1615
		Total Infiltration (m³)	646.43	599.41	331.56	88.05	38.30	141.62	300.59	387.07	807.01	754.03	674.59	621.20	538
		Total Runoff (m3)	3408.11	4011.76	3608.03	2933.03	2977.17	3309.80	3543.39	3234.01	4747.94	3968.18	3550.11	3269.12	4256

¹⁾ PET and P Taken from Table 1

²⁾ Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET

³⁾ Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March
4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

	Catalamanta an	nd Hydrologic Components						Month							Total
	Catchments ar	a Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.25	34.09	74.08	115.41	132.71	117.35	80.24	38.88	11.82	0.00	0.00	0.00	604.83
		P - Total Precipitation (mm)	49.80	68.50	74.30	71.50	75.70	78.10	74.50	61.10	75.10	57.90	51.80	47.70	786.00
		P-PET (mm)	49.55	34.41	0.22	-43.91	-57.01	-39.25	-5.74	22.22	63.28	57.90	51.80	47.70	181.17
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-43.91	-100.92	-140.17	-145.91	-123.69	-60.42	-2.52	0.00	0.00	-
		Soil Moisture Storage (mm)	200.00	200.00	200.00	156.09	99.08	59.83	54.09	76.31	75.00	132.90	135.42	135.42	- 1
		Actual Evapotranspiration (mm)	0.25	34.09	74.08	110.59	112.07	93.70	76.14	38.88	11.82	0.00	0.00	0.00	551.60
		P-AET (mm)	49.55	34.41	0.22	-39.09	-36.37	-15.60	-1.64	22.22	63.28	57.90	51.80	47.70	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-39.09	-75.46	-91.05	-92.69	-70.47	-7.19	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	39.09	36.37	15.60	1.64	-22.22	-63.28	-7.19	0.00	0.00	-
		Precipitation Surplus (mm)	49.55	34.41	0.22	0.00	0.00	0.00	0.00	0.00	0.00	50.71	51.80	47.70	234.40
	Development -	Infiltration Factor	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	-
	Pervious Landscape	Run-Off Coefficient	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-
NHS		Infiltration (mm)	19.82	13.77	0.09	0.00	0.00	0.00	0.00	0.00	0.00	20.28	20.72	19.08	93.76
		Run-Off (mm)	29.73	20.65	0.13	0.00	0.00	0.00	0.00	0.00	0.00	30.43	31.08	28.62	140.64
		Catchment Area (m ²) 97052.63	Imperv coeff.	0.00				Monthly Volume	!S						
		AET (m³)	23.90	3308.16	7189.68	10732.86	10876.45	9093.39	7389.12	3773.72	1147.23	0.00	0.00	0.00	53534.50
		Infiltration (m³)	1923.73	1335.98	8.53	0.00	0.00	0.00	0.00	0.00	0.00	1968.61	2010.93	1851.76	9099.55
		Run-Off (m³)	2885.59	2003.97	12.80	0.00	0.00	0.00	0.00	0.00	0.00	2952.92	3016.40	2777.65	13649.32
		Catchment Area (m²) = 0.00						Monthly Volume	!S						
	Development - Impervious Area	Evaporation from Imperv. (m ³) - 15% of P.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Run-Off from Imperv. (m ³) - with 15% evap.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
							Tota	I Catchment Vol	umes						
		Total ET (m³)	9963.97	13705.46	14865.92	14305.69	15146.03	15626.22	14905.93	12224.87	15025.98	11584.61	10364.13	9543.80	157262.60
Total Site		Total AET (m³)	136.24	18859.50	40987.72	58956.03	55469.96	48484.05	41935.38	21513.66	6540.26	0.00	0.00	0.00	292882.80
		Total Infiltration (m³)	13739.08	11974.76	5375.93	3428.02	3327.18	3994.53	4721.10	5271.42	14473.99	15753.35	14343.39	13208.10	109610.85
		Total Runoff (m³)	70140.92	84730.24	78985.87	72462.23	76013.61	79734.57	78184.18	66613.80	95137.67	81230.36	73046.99	67265.28	923545.72

NOTES: 1) PET and P Taken from Table 1

2) Soil Moisture Deficit (mm) is a function of P-Pet, once there is a shortage of P to satisfy PET

3) Water Holding Capacity (mm) of soils types taken from Table 3.1, SWM Planning & Design Manual (MOE, March 2003) and applied to March

4) Actual Evapotranspiration (AET) is a function of Adjusted Potential Evapotranspiration (PET) and change in Groundwater Storage (Δ ST) for a given soil type

Total Site						Mont	h						Total
Total Site	March	April	May	June	July	August	September	October	November	December	January	February	Total
-					Pre	e-Development							
Total ET (m³)	278	382	414	399	422	436	415	341	419	323	289	266	4383
Total AET (m³)	456	63059	137047	201264	194105	159465	138550	71933	21868	0	0	0	987746
Total Infiltration (m³)	28456	19762	126	0	0	0	0	0	6235	32699	29745	27391	144413
Total Runoff (m³)	64791	46068	2628	2259	2392	2468	2354	1931	16916	74871	67720	62360	346759
-					Post-Develop	ment without M	itigation						
Total ET (m³)	9964	13705	14866	14306	15146	15626	14906	12225	15026	11585	10364	9544	157263
Total AET (m³)	136	18859	40988	57522	50805	44725	41379	21514	6540	0	0	0	282468
Total Infiltration (m³)	8706	6046	39	0	0	0	0	0	5834	9893	9101	8380	48000
Total Runoff (m³)	75174	90659	84323	81066	85827	88549	84467	69274	98760	87090	78290	72093	995571
				Post-Develop	ment Deficit with	out Mitigation (-\	e value implies a	net gain)					
Total ET (m³)	-9686	-13323	-14452	-13907	-14724	-15191	-14490	-11884	-14607	-11262	-10075	-9278	-152879
Total AET (m³)	319	44199	96059	143742	143301	114739	97172	50419	15328	0	0	0	705278
Total Infiltration (m³)	19749	13715	88	0	0	0	0	0	401	22805	20645	19011	96414
Total Runoff (m³)	-10382	-44591	-81695	-78806	-83435	-86081	-82113	-67343	-81844	-12220	-10569	-9733	-648812
-					Post-Develo	opment with Mit	gation						
Total ET (m³)	9964	13705	14866	14306	15146	15626	14906	12225	15026	11585	10364	9544	157263
Total AET (m³)	136	18859	40988	58956	55470	48484	41935	21514	6540	0	0	0	292883
Total Infiltration (m3)	13739	11975	5376	3428	3327	3995	4721	5271	14474	15753	14343	13208	109611
Total Runoff (m3)	70141	84730	78986	72462	76014	79735	78184	66614	95138	81230	73047	67265	923546
·			•	Post-Develo	pment Deficit wit	h Mitigation (-ve	value implies a ne	et gain)		•	•		
Total ET (m³)	-9686	-13323	-14452	-13907	-14724	-15191	-14490	-11884	-14607	-11262	-10075	-9278	-152879
Total AET (m³)	319	44199	96059	142308	138636	110981	96615	50419	15328	0	0	0	694863
Total Infiltration (m3)	14717	7787	-5250	-3428	-3327	-3995	-4721	-5271	-8239	16945	15402	14183	34803
Total Runoff (m³)	-5350	-38663	-76358	-70203	-73621	-77267	-75830	-64683	-78222	-6360	-5327	-4905	-576787