

90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL (416) 754-8515 · FAX (905) 881-8335

BARRIE TEL: (705) 721-7863 FAX: (705) 721-7864 MISSISSAUGA TEL: (905) 542-7605 FAX: (905) 542-2769 OSHAWA TEL: (905) 440-2040 FAX: (905) 725-1315 NEWMARKET TEL: (905) 853-0647 FAX: (905) 881-8335 GRAVENHURST TEL: (705) 684-4242 FAX: (705) 684-8522 PETERBOROUGH TEL: (905) 440-2040 FAX: (905) 725-1315 HAMILTON TEL: (905) 777-7956 FAX: (905) 542-2769

TOWN OF CALEDON PLANNING RECEIVED

A REPORT TO

January 31, 2025

GLOBAL PROPERTIES INC.

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

PROPOSED RESIDENTIAL DEVELOPMENT

12494 THE GORE ROAD

**TOWN OF CALEDON** 

Reference No. 2009-E126

July 8, 2024

#### DISTRIBUTION

3 Copies - Global Properties Inc.



## **LIMITATIONS OF LIABILITY**

This report was prepared by Soil Engineers Ltd. for the account of Global Properties Inc. for review by their designated agents, financial institutions and government agencies. Use of the report is subject to the conditions and limitations of the contractual agreement. The material in it reflects the judgement of Munir Ahmad, M.Sc. P.Eng., Arshad Shaikh, M.Sc., P.Eng., QPesa and Eleni Girma Beyene, P.Eng., QPesa in light of the information available at the time of preparation. Any use which a Third Party makes of this report, and/or any reliance on decisions to be made based on it, is the responsibility of such Third Parties. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

One must understand that the mandate of Soil Engineers Ltd. is to obtain readily available past and present information pertinent to the subject site and to analyze representative soil samples for a Phase Two Environmental Site Assessment only. No other warranty or representation, expressed or implied, as to the accuracy of the information is included or intended by this assessment. Site conditions, environmental or otherwise, are not static and this report documents site conditions observed at the time of the last sampling.

It should be noted that the information supplied in this report is not sufficient to obtain approval for disposal of excess soil or materials generated during construction.



# **TABLE OF CONTENTS**

| 1.0               | EXEC  | UTIVE SUMMARY                                              | <u>.</u> 1 |
|-------------------|-------|------------------------------------------------------------|------------|
| 2.0               | INTRO | DDUCTION                                                   | . 2        |
|                   | 2.1   | Site Description                                           | . 2        |
|                   | 2.2   | Property Ownership                                         | . 2        |
|                   | 2.3   | Current and Proposed Uses                                  | . 3        |
|                   | 2.4   | Applicable Site Condition Standards                        | . 3        |
| 3.0               | BACK  | GROUND                                                     | . 5        |
|                   | 3.1   | Physical Setting                                           | . 5        |
|                   | 3.2   | Past Investigations                                        | . 6        |
| 4.0               | SCOPI | E OF THE INVESTIGATION                                     | 7          |
|                   | 4.1   | Overview of Site Investigation                             | . 7        |
| 2.0<br>3.0<br>4.0 | 4.2   | Media Investigated                                         |            |
|                   | 4.3   | Phase One Conceptual Site Model                            | . 8        |
|                   | 4.4   | Deviations From Sampling and Analysis Plan                 | 8          |
|                   | 4.5   | Impediments                                                |            |
| 5.0               | INVES | STIGATION METHOD                                           | 9          |
|                   | 5.1   | General                                                    | 9          |
|                   | 5.2   | Drilling and Excavating                                    | 9          |
|                   | 5.3   | Soil Sampling                                              | 10         |
|                   | 5.4   | Field Screening Measurements                               | 11         |
|                   | 5.5   | Groundwater Monitoring Well Installation                   | 11         |
|                   | 5.6   | Groundwater: Field Measurement of Water Quality Parameters | 11         |
|                   | 5.7   | Groundwater: Sampling                                      | 12         |
|                   | 5.8   | Sediment Sampling                                          | 12         |
|                   | 5.9   | Analytical Testing                                         | 12         |
|                   | 5.10  | Residue Management Procedures                              | 12         |
| 4.0               | 5.11  | Elevation Surveying                                        |            |
|                   | 5.12  | Quality Assurance and Quality Control Measures             | 13         |
| 6.0               | REVIE | EW AND EVALUATION                                          | 15         |
|                   | 6.1   | Geology                                                    | 15         |
|                   | 6.2   | Groundwater: Elevations and Flow Direction                 | 16         |
|                   | 6.3   | Groundwater: Hydraulic Gradients                           | 16         |
|                   | 6.4   | Fine-Medium Soil Texture                                   | 16         |
|                   | 6.5   | Soil: Field Screening                                      | 16         |
|                   | 6.6   | Soil Quality                                               | 16         |
|                   | 6.7   | Groundwater Quality                                        | 18         |
|                   | J     |                                                            |            |



|     | 6.8   | Sediment   | Quality                                                      | 18 |
|-----|-------|------------|--------------------------------------------------------------|----|
|     | 6.9   | Quality As | ssurance and Quality Control Results                         | 18 |
|     |       | 6.9.1      | Field Quality Assurance/Quality Control Samples              | 19 |
|     |       | 6.9.2      | Sample Handling in Accordance with the Analytical Protocol   | 19 |
|     |       | 6.9.3      | Certification of Results                                     |    |
|     |       | 6.9.4      | Data Validation                                              | 20 |
|     |       | 6.9.5      | Data Quality Objectives                                      |    |
|     |       | 6.10       | Phase Two Conceptual Site Model                              |    |
|     |       | 6.10.1     | Description and Assessment                                   |    |
|     |       | 6.10.1.1   | Areas where Potentially Contaminating Activity Has Occured   | 22 |
|     |       | 6.10.1.2   | Areas of Potential Environmental Concern                     | 22 |
|     |       | 6.10.1.3   | Subsurface Structures and Utilities                          | 23 |
|     |       | 6.10.2     | Physical Setting                                             | 23 |
|     |       | 6.10.2.1   | Stratigraphy                                                 | 23 |
|     |       | 6.10.2.2   | Hydrogeological Characteristics                              |    |
|     |       | 6.10.2.3   | Approximate Depth to Bedrock                                 |    |
|     |       | 6.10.2.4   | Approximate Depth to Water Table                             | 24 |
|     |       | 6.10.2.5   | Section 41 or 43.1 of the Regulation                         | 24 |
|     |       | 6.10.2.6   | Areas On, In or Under the Phase Two Property Where Excess So |    |
|     |       |            | Finally Placed                                               |    |
|     |       | 6.10.2.7   | Proposed Building and Other Structures                       |    |
|     |       | 6.10.3     | Contamination In or Under the Phase Two Property             |    |
|     |       | 6.10.3.1   | Area Where Contaminants are Present                          |    |
|     |       | 6.10.4     | Potential Exposure Pathways and Receptors                    | 27 |
| 7.0 | CONC  | LUSION     |                                                              | 28 |
| 8.0 | REFER | RENCES     |                                                              | 30 |



# **TABLES**

| Soil Data                                                                                                                    |                                                 |  |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|
| FIGURES                                                                                                                      |                                                 |  |
| Site Location Plan  Borehole and Monitoring Location Plan  Cross-Section Key Plan  Geological Cross-Sections (A-A' and B-B') | Drawing No. 2<br>Drawing No. 3<br>Drawing No. 3 |  |
| <u>APPENDICES</u>                                                                                                            |                                                 |  |
| Sampling and Analysis Plan  Borehole Logs  Certificate of Analysis (Soil Samples)                                            | Appendix 'A' Appendix 'B' Appendix 'C'          |  |



#### **EXECUTIVE SUMMARY**

Soil Engineers Ltd. (SEL) was retained by Global Properties Inc. to carry out a Phase Two Environmental Site Assessment (Phase Two ESA), as defined by Ontario Regulation (O. Reg.) 153/04, as amended for a property located at 12494 The Gore Road, in the Town of Caledon (hereinafter referred to as the 'subject site').

The purpose of the Phase Two ESA was to determine the soil quality at the subject site, as related to the environmental concerns identified in our Phase One Environmental Site Assessments (Phase One ESA).

The field work was performed at selected locations on the subject site. Soil samples were collected and submitted for chemical analysis in accordance with the Table 8, Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition for Residential/Parkland/Institutional/ Industrial/Commercial/Community Property Use (Table 8 Standards), as published in the "Soil, Ground Water and Sediment Standards for Use Under Part XV. 1 of the Environmental Protection Act" (EPA), April 15, 2011 (Table 8 Standards).

A review of the analytical test results of soil samples indicates the tested parameters at the test locations meet the Table 8 Standards. Consequently, there are no contaminants identified at the test locations at a concentration above the applicable site condition standards (Table 8 Standards) during the Phase Two ESA.

Based on the findings of the Phase Two ESA, it is our opinion that the subject site is suitable for the proposed development. No further environmental investigation is recommended at this time.



#### INTRODUCTION

Soil Engineers Ltd. (SEL) was retained by Global Properties Inc. to carry out a Phase Two Environmental Site Assessment (Phase Two ESA), as defined by Ontario Regulation (O. Reg.) 153/04, as amended by O. Regs. 366/05, 66/08, 511/09, 245/10, 179/11, 269/11 and 333/13, herein referred to as O. Reg. 153/04 for a property located on the southwest side of The Gore Road, approximately 1.2 km south of Healey Road, in the Town of Caledon (hereinafter referred to as the 'subject site').

The purpose of the Phase Two ESA is to determine the soil quality at the subject site, as related to the Areas of Potential Environmental Concerns (APECs) identified in our Phase One Environmental Site Assessment (Phase One ESA).

#### 2.1 Site Description

The subject site, irregular in shape and approximately 39.88 hectares (98.55 acres) in area, is located on the southwest side of The Gore Road, approximately 1.2 km south of Healey Road, in the Town of Caledon. The Property Identification Number (PIN) of the subject site is 14348-0182 (LT). The municipal address and PIN along with their legal descriptions included in the subject site are summarized in the table below:

| PIN             | Property Description from Parcel Register     | Municipal Address      |
|-----------------|-----------------------------------------------|------------------------|
| 14348-0182 (LT) | PT LT 3 CON 3 ALBION PT 5, 43R13343 ; CALEDON | 12494 The Gore<br>Road |

At the time of the inspection, the subject site consists of a farm field with no structures. The neighbouring properties consist of agricultural properties to the northwest and southwest, agricultural and residential properties to the northeast and southeast.

# 2.2 Property Ownership

This Phase Two ESA was commissioned to address the APECs identified in Phase One ESA



and in accordance with our proposal approved by Mr. Luis Correia of Global Properties Inc.

Our client can be contacted at:

Global Properties Inc. 122 Romina Drive Concord, Ontario L4k 4Z7

Attention: Mr. Luis Correia

# 2.3 Current and Proposed Future Uses

The subject site is currently used for agricultural purposes. The subject site is proposed to be developed for residential use.

# 2.4 Applicable Site Condition Standards

SEL has selected the applicable regulatory criteria from O. Reg. 153/04, as amended under the Environmental Protection Act, to assess the analytical data from the submitted soil samples. The following information was used to select the appropriate criteria:

- The subject site is not considered to be sensitive based on the definition set forth in O. Reg. 153/04 as amended, as the property is not within/adjacent/part of an area of natural significance and the analytical testing indicated the pH of the tested surface soil samples is between 5 and 9 and subsurface soil samples is between 5 and 11.
- The property is not a shallow soil property, as the bedrock was not encountered within 2.0 m below ground surface (mbgs) during the investigation.
- Water bodies are located on and within 30m of the subject site.
- Four (4) water well records are located within the Phase One Study Area.
- Generic Site Condition criteria for Use within 30 m of a Water Body is to be used in this assessment.
- The intended property use of the subject site is residential use.
- No grain size analysis has been performed during this investigation.



Based on the above evaluation, the Ministry of the Environment, Conservation and Parks (MECP) Table 8, Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition for Residential/Parkland/Institutional/ Industrial/Commercial/Community Property Use (Table 8 Standards), as published in the "Soil, Ground Water and Sediment Standards for Use Under Part XV. 1 of the Environmental Protection Act" (EPA), April 15, 2011, has been selected for assessing the soil condition at the subject site.



#### **BACKGROUND**

#### 3.1 Physical Setting

Based on the information obtained from our Phase One ESA, the general physical setting of the subject site is summarized below:

The subject site is located within an agricultural and residential area in the Town of Caledon. At the time of the assessment, neighbouring properties consist of agricultural properties to the northwest and southwest, agricultural and residential properties to the northeast and southeast.

A geological map of the area located at the Ontario Geological Survey indicate that subject site is underlain predominately by Halton Till deposits of silt to silt clay. The subject site is underlain by bedrock of Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member and Eastview Member (shale, limestone, dolostone and siltstone). According to the Ontario Geological Survey Bedrock Cross Section Viewer, the depth of bedrock in the general vicinity of the subject site is approximately 29 meters below ground surface (mbgs).

The subject site is located adjacent to a roadway i.e. The Gore Road to the northeast. The overall grade of the subject site generally descends towards east. The subject site is located in the larger hydrogeological region known as Southern Ontario Lowlands. A watershed map provided by Land Information Ontario shows the subject site is situated in the Humber River-Don River Watershed.

Based on the review of the Ontario Ministry of Natural Resources and Forestry Natural Heritage Information Centre for listings of the various classes of natural areas located within the vicinity of the subject site, there is no Area of Natural Significance located at the subject site or neighbouring properties within 30 m of the subject site boundary.



## 3.2 Past Investigations

The following previous investigation report prepared by SEL for the subject site was reviewed as part of this Phase Two ESA:

- Phase One Environmental Site Assessment, Reference No. 2009-E126, dated
   November 13, 2020
- Phase One Environmental Site Assessment Update, Reference No. 2009-E126, dated
   March 8, 2024
- Town of Caledon, Municipal Freedom of Information (Municipal FOI) Request # 2024-023 dated May 7, 2024

The Phase One ESA, Phase One ESA Update and Municipal FOI response identified the Potentially Contaminating Activities (PCAs) at the subject site and in the Phase One Study Area that may contribute to APECs at the subject site, based on records review, interviews and site reconnaissance. The findings of the Phase One ESA include the following APECs:

- APEC 1: Potential soil impact due to pesticide use related to agricultural activities at the subject site
- APEC 2: Potential soil impact due to dumping of soil loads in the central portion of the subject site.

The locations of PCAs and APECs are illustrated on Drawing Nos. 1 and 2, respectively.



#### 4.0 **SCOPE OF THE INVESTIGATION**

#### 4.1 Overview of Site Investigation

The purpose of this investigation (Phase Two ESA) is to assess the soil quality at the subject site, as related to the APECs raised in the findings of SEL Phase One ESA. This Phase Two ESA was conducted in general conformance with the CSA Standard Z769-00 and O. Reg. 153/04 as amended.

The scope of work for this investigation includes:

- Locate the underground and overhead utilities.
- Conduct a total of eight (8) boreholes BH1 to BH6, BH101 and BH102 to depths ranging to 3 mbgs and conducting five (5) hand dug test pits TP1to TP5.
- Collect representative soil samples from the boreholes.
- Undertake field examination of the retrieved soil samples for visual and olfactory evidence of potential contamination.
- Undertake soil vapour measurements for the retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode.
- Carry out analytical testing program on selected soil samples including Quality
   Control/ Quality Assurance (A/QC) samples for one or more of the following
   parameters: Metals and/or Inorganic parameters, Petroleum Hydrocarbons (PHCs),
   Volatile Organic Compounds (VOCs), Polycylic Aromtic Hydrocarbons (PAHs) and
   Organochlorine Pesticides (OCs).
- Review analytical testing results of submitted soil samples using applicable Site
   Condition Standards.
- Prepare a Phase Two ESA report containing the findings of the investigation.

The rationale for the selection of sampling locations is presented in the Sampling and Analysis Plan, Appendix 'A'.



#### 4.2 Media Investigated

Based on the findings of our Phase One ESA and the Municipal FOI Response, soil medium was investigated during the Phase Two ESA in accordance with the Sampling and Analysis Plan provided in Appendix 'A'. Groundwater and sediment was not identified as a potentially contaminated medium in our Phase One ESA.

Boreholes were advanced using a track-mounted drilling rig equipped with continuous shelby tube samplers and hand-dug test pits were conducted using a shovel. Soil samples were logged in the field and head space vapour screening was conducted for all retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode, calibrated with hexane and having a minimum detection level of 2 ppm (parts per million by volume).

#### 4.3 Phase One Conceptual Site Model

A plan, illustrating the features of the subject site and surrounding areas within 250 m from the subject site boundaries including the locations of potentially contaminating activities (PCAs), is presented on Drawing No. 1.

# 4.4 Deviations From Sampling and Analysis Plan

No deviations from the sampling and analysis plan were encountered.

#### 4.5 Impediments

No impediments were encountered during the investigation for the Phase Two ESA.



#### INVESTIGATION METHOD

# 5.1 General

The Phase Two ESA was carried out in accordance with the Sampling and Analysis Plan provided in Appendix 'A' and in accordance with the SEL Standard Operating Procedures.

The Phase Two ESA consisted of drilling eight (8) boreholes, carrying out five (5) hand dug test pits, field measurements and collection of soil samples from the boreholes and test pits for chemical analysis. The soil samples were assessed for potential contamination with respect to the APECs identified by our Phase One ESA.

The sampling and decontamination procedures were conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols and procedures were carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

#### 5.2 **Drilling and Excavating**

Prior to the field work, the underground utilities were located and marked out in the field by representatives of the major utility companies and private locator (C & L Underground Locates Inc.).

The field work for this investigation was conducted on October 28, 2020, May 3 and June 5, 2024 and consisted of eight (8) boreholes BH1 to BH6, BH101 and BH102 to depths ranging to 3 mbgs and conducting five (5) hand dug test pits TP1to TP5.

Municipal FOI response indicated that several loads of soil were found approximately 250m



(800 feet) from The Gore Road entrance to the subject site i.e. in the central portion of the subject site in December 2020. No dumping material was found at the time of drilling. Our correspondence with the client disclosed that the dumped material was removed from the subject site. Based on this, two boreholes (BH101 and BH102) were drilled in the area of former dumping area to assess any soil impacts left over beneath the dumping soil.

The locations of the boreholes and test pits are shown on Drawing No. 2. The boreholes were advanced using track-mounted drill rigs, equipped with continuous shelby tube samplers, supplied by specialist drilling contractor, Kodiak Drilling and Ace Environmental Drilling Ltd. Soil samples from the boreholes were recovered at regular intervals, using continuous shelby tube (thin-walled) samplers for soil vapour measurement, soil classification and visual and olfactory observations and from hand dug test pits with steel trowel.

Drilling equipment such as drill rigs, augers, drill pipes, drilling rods and split-spoons are decontaminated prior to initial use, between borehole locations and at the completion of drilling activities. The drilling equipment is manually scrubbed with a brush using a phosphate-free solution and power washed to remove any adhered soils, foreign material and potential contaminants. In addition, any sampling equipment is decontaminated prior to each usage.

The field work was monitored by a SEL environmental technician who recorded the findings and observations.

#### 5.3 Soil: Sampling

Soil samples from the boreholes were retrieved at regular intervals, using continuous shelby tube samplers and from hand-dug test pits using a steel trowel. Prior to recovering a sample, the sampling equipment was brushed clean using a solution of phosphate-free detergent and distilled water, and each discrete sample was handled by the sampler with new disposable gloves in order to avoid the risk of cross-contamination between the samples. Each soil sample was split with part of the sample sealed in a laboratory-prepared glass jar and stored in



a cooler with ice, and the remainder of the sample sealed in a double sealable bag for vapour measurement and soil classification.

The subsoil condition at the borehole locations indicate that beneath a layer of topsoil, the subject site is generally underlain by silty clay which in turn is underlain by silty clay till deposits. No bedrock was encountered during the Phase Two ESA. Detailed descriptions of the encountered subsurface conditions are presented on the Borehole Logs provided in Appendix 'B'.

Based on the soil vapour measurements and visual and olfactory observations, representative worst case soil samples from each borehole were selected and sent to the laboratory for chemical analyses.

#### 5.4 Field Screening Measurements

The headspace vapour concentrations were measured using a portable RKI Eagle gas detector, TYPE 101 (Serial Number: E091011) set to include flammable gases with the exception of methane (methane elimination mode), and having a minimum detection level of 2 ppmv (parts per million by volume). Prior to taking the measurements, the instrument was calibrated to hexane standards for both ppm and lower explosive limit (LEL) according to the instruction manual for the instrument. Our technician was trained by the supplier for the proper calibration procedure. The instrument is calibrated or tuned up by the supplier (Pine Environmental Services Inc.) seasonally. The results of the soil vapour measurement are presented in the Borehole Logs in Appendix 'B'.

#### 5.5 Groundwater: Monitoring Well Installation

Groundwater was not assessed, as part of this investigation.

# 5.6 Groundwater: Field Measurement of Water Quality Parameters

Groundwater was not assessed, as part of this investigation.



#### 5.7 Groundwater Sampling

Groundwater was not assessed, as part of this investigation.

## 5.8 Sediment Sampling

Sediment was not assessed as part of this investigation.

## 5.9 Analytical Testing

The soil samples were sent to Bureau Veritas Laboratories in Mississauga, Ontario. Bureau Veritas is accredited by the Canadian Association for Laboratory Accreditation (CALA) in accordance with ISO/IEC 17025:2017 – "General Requirements for the Competence of Testing and Calibration Laboratories" for all the parameters analyzed during this investigation.

#### 5.10 Residue Management Procedures

Excess soil generated from the drilling program for the investigation was stored at the subject site in metal buckets. The metal buckets are clearly marked and stored temporarily at the subject site for later disposal.

#### 5.11 Elevation Surveying

The ground elevations of the borehole locations were surveyed on October 29, 2020 and June 13, 2024 using a hand-held (Trimble Geoexplorer 7000 series) Global Navigation Satellite System measurement equipment. The equipment is capable of having vertical and horizontal accuracy of  $0.1\pm m$ .

The elevations at the borehole locations are present in the Borehole Logs in Appendix 'B'.



# 5.12 Quality Assurance and Quality Control Measures (QA and QC)

The soil sampling and analysis plan provided in Appendix 'A' was prepared and executed using based on the findings of our Phase One ESA.

The Phase Two ESA was carried out in accordance with the Sampling and Analysis Plan and in accordance with the SEL Standard Operating Procedures.

The sampling and decontamination procedures were conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols and procedures were carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Regs. 511/09 and 269/11.

Field observations were made and documented in a field book in accordance with generally accepted practices and with the procedures developed and utilized by SEL.

SEL field sampling QA/QC protocols applied to the investigation are summarized as follows:

- The collection of at least one field duplicate sample per site for every sampling media (where three or more such samples are collected).
- Where volatile organic chemical analysis is required, the collection of discrete samples directly into laboratory-prepared sample vials and immediate placement into a cooler with ice to maintain the temperature at less than 10°C for transport to the laboratory.
- If trace organics in the collected samples are anticipated (organic chemicals with a concentration of less than 1  $\mu$ g/g), precautions are made to avoid any possible cross-contamination (eliminating bare hand or latex glove contacts with the soil or water;



soil sampling equipment used for the collection of trace organics are cleaned using a phosphate-free detergent and water, followed by a distilled water rinse and a methanol rinse between sampling sites).

The results of the field duplicate samples are discussed later in Section 6.9 of this report.

# 6.0

#### **REVIEW AND EVALUATION**

# 6.1 Geology

Detailed descriptions of the encountered subsoil conditions are presented on the Borehole Logs provided in Appendix 'B'. The subsoil condition at the borehole locations indicate that beneath a layer of topsoil, the subject site is generally underlain by silty clay which in turn is underlain by silty clay till deposits. No bedrock was encountered during the Phase Two ESA. The cross section showing the geological stratigraphy of the investigated area is illustrated in Drawing Nos. 3 and 4.

The descriptions of the strata, encountered at the borehole and test pit locations are briefly discussed below:

#### **Topsoil**

Topsoil layer approximately 0.1 to 0.2 m thick was encountered at the ground surface at the locations of all boreholes with the exception of BH101 and BH102.

## Silty Clay

Brown silty clay was contacted at ground surface or below topsoil at the locations of all boreholes and extended to 0.8 to 1.8 mbgs. The silty clay was in damp condition.

## Silty Clay Till

Brown to brown gray silty clay till was contacted below silty clay at the locations of all boreholes and extended to 3 mbgs. All boreholes were terminated in this stratum. The silty clay till was in damp condition.



#### Hydrogeology

On completion of drilling activities, no groundwater was detected in the boreholes during Phase Two investigation. Groundwater was not investigated as part of this Phase Two ESA.

## 6.2 Groundwater: Elevations and Flow Direction

Groundwater was not assessed, as part of this investigation.

# 6.3 Groundwater: Hydraulic Gradients

Groundwater was not assessed, as part of this investigation.

#### 6.4 Fine-Medium Soil Texture

No grain size analysis was performed as part of this investigation.

# 6.5 Soil: Field Screening

Headspace vapour screening was conducted for all retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode, calibrated with hexane and having a minimum detection level of 2 ppmv (parts per million by volume).

Head space vapour screening was conducted for all retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode, calibrated with hexane and having a minimum detection level of 2 ppm. Vapour readings recorded for the soil samples ranged from non-detect to 30 ppm.

## 6.6 Soil Quality

Representative "worst case" soil samples from each sampling location were selected based on the soil vapour measurements and visual and olfactory observations. The selected soil samples



were submitted to the laboratory for chemical analyses of Metals and/or Inorganics, PHCs, VOCs, PAHs and OCs.

The soil test results were reviewed using the Table 8, Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition for Residential/Parkland/Institutional/ Industrial/Commercial/Community Property Use f (Table 8 Standards), as published in the "Soil, Ground Water and Sediment Standards for Use Under Part XV. 1 of the EPA", April 15, 2011.

Soil quality data containing results of the chemical analyses for the tested soil samples is presented in Table I. Maximum concentrations of the tested parameters in soil are presented in Table II.

The Certificates of Analyses for the soil samples are presented in Appendix 'C'.

The findings of the soil test results are summarized below:

#### Metals and/or Inorganics

Twelve (12) original soil samples and three (3) field duplicate sample were submitted for analysis of metals and/or inorganics. The test results indicate that all soil samples for the tested parameters meet Table 8 Standards.

#### Petrolium Hydrocarbons (PHCs)

Two (2) original soil samples were submitted for analysis of PHCs/BTEX. The test results indicated that the soil samples meet the Table 8 Standards.

#### **Volatile Organic Compounds (VOCs)**

Two (2) original soil samples were submitted for analysis of VOCs. The test results indicated that the soil samples meet the Table 8 Standards



#### Polycyclic Aromatic Hydrocarbons (PAHs)

Two (2) original soil samples were submitted for analysis of VOCs. The test results indicated that the soil samples meet the Table 8 Standards.

#### Organochlorine Pesticides (OCs)

Ten (10) original soil samples were submitted for analysis of OCs. The test results indicate the tested soil samples were below the laboratory reported detection limits and meet the Table 8 Standards.

#### 6.7 **Groundwater Quality**

Groundwater was not assessed as part of this investigation.

#### 6.8 Sediment Quality

Sediment was not assessed as part of this investigation.

# 6.9 Quality Assurance and Quality Control Results

The Phase Two ESA was carried out in accordance with the Sampling and Analysis Plan and in accordance with the SEL Standard Operating Procedures.

The sampling and decontamination procedures were conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols and procedures were carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11 (herein referred to as Analytical



Protocol).

# 6.9.1 Field Quality Assurance/Quality Control Samples

As part of the QA/QC program for the Phase Two ESA, QC samples in the form of field duplicate samples were analysed. Field duplicate samples were collected in the field for metals in soil. Details of QC samples are presented in the table below.

#### **Field Duplicate**

Three (3) field duplicate soil samples were collected and submitted for chemical analysis.

Details of the duplicate sampling and analysis are presented in the table below:

| Duplicate Sample<br>ID | Original Sample ID | Media | Test Conducted |
|------------------------|--------------------|-------|----------------|
| DUP S1                 | BH6/1A             | Soil  | Metals         |
| DUP S2                 | TP-2               | Soil  | Metals         |
| DUP S3                 | BH101/1            | Soil  | Metals         |

The result of the analysis of the field duplicate samples are similar to the results for the original samples and relative percent differences (RPDs) for the detectable tested parameters are within an acceptable range for all parameters The RPDs could not be calculated between the original and duplicate samples in the situation where the original and/or duplicate samples were below the reported laboratory detection limits.

The Certificates of Analysis for the QA/QC samples are included in Appendices 'C'.

# 6.9.2 Sample Handling in Accordance with the Analytical Protocol

The samples analyzed as part of the Phase Two ESA were handled in accordance with the analytical protocol with respect to holding time, preservation method, storage requirement and sample container type.



#### 6.9.3 Certification of Results

Based on the review of the QA/QC sample results for the soil samples of this investigation, the Chain of Custody forms and the laboratory Certificate of Analysis, it is certified that:

- All Certificates of Analysis or Analytical Reports received pursuant to Section 47(2) of O. Reg. 153/04, as amended, comply with Section 47(3) of O. Reg. 153/04, as amended.
- A Certificate of Analysis or Analytical Report was received for each sample submitted for analysis.
- Copies of all Certificates of Analysis are included in Appendices 'C' and 'D'.

#### 6.9.4 **Data Validation**

The Analytical Protocol establishes Acceptance Limits for use when assessing the reliability of data reported by analytical laboratories including maximum holding times for the storage of samples/sample extracts between collection and analysis, analytical methods, field and/or laboratory quality assurance samples, recovery ranges for spiked samples and surrogates, Reporting Detection Limits (RDLs), mandatory maximum method detection limits) and precision required when analyzing laboratory replicate and spiked samples.

The review of the data in the Certificate of Analysis indicates:

- All samples/sample extracts were analyzed within their applicable holding times using approved analytical methods.
- No tested parameters were detected in any laboratory blank samples.
- The RDLs were met for all tested parameters.
- The results of the analysis of the field duplicate samples are similar to the results for the original samples and relative percent differences (RPDs) for the detectable tested parameters are within an acceptable range for all parameters, therefore, data is considered reliable.



## 6.9.5 Data Quality Objectives

In conclusion, the overall quality of field data did not affect decision making and the overall objectives of the investigation were met.

# 6.10 Phase Two Conceptual Site Model

This Phase Two Conceptual Site Model has been prepared as a part of the Phase Two Environmental Site Assessment (Phase Two ESA) for a Property located at 12494 The Gore Road, in the Town of Caledon, Ontario. (Hereinafter referred to as the 'subject site').

The Phase Two Conceptual Site Model is based on the findings of our Phase One Environmental Site Assessment (Phase One ESA, Reference No. 2009-E126, dated November 13, 2020), Phase One Environmental Site Assessment Update (Phase One ESA Update, Reference No. 2009-E126, dated March 8, 2024), Town of Caledon, Municipal Freedom of Information (Municipal FOI, Request # 2024-023 dated May 7, 2024) and Phase Two Environmental Site Assessment (Phase Two ESA, Reference No. 2009-E126, dated July 8, 2024).

#### 6.10.1 Description and Assessment

The property, irregular in shape and approximately 39.88 hectares (98.55 acres) in area, is located on the southwest side of The Gore Road, approximately 1.2 km south of Healey Road, in the Town of Caledon. The Property Identification Number (PIN) of the subject site is 14348-0182 (LT). The municipal address and PIN along with their legal descriptions included in the subject site are summarized in the table below:

| PIN             | PIN Property Description from Parcel Register |                        |
|-----------------|-----------------------------------------------|------------------------|
| 14348-0154 (LT) | PT LT 3 CON 3 ALBION PT 5, 43R13343 ; CALEDON | 12494 The Gore<br>Road |



# 6.10.1.1 Areas where Potentially Contaminating Activity Has Occurred

The Phase One ESA determined the Potentially Contaminating Activities (PCAs) at the subject site and in the Phase One Study Area based on records review, interview and site reconnaissance.

# On-site PCAs

- Potential use of pesticides related to agricultural activities at the subject site. #40-Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications
- Dumping of fill material in the central portion of the subject site. #30- Fill Material of Unknown Quality

#### Off-site PCAs

No off-site PCAs were identified in the Phase One Study Area.

The locations of PCAs are shown on Drawing No. 1.

## 6.10.1.2 Areas of Potential Environmental Concern

The following Areas of Potential Environmental Concern (APECs) were identified at the subject site.

APEC 1: Potential soil impact due to pesticide use related to agricultural activities at the subject site.

APEC 2: Potential soil impact due to dumping of soil in the central portion of the subject site



The locations of APECs are shown on Drawing No. 2.

## 6.10.1.3 Subsurface Structures and Utilities

Since no contaminants are found at the test locations at a concentration above the applicable site condition standard, no subsurface structures or utilities with the potential to affect contaminants distribution or transport are identified at the subject site.

#### 6.10.2 **Physical Setting**

#### 6.10.2.1 Stratigraphy

A geological map of the area located at the Ontario Geological Survey indicate that subject site is underlain predominately by Halton Till deposits of silt to silt clay. The subject site is underlain by bedrock of Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member and Eastview Member (shale, limestone, dolostone and siltstone). According to the Ontario Geological Survey Bedrock Cross Section Viewer, the depth of bedrock in the general vicinity of the subject site is approximately 29 meters below ground surface (mbgs).

The field investigation for the Phase Two ESA consisted of eight (8) boreholes BH1 to BH6, BH101 and BH102 to depth of 3 mbgs and carrying out five (5) hand dug test pits TP1 to TP6 to depth of 0.2 mbgs.

Please note that APEC 2 was identified after Municipal Freedom of Information response (FOI). FOI indicated that several loads of soil were found approximately 250m (800 feet) from The Gore Road entrance to the subject site i.e. in the central portion of the subject site in December 2020. No dumping material was found at the time of drilling. Our correspondence with the client disclosed that the dumped material was removed from the subject site. Based on this, two boreholes (BH101 and BH102) were drilled in the area of former dumping area to assess any soil impacts left over beneath the dumping soil. No fill material was identified in the BH101 and BH102.



The subsoil condition at the borehole locations indicate that beneath a layer of topsoil, the subject site is generally underlain by silty clay which in turn is underlain by silty clay till deposits. No bedrock was encountered during the Phase Two ESA.

The Sampling Location Plan is shown on Drawing No. 2. The locations of cross-sections for soil stratigraphy at the subject site are presented on Drawing No. 3. Geological Cross Sections A-A' and B-B' are presented on Drawing No. 4.

# 6.10.2.2 Hydrogeological Characteristics

The subject site is located in the larger hydrogeological region known as Southern Ontario Lowlands. A watershed map provided by Land Information Ontario shows the subject site is situated in the Humber River-Don River Watershed. The overall grade of the subject site generally descends to the east.

# 6.10.2.3 Approximate Depth to Bedrock

Bedrock was not encountered at the subject site during the field investigation within the maximum drilling depth of 3 mbgs. According to the Land Information Ontario (LIO), the depth of bedrock in the general vicinity of the subject site is approximately 29 mbgs.

# 6.10.2.4 Approximate Depth to Water Table

Groundwater was not investigated as part of this Phase Two ESA.

# 6.10.2.5 Section 35 and 41 or 43.1 of the Regulation

There are records of water wells located at neighbouring properties within 250 m from the subject site boundaries. Therefore, Section 35 of the Regulation (Non-Potable Site Condition Standards) does not apply to the subject site.



There is no area of natural significance at the subject site or within 30 m from the subject site boundaries. The analytical results indicated that the pH value of the tested soil samples is between 5 and 9 for surface soil, and between 5 and 11 for subsurface soil. Therefore, Section 41 of the regulation (Site Condition Standards, Environmental Sensitive Areas) does not apply to the subject site.

The property is not a shallow soil property, as the bedrock was not encountered within 2.0 mbgs during the investigation. Water bodies are located on and within 30m of the subject site boundaries. Therefore, Section 43.1 of the Regulation (Site Condition Standards, Shallow Soil Property or Water Body) applies to the subject site.

# 6.10.2.6 Areas On, In or Under the Phase Two Property Where Fill Placed

The findings of our Phase One ESA and the field investigation of the Phase Two ESA indicated that fill material is not present at the subject site. No soil has been brought on to the subject site as part of this Phase Two ESA.

#### 6.10.2.7 Proposed Building and Other Structures

The subject site is proposed to be developed with a residential development. Plans for the proposed development are not available at this time. It is anticipated that the new development will be provided with municipal services meeting urban standards.

#### 6.10.3 Contamination In or Under the Phase Two Property

Based on the findings of the Phase One ESA, contaminants of potential concern in soil with respect to the identified APECs at the subject site were assessed during the Phase Two ESA.

Based on the information obtained from the Phase One ESA and Phase Two ESA, the Ministry of the Environment, Conservation and Parks (MECP) Table 8, Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition for Residential/Parkland/Institutional/ Industrial/Commercial/Community Property



Use (Table 8 Standards), as published in the "Soil, Ground Water and Sediment Standards for Use Under Part XV. 1 of the Environmental Protection Act" (EPA), April 15, 2011, has been selected for assessing the soil condition at the subject site.

#### 6.10.3.1 Area Where Contaminants are Present

Soil samples were collected during the Phase Two ESA and submitted for chemical analysis of one or more of the following parameters:

APEC 1: Soil samples were submitted for chemical analyses of Metals, Arsenic (As), Selenium (Se), Antimony (Sb), pH, Mercury (Hg), Hexavalent Chromium Cr(VI), Cyanide and Organochlorine Pesticides (OCs). Soil samples were submitted from top soil (0.0 – 0.2 mbgs) from hand dug test pits and from topsoil (0.0 to 0.6 mbgs) at various borehole locations.

APEC 2: Soil samples were submitted for chemical analyses of Metals, As, Sb, Se,
Boron- Hot Water Soluble (B-HWS), Hg, Cr(VI), Electrical Conductivity (EC),
Sodium Adsorption Ration (SAR), pH, Cyanide, Petroleum Hydrocarbons
(PHCs), Volatile Organic Compounds (VOCs) parameters and Polycyclic
Aromatic Hydrocarbons (PAHs). Soil samples were submitted from the former
dump area (0.0 to 0.8 mbgs) at various borehole locations.

A review of the analytical test results of soil samples indicates the tested samples for the tested parameters meet the Table 8 Standards.

Consequently, there are no contaminants identified at the test locations at a concentration above the applicable site condition standards (Table 8 Standards) during the Phase Two ESA.

#### 6.10.3.2 Distribution of Contaminants

No contaminants are identified at the test locations at a concentration above applicable site condition standards.



## 6.10.3.3 Contaminant Medium

No contaminants are identified at the test locations at a concentration above applicable site condition standards.

## 6.10.3.4 Reasons for Discharge

No contaminants are identified at the test locations at a concentration above applicable site condition standards.

# 6.10.3.5 <u>Migration of Contaminants</u>

No contaminants are identified at the test locations at a concentration above applicable site condition standards.

## 6.10.4 Potential Exposure Pathways and Receptors

Since no contaminants are found at the test locations at a concentration above the applicable site condition standard (Table 8 Standards), no potential exposure pathways and receptors are identified.

#### CONCLUSIONS

The purpose of the Phase Two Environmental Site Assessment (Phase Two ESA) was to determine the soil quality at the subject site, as related to the following Areas of Potential Environmental Concern (APECs) identified in our Phase One Environmental Site Assessment (Phase One ESA):

APEC 1: Potential soil impact due to pesticide use related to agricultural activities at the subject site.

APEC 2: Potential soil impact due to dumping of soil in the central portion of the subject site

The findings of the field investigation and analytical results of the Phase Two ESA are summarized below:

- The field investigation for the Phase Two ESA consisted of of eight (8) boreholes BH1 to BH6, BH101 and BH102 to depth of 3 mbgs and carrying out five (5) hand dug test pits TP1 to TP6 to depth of 0.2 mbgs.
- The subsoil condition at the borehole locations indicate that beneath a layer of topsoil, the subject site is generally underlain by silty clay which in turn is underlain by silty clay till deposits. No bedrock was encountered during the Phase Two ESA.
- The soil samples retrieved from the sampling location were examined for visual and olfactory evidence of potential contamination. No evidence of contamination was documented in any of the retrieved soil samples.
- Head space vapour screening was conducted for all retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode. Vapour readings recorded for the soil samples ranged from non-detect to 30 ppm.
- Based on the soil vapour measurements, visual and olfactory observations, representative soil samples were selected from each sampling location for chemical analyses of: Metals and inorganics, Petroleum Hydrocarbons (PHCs), Volatile Organic Compounds (VOCs) parameters, Polycyclic Aromatic Hydrocarbons (PAHs) and Organochlorine Pesticides (OCs).



- As part of the QA/QC program for the investigation, a QC sample in the form of field duplicate sample was analysed. Field duplicate sample was collected in the field for Metals in soil.
- The analytical test results were reviewed using the Table 8, Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition for Residential/Parkland/Institutional/ Industrial/Commercial/Community Property Use (Table 8 Standards), as published in the "Soil, Ground Water and Sediment Standards for Use Under Part XV. 1 of the Environmental Protection Act" (EPA), April 15, 2011.
- The result of the analysis of the field duplicate sample was satisfactory and QA/QC data was acceptable.

A review of the analytical test results of soil samples indicates the tested parameters at the test locations meet the Table 8 Standards.

Based on the findings of the Phase Two ESA, it is our opinion that the property is suitable for the proposed residential development. No further environmental investigation is recommended at this time.

SOIL ENGINEERS LTD.

Munir Ahmad, M.Sc., P.Eng.

Arshad Shaikh, M.Sc., P.Eng., QPesa

Die,

Eleni Girma Beyene, P.Eng, QP<sub>ESA</sub> MA/AS/EGB:ma





# **REFERENCES**

MECP. "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

MECP. "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

MECP. "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (EPA), April 15, 2011.



# GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL (416) 754-8515 · FAX (905) 881-8335

PETERBOROUGH **HAMILTON** MISSISSAUGA **OSHAWA** NEWMARKET GRAVENHURST BARRIE TEL: (905) 777-7956 TEL: (905) 853-0647 TEL: (705) 684-4242 TEL: (905) 440-2040 TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (705) 721-7863 FAX: (705) 684-8522 FAX: (905) 725-1315 FAX: (905) 542-2769 FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (905) 881-8335

#### **TABLES**

REFERENCE NO. 2009-E126

## Soil Engineers Ltd.

# SOIL CHEMICAL ANALYSIS - Inorganics Parameters

Project No. 2009-E126

| Project No. 2009-E126                                                         |             |                 |                  |             |             |             |             |             |             | rage 1 01 0        |
|-------------------------------------------------------------------------------|-------------|-----------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------|
| Sample ID                                                                     |             | BHI/IA          | BH2/1A           | BH3/1A      | BH4/1A      | BH5/1A      | BH6/1A      | DUP S1      | BH6/3       |                    |
| Sample Date                                                                   |             | 28-Oct-2020     | 28-Oct-2020      | 28-Oct-2020 | 28-Oct-2020 | 28-Oct-2020 | 28-Oct-2020 | 28-Oct-2020 | 28-Oct-2020 | Ontario Regulation |
| Laboratory ID                                                                 | RDL*        | OAQ110          | 0AQ111           | OAQ112      | OAQ113      | OAQ114      | OAQ115      | OAQ116      | OAQ117      | 153/04 Table 8     |
| Bore Hole No.                                                                 |             | BH1             | BH2              | BH3         | BH4         | BHS         | BH6         | BH6         | BH6         | Standard**         |
| Depth (mbgs)                                                                  |             | 9.0 - 0.0       | 9.0 - 0.0        | 0.0 - 0.0   | 9.0 - 0.0   | 9.0 - 0.0   | 9.0 - 0.0   | 9.0 - 0.0   | 9.0 - 0.0   |                    |
| Antimony                                                                      | 0.2         | <0.20           | <0.20            | <0.20       | <0.20       |             | <0.20       | <0.20       | laj.        | 1.3                |
| Arsenic                                                                       | _           | 3.5             | 8.4              | 2.4         | 3.3         |             | 3           | 3.7         | 1           | 18                 |
| Barium                                                                        | 0.5         | 86              | 120              | 56          | 100         |             | 100         | 76          |             | 220                |
| Beryllium                                                                     | 0.2         | 0.84            | 1.2              | 9.0         | 9.65        |             | 0.7         | 0.58        | 1           | 2.5                |
| Boron (Hot Water Soluble)                                                     | 0.05        | t .             | 1                | •           |             |             | ٠           | -           | -           | 1.5                |
| Cadmium                                                                       | 0.1         | 0.11            | 0.21             | <0.10       | 0.12        |             | <0.10       | <0.10       | ٠           | 1.2                |
| Chromium                                                                      | _           | 27              | 36               | 21          | 22          | ,           | 24          | 20          |             | 70                 |
| Chromium VI                                                                   | 0.18        | <0.2            | 0.29             | <0.2        | <0.2        | 9           | <0.2        | •           | ,           | 0.66               |
| Cobalt                                                                        | 0.1         | 12              | 20               | 8.5         | 11          |             | 1           | 10          |             | 22                 |
| Copper                                                                        | 0.5         | 23              | 30               | 10          | 20          | ·           | 21          | 22          | T.          | 92                 |
| Lead                                                                          | _           | 1               | 16               | 9.1         | 6           | î           | 9.3         | 8.3         | ,           | 120                |
| Mercury                                                                       | 0.05        | <0.050          | <0.050           | <0.050      | <0.050      | •           | <0.050      | <0.050      | ı           | 0.27               |
| Molybdenum                                                                    | 0.5         | 0.57            | 0.5              | <0.50       | <0.50       | •           | <0.50       | <0.50       | ,           | 2                  |
| Nickel                                                                        | 0.5         | 27              | 43               | 15          | 25          | •           | 25          | 23          |             | 82                 |
| Selenium                                                                      | 0.5         | <0.50           | <0.50            | <0.50       | <0.50       | ٠           | <0.50       | <0.50       | L           | 1.5                |
| Silver                                                                        | 0.2         | <0.20           | <0.20            | <0.20       | <0.20       |             | <0.20       | <0.20       |             | 0.5                |
| Thallium                                                                      | 0.05        | 0.16            | 0.21             | 0.12        | 0.13        | *           | 0.19        | 0.15        | 1           | 1                  |
| Vanadium                                                                      | 5           | 35              | 50               | 38          | 31          |             | 35          | 28          | 1           | 98                 |
| Zinc                                                                          | 5           | 58              | 81               | 41          | 46          | ٠           | 54          | 51          | 100         | 290                |
| pH (pH Units)                                                                 |             | 7.48            | 7.14             |             | 7.68        | ,           |             | 1           | 7.66        | NV                 |
| Conductivity (ms/cm)                                                          | 0.002       | 1               | 1                |             | 1           | 1           | 1           | 1           | 1           | 0.7                |
| Sodium Adsorption Ratio                                                       |             |                 | (30)             |             | •           |             | 4           |             | 1           | 5                  |
| Cyanide, Free                                                                 |             | <0.01           | <0.01            | Ē           | <0.01       | <0.01       | <0.01       | .1          | 1           | 0.051              |
| Boron (Total)                                                                 | 5           | 0.59            | 0.62             | 0.58        | 0.55        | ,           | 0.52        | 0.49        |             | 36                 |
| Uranium                                                                       | 0.05        | 8.4             | ∞                | <5.0        | 7.8         | *           | 9.3         | 8.9         | ř           | 2.5                |
| Analysis by Bureau Veritas all results in num (119/9) unless otherwise stated | all recults | in nnin (119/a) | unless otherwise | stated      |             |             |             |             |             |                    |

Analysis by Bureau Veritas, all results in ppm (μg/g) unless otherwise stated \* Analytical Reportable Detection Limits (RDLs) are shown except as indicated in brackets.

<sup>\*\*</sup> Standards shown are for Generic Site Condition Standards within 30m of a Water Body in a Potable Ground Water Condition for Residential/Parkland/Institutional/Industrial/Commercial/Community property use for coarse grained soil

### Soil Engineers Ltd.

# SOIL CHEMICAL ANALYSIS - Inorganics Parameters

| Sample ID                    |       | TP-1        | TP-2                                                                                                                           | DUP S2      | TP-3        | TP-4        | TP-5        | BH101/1      | DUP S3       | BH102/1      |                    |
|------------------------------|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------------|
| Sample Date                  |       | 03-May-2024 | 03-May-2024   03-May-2024   03-May-2024   03-May-2024   03-May-2024   03-May-2024   07-June-2024   07-June-2024   07-June-2024 | 03-May-2024 | 03-May-2024 | 03-May-2024 | 03-May-2024 | 07-June-2024 | 07-June-2024 | 07-June-2024 | Ontario Regulation |
| Laboratory ID                | RDL*  | ZCA727      | ZCA728                                                                                                                         | ZCA732      | ZCA729      | ZCA730      | ZCA731      | ZKZ614       | ZKZ620       | ZKZ619       | 153/04 Table 8     |
| Bore Hole No.                |       | 1           | (8)                                                                                                                            | (20)        | ā           | 3           | 3           | BH 101       | BH 102       | BH 102       | Standard**         |
| Depth (mbgs)                 |       | 0.0 - 0.2   | 0.0 - 0.2                                                                                                                      | 0.0 - 0.2   | 0.0 - 0.2   | 0.0 - 0.2   | 0.0 - 0.2   | 0.0 - 0.8    | 0.0 - 0.8    | 0.0 - 0.8    |                    |
| Antimony                     | 0.2   | <0.20       | <0.20                                                                                                                          | <0.20       |             | <0.20       | <0.20       | <0.20        | <0.20        | <0.20        | 1.3                |
| Arsenic                      | 1     | 2.9         | 3.4                                                                                                                            | 3.3         |             | 2.9         | 3.9         | 4            | 4.1          | 3.9          | 18                 |
| Barium                       | 0.5   | 91          | 120                                                                                                                            | 100         |             | 85          | 65          | 110          | 97           | 94           | 220                |
| Beryllium 0.2 0.73 0.81 0.78 | 0.2   | 0.73        | 0.81                                                                                                                           | 0.78        | 0.77        | 0.75        | 0.88        | 1.1          | 0.99         | 0.82         | 2.5                |
| Boron (Hot Water Soluble)    | 0.05  |             |                                                                                                                                |             |             |             | ı           | 0.11         |              | 0.055        | 1.5                |
| Cadmium                      | 0.1   | 0.23        | 0.21                                                                                                                           | 0.19        | 0.15        | 0.22        | 0.19        | <0.10        | <0.10        | <0.10        | 1.2                |
| Chromium                     | -     | 22          | 24                                                                                                                             | 25          |             | 22          | 25          | 29           | 28           | 25           | 70                 |
| Chromium VI                  | 0.18  | <0.18       | <0.18                                                                                                                          | ı           | <b>:</b>    | <0.18       | <0.18       | <0.18        | -            | <0.18        | 99.0               |
| Cobalt                       | 0.1   | 8.7         | 1                                                                                                                              | 11          |             | 8.7         | 10          | 14           | 15           | 13           | 22                 |
| Copper                       | 0.5   | 14          | 17                                                                                                                             | 17          | : ::        | 15          | 20          | 25           | 22           | 23           | 92                 |
| Lead                         | 1     | 14          | 16                                                                                                                             | 16          | 9           | 14          | 17          | 12           | 12           | 10           | 120                |
| Mercury                      | 0.05  | <0.050      | <0.050                                                                                                                         | <0.050      |             | <0.050      | <0.050      | <0.050       | <0.050       | <0.050       | 0.27               |
| Molybdenum                   | 0.5   | <0.50       | <0.50                                                                                                                          | <0.50       |             | <0.50       | <0.50       | <0.50        | <0.50        | <0.50        | 2                  |
| Nickel                       | 0.5   | 18          | 22                                                                                                                             | 21          | 6 63        | 17          | 24          | 31           | 28           | 30           | 82                 |
| Selenium                     | 0.5   | <0.50       | <0.50                                                                                                                          | <0.50       |             | <0.50       | <0.50       | <0.50        | <0.50        | <0.50        | 1.5                |
| Silver                       | 0.2   | <0.20       | <0.20                                                                                                                          | <0.20       |             | <0.20       | <0.20       | <0.20        | <0.20        | <0.20        | 0.5                |
| Thallium                     | 0.05  | 0.14        | 0.16                                                                                                                           | 0.16        |             | 0.15        | 0.16        | 0.17         | 0.16         | 0.18         | 7                  |
| Vanadium                     | 5     | 34          | 37                                                                                                                             | 38          | 37          | 34          | 36          | 39           | 38           | 35           | 98                 |
| Zinc                         | 5     | 62          | 81                                                                                                                             | 85          |             | 63          | 75          | 89           | 89           | 59           | 290                |
| pH (pH Units)                |       | 6.72        | 7.21                                                                                                                           |             |             | 6.78        | 7.34        |              |              | 1            | NV                 |
| Conductivity (ms/cm)         | 0.002 | -           |                                                                                                                                |             |             | T           | 1           | 0.31         | 1            | 0.29         | 0.7                |
| Sodium Adsorption Ratio      |       | -           | ,                                                                                                                              | į.          |             | •           | ,           | 0.3          |              | 1.1          | 5                  |
| Cyanide, Free                | 1     | <0.01       | <0.01                                                                                                                          | ٠           | <0.01       | <0.01       | <0.01       |              | -            | -            | 0.051              |
| Boron (Total)                | 5     | 6.2         | 5.9                                                                                                                            | 9:9         |             | <5.0        | 6.7         | 6.4          | 9            | 10           | 36                 |
| I [ranium                    | 0.05  | 0.80        | 0.56                                                                                                                           | 0.55        | 0.57        | 76.0        | 0.71        | 0 62         | 0.58         | 0.67         | 2.5                |

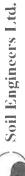
Analysis by Bureau Veritas, all results in ppm ( $\mu g/g$ ) unless otherwise stated

\* Analytical Reportable Detection Limits (RDLs) are shown except as indicated in brackets.

<sup>\*\*</sup> Standards shown are for Generic Site Condition Standards within 30m of a Water Body in a Potable Ground Water Condition for Residential/Parkland/Institutional/Industrial/Commercial/Community property use for coarse grained soil

# SOIL CHEMICAL ANALYSIS - Volatile Organic Compound (VOCs) Parameters

Soil Engineers Ltd.


Project No. 2009-E126

| Sample IU                   |       | BH101/1      | BH102/1      |                                              |
|-----------------------------|-------|--------------|--------------|----------------------------------------------|
| Sample Date                 |       | 07-June-2024 | 07-June-2024 |                                              |
| Claboratory (D              | *IGX  | ZKZ614       | ZKZ619       | Ontario Repulation 153/04 Table 8 Standard** |
| Bore Hole No.               |       | BH 101       | BH 102       | 0                                            |
| Depth (mbgs)                |       | 0.0 - 0.8    | 0.0 - 0.8    |                                              |
| Acetone                     | 0.49  | <(),49       | <0.49        | 0.5                                          |
| 3enzene                     | 9000  | 0900 0>      | 0900 0>      | 0.02                                         |
| 3romodichloromethane        | 0.04  | <() ()4()    | <0.040       | 0.05                                         |
| Bromoform                   | 0.04  | <() ()4()    | <0.040       | 0.05                                         |
| Bromomethane                | 0.04  | <0.040       | <0.040       | 0.05                                         |
| Carbon Tetrachloride        | 0.04  | <0.040       | <0.040       | 0.05                                         |
| Chlorobenzene               | 0.04  | <() ()4()    | <() ()4()    | 0,05                                         |
| Chloroform                  | 0.04  | <0.040       | <() ()4()    | 0.05                                         |
| Dibromochloromethane        | 0.04  | <0.040       | <0.040       | 0.05                                         |
| ,2-Dichlorobenzene          | 0.04  | <0.040       | <0,040       | 0,05                                         |
| .3-Dichlorobenzene          | 0.04  | <0.040       | <0,040       | 0,05                                         |
| .4-Dichlorobenzene          | 0.04  | <0.040       | <0.040       | 0,05                                         |
| .1-Dichloroethane           | 0.04  | <0.040       | <0.040       | \$0.0                                        |
| 1.2-Dichloroethane          | 0.049 | <0.049       | <0.049       | 0,05                                         |
| 1,1-Dichloroethylene        | 0.04  | <0.040       | <(), ()4()   | 0,05                                         |
| 7:s-1.2-Dichloroethylene    | 0.04  | <0.040       | <0.040       | 0,05                                         |
| Fans-1,2-Dichloroethylene   | 0.04  | <0.040       | <0.040       | 0.05                                         |
| (2-Dichloropropane          | 0.04  | <0.040       | <0.040       | 0.05                                         |
| Cis-1,3-Dichloropropylene   | 0.03  | <0.030       | <0.030       | ۸N                                           |
| Trans-1,3-Dichforopropylene | 0.04  | <0.040       | <0.040       | NV                                           |
| Ethylbenzene                | 0.01  | 010 0>       | <0.010       | 0.05                                         |
| Ethylene Dibromide          | 0.04  | <0.040       | <0.040       | 50'0                                         |
| Methyl Ethyl Ketone         | 0.4   | <0.40        | <0.40        | 0.5                                          |
| Methylene Chloride          | 0.049 | <0.049       | <0.049       | 0.05                                         |
| Methyl Isobutyl Ketone      | 0.4   | <(),4()      | <0.40        | 0,5                                          |
| Methyl-t-l3utyl Ether       | 0.04  | <0.040       | <0.040       | 0.05                                         |
| Styrene                     | 0.04  | <0.040       | <0,040       | 0.05                                         |
| .1.1.2-Tetrachloroethane    | 0.04  | <0.040       | <0,040       | 0.05                                         |
| 1.2.2-Fetrachloroethane     | 0.04  | <0.040       | <0,040       | 0.05                                         |
| oluene                      | 0.02  | <0.020       | <0,020       | 0,2                                          |
| Tetrachloroethylene         | 0.04  | <0.040       | <0.040       | 90.0                                         |
| , I. I. Trichloroethane     | 0.04  | <0.040       | <0.040       | 50.0                                         |
| 1.2-Trichloroethane         | 0.04  | <0.040       | <0.040       | 0.05                                         |
| Trichloroethylene           | 0.01  | <0.010       | <0.010       | 50'0                                         |
| Vinyl Chloride              | 610'0 | 610.0>       | 610 0>       | 0.02                                         |
| m-Xylene & p-Xylene         | 0.02  | <0.020       | <0.020       | 2                                            |
| o-Xylene                    | 0.02  | <0.020       | <0.020       | NA N                                         |
| Fotal Xylenes               | 0.02  | <0.020       | <0.020       | 0.05                                         |
| Dichlorodifluoromethane     | 0.04  | <0.040       | <0.040       | 0.05                                         |
| llexane(n)                  | 0.04  | <0,040       | <0.040       | 500                                          |
| Frichlorofluoromethane      | 0.04  | <0.040       | <0.040       | 0.25                                         |
|                             |       |              |              |                                              |

Analysis by Bureau Veritas, all results in ppm (µg/g) unless otherwise stated

\* Analytical Reportable Detection Limits (RDLs) are shown except as indicated in brackets.

\*\* Standards shown are for Generic Site Condition Standards within 30m of a Water Body in a Potable Ground Water Condition for Residential/Parkland/Institutional/Industrial/Commercial/Community property use for coarse grained soil



# SOIL CHEMICAL ANALYSIS - Polycyclic Aromatic Hydrocarbons (PAHs) Parameters

| Project No. 2009-E126     |        |              |              | Page 4 of 6                                  |
|---------------------------|--------|--------------|--------------|----------------------------------------------|
| Sample ID                 |        | BH101/1      | BH102/1      |                                              |
| Sample Date               |        | 07-June-2024 | 07-June-2024 |                                              |
| Laboratory ID             | RDL*   | ZKZ614       | ZKZ619       | Ontario Regulation 153/04 Table 8 Standard** |
| Bore Hole No.             |        | BH 101       | BH 102       |                                              |
| Depth (mbgs)              |        | 0.0 - 0.8    | 0.0 - 0.8    |                                              |
| Acenaphthene              | 0.005  | <0.0050      | <0.0050      | 0.072                                        |
| Acenaphthylene            | 0.005  | <0.0050      | <0.0050      | 0.093                                        |
| Anthracene                | 0.005  | <0.0050      | <0.0050      | 0.22                                         |
| Benzo(a)anthracene        | 0.005  | <0.0050      | <0.0050      | 0.36                                         |
| Benzo(a)pyrene            | 0.005  | <0.0050      | <0.0050      | 0.3                                          |
| Benzo(b/j)fluoranthene    | 0.005  | <0.0050      | <0.0050      | 0.47                                         |
| Benzo(ghi)perylene        | 0.005  | <0.0050      | <0.0050      | 0.68                                         |
| Benzo(k)fluoranthene      | 0.005  | <0.0050      | <0.0050      | 0.48                                         |
| Chrysene                  | 0.005  | <0.0050      | <0.0050      | 2.8                                          |
| Dibenzo(a,h)anthracene    |        | 0500'0>      | <0.0050      | 0.1                                          |
|                           | 0.005  | <0.0050      | <0.0050      | 69:0                                         |
| Fluorene                  | 0.005  | <0.0050      | <0.0050      | 0.19                                         |
| Indeno(1,2,3-cd)pyrene    | 0.005  | <0.0050      | <0.0050      | 0.23                                         |
| 1-Methylnaphthalene       | 0.005  | <0.0050      | <0.0050      | 0.59                                         |
| 2-Methylnaphthalene       | 0.005  | <0.0050      | <0.0050      | 0.59                                         |
| Naphthalene               | 0.005  | <0.0050      | <0.0050      | 60:0                                         |
| Phenanthrene              | 0.005  | <0.0050      | <0.0050      | 69:0                                         |
| Pyrene                    | 0.005  | <0.0050      | <0.0050      | 1                                            |
| Methylnaphthalene, 2-(1-) | 0.0071 | <0.0071      | <0.0071      | 0.59                                         |
|                           |        |              |              |                                              |

Analysis by Bureau Veritas, all results in ppm (µg/g) unless otherwise stated

\* Analytical Reportable Detection Limits (RDLs) are shown except as indicated in brackets.

<sup>\*\*</sup> Standards shown are for Generic Site Condition Standards within 30m of a Water Body in a Potable Ground Water Condition for Residential/Parkland/Institutional/Industrial/Commercial/Community property use for coarse grained soil

### Soil Engineers Ltd.

# SOIL CHEMICAL ANALYSIS - Petroleum Hydrocarbons (PHCs) Parameters

Page 5 of 6

| Project No. 2009-E126 |      |              |              | Page 5                                     |
|-----------------------|------|--------------|--------------|--------------------------------------------|
| Sample ID             |      | BH101/1      | BH102/1      |                                            |
| Sample Date           |      | 07-June-2024 | 07-June-2024 |                                            |
| Laboratory ID         | RDL* | ZKZ614       | ZKZ619       | Ontario Regulation 153/04 Table 8 Standard |
| Bore Hole No.         |      | BH 101       | BH 102       |                                            |
| Depth (mbgs)          |      | 0.0 - 0.8    | 0.0 - 0.8    |                                            |

| Sample ID                                                                     |            | BH101/1              | BH102/I      |                                              |
|-------------------------------------------------------------------------------|------------|----------------------|--------------|----------------------------------------------|
| Sample Date                                                                   |            | 07-June-2024         | 07-June-2024 |                                              |
| Laboratory ID                                                                 | RDL*       | ZKZ614               | ZKZ619       | Ontario Regulation 153/04 Table 8 Standard** |
| Bore Hole No.                                                                 |            | BH 101               | BH 102       |                                              |
| Depth (mbgs)                                                                  |            | 0.0 - 0.8            | 0.0 - 0.8    |                                              |
| Benzene                                                                       | -          |                      |              | 0.02                                         |
| Toluene                                                                       | •          |                      |              | 0.2                                          |
| Ethylbenzene                                                                  | 1          | 1                    | 1            | 0.05                                         |
| m/p xylenes                                                                   | ,          | -                    |              | >N                                           |
| o xylene                                                                      | ĵ.         |                      |              | N<br>N                                       |
| Total Xylenes                                                                 | Œ          |                      | _            | 0.05                                         |
| FI (C6-C10)                                                                   | 10         | <10                  | <10          | 25                                           |
| F1 (C6-C10) - BTEX                                                            | 10         | <10                  | <10          |                                              |
| F2 (C10-C16)                                                                  | 10         | 10   <10             | <10          | 10                                           |
| F3 (C16-C34)                                                                  | _          |                      | <50          | 240                                          |
| F4 (C34-C50)                                                                  | 50         |                      |              |                                              |
| Analysis by Bureau Veritas, all results in ppm (µg/g) unless otherwise stated | lun (g/gn) | ess otherwise stated |              |                                              |

\*\* Standards shown are for Generic Site Condition Standards within 30m of a Water Body in a Potable Ground Water Condition for

\* Analytical Reportable Detection Limits (RDLs) are shown except as indicated in brackets.

Residential/Parkland/Institutional/Industrial/Commercial/Community property use for coarse grained soil

### Soil Engineers Ltd.

# SOIL CHEMICAL ANALYSIS - Organochlorine Pesticides (OCs) Parameters

lect No. 2009-F126

Page 6 of 6

| Project No. 2009-E126                                                        |           |                  |                  |               |             |             |             |             |             |                                                             |             | Page 6 of 6        |
|------------------------------------------------------------------------------|-----------|------------------|------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------------------------------------------------------|-------------|--------------------|
| Sample ID                                                                    |           | BHI/IA           | BH2/1A           | BH4/1A        | BH5/1A      | BH6/1A      | TP-1        | TP-2        | TP-3        | TP-4                                                        | TP-5        |                    |
| Sample Date                                                                  |           | 28-Oct-2020      | 28-Oct-2020      | 28-Oct-2020   | 28-Oct-2020 | 28-Oct-2020 | 03-May-2024 | 03-May-2024 | 03-May-2024 | 03-May-2024 03-May-2024 03-May-2024 03-May-2024 03-May-2024 | 03-May-2024 | Ontario Regulation |
| Laboratory ID                                                                | RDL*      | 0AQ110           | OAQ111           | OAQ113        | 0AQ114      | OAQ115      | ZCA727      | ZCA728      | ZCA729      | ZCA730                                                      | ZCA731      | 153/04 Table 8     |
| Bore Hole No.                                                                |           | BH1              | BH2              | BH4           | BH5         | BH6         | 10          | ē.          | E.          | 03                                                          | ř.          | Standard**         |
| Depth (mbgs)                                                                 |           | 9.0 - 0.0        | 9.0 - 0.0        | 0.0 - 0.0     | 0.0 - 0.0   | 9.0 - 0.0   | 0.0 - 0.2   | 0.0 - 0.2   | 0.0 - 0.2   | 0.0 - 0.2                                                   | 0.0 - 0.2   |                    |
| Aldrin                                                                       | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.05               |
| Chlordane (alpha)                                                            | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | >Z                 |
| Chlordane (gamma)                                                            | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | >Z                 |
| Chlordane (total)                                                            | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.05               |
| o,p DDD                                                                      | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | > N                |
| p.p-DDD                                                                      | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | >2                 |
| DDD (total)                                                                  | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.05               |
| o,p DDE                                                                      | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | >2                 |
| p.p-DDE                                                                      | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | >N                 |
| DDE (total)                                                                  | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.05               |
| op-DDT                                                                       | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | N<br>N             |
| pp-DDT                                                                       | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | N                  |
| DDT (total)                                                                  | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 1.4                |
| Dieldrin                                                                     | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.05               |
| Endosulphan I                                                                | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | N                  |
| Endosulphan II                                                               | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | N/                 |
| Total Endosulphan                                                            | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.04               |
| Endrin                                                                       | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.04               |
| Heptachlor                                                                   | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.05               |
| Heptachlor Epoxide                                                           | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.05               |
| Lindane                                                                      | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.01               |
| Methoxychlor                                                                 | 0.005     | <0.0050          | <0.0050          | <0.0050       | <0.0050     | <0.0050     | <0.0050     | <0.0050     | <0.0050     | <0.0050                                                     | <0.0050     | 0.05               |
| Hexachlorobenzene                                                            | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.02               |
| Hexachlorobutadiene                                                          | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.01               |
| Hexachloroethane                                                             | 0.002     | <0.0020          | <0.0020          | <0.0020       | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020                                                     | <0.0020     | 0.01               |
| Analysis by Bureau Veritae all results in mm (119/9) unless otherwise stated | ac all re | i) muu ui stiris | in/a) unless oth | erwise stated |             |             |             |             |             |                                                             |             |                    |

Analysis by Bureau Veritas, all results in ppm (µg/g) unless otherwise stated

\* Analytical Reportable Detection Limits (RDLs) are shown except as indicated in brackets.

\*\* Standards shown are for Generic Site Condition Standards within 30m of a Water Body in a Potable Ground Water Condition for Residential/Parkland/Institutional/Industrial/Commercial/Community

property use for coarse grained soil



## Summary of Metals and Inorganics

| Antimony         ug/g           Arsenic         ug/g           Barium         ug/g           Beryllium         ug/g           Boron (Hot Water Soluble)         ug/g           Cadmium         ug/g           Chromium VI         ug/g           Cobalt         ug/g           Cobalt         ug/g           Copper         ug/g           Mercury         ug/g           Molybdenum         ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.2  | ì            | 38                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|----------------------|
| um Hot Water Soluble) um um um VI y lenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |              |                      |
| um Hot Water Soluble) um um um VI y fenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.4   | BH2/1A       | 9.0 - 0.0            |
| Hot Water Soluble) Im tum tum VI Sy Sy Jam Share Soluble) Im Solub | 120   | BH2/1A, TP-2 | 0.0 - 0.6, 0.0 - 0.2 |
| Hot Water Soluble)  Im  Ium  Ium VI  Y  Senum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2   | BH2/1A       | 9.0 - 0.0            |
| um tum tum VI  y  Senata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.11  | BH101/1      | 0.0 - 0.8            |
| ium VI ium VI  y senum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.23  | TP-1         | 0.0 - 0.2            |
| ium VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36    | BH2/1A       | 0.0 - 0.0            |
| y<br>Jenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.29  | BH2/1A       | 0.0 - 0.0            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20    | BH2/1A       | 0.0 - 0.6            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30    | BH2/1A       | 0.0 - 0.0            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17    | TP-5         | 0.0 - 0.2            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.05 | r            | Ÿ                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.57  | BH1/1A       | 9.0 - 0.0            |
| Nickel ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43    | BH2/1A       | 9.0 - 0.0            |
| Selenium ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.5  | .1           | *                    |
| Silver ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.2  |              | î.                   |
| Thallium ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.21  | BH2/1A       | 9.0 - 0.0            |
| Vanadium ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50    | BH2/1A       | 9.0 - 0.0            |
| Zinc ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85    | DUP S2       | 0.0 - 0.2            |
| pH (pH Units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.68  | BH4/1A       | 0.0 - 0.0            |
| Conductivity (ms/cm) mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.31  | BH101/1      | 0.0 - 0.8            |
| Sodium Adsorption Ratio -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1   | BH102/1      | 0.0 - 0.8            |
| Cyanide, Free ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01 | Į            | 3                    |
| Boron (Total) ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10    | BH102/1      | 0.0 - 0.8            |
| Uranium ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.3   | BH6/1A       | 0.0 - 0.0            |



### Summary of VOCs

| Parameter                   | Unit | Maximum Concentration | Sample ID   | Sampling Depth (m) |
|-----------------------------|------|-----------------------|-------------|--------------------|
| Acetone                     | g/gn | <0.49                 | •           |                    |
| Benzene                     | g/gn | >0.006                | _           |                    |
| Bromodichloromethane        | g/gn | <0.04                 | 24          |                    |
| Bromoform                   | g/gn | <0.04                 | ,           | 4.                 |
| Bromomethane                | g/gn | <0.04                 | *           | ı                  |
| Carbon Tetrachloride        | g/gn | <0.04                 | 100         | 1                  |
| Chlorobenzene               | g/gn | <0.04                 |             | 3.6                |
| Chloroform                  | g/gn | <0.04                 | // <b>!</b> | 3                  |
| Dibromochloromethane        | g/gn | <0.04                 | 90          | -                  |
| 1,2-Dichlorobenzene         | g/gn | <0.04                 | •           |                    |
| 1,3-Dichlorobenzene         | g/gn | <0.04                 |             | SE)                |
| 1,4-Dichlorobenzene         | g/gn | <0.04                 | 2           | <b>:</b>           |
| 1,1-Dichloroethane          | g/gn | <0.04                 | <b>18</b>   | 1                  |
| 1,2-Dichloroethane          | g/gn | <0.049                |             |                    |
| 1,1-Dichloroethylene        | g/gn | <0.04                 | r           | E                  |
| Cis-1,2-Dichloroethylene    | g/gn | <0.04                 | e           | de:                |
| Trans-1,2-Dichloroethylene  | g/gn | <0.04                 | ij          | J                  |
| 1,2-Dichloropropane         | g/gn | <0.04                 | ij          | 1                  |
| Cis-1,3-Dichloropropylene   | g/gn | <0.03                 | t           | ũ                  |
| Trans-1,3-Dichloropropylene | g/gn | <0.04                 | r           | j.                 |
| Ethylbenzene                | g/gn | <0.01                 | SIEC .      | ì                  |
| Ethylene Dibromide          | g/gn | <0.04                 | 1           | ű                  |
| Methyl Ethyl Ketone         | g/gn | <0.4                  |             | ï                  |
| Methylene Chloride          | g/gn | <0.049                | r           | X                  |
| Methyl Isobutyl Ketone      | g/gn | <0.4                  | E           |                    |
| Methyl-t-Butyl Ether        | g/gn | <0.04                 | 8∎0         | 3                  |
| Styrene                     | g/gn | <0.04                 | а           | t                  |
| 1,1,1,2-Tetrachloroethane   | g/gn | <0.04                 |             | To the             |



## Summary of VOCs (continued)

| Parameter                         | Unit | Maximum Concentration | Sample ID     | Sampling Depth (m) |
|-----------------------------------|------|-----------------------|---------------|--------------------|
| 1,1,2,2-Tetrachloroethane         | g/gn | <0.04                 | <b>1</b>      | 1                  |
| Toluene                           | g/gn | <0.02                 | ě             | •                  |
| Tetrachloroethylene               | 8/8n | <0.04                 | ř             | •                  |
| 1,1,1-Trichloroethane             | g/gn | <0.04                 | 3 <b>4</b> 11 |                    |
| [1,1,2-Trichloroethane            | g/gn | <0.04                 | <b>₹</b>      | 350                |
| Trichloroethylene                 | g/gn | <0.01                 | 5#2           | 3                  |
| Vinyl Chloride                    | g/gn | <0.019                | ÷             | į.                 |
| m-Xylene & p-Xylene               | g/gn | <0.02                 | (E)           | 10.                |
| o-Xylene                          | g/gn | <0.02                 | **            | 3                  |
| Total Xylenes                     | g/gn | <0.02                 | 1             | 1                  |
| Dichlorodifluoromethane           | g/gn | <0.04                 | *             | -                  |
| Hexane(n)                         | g/gn | <0.04                 | •             | r                  |
| Trichlorofluoromethane            | g/gn | <0.04                 | 7.            |                    |
| 1,3-Dichloropropene (cis + trans) | g/gn | <0.05                 | *             | er.                |



Project No. 2009-E126 Table II – Maximum Concentration (Soil)

### Summary of PAHs

| Parameter                 | Unit | Maximum Concentration | Sample ID    | Sampling Depth (m) |
|---------------------------|------|-----------------------|--------------|--------------------|
| Acenaphthene              | g/gn | <0.005                | ı            |                    |
| Acenaphthylene            | g/gu | <0.005                | (A)          |                    |
| Anthracene                | g/gn | <0.005                |              | 3.003              |
| Benzo(a)anthracene        | g/gn | <0.005                | Ť            | •                  |
| Benzo(a)pyrene            | g/gn | <0.005                |              | -                  |
| Benzo(b/j)fluoranthene    | g/gn | <0.005                | ( <b>1</b> ) | ı                  |
| Benzo(ghi)perylene        | g/gn | <0.005                | •            | 3                  |
| Benzo(k)fluoranthene      | g/gn | <0.005                | (#)          | i,                 |
| Chrysene                  | g/gn | <0.005                | *            | 34                 |
| Dibenzo(a,h)anthracene    | g/gn | <0.005                | i.           | į.                 |
| Fluoranthene              | g/gn | <0.005                |              |                    |
| Fluorene                  | g/gn | <0.005                | <b>1</b>     |                    |
| Indeno(1,2,3-cd)pyrene    | g/gn | <0.005                | *            | T                  |
| 1-Methylnaphthalene       | g/gn | <0.005                | 10           | r                  |
| 2-Methylnaphthalene       | g/gn | <0.005                |              | -                  |
| Naphthalene               | g/gn | <0.005                | i i          | я                  |
| Phenanthrene              | g/gn | <0.005                |              |                    |
| Pyrene                    | g/gn | <0.005                | ,            |                    |
| Methylnaphthalene, 2-(1-) | g/gn | <0.0071               | (B)          | 348                |



## Summary of CCME F1-F4

| 8                  |      |                       |           |                    | 1 |
|--------------------|------|-----------------------|-----------|--------------------|---|
| arameter           | Unit | Maximum Concentration | Sample ID | Sampling Depth (m) | _ |
| Senzene            | g/gn | ~>                    |           | *                  |   |
| oluene             | g/gn | ->                    |           | r.                 |   |
| Ethylbenzene       | g/gu | <del>-</del> >        | (e)       | 3.                 |   |
| n/p xylenes        | g/gn | ->                    | ŢĮ        | ā.                 |   |
| o xylene           | g/gn | ~>                    | **        | 5                  |   |
| Fotal Xylenes      | g/gn | >                     | *         | Y                  |   |
| 1 (C6-C10)         | g/gn | <10                   | ř         | r                  |   |
| F1 (C6-C10) - BTEX | g/gn | <10                   |           | 31                 |   |
| F2 (C10-C16)       | g/gn | <10                   | 8         | 3                  | _ |
| F3 (C16-C34)       | g/gn | <50                   | 90        |                    | _ |
| F4 (C34-C50)       | g/gn | <50                   | Ľ         | 1016               | _ |



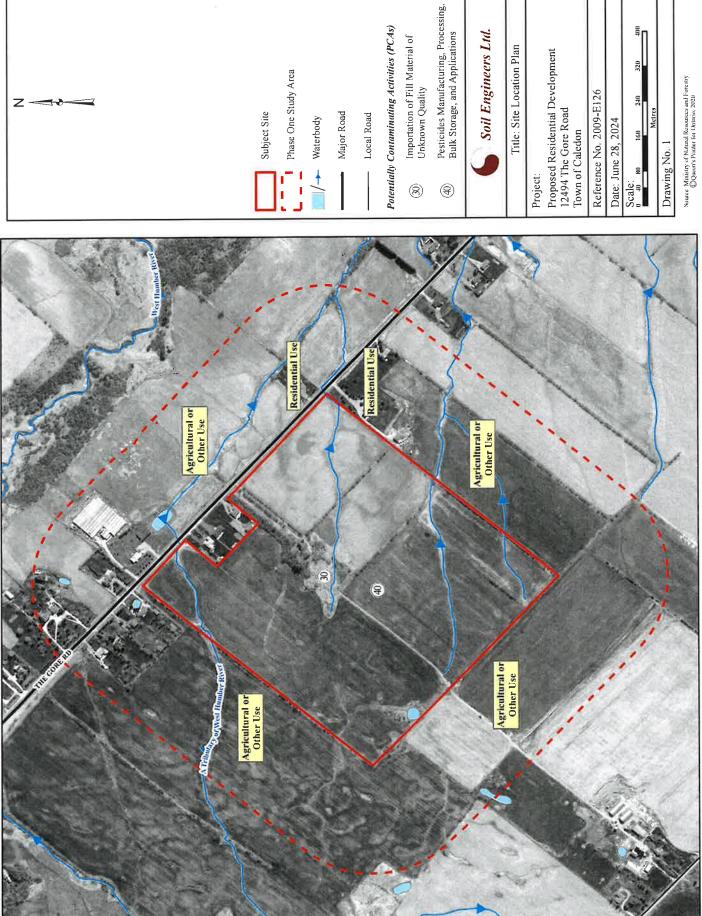
### Summary of OCs

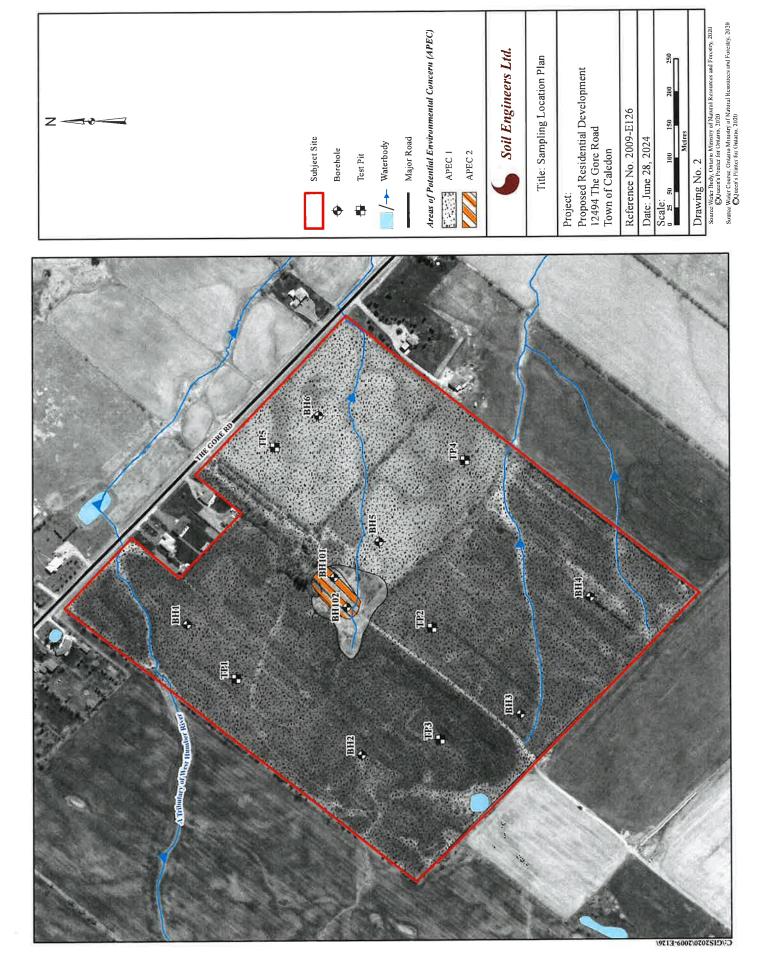
| Parameter           | Unit | Maximum Concentration | Sample ID | Sampling Depth (m) |
|---------------------|------|-----------------------|-----------|--------------------|
| Aldrin              | g/gn | <0.002                | -         | (I)                |
| Chlordane (alpha)   | g/gn | <0.002                | •         | 1                  |
| Chlordane (gamma)   | g/gn | <0.002                | 19        | ı                  |
| Chlordane (total)   | g/gn | <0.002                | 30        | •                  |
| o,p DDD             | g/gn | <0.002                | *         | 1.                 |
| p,p-DDD             | g/gn | <0.002                | ı         | ı.                 |
| DDD (total)         | g/gn | <0.002                | (a)       |                    |
| o,p DDE             | g/gn | <0.002                | 7         | ä                  |
| p,p-DDE             | g/gn | <0.002                |           | r                  |
| DDE (total)         | g/gn | <0.002                | •         | r                  |
| op-DDT              | g/gn | <0.002                | (4)       | বাং                |
| pp-DDT              | g/gn | <0.002                |           | d d                |
| DDT (total)         | g/gn | <0.002                | ##X       | 1                  |
| Dieldrin            | g/gn | <0.002                | *         | 1                  |
| Endosulphan I       | g/gn | <0.002                | e)        | ı                  |
| Endosulphan II      | g/gn | <0.002                | 31        | ,                  |
| Total Endosulphan   | g/gn | <0.002                | ij        | ,                  |
| Endrin              | g/gn | <0.002                | 1         | í                  |
| Heptachlor          | g/gn | <0.002                | Е         | Ĭ,                 |
| Heptachlor Epoxide  | g/gn | <0.002                | 187       | T.                 |
| Lindane             | g/gn | <0.002                | ı         | î                  |
| Methoxychlor        | g/gn | <0.005                | ,         | ï                  |
| Hexachlorobenzene   | g/gn | <0.002                | r         | r                  |
| Hexachlorobutadiene | g/gn | <0.002                | T:        | •                  |
| Hexachloroethane    | g/gn | <0.002                |           |                    |

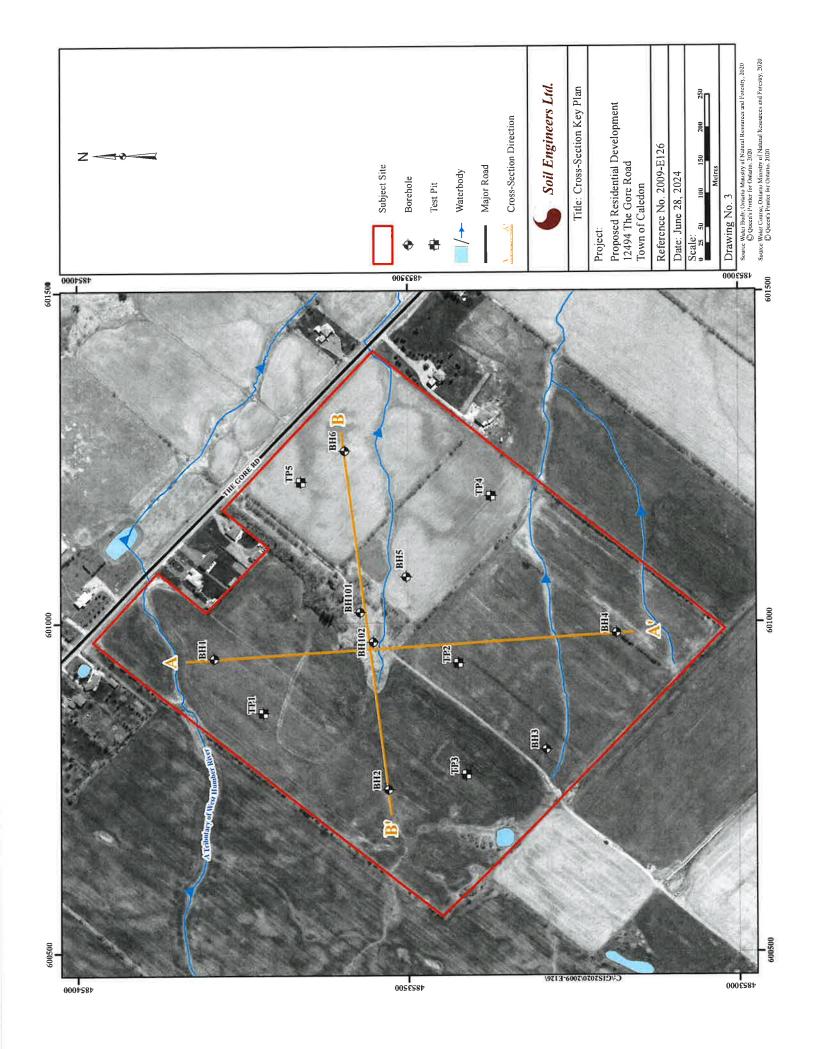


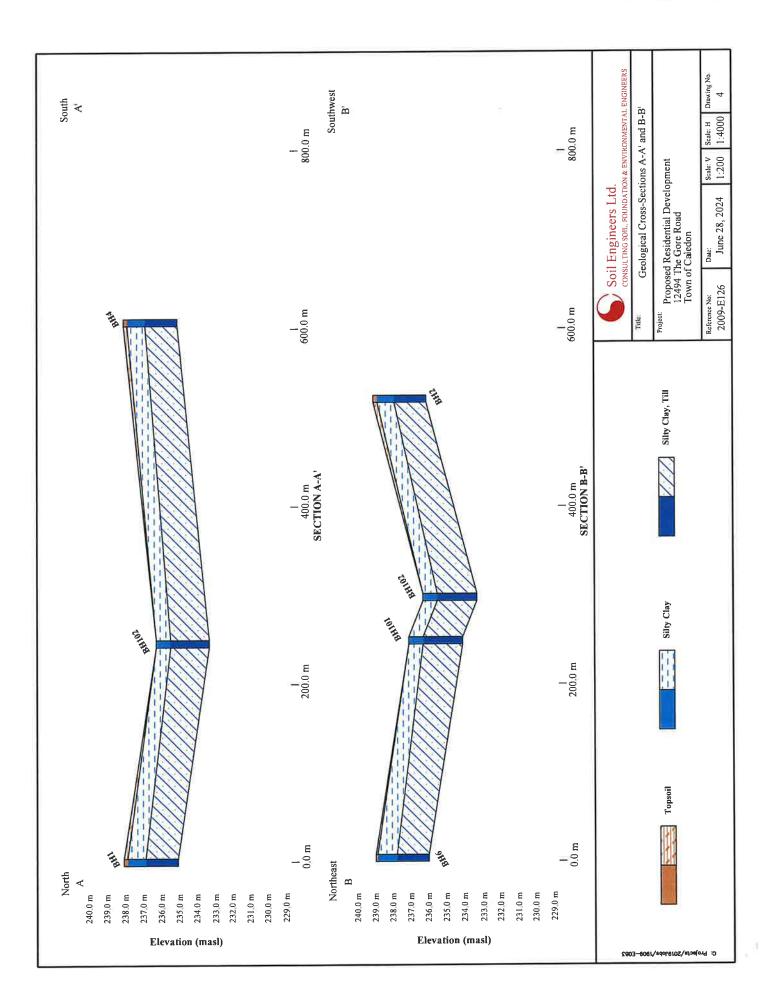
### Soil Engineers Ltd.

CONSULTING ENGINEERS


### GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE


90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 - TEL (416) 754-8515 · FAX (905) 881-8335


**HAMILTON** GRAVENHURST PETERBOROUGH MISSISSAUGA **OSHAWA** NEWMARKET **BARRIE** TEL: (905) 777-7956 TEL: (705) 684-4242 TEL: (905) 440-2040 TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647 TEL: (705) 721-7863 FAX: (905) 542-2769 FAX: (905) 881-8335 FAX: (705) 684-8522 FAX: (905) 725-1315 FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315


### **DRAWINGS**

REFERENCE NO. 2009-E126

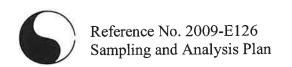











90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL (416) 754-8515 · FAX (905) 881-8335

| BARRIE              | MISSISSAUGA         | OSHAWA              | NEWMARKET           | GRAVENHURST         | PETERBOROUGH        | HAMILTON           |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|
| TEL: (705) 721-7863 | TEL: (905) 542-7605 | TEL: (905) 440-2040 | TEL: (905) 853-0647 | TEL: (705) 684-4242 | TEL: (905) 440-2040 | TEL: (905) 777-79: |
| FAX: (705) 721-7864 | FAX: (905) 542-2769 | FAX: (905) 725-1315 | FAX: (905) 881-8335 | FAX: (705) 684-8522 | FAX: (905) 725-1315 | FAX: (905) 542-27  |
| FAX: (705) 721-7864 | FAX: (905) 542-2769 | FAX: (905) 725-1315 | FAX: (905) 881-8335 | FAX: (705) 684-8522 | FAX: (905) 725-1315 | FAX: (905) 54      |

### APPENDIX 'A'

SAMPLING AND ANALYSIS PLAN

REFERENCE NO. 2009-E126

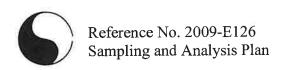


This Sampling and Analysis Plan is prepared for the Phase Two Environmental Site Assessment (Phase Two ESA) as defined by Ontario Regulation (O. Reg.) 153/04, as amended. The subject site is located at 12494 The Gore Road, in the Town of Caledon, Ontario (hereinafter referred to as the subject site).

The Sampling and Analysis Plan is based on the findings of our Phase One Environmental Site Assessment (Phase One ESA, 2009-E126 dated November 13, 2020), Phase One Environmental Site Assessment Update (Phase One ESA Update, 2009-E126 dated March 8, 2024) and Town of Caledon, Municipal Freedom of Information (Municipal FOI) Request # 2024-023 dated May 7, 2024 (Municipal FOI).

### 1) **OBJECTIVE**

The objective of the Phase Two ESA was to determine the soil quality at the subject site, as related to the following Areas of Potential Environmental Concerns (APECs) at the subject site:


APEC 1: Potential soil impact due to pesticide use related to agricultural activities at the subject site.

APEC 2: Potential soil impact due to dumping of soil in the central portion of the subject site.

### 2) SCOPE OF WORK

The scope of work for the initial investigation of the Phase Two ESA includes:

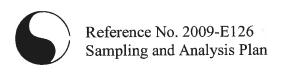
- Locate the underground and overhead utilities.
- Conduct a total of eight (8) boreholes BH1 to BH6, BH101 and BH102 to depth of 3
  mbgs and carrying out five (5) hand dug test pits TP1 to TP6 to depth of 0.2 mbgs.
- Collect representative soil samples from the boreholes.
- Undertake field examination of the retrieved soil samples for visual and olfactory



evidence of potential contamination.

- Undertake soil vapour measurements for the retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode.
- Carry out analytical testing program on selected soil samples including Quality Control/
  Quality Assurance (A/QC) samples for one or more of the following parameters: Metals
  and/or Inorganic parameters, Petroleum Hydrocarbons (PHCs), Volatile Organic
  Compounds (VOCs), Polycylic Aromtic Hydrocarbons (PAHs) and Organochlorine
  Pesticides (OCs).
- Review analytical testing results of submitted soil samples using applicable Site
   Condition Standards.
- Prepare a Phase Two ESA report containing the findings of the investigation.

### 3) RATIONALE FOR BOREHOLE / MONITORING WELL LOCATIONS


The rationale for the selection of the borehole/monitoring well locations is presented in the table below:

| Area of potential environmental concern (APEC)                                                             | Borehole /<br>Monitoring Well/<br>Test Pit Location |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| APEC 1 (Potential soil impact due to pesticide use related to agricultural activities at the subject site) | BH1 to BH6, TP1 to<br>TP5                           |
| APEC 2 (Potential soil impact due to dumping of soil in the central portion of the subject site)           | BH101 and BH102                                     |

The proposed sampling locations for the Phase Two ESA are shown in Drawing No. 2.

### 4) SOIL AND GROIUNDWATER SAMPLES (INCLUDING QA/QC SAMPLES) ANALYTICAL SCHEDULE

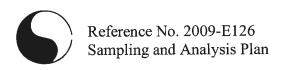
A summary of soil samples (including QA/QC samples) to be submitted is presented in the table below:



### Soil Sample (i/c QA/QC Samples)

| Borehole              | M and/or I | PHCs | VOCs | PAHs | OCs |
|-----------------------|------------|------|------|------|-----|
| BH1                   | 1          |      |      |      | 1   |
| BH2                   | 11         |      |      |      | 1   |
| BH3                   | 1          |      |      |      |     |
| BH4                   | 1          |      |      |      | 1   |
| BH5                   |            |      |      |      | 1   |
| BH6                   | 1          |      |      |      | 1   |
| TP1                   | 1          |      |      |      | 1   |
| TP2                   | 1          |      |      |      | 1   |
| TP3                   | 1          |      |      |      | 1   |
| TP4                   | 1          | 1    |      |      | 1   |
| TP5                   | 1          |      |      |      | 1   |
| BH101                 | 1          | 1    | 1    | 1    |     |
| BH102                 | 1          | 1    | 1    | 1    |     |
| Duplicate Soil Sample | 3          |      |      |      |     |

M and/or I = Metals and/or Inorganics


Groundwater will not be investigated during this assessment.

### 5) SOIL AND GROUNDWATER SAMPLING PROCEDURES

Soil Engineers Ltd.'s (SEL) Standard Operation Procedures (SOPs) will be followed throughout the field investigation (sampling, decontamination of equipment, observation and documentation) including the field QA/QC program. SEL SOPs are presented in Section 7 of this sampling and analysis plan.

### 6) DATA QUALITY OBJECTIVES

Sampling and decontamination procedures including QA/QC program should be carried out in accordance with:



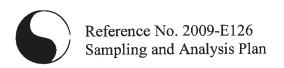
- SEL SOPs, as presented in Section 7.
- The "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols and procedures should be carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

### 7) STANDARD OPERATING PROCEDURES (SOPs)

### 7.1) Borehole Drilling

The purpose of borehole drilling is to provide access to subsurface soils at specified locations and depths. Soil borings also allow for installation of groundwater monitoring wells.


### 7.1.1) Underground Utilities

Prior to drilling, the public utility service (One Call) and private utility services are contacted. The underground utility services are located and marked out in the field.

### 7.1.2) Drilling Methods

Direct Push Drilling (i.e. Geoprobe, Powerprobe, Pionjar, etc.)

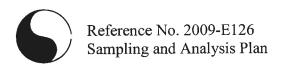
The direct push drilling machine is a hydraulically powered hammer/ram sampling device. The unit is designed so that the weight of the vehicle provides the majority of downward force. The hydraulics, with the aid of a percussion hammer, push lengths of specially modified 54 mm (2.125 inch) outside diameter (OD), hardened steel rod into the ground. The rod is advanced to target sampling depth is reached. The steel rod has been specially modified for specific types of sample collection.



### Flight-Auger Drilling

The flight-auger drilling machine is a hydraulically powered feed and retract system that provides 28,275 pounds (12,826 kg) of retract force and 18,650 pounds (8,460 kg) of down pressure. The 183 cm (72 inch) stroke, hydraulic vertical drive system has no chains or cables which can stretch. It is equipped with hollow-stem augers. It is extended to pre-determined sampling intervals using conventional drilling methods, at which time a decontaminated 51 mm split-spoon sampler is extended ahead of the lead auger to collect a soil sample. The split-spoon sampler is then brought to surface and opened, exposing the soil core sample.

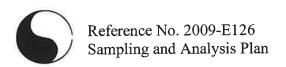
### Hand Dug Test Pit


The hand-dug test pits are hand-dug using shovel. Prior to digging and sampling at each test pit location, the shovel is brushed clean using a solution of phosphate-free detergent and distilled water.

### 7.1.3) Occupational Health and Safety

Prior to drilling, the site is inspected to ensure that no potentially hazardous material is present near/around the drilling area. Safety procedures are reviewed and a safety check of the equipment is conducted including locating the emergency stop button on the drill rig, checking personal protective equipment (hard hats, safety shoes, eye/ear protection), locating the first aid kit and confirming the location of the nearest hospital, and verifying the standard procedure in case of injury.

### 7.1.4) Drilling Spoils


Excess soil generated during sampling and drilling procedure is stored at the site in metal barrels. If the analytical results indicate the soil is contaminated, a licensed disposal company is notified to collect the barrels of soil for proper disposal.



### 7.1.5) Borehole Abandonment

After drilling, logging and/or sampling, boreholes will be backfilled by the method described below:

- Bentonite is thoroughly mixed into the grout within the specified percentage range. The
  tremie grout is usually placed into the hole; however, for selected boreholes (e.g., shallow
  borings well above the water table) at certain sites, the grout may be allowed to free fall,
  taking care to ensure the grout does not bridge and form gaps or voids in the grout
  column.
- The volume of the borehole is calculated and compared to the grout volume used during grouting to aid in verifying that bridging did not occur.
- When using a tremie to place grout in the borehole, the bottom of the tremie is submerged into the grout column and withdrawn slowly as the hole fills with grout. If allowing the grout to free fall (and not using a tremie), the grout is poured slowly into the boring. The rise of the grout column is visually monitored or sounded with a weighted tape.
- If the method used to drill the boring utilized a drive casing, the casing is slowly extracted during grouting such that the bottom of the casing does not come above the top of the grout column.
- During the grouting process, no contaminating material (oil, grease, or fuels from gloves, pumps, hoses, et. al) is permitted to enter the grout mix and personnel wear personal protective equipment as specified in the Project Health and Safety Plan.
- Following grouting, barriers are placed over grouted boreholes as the grout is likely to settle in time, creating a physical hazard. Grouted boreholes typically require at least a second visit to 'top off' the hole.
- The surface hole condition should match the pre-drilling condition (asphalt, concrete, or smoothed flush with native surface), unless otherwise specified in the project work plans.



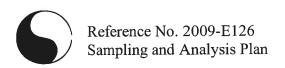
### 7.1.6) Subsurface Obstruction

Where refusal to drilling occurs due to rock, foundation or underground services, the borehole is relocated within 2.0 m downstream from the original borehole location.

### 7.2) Soil Sampling

### 7.2.1) Introduction

Soil sampling is conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, May 1996" as revised December 1996 (MOE Guidance Manual) and as amended by O. Reg. 366/05, 66/08, 511/09, 245/10, 179/11, 269/11 and 333/13. The sampling procedures are described herein.


### **Drilling Rig Decontamination**

### Geoprobe

One-time use Shelby tube (thin-walled) samples are recovered from the boreholes in clear disposable PVC liners to prevent cross-contamination.

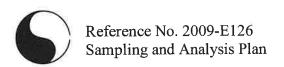
### **CME 55**

Drilling equipment such as drill rigs, augers, drill pipes, drilling rods and split-spoons are decontaminated prior to initial use, between borehole locations and at the completion of drilling activities. The drilling equipment is manually scrubbed with a brush using a phosphate-free solution and thoroughly steam cleaned and/or power washed to remove any foreign material and potential contaminants.



In addition, the spilt-spoon sampler and any sub-sampling equipment is decontaminated prior to each usage. Various solutions are used for sampling equipment decontamination as described below:

- Phosphate-free soap solution (i.e., Alconox), tap water and distilled water are used for suspected petroleum hydrocarbon soil sampling.
- A reagent-grade methanol solution and distilled water are used for suspected VOCs soil sampling. The reinstate waste is collected.
- Reagent-grade 10% nitric acid solution and distilled water are used for suspected metals soil sampling. The reinstate waste will be collected.


### 7.2.2) Sample Logging and Field Screening

Samples are typically collected at 1.5 m intervals in the overburden. Tactile examination of the samples is made to classify the soil, and a log is recorded for each borehole detailing the physical characteristics of the soil including colour, soil type, structure, and any observed staining or odour. The organic vapour readings, the moisture content of the samples as determined in the laboratory, the groundwater and cave-in levels measured at the time of investigation, and the groundwater monitoring well construction details are given on the borehole logs.

### 7.2.3) Field Screening and Calibration Procedures

The soil samples are classified based on physical characteristics including colour, soil type, moisture, and visible observation of staining and/or odour. In addition, the organic vapour reading for each soil sample is determined using a gas detector. Based on the overall soil physical characteristics, representative soil sample are selected for chemical analysis.

The organic vapour readings are measured using a portable RKI Eagle gas detector, TYPE 101 (Serial Number: E091015) set to include all gases, and having a minimum detection of 2 ppm. Prior to measurement, the detector is calibrated using a Hexane 40% LEL gas. The allowable range of calibration is 38% to 42%.



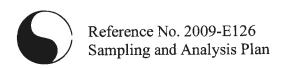
### 7.2.4) Soil Sampling

The soil from the disposable sampler liner is handled using new disposable gloves in order to avoid the risk of cross-contamination between the samples. Sufficient amounts of the soil samples are placed into clean glass jars with Teflon lined lids for analyses for Polychlorinated Biphenyls, Polyaromatic Hydrocarbons, moisture content, medium to heavy PHCs, and Metals and Inorganics.

Small amounts of the soil samples are collected using a disposable 'T'-shaped Terracore sampler and stored in methanol or sodium bisulfate vials for light PHCs (CCME F1) and VOCs analysis, respectively; the remainder of the samples is placed into a sealable bag for vapour measurement and soil classification. The samples are stored in an insulated container with ice after sampling and during shipment to the laboratory.

The minimum requirements for the number, type and frequency of field quality control are given below:

i. Field Duplicates: At least 1 field duplicate sample is collected and submitted for laboratory analysis for every 10 soil samples that are collected to ensure the soil sampling technique is accurate.


### 7.3) Well Installation

### 7.3.1) Introduction

The well installation procedures are described herein.

### 7.3.2) Screen and Riser Pipe

Monitoring wells are constructed from individually wrapped 38 or 50 mm inside diameter (ID) schedule 40 polyvinyl chloride (PVC) flush threaded casing equipped with O-rings. The screen consists of casing material which is factory slotted (slot width = 0.25 mm) to permit the entry of

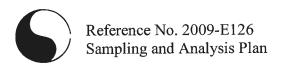


water into the well. The bottom of the screens are equipped with threaded end caps. The appropriate number of risers are coupled with the screen section(s) via threaded joints to construct the well. The top of the wells are tightly capped using a locking well cap, which prevents the infiltration of surface water and foreign material into the well and also provides security. A watertight, traffic-rated protective casing is installed over each monitoring well within a concrete pad extending approximately 0.5 mbgs. No PVC cements or other solvent based cements are used in the construction of the monitoring wells.

### 7.3.3) Well Materials Decontamination

Dedicated sampling equipment, such as submersible pumps, are decontaminated prior to installation inside monitoring wells.

Where factory-cleaned, hermetically sealed materials are used, no decontamination is conducted.


### Setting Screen, Riser Casings and Filter Materials

At total depth, the soil cuttings are removed through circulation or rapidly spinning the augers prior to constructing the well. The drill pipe and bit or centre bit boring is removed. The well construction materials are then installed inside the open borehole or through the centre of the drive casing or augers.

After the monitoring well assembly is lowered to the bottom of the borehole, the filter pack is added until its height is approximately two feet above the top of the screen, and placement is verified. The filter pack is then surged using a surge block or swab in order to settle the pack material and reduce the possibility of bridging.

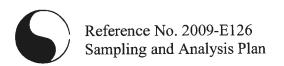
### Setting Seals and Grouting

Once the top of the filter pack is verified to be in the correct position, a bentonite seal is placed above the filter pack. The seal is allowed to hydrate for at least one hour before proceeding with the grouting operation.



After hydration of the bentonite seal, grout is then pumped through a tremie pipe and filled from the top of the bentonite seal upward. The bottom of the tremie pipe should be maintained below the top of the grout to prevent free fall and bridging. When using drive casing or hollow-stem auger techniques, the drive casing/augers should be raised in incremental intervals, keeping the bottom of the drive casing/augers below the top of the grout. Grouting will cease when the grout level has risen to within approximately one to two feet of the ground surface, depending on the surface completion type (flush-mount versus above-ground). Grout levels are monitored to assure that grout taken into the formation is replaced by additional grout.

### Capping the Wells


For above-ground completions, the protective steel casing will be centered on the well casing and inserted into the grouted annulus. Prior to installation, a 2-inch deep temporary spacer may be placed between the PVC well cap and the bottom of the protective casing cover to keep the protective casing from settling onto the well cap. A minimum of 24 hours after grouting should elapse before installation of the concrete pad and steel guard posts for above-ground completions, or street boxes or vaults for flush mount completions. For above-ground completions, a concrete pad, usually 3-foot by 3-foot by 4-inch thick, is constructed at ground surface around the protective steel casing. The concrete is sloped away from the protective casing to promote surface drainage from the well.

For flush-mount (or subgrade) completions, a street box or vault is set and cemented in position. The top of the street box or vault will be raised slightly above grade and the cement sloped to grade to promote surface drainage away from the well.

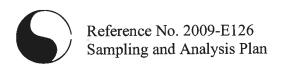
### 7.3.4) Documentation of Monitoring Well Configuration

The following information is recorded:

- Length of well screen
- Total depth of well boring



- Depth from ground surface to top of grout or bentonite plug in bottom of borehole (if present)
- Depth to base of well string
- Depth to top and bottom of well screen


### 7.3.5) Monitoring Well Development/Purging

Installed monitoring wells will have to be developed to remove any fluids that may have been introduced into the well during drilling and to remove particles that may have become entrained in the well and filter pack (a minimum of three (3) well casing volumes of groundwater from each well will have to be developed).

Prior to each groundwater sampling event, groundwater will be purged from each monitoring well utilizing the three well casing volumes method. The monitoring wells will be instrumented with dedicated low-density polyethylene tubing to facilitate well development, purging and sampling requirements. Purged water will be contained and stored at the site for future disposal.

### 7.3.6) Water Level Measurements and Field Observation/Measurement of Water Quality Parameters

Water level measurements and water temperature will be taken using a water level meter (Dipper-T) equipped with a thermometer. Groundwater observations will be recorded for colour, clarity, the presence or absence of any free product/surface sheen and any odours present during purging the wells. The water level measuring device will be cleaned after each measurement using Alconox solution and water, followed by a distilled water rinse and a methanol rinse, in order to prevent cross-contamination between monitoring wells.



### 7.3.7) Groundwater Sampling

Prior to each groundwater sampling event, groundwater will have to be purged from each monitoring well utilizing the three well casing volumes method. The monitoring wells will be instrumented with dedicated low-density polyethylene tubing to facilitate well development, purging and sampling requirements. Purged water will be contained and stored at the site for future disposal.

Groundwater sampling will be conducted after purging and allowing the water to stabilize. The groundwater purging and sampling activities will be carried out using dedicated low-density polyethylene tubing. Groundwater samples will be collected into laboratory-supplied containers, prepared with preservative for the analysis being conducted. The samples scheduled for analysis of metals will be passed through a 0.45 micron filter as part of the sampling process.



90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 + TEL (416) 754-8515 + FAX (905) 881-8335

| BARRIE              | MISSISSAUGA         | OSHAWA              | NEWMARKET            | GRAVENHURST           | PETERBOROUGH        | HAMILTON            |
|---------------------|---------------------|---------------------|----------------------|-----------------------|---------------------|---------------------|
| TEL: (705) 721-7863 | TEL: (905) 542-7605 | TEL: (905) 440-2040 | TEL: (905) 853-0647  | TEL: (705) 684-4242   | TEL: (905) 440-2040 | TEL: (905) 777-7956 |
| FAX: (705) 721-7864 | FAX: (905) 542-2769 | FAX: (905) 725-1315 | FAX: (905) 881-8335  | FAX: (705) 684-8522   | FAX: (905) 725-1315 | FAX: (905) 542-2769 |
| FAX: (700) 721-7604 | FAX. (903) 542-2109 | FAX. (303) 723-1313 | 1 AX. (505) 551-5555 | 17171: (100) 001 0022 | 1700 (000) 720 1012 | , ,                 |

### **APPENDIX 'B'**

**BOREHOLE LOGS** 

REFERENCE NO. 2009-E126

### **LOG OF BOREHOLE NO.: 1**

**PROJECT DESCRIPTION:** Proposed Residential Development

**METHOD OF BORING:** Direct Push

(MiniMole)

PROJECT LOCATION: 12494 The Gore Road

Town of Caledon

DRILLING DATE: October 28, 2020

| SOIL DESCRIPTION  Ground Surface 15 cm TOPSOIL  Brown, damp SILTY CLAY | Number 1A       | Type | Combustible Headspace Reading (ppm) | Depth Scale (mbgs) | 20                   | He<br>Rea          | mbusi<br>eadspa<br>ding ( | ace<br>ppm)        |                    | 180                | REMARKS                            | WATER LEVEL        |
|------------------------------------------------------------------------|-----------------|------|-------------------------------------|--------------------|----------------------|--------------------|---------------------------|--------------------|--------------------|--------------------|------------------------------------|--------------------|
| Brown, damp<br>SILTY CLAY                                              |                 | TO   | 0                                   | 0 .                |                      | П                  |                           |                    |                    |                    |                                    |                    |
| Brown, damp<br>SILTY CLAY                                              |                 | TO   | 0                                   | 0                  |                      |                    |                           |                    |                    |                    |                                    |                    |
|                                                                        |                 | TO   | 0                                   |                    |                      | 1 1                |                           |                    |                    |                    |                                    |                    |
|                                                                        | 1B              | 1 TO |                                     | 2                  |                      |                    |                           |                    |                    |                    | BH1/1A: Metals &<br>Inorganics, OC |                    |
|                                                                        |                 |      | 0                                   | 1 -                |                      |                    |                           |                    |                    |                    |                                    |                    |
| Brown, damp<br>SILTY CLAY, Till                                        | 2               | то   | 0                                   | 2 T                | •                    |                    |                           |                    |                    |                    |                                    |                    |
|                                                                        | 3               | то   | 0                                   | 2 -                |                      |                    |                           |                    |                    |                    |                                    |                    |
|                                                                        | 4               | то   | 0                                   | 3 -                | •                    |                    |                           |                    |                    |                    |                                    |                    |
| END OF BOREHOLE                                                        |                 |      |                                     | 4                  |                      |                    |                           |                    |                    |                    |                                    |                    |
|                                                                        |                 |      |                                     | 4                  |                      |                    |                           |                    |                    |                    |                                    |                    |
|                                                                        |                 |      |                                     | 5 -                |                      |                    |                           |                    |                    |                    |                                    |                    |
|                                                                        | END OF BOREHOLE |      |                                     |                    | END OF BOREHOLE  4 - | END OF BOREHOLE  4 | END OF BOREHOLE  4        | END OF BOREHOLE  4 | END OF BOREHOLE  3 | END OF BOREHOLE  4 | END OF BOREHOLE  3                 | END OF BOREHOLE  3 |



Soil Engineers Ltd.

### **LOG OF BOREHOLE NO.: 2**

**PROJECT DESCRIPTION:** Proposed Residential Development

**METHOD OF BORING:** Direct Push

(MiniMole)

PROJECT LOCATION: 12494 The Gore Road

Town of Caledon

DRILLING DATE: October 28, 2020

|                                 |                                          | 5      | SAMP | LES                                       | gs)                |    |              |        |                        |           |   |     |                                    |             |
|---------------------------------|------------------------------------------|--------|------|-------------------------------------------|--------------------|----|--------------|--------|------------------------|-----------|---|-----|------------------------------------|-------------|
| EI<br>(masl)<br>Depth<br>(mbgs) | SOIL<br>DESCRIPTION                      | Number | Туре | Combustible<br>Headspace<br>Reading (ppm) | Depth Scale (mbgs) | 20 | C<br>H<br>Re | deadir | ousti<br>dspa<br>ng (p | ce<br>pm) | ) | 180 | REMARKS                            | WATER LEVEL |
| 239.2                           | Ground Surface 22.5 cm TOPSOIL           |        |      |                                           |                    |    |              |        |                        |           |   |     |                                    |             |
| 0.0                             | Brown, damp SILTY CLAY trace of organics | 1A     | то   | 0                                         | 0                  |    |              |        |                        |           |   |     | BH2/1A: Metals &<br>Inorganics, OC |             |
| 238.0                           | 5                                        | 1B     |      | 0                                         | 1 -                |    |              |        |                        |           |   |     |                                    |             |
| 1.2                             | Brown, damp<br>SILTY CLAY, Till          | 2      | то   | 0                                         |                    |    |              |        |                        |           |   |     |                                    |             |
|                                 |                                          | 3      | то   | 0                                         | 2 -                | •  |              |        |                        |           |   |     |                                    |             |
| 236.2                           |                                          | 4      | то   | 0                                         | 3 -                |    |              |        |                        |           |   |     |                                    |             |
| 3.0                             | END OF BOREHOLE                          |        |      |                                           |                    |    |              |        |                        |           |   |     |                                    |             |
|                                 |                                          |        |      |                                           | 4 -                |    |              |        |                        |           |   |     |                                    |             |
|                                 |                                          |        |      |                                           | 5 =                |    |              |        |                        |           |   |     |                                    |             |



Soil Engineers Ltd.

### **LOG OF BOREHOLE NO.: 3**

**PROJECT DESCRIPTION:** Proposed Residential Development

**METHOD OF BORING:** Direct Push (MiniMole)

PROJECT LOCATION: 12494 The Gore Road

12494 The Gore Road Town of Caledon DRILLING DATE: October 28, 2020

|                                  |                                         | 5      | SAMP | LES                                       | gs)                |   |   |                |             |                        |                    |    |     |   |                |             |
|----------------------------------|-----------------------------------------|--------|------|-------------------------------------------|--------------------|---|---|----------------|-------------|------------------------|--------------------|----|-----|---|----------------|-------------|
| EI.<br>(masl)<br>Depth<br>(mbgs) | SOIL<br>DESCRIPTION                     | Number | Type | Combustible<br>Headspace<br>Reading (ppm) | Depth Scale (mbgs) | 2 | 0 | Co<br>H<br>Rea | eac<br>adir | ousti<br>dspa<br>ng (p | ible<br>ice<br>opm | 1) | 180 |   | REMARKS        | WATER LEVEL |
| 239.1                            | Ground Surface 12.5 cm TOPSOIL          |        |      |                                           |                    | L |   |                | _           | _                      |                    | _  | _   | _ |                |             |
| 0.0                              | 12.5 cm TOPSOIL  Brown, damp SILTY CLAY | 1A     | то   | 0                                         | 0                  |   |   |                |             |                        |                    |    |     |   | BH3/1A: Metals |             |
| 237.9<br>1.2                     |                                         | 1B     |      | 0                                         | 1 -                |   |   |                |             |                        |                    |    |     |   |                |             |
| 1.2                              | Brown, damp<br>SILTY CLAY, Till         | 2      | то   | 0                                         | -                  |   |   |                |             |                        |                    |    |     |   |                |             |
|                                  |                                         | 3      | то   | 0                                         | 2 -                |   |   |                |             |                        |                    |    |     |   |                |             |
| 236.1                            |                                         | 4      | то   | 0                                         | 3 -                |   |   |                |             |                        |                    |    |     |   |                |             |
| 236.1<br>3.0                     | END OF BOREHOLE                         |        |      |                                           | =                  |   |   |                |             |                        |                    |    |     |   |                |             |
|                                  |                                         |        |      |                                           | 4 -                |   |   |                |             |                        |                    |    |     |   |                |             |
|                                  |                                         |        |      |                                           | 5 -                |   |   |                |             |                        |                    |    |     |   |                |             |



### **LOG OF BOREHOLE NO.: 4**

**PROJECT DESCRIPTION:** Proposed Residential Development

**METHOD OF BORING:** Direct Push

(MiniMole)

PROJECT LOCATION: 12494 The Gore Road

Town of Caledon

DRILLING DATE: October 28, 2020

|                                  |                                         | 5      | SAMP | LES                                       | gs)                                                                             |    |                      |                       |             |    |     |                                    |             |
|----------------------------------|-----------------------------------------|--------|------|-------------------------------------------|---------------------------------------------------------------------------------|----|----------------------|-----------------------|-------------|----|-----|------------------------------------|-------------|
| EI.<br>(masl)<br>Depth<br>(mbgs) | SOIL<br>DESCRIPTION                     | Number | Type | Combustible<br>Headspace<br>Reading (ppm) | Depth Scale (mbgs)                                                              | 20 | Co<br>H<br>Rea<br>60 | mbus<br>eadsp<br>ding | асе<br>(ррп | 1) | 180 | REMARKS                            | WATER LEVEL |
| 230.2                            | Ground Surface 17.5 cm TOPSOIL          |        |      |                                           |                                                                                 |    |                      |                       | _           | _  |     |                                    |             |
| 0.0                              | 17.5 cm TOPSOIL  Brown, damp SILTY CLAY | 1A     | то   | 0                                         | 0                                                                               |    |                      |                       |             |    |     | BH4/1A: Metals &<br>Inorganics, OC |             |
| 237.0                            |                                         | 1B     |      | 0                                         | 1 -                                                                             | •  |                      |                       |             |    |     |                                    |             |
| 237.0                            | Brown, damp<br>SILTY CLAY, Till         | 2      | то   | 0                                         |                                                                                 | •  |                      |                       |             |    |     |                                    |             |
|                                  |                                         | 3      | то   | 0                                         | 2 -                                                                             | •  |                      |                       |             |    |     |                                    |             |
| 235.2                            |                                         | 4      | то   | 0                                         | 3 -                                                                             | •  |                      |                       |             |    |     |                                    |             |
| 3.0                              | END OF BOREHOLE                         |        |      |                                           | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |    |                      |                       |             |    |     |                                    |             |
|                                  |                                         |        |      |                                           | 4 -                                                                             |    |                      |                       |             |    |     |                                    |             |
|                                  |                                         |        |      |                                           | 5 -                                                                             |    |                      |                       |             |    |     |                                    |             |
|                                  |                                         |        |      |                                           | 6                                                                               |    |                      |                       |             |    |     |                                    |             |



Soil Engineers Ltd.

JOB NO.: 2009-E126

## **LOG OF BOREHOLE NO.: 5**

**PROJECT DESCRIPTION:** Proposed Residential Development

**METHOD OF BORING:** Direct Push (MiniMole)

**PROJECT LOCATION:** 12494 The Gore Road

Town of Caledon

DRILLING DATE: October 28, 2020

|                                  |                                      | S      | SAMP | LES                                       | gs)                |    |      |   |    |         |             |   |            |   |
|----------------------------------|--------------------------------------|--------|------|-------------------------------------------|--------------------|----|------|---|----|---------|-------------|---|------------|---|
| EI.<br>(masl)<br>Depth<br>(mbgs) | SOIL<br>DESCRIPTION                  | Number | Туре | Combustible<br>Headspace<br>Reading (ppm) | Depth Scale (mbgs) | 20 | 3 41 |   | 80 | REMARKS | WATER LEVEL |   |            |   |
| 234.7                            | Ground Surface  10 cm TOPSOIL        |        |      |                                           |                    | Ļ  | _    | _ | _  | _       | _           | _ |            |   |
| 0.0                              |                                      | 1A     | то   | 0                                         | 0                  |    |      |   |    |         |             |   | вн5/1А: ОС |   |
| 233.5<br>1,2                     |                                      | 1B     |      | 0                                         | 1 =                |    |      | - |    |         |             |   |            |   |
| 1,2                              | Brown/grey, damp<br>SILTY CLAY, Till | 2      | то   | 0                                         | 7                  |    |      |   |    |         |             |   |            |   |
|                                  |                                      | 3      | то   | 0                                         | 2 -                | •  |      |   |    |         |             |   |            |   |
| 231.7                            |                                      | 4      | то   | 0                                         | 3 -                |    |      |   |    |         |             |   |            |   |
| 231.7<br>3.0                     | END OF BOREHOLE                      |        |      |                                           | =                  |    |      |   |    |         |             |   |            | 8 |
|                                  |                                      |        |      |                                           | 4 -                |    |      |   |    |         |             |   |            |   |
|                                  |                                      |        |      |                                           | 5 -                |    |      |   |    |         |             |   |            |   |
|                                  |                                      |        |      |                                           | 6                  |    |      |   |    |         |             |   |            |   |



**JOB NO.:** 2009-E126

## **LOG OF BOREHOLE NO.: 6**

**PROJECT DESCRIPTION:** Proposed Residential Development

**METHOD OF BORING:** Direct Push (MiniMole)

PROJECT LOCATION: 12494 The Gore Road

Town of Caledon

DRILLING DATE: October 28, 2020

|                                  |                                         | 5      | SAMP | LES                                       | gs)                |                                                        |  |  |   |    |         |             |                                      |  |
|----------------------------------|-----------------------------------------|--------|------|-------------------------------------------|--------------------|--------------------------------------------------------|--|--|---|----|---------|-------------|--------------------------------------|--|
| EI.<br>(masi)<br>Depth<br>(mbgs) | SOIL<br>DESCRIPTION                     | Number | Type | Combustible<br>Headspace<br>Reading (ppm) | Depth Scale (mbgs) | Combustible Headspace Reading (ppm)  20 60 100 140 180 |  |  |   | 80 | REMARKS | WATER LEVEL |                                      |  |
| 232.0                            | Ground Surface 12.5 cm TOPSOIL          |        |      |                                           |                    | <u></u>                                                |  |  | _ |    | _       |             |                                      |  |
| 0,0                              | 12.5 cm TOPSOIL  Brown, damp SILTY CLAY | 1A     |      | 0                                         | 0                  | •                                                      |  |  |   |    |         |             | BH6/1A: Metals, OC<br>DUP S1: Metals |  |
|                                  |                                         | 1B     | ТО   | 0                                         | 1 =                | •                                                      |  |  |   |    |         |             |                                      |  |
| 201.0                            |                                         | 2      | то   | 0                                         | _                  |                                                        |  |  |   |    |         |             |                                      |  |
| 231.0<br>1.8                     | Brown/grey, damp<br>SILTY CLAY, Till    | 3      | то   | 0                                         | 2 -                |                                                        |  |  |   |    |         |             | BH6/3: pH                            |  |
| 229.8                            |                                         | 4      | то   | 0                                         | 3 -                |                                                        |  |  |   |    |         |             |                                      |  |
| 3.0                              | END OF BOREHOLE                         |        |      |                                           | 4 -                |                                                        |  |  |   |    |         |             |                                      |  |
|                                  |                                         |        |      |                                           |                    |                                                        |  |  |   |    |         |             |                                      |  |
|                                  |                                         |        |      |                                           | 5 -                |                                                        |  |  |   |    |         |             |                                      |  |



Soil Engineers Ltd.

## JOB NO.: 2009-E126 LOG OF BOREHOLE NO.: 101

**PROJECT DESCRIPTION:** Proposed Residential Development

**METHOD OF BORING:** Direct Push

**PROJECT LOCATION:** 12494 The Gore Road Town of Caledon

Gore Road **DRILLING DATE:** June 7, 2024

SAMPLES Depth Scale (mbgs) **WATER LEVEL** Combustible Headspace Reading (ppm) EI. Combustible (masl) SOIL Headspace **REMARKS** DESCRIPTION Number Depth Reading (ppm) (mbgs) 100 140 180 20 Ground Surface 237.2 0 Brown SILTY CLAY BH101/1: Metals and Inorganics, PHCs, 1 TO 25 trace of organics VOČs, PAHs **DUPS3: Metals** 236.4 0.8 Brown 1 SILTY CLAY, TILL 2 TO 25 trace of gravel TO 30 2 TO 15 3 END OF BOREHOLE 5

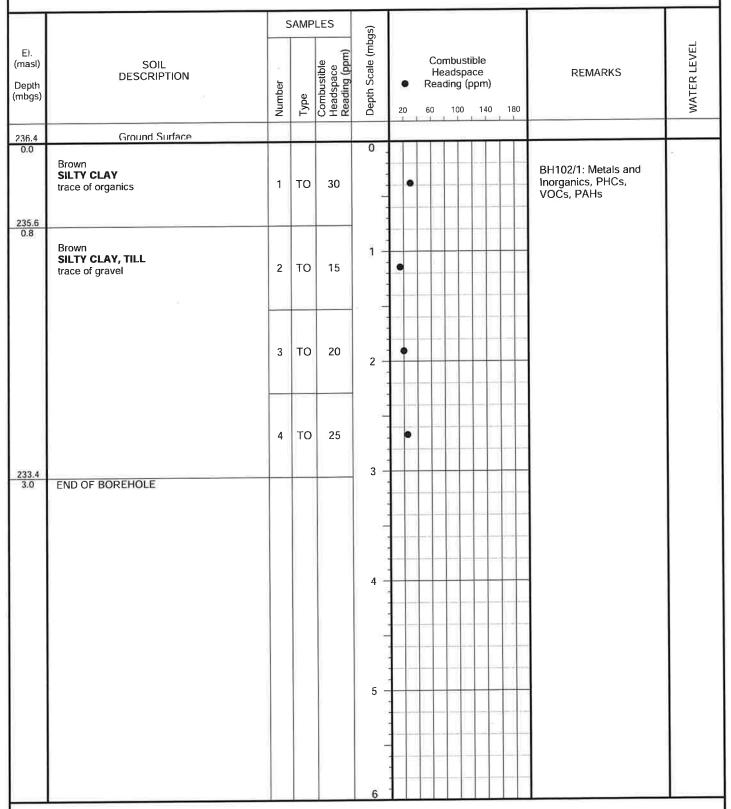


Soil Engineers Ltd.

JOB NO.: 2009-E126

## **LOG OF BOREHOLE NO.: 102**

PROJECT DESCRIPTION: Proposed Residential Development


METHOD OF BORING: Direct Push

**PROJECT LOCATION:** 

12494 The Gore Road

Town of Caledon

DRILLING DATE: June 7, 2024





Soil Engineers Ltd.



# Soil Engineers Ltd.

CONSULTING ENGINEERS

### GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL (416) 754-8515 · FAX (905) 881-8335

**BARRIE** TEL: (705) 721-7863 FAX: (705) 721-7864

MISSISSAUGA TEL: (905) 542-7605

**OSHAWA** TEL: (905) 440-2040 FAX: (905) 542-2769 FAX: (905) 725-1315

NEWMARKET TEL: (905) 853-0647 FAX: (905) 881-8335

GRAVENHURST TEL: (705) 684-4242 FAX: (705) 684-8522

PETERBOROUGH TEL: (905) 440-2040 FAX: (905) 725-1315

**HAMILTON** TEL: (905) 777-7956 FAX: (905) 542-2769

### **APPENDIX 'C'**

**CERTIFICATE OF ANALYSIS** (SOIL SAMPLES)

REFERENCE NO. 2009-E126



Your Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Your C.O.C. #: N/A

Attention: Munir Ahmad

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2020/11/27

Report #: R6428218 Version: 3 - Revision

### CERTIFICATE OF ANALYSIS - REVISED REPORT

BV LABS JOB #: COS8046 Received: 2020/10/29, 16:05

Sample Matrix: Soil # Samples Received: 8

|                                       |    |          | Date       | Date       |                   |                      |
|---------------------------------------|----|----------|------------|------------|-------------------|----------------------|
| Analyses                              |    | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Free (WAD) Cyanide                    |    | 2        | 2020/11/26 | 2020/11/27 | CAM SOP-00457     | OMOE E3015 m         |
| Free (WAD) Cyanide                    | :B | 3        | 2020/11/03 | 2020/11/04 | CAM SOP-00457     | OMOE E3015 m         |
| Hexavalent Chromium in Soil by IC (1) |    | 5        | 2020/11/03 | 2020/11/05 | CAM SOP-00436     | EPA 3060/7199 m      |
| Strong Acid Leachable Metals by ICPMS |    | 6        | 2020/11/02 | 2020/11/03 | CAM SOP-00447     | EPA 6020B m          |
| Moisture                              |    | 6        | N/A        | 2020/11/02 | CAM SOP-00445     | Carter 2nd ed 51.2 m |
| OC Pesticides (Selected) & PCB (2)    |    | 5        | 2020/11/06 | 2020/11/07 | CAM SOP-00307     | SW846 8081, 8082     |
| OC Pesticides Summed Parameters       |    | 5        | N/A        | 2020/11/03 | CAM SOP-00307     | EPA 8081/8082 m      |
| pH CaCl2 EXTRACT                      |    | 4        | 2020/11/03 | 2020/11/03 | CAM SOP-00413     | EPA 9045 D m         |

### Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.
- (2) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane



Your Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Your C.O.C. #: N/A

Attention: Munir Ahmad

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2020/11/27

Report #: R6428218 Version: 3 - Revision

### **CERTIFICATE OF ANALYSIS - REVISED REPORT**

BV LABS JOB #: C0S8046 Received: 2020/10/29, 16:05

**Encryption Key** 

Ashton Gibson Project Manager 27 Nov 2020 18:56:48

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Antonella Brasil, Senior Project Manager Email: Antonella.Brasil@bvlabs.com

Phone# (905)817-5817

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Sampler Initials: EL

### O.REG 153 ICPMS METALS (SOIL)

| BV Labs ID                       |       | OAQ116     |       |          |
|----------------------------------|-------|------------|-------|----------|
| Sampling Date                    |       | 2020/10/28 |       |          |
| COC Number                       |       | N/A        |       |          |
|                                  | UNITS | DUP S1     | RDL   | QC Batch |
| Metals                           |       |            |       |          |
| Acid Extractable Antimony (Sb)   | ug/g  | <0.20      | 0.20  | /033161  |
| Acid Extractable Arsenic (As)    | ug/g  | 3.7        | 1.0   | 7033161  |
| Acid Extractable Barium (Ba)     | ug/g  | 76         | 0.50  | 7033161  |
| Acid Extractable Beryllium (Be)  | ug/g  | 0.58       | 0.20  | 7033161  |
| Acid Extractable Boron (B)       | ug/g  | 6.8        | 5.0   | 7033161  |
| Acid Extractable Cadmium (Cd)    | ug/g  | <0.10      | 0.10  | 7033161  |
| Acid Extractable Chromium (Cr)   | ug/g  | 20         | 1.0   | 7033161  |
| Acid Extractable Cobalt (Co)     | ug/g  | 10         | 0.10  | 7033161  |
| Acid Extractable Copper (Cu)     | ug/g  | 22         | 0.50  | 7033161  |
| Acid Extractable Lead (Pb)       | ug/g  | 8.3        | 1.0   | 7033161  |
| Acid Extractable Molybdenum (Mo) | ug/g  | <0.50      | 0.50  | 7033161  |
| Acid Extractable Nickel (Ni)     | ug/g  | 23         | 0.50  | 7033161  |
| Acid Extractable Selenium (Se)   | ug/g  | <0.50      | 0.50  | 7033161  |
| Acid Extractable Silver (Ag)     | ug/g  | <0.20      | 0.20  | 7033161  |
| Acid Extractable Thallium (Tl)   | ug/g  | 0.15       | 0.050 | 7033161  |
| Acid Extractable Uranium (U)     | ug/g  | 0.49       | 0.050 | 7033161  |
| Acid Extractable Vanadium (V)    | ug/g  | 28         | 5.0   | 7033161  |
| Acid Extractable Zinc (Zn)       | ug/g  | 51         | 5.0   | 7033161  |
| Acid Extractable Mercury (Hg)    | ug/g  | <0.050     | 0.050 | 7033161  |
| RDL = Reportable Detection Limit |       |            |       |          |
| QC Batch = Quality Control Batch |       |            |       |          |



Soil Engineers Ltd Client Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Sampler Initials: EL

### O.REG 153 METALS & INORGANICS PKG (SOIL)

| BV Labs ID                       |       | OAQ110     |       |          | OAQ110            |          | OAQ111     | OAQ113     |       |          |
|----------------------------------|-------|------------|-------|----------|-------------------|----------|------------|------------|-------|----------|
| Sampling Date                    |       | 2020/10/28 |       |          | 2020/10/28        |          | 2020/10/28 | 2020/10/28 |       |          |
| COC Number                       |       | N/A        |       |          | N/A               |          | N/A        | N/A        |       |          |
|                                  | UNITS | BH1/1A     | RDL   | QC Batch | BH1/1A<br>Lab-Dup | QC Batch | BH2/1A     | BH4/1A     | RDL   | QC Batch |
| Inorganics                       |       |            |       |          | lie               |          |            |            |       |          |
| Available (CaCl2) pH             | рН    | 7.48       |       | 7035108  | 7.60              | 7035108  | 7.14       | 7.68       |       | 7035108  |
| WAD Cyanide (Free)               | ug/g  | <0.01      | 0.01  | 7035278  |                   |          | <0.01      | <0.01      | 0.01  | 7035278  |
| Chromium (VI)                    | ug/g  | <0.18      | 0.18  | 7034794  |                   |          | 0.29       | <0.18      | 0.18  | 7034794  |
| Metals                           |       |            |       |          |                   |          |            |            |       |          |
| Acid Extractable Antimony (Sb)   | ug/g  | <0.20      | 0.20  | 7033161  |                   |          | <0.20      | <0.20      | 0.20  | 7033161  |
| Acid Extractable Arsenic (As)    | ug/g  | 3.5        | 1.0   | 7033161  |                   |          | 8.4        | 3.3        | 1.0   | 7033161  |
| Acid Extractable Barium (Ba)     | ug/g  | 98         | 0.50  | 7033161  |                   |          | 120        | 100        | 0.50  | 7033161  |
| Acid Extractable Beryllium (Be)  | ug/g  | 0.84       | 0.20  | 7033161  |                   |          | 1.2        | 0.65       | 0.20  | 7033161  |
| Acid Extractable Boron (B)       | ug/g  | 8.4        | 5.0   | 7033161  |                   |          | 8.0        | 7.8        | 5.0   | 7033161  |
| Acid Extractable Cadmium (Cd)    | ug/g  | 0.11       | 0.10  | 7033161  |                   |          | 0.21       | 0.12       | 0.10  | 7033161  |
| Acid Extractable Chromium (Cr)   | ug/g  | 27         | 1.0   | 7033161  |                   |          | 36         | 22         | 1.0   | 7033161  |
| Acid Extractable Cobalt (Co)     | ug/g  | 12         | 0.10  | 7033161  |                   |          | 20         | 11         | 0.10  | 7033161  |
| Acid Extractable Copper (Cu)     | ug/g  | 23         | 0.50  | 7033161  |                   |          | 30         | 20         | 0.50  | 7033161  |
| Acid Extractable Lead (Pb)       | ug/g  | 11         | 1.0   | 7033161  |                   |          | 16         | 9.0        | 1.0   | 7033161  |
| Acid Extractable Molybdenum (Mo) | ug/g  | 0.57       | 0.50  | 7033161  |                   |          | 0.50       | <0.50      | 0.50  | 7033161  |
| Acid Extractable Nickel (Ni)     | ug/g  | 27         | 0.50  | 7033161  |                   |          | 43         | 25         | 0.50  | 7033161  |
| Acid Extractable Selenium (Se)   | ug/g  | <0.50      | 0.50  | 7033161  |                   |          | <0.50      | <0.50      | 0.50  | 7033161  |
| Acid Extractable Silver (Ag)     | ug/g  | <0.20      | 0.20  | 7033161  |                   |          | <0.20      | <0.20      | 0.20  | 7033161  |
| Acid Extractable Thallium (TI)   | ug/g  | 0.16       | 0.050 | 7033161  |                   |          | 0.21       | 0.13       | 0.050 | 7033161  |
| Acid Extractable Uranium (U)     | ug/g  | 0.59       | 0.050 | 7033161  |                   |          | 0.62       | 0.55       | 0.050 |          |
| Acid Extractable Vanadium (V)    | ug/g  | 35         | 5.0   | 7033161  | ,                 |          | 50         | 31         | 5.0   | 7033161  |
| Acid Extractable Zinc (Zn)       | ug/g  | 58         | 5.0   | 7033161  |                   |          | 81         | 46         | 5.0   | 7033161  |
| Acid Extractable Mercury (Hg)    | ug/g  | <0.050     | 0.050 | 7033161  |                   |          | <0.050     | <0.050     | 0.050 | 7033161  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



Report Date: 2020/11/27

Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Sampler Initials: EL

### O.REG 153 METALS PACKAGE (SOIL)

| BV Labs ID                                                        |       | OAQ112     |       |          | OAQ115     |       |          |
|-------------------------------------------------------------------|-------|------------|-------|----------|------------|-------|----------|
| Sampling Date                                                     |       | 2020/10/28 |       |          | 2020/10/28 |       |          |
| COC Number                                                        |       | N/A        |       |          | N/A        |       |          |
|                                                                   | UNITS | BH3/1A     | RDL   | QC Batch | BH6/1A     | RDL   | QC Batch |
| Inorganics                                                        |       |            |       |          |            |       |          |
| Moisture                                                          | %     | 10         | 1.0   | 7032814  |            |       |          |
| Chromium (VI)                                                     | ug/g  | <0.18      | 0.18  | 7034794  | <0.18      | 0.18  | 7034794  |
| Metals                                                            |       | ·          |       |          |            |       |          |
| Acid Extractable Antimony (Sb)                                    | ug/g  | <0.20      | 0.20  | 7033161  | <0.20      | 0.20  | 7033161  |
| Acid Extractable Arsenic (As)                                     | ug/g  | 2.4        | 1.0   | 7033161  | 3.0        | 1.0   | 7033161  |
| Acid Extractable Barium (Ba)                                      | ug/g  | 56         | 0.50  | 7033161  | 100        | 0.50  | 7033161  |
| Acid Extractable Beryllium (Be)                                   | ug/g  | 0.60       | 0.20  | 7033161  | 0.70       | 0.20  | 7033161  |
| Acid Extractable Boron (B)                                        | ug/g  | <5.0       | 5.0   | 7033161  | 9.3        | 5.0   | 7033161  |
| Acid Extractable Cadmium (Cd)                                     | ug/g  | <0.10      | 0.10  | 7033161  | <0.10      | 0.10  | 7033161  |
| Acid Extractable Chromium (Cr)                                    | ug/g  | 21         | 1.0   | 7033161  | 24         | 1.0   | 7033161  |
| Acid Extractable Cobalt (Co)                                      | ug/g  | 8.5        | 0.10  | 7033161  | 11         | 0.10  | 7033161  |
| Acid Extractable Copper (Cu)                                      | ug/g  | 10         | 0.50  | 7033161  | 21         | 0.50  | 7033161  |
| Acid Extractable Lead (Pb)                                        | ug/g  | 9,1        | 1.0   | 7033161  | 9.3        | 1.0   | 7033161  |
| Acid Extractable Molybdenum (Mo)                                  | ug/g  | <0.50      | 0.50  | 7033161  | <0.50      | 0.50  | 7033161  |
| Acid Extractable Nickel (Ni)                                      | ug/g  | 15         | 0.50  | 7033161  | 25         | 0.50  | 7033161  |
| Acid Extractable Selenium (Se)                                    | ug/g  | <0.50      | 0.50  | 7033161  | <0.50      | 0.50  | 7033161  |
| Acid Extractable Silver (Ag)                                      | ug/g  | <0.20      | 0.20  | 7033161  | <0.20      | 0.20  | 7033161  |
| Acid Extractable Thallium (TI)                                    | ug/g  | 0.12       | 0.050 | 7033161  | 0.19       | 0.050 | 7033161  |
| Acid Extractable Uranium (U)                                      | ug/g  | 0.58       | 0.050 | 7033161  | 0.52       | 0.050 | 7033161  |
| Acid Extractable Vanadium (V)                                     | ug/g  | 38         | 5.0   | 7033161  | 35         | 5.0   | 7033161  |
| Acid Extractable Zinc (Zn)                                        | ug/g  | 41         | 5.0   | 7033161  | 54         | 5.0   | 7033161  |
| Acid Extractable Mercury (Hg)                                     | ug/g  | <0.050     | 0.050 | 7033161  | <0.050     | 0.050 | 7033161  |
| RDL = Reportable Detection Limit QC Batch = Quality Control Batch |       |            |       |          |            |       |          |

QC Batch = Quality Control Batch



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Sampler Initials: EL

### O.REG 153 OC PESTICIDES (SOIL)

| BV Labs ID                   | r -   | OAQ110     | OAQ111     | OAQ113     | OAQ114     |        |          | OAQ114            |     |          |
|------------------------------|-------|------------|------------|------------|------------|--------|----------|-------------------|-----|----------|
| Sampling Date                |       | 2020/10/28 | 2020/10/28 | 2020/10/28 | 2020/10/28 |        |          | 2020/10/28        |     |          |
| COC Number                   |       | N/A        | N/A        | N/A        | N/A        |        |          | N/A               |     |          |
|                              | UNITS | BH1/1A     | BH2/1A     | BH4/1A     | BH5/1A     | RDL    | QC Batch | BH5/1A<br>Lab-Dup | RDL | QC Batch |
| Inorganics                   |       |            |            |            |            |        |          |                   |     |          |
| Moisture                     | %     | 28         | 24         | 14         | 16         | 1.0    | 7033522  | 16                | 1.0 | 7033522  |
| Calculated Parameters        |       |            |            |            |            |        |          |                   |     |          |
| Chlordane (Total)            | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7031591  |                   |     |          |
| o,p-DDD + p,p-DDD            | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7031591  |                   |     |          |
| o,p-DDE + p,p-DDE            | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7031591  |                   |     |          |
| o,p-DDT + p,p-DDT            | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7031591  |                   |     |          |
| Total Endosulfan             | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7031591  |                   |     |          |
| Pesticides & Herbicides      |       |            |            |            |            |        |          |                   |     |          |
| Aldrin                       | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| a-Chlordane                  | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| g-Chlordane                  | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| o,p-DDD                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| p,p-DDD                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| o,p-DDE                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| p,p-DDE                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| o,p-DDT                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| p,p-DDT                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| Dieldrin                     | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| Lindane                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| Endosulfan I (alpha)         | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| Endosulfan II (beta)         | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| Endrin                       | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| Heptachlor                   | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| Heptachlor epoxide           | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| Hexachlorobenzene            | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 |          |                   |     |          |
| Hexachlorobutadiene          | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| Hexachloroethane             | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7042852  |                   |     |          |
| Methoxychlor                 | ug/g  | <0.0050    | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 7042852  |                   |     |          |
| Surrogate Recovery (%)       |       |            |            |            |            |        |          |                   |     |          |
| 2,4,5,6-Tetrachloro-m-xylene | %     | 97         | 89         | 116        | 114        |        | 7042852  |                   |     |          |
| Decachlorobiphenyl           | %     | 91         | 88         | 98         | 96         |        | 7042852  |                   |     |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Sampler Initials: EL

### O.REG 153 OC PESTICIDES (SOIL)

| BV Labs ID                         |       | OAQ115     |        |          |
|------------------------------------|-------|------------|--------|----------|
| Sampling Date                      |       | 2020/10/28 |        |          |
| COC Number                         |       | N/A        |        |          |
|                                    | UNITS | BH6/1A     | RDL    | QC Batch |
| Inorganics                         |       |            |        |          |
| Moisture                           | 26    | 15         | 1.0    | 7033522  |
| Calculated Parameters              |       |            |        |          |
| Chlordane (Total)                  | ug/g  | <0.0020    | 0.0020 | 7031591  |
| o,p-DDD + p,p-DDD                  | ug/g  | <0.0020    | 0.0020 | 7031591  |
| o,p-DDE + p,p-DDE                  | ug/g  | <0.0020    | 0.0020 | 7031591  |
| o,p-DDT + p,p-DDT                  | ug/g  | <0.0020    | 0.0020 | 7031591  |
| Total Endosulfan                   | ug/g  | <0.0020    | 0.0020 | 7031591  |
| Pesticides & Herbicides            |       |            |        |          |
| Aldrin                             | ug/g  | <0.0020    | 0.0020 | 7042852  |
| a-Chlordane                        | ug/g  | <0.0020    | 0.0020 | 7042852  |
| g-Chlordane                        | ug/g  | <0.0020    | 0.0020 | 7042852  |
| o,p-DDD                            | ug/g  | <0.0020    | 0.0020 | 7042852  |
| p,p-DDD                            | ug/g  | <0.0020    | 0.0020 | 7042852  |
| o,p-DDE                            | ug/g  | <0.0020    | 0.0020 | 7042852  |
| p,p-DDE                            | ug/g  | <0.0020    | 0.0020 | 7042852  |
| o,p-DDT                            | ug/g  | <0.0020    | 0.0020 | 7042852  |
| p,p-DDT                            | ug/g  | <0.0020    | 0.0020 | 7042852  |
| Dieldrin                           | ug/g  | <0.0020    | 0.0020 | 7042852  |
| Lindane                            | ug/g  | <0.0020    | 0.0020 | 7042852  |
| Endosulfan I (alpha)               | ug/g  | <0.0020    | 0.0020 | 7042852  |
| Endosulfan II (beta)               | ug/g  | <0.0020    | 0.0020 | 7042852  |
| Endrin                             | ug/g  | <0.0020    | 0.0020 | 7042852  |
| Heptachlor                         | ug/g  | <0.0020    | 0.0020 | 7042852  |
| Heptachlor epoxide                 | ug/g  | <0.0020    | 0.0020 | 7042852  |
| Hexachlorobenzene                  | ug/g  | <0.0020    | 0.0020 | 7042852  |
| Hexachlorobutadiene                | ug/g  | <0.0020    | 0.0020 | 7042852  |
| Hexachloroethane                   | ug/g  | <0.0020    | 0.0020 | 7042852  |
| Methoxychlor                       | ug/g  | <0.0050    | 0.0050 | 7042852  |
| Surrogate Recovery (%)             |       |            |        |          |
| 2,4,5,6-Tetrachloro-m-xylene       | %     | 101        |        | 7042852  |
| E, 1,5,0 retraditions in injustice |       | 100        |        | 7042852  |



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Sampler Initials: EL

### **RESULTS OF ANALYSES OF SOIL**

| BV Labs ID               |           | OAQ114     | OAQ115     |      |          | OAQ117     |          |
|--------------------------|-----------|------------|------------|------|----------|------------|----------|
| Sampling Date            | NI I      | 2020/10/28 | 2020/10/28 |      |          | 2020/10/28 |          |
| COC Number               |           | N/A        | N/A        |      |          | N/A        |          |
|                          | UNITS     | BH5/1A     | BH6/1A     | RDL  | QC Batch | BH6/3      | QC Batch |
| Inorganics               |           |            |            |      |          |            |          |
| Available (CaCl2) pH     | рН        |            |            |      |          | 7.66       | 7035108  |
| WAD Cyanide (Free)       | ug/g      | <0.01      | <0.01      | 0.01 | 7078042  |            |          |
| RDL = Reportable Detect  | ion Limit | 71         |            |      |          |            |          |
| QC Batch = Quality Contr | ol Batch  |            |            |      |          |            |          |



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Sampler Initials: EL

### **TEST SUMMARY**

BV Labs ID: OAQ110 Sample ID: BH1/1A Matrix: Soil

Collected: 2020/10/28

Shipped: Received:

2020/10/29

| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst             |
|---------------------------------------|-----------------|---------|------------|---------------|---------------------|
| Free (WAD) Cyanide                    | TECH            | 7035278 | 2020/11/03 | 2020/11/04    | Gnana Thomas        |
| Hexavalent Chromium in Soil by IC     | IC/SPEC         | 7034794 | 2020/11/03 | 2020/11/05    | Violeta Porcila     |
| Strong Acid Leachable Metals by ICPMS | ICP/MS          | 7033161 | 2020/11/02 | 2020/11/03    | Daniel Teclu        |
| Moisture                              | BAL             | 7033522 | N/A        | 2020/11/02    | Gurpreet Kaur (ONT) |
| OC Pesticides (Selected) & PCB        | GC/ECD          | 7042852 | 2020/11/06 | 2020/11/07    | Joy Zhang           |
| OC Pesticides Summed Parameters       | CALC            | 7031591 | N/A        | 2020/11/03    | Automated Statchk   |
| pH CaCl2 EXTRACT                      | AT              | 7035108 | 2020/11/03 | 2020/11/03    | Neil Dassanayake    |

BV Labs ID: OAQ110 Dup Sample ID: BH1/1A

Matrix: Soil

Collected:

2020/10/28

Shipped: Received:

2020/10/29

| Test Description | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst          |  |
|------------------|-----------------|---------|------------|---------------|------------------|--|
| nH CaCl2 EXTRACT | AT              | 7035108 | 2020/11/03 | 2020/11/03    | Neil Dassanayake |  |

BV Labs ID: OAQ111 Sample ID: BH2/1A Matrix: Soil

Collected: 2020/10/28

Shipped:

Received: 2020/10/29

| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst             |
|---------------------------------------|-----------------|---------|------------|---------------|---------------------|
| Free (WAD) Cyanide                    | TECH            | 7035278 | 2020/11/03 | 2020/11/04    | Gnana Thomas        |
| Hexavalent Chromium in Soil by IC     | IC/SPEC         | 7034794 | 2020/11/03 | 2020/11/05    | Violeta Porcila     |
| Strong Acid Leachable Metals by ICPMS | ICP/MS          | 7033161 | 2020/11/02 | 2020/11/03    | Daniel Teclu        |
| Moisture                              | BAL             | 7033522 | N/A        | 2020/11/02    | Gurpreet Kaur (ONT) |
| OC Pesticides (Selected) & PCB        | GC/ECD          | 7042852 | 2020/11/06 | 2020/11/07    | Joy Zhang           |
| OC Pesticides Summed Parameters       | CALC            | 7031591 | N/A        | 2020/11/03    | Automated Statchk   |
| pH CaCl2 EXTRACT                      | AT              | 7035108 | 2020/11/03 | 2020/11/03    | Neil Dassanayake    |

BV Labs ID: OAQ112 Sample ID: BH3/1A Matrix: Soil

**Collected:** 2020/10/28

Shipped:

Received: 2020/10/29

| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst         |  |
|---------------------------------------|-----------------|---------|------------|---------------|-----------------|--|
| Hexavalent Chromium in Soil by IC     | IC/SPEC         | 7034794 | 2020/11/03 | 2020/11/05    | Violeta Porcila |  |
| Strong Acid Leachable Metals by ICPMS | ICP/MS          | 7033161 | 2020/11/02 | 2020/11/03    | Daniel Teclu    |  |
| Moisture                              | BAL             | 7032814 | N/A        | 2020/11/02    | Chun Yan        |  |

BV Labs ID: OAQ113 Sample ID: BH4/1A

Collected:

2020/10/28

Matrix: Soil

Shipped:

**Received:** 2020/10/29

| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst         |
|---------------------------------------|-----------------|---------|------------|---------------|-----------------|
| Free (WAD) Cyanide                    | TECH            | 7035278 | 2020/11/03 | 2020/11/04    | Gnana Thomas    |
| Hexavalent Chromium in Soil by IC     | IC/SPEC         | 7034794 | 2020/11/03 | 2020/11/05    | Violeta Porcila |
| Strong Acid Leachable Metals by ICPMS | ICP/MS          | 7033161 | 2020/11/02 | 2020/11/03    | Daniel Teclu    |



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Sampler Initials: EL

### **TEST SUMMARY**

BV Labs ID: OAQ113 Sample ID: BH4/1A Matrix: Soil

**Collected:** 2020/10/28

Shipped:

**Received:** 2020/10/29

| Test Description                | Instrumentation | Batch   | Extracted  | <b>Date Analyzed</b> | Analyst             |
|---------------------------------|-----------------|---------|------------|----------------------|---------------------|
| Moisture                        | BAL             | 7033522 | N/A        | 2020/11/02           | Gurpreet Kaur (ONT) |
| OC Pesticides (Selected) & PCB  | GC/ECD          | 7042852 | 2020/11/06 | 2020/11/07           | Joy Zhang           |
| OC Pesticides Summed Parameters | CALC            | 7031591 | N/A        | 2020/11/03           | Automated Statchk   |
| pH CaCl2 EXTRACT                | AT              | 7035108 | 2020/11/03 | 2020/11/03           | Neil Dassanayake    |

BV Labs ID: OAQ114 Sample ID: BH5/1A Matrix: Soil

Collected: 2020/10/28

Shipped:

Received: 2020/10/29

| Test Description                | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst             |
|---------------------------------|-----------------|---------|------------|---------------|---------------------|
| Free (WAD) Cyanide              | TECH            | 7078042 | 2020/11/26 | 2020/11/27    | Gnana Thomas        |
| Moisture                        | BAL             | 7033522 | N/A        | 2020/11/02    | Gurpreet Kaur (ONT) |
| OC Pesticides (Selected) & PCB  | GC/ECD          | 7042852 | 2020/11/06 | 2020/11/07    | Joy Zhang           |
| OC Pesticides Summed Parameters | CALC            | 7031591 | N/A        | 2020/11/03    | Automated Statchk   |

BV Labs ID: OAQ114 Dup Sample ID: BH5/1A

Matrix: Soil

**Collected:** 2020/10/28

Shipped:

Received: 2020/10/29

| Test Description | Instrumentation | Batch   | Extracted | Date Analyzed | Analyst             | - |
|------------------|-----------------|---------|-----------|---------------|---------------------|---|
| Moisture         | BAL             | 7033522 | N/A       | 2020/11/02    | Gurpreet Kaur (ONT) |   |

Collected:

2020/10/28

BV Labs ID: OAQ115 Sample ID: BH6/1A Matrix: Soil

Shipped:

Received: 2020/10/29

| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst             |
|---------------------------------------|-----------------|---------|------------|---------------|---------------------|
| Free (WAD) Cyanide                    | TECH            | 7078042 | 2020/11/26 | 2020/11/27    | Gnana Thomas        |
| Hexavalent Chromium in Soil by IC     | IC/SPEC         | 7034794 | 2020/11/03 | 2020/11/05    | Violeta Porcila     |
| Strong Acid Leachable Metals by ICPMS | ICP/MS          | 7033161 | 2020/11/02 | 2020/11/03    | Daniel Teclu        |
| Moisture                              | BAL             | 7033522 | N/A        | 2020/11/02    | Gurpreet Kaur (ONT) |
| OC Pesticides (Selected) & PCB        | GC/ECD          | 7042852 | 2020/11/06 | 2020/11/07    | Joy Zhang           |
| OC Pesticides Summed Parameters       | CALC            | 7031591 | N/A        | 2020/11/03    | Automated Statchk   |

BV Labs ID: OAQ116 Sample ID: DUP S1 Matrix: Soil

**Collected:** 2020/10/28

Shipped:

Received: 2020/10/29

| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst      |
|---------------------------------------|-----------------|---------|------------|---------------|--------------|
| Strong Acid Leachable Metals by ICPMS | ICP/MS          | 7033161 | 2020/11/02 | 2020/11/03    | Daniel Teclu |



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Sampler Initials: EL

### **TEST SUMMARY**

BV Labs ID: OAQ117 Sample ID: BH6/3 Matrix: Soil Collected: 2020/10/28

Shipped:

Received: 2020/10/29

 Test Description
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

 pH CaCl2 EXTRACT
 AT
 7035108
 2020/11/03
 2020/11/03
 Neil Dassanayake



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Sampler Initials: EL

### **GENERAL COMMENTS**

| temperature is the    | average of up to  | three cooler temperatu | es taken at rece | eipt |  |
|-----------------------|-------------------|------------------------|------------------|------|--|
| Package 1             | 3.0°C             |                        |                  |      |  |
| custody seal was p    | oresent and intac | ct.                    |                  |      |  |
| ts relate only to the | e Items tested.   |                        |                  |      |  |



EVALUATION | VIETNAME | VIETNAME

# QUALITY ASSURANCE REPORT

Soil Engineers Ltd Client Project #: 2009-E126

Site Location: 12494 THE GORE ROAD Sampler Initials: EL

|          |                                  |            | Matrix Spike | Spike     | SPIKED BLANK | ILANK     | Method Blank                                                 | llank | RPD       |           |
|----------|----------------------------------|------------|--------------|-----------|--------------|-----------|--------------------------------------------------------------|-------|-----------|-----------|
| QC Batch | Parameter                        | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value                                                        | UNITS | Value (%) | QC Limits |
| 7042852  | 2,4,5,6-Tetrachloro-m-xylene     | 2020/11/07 | 100          | 50 - 130  | 90           | 50 - 130  | 98                                                           | %     |           |           |
| 7042852  | Decachlorobiphenyl               | 2020/11/07 | 114          | 50 - 130  | 102          | 50 - 130  | 700                                                          | %     |           |           |
| 7032814  | Moisture                         | 2020/11/02 |              |           |              |           |                                                              |       | 2.1       | 20        |
| 7033161  | Acid Extractable Antimony (Sb)   | 2020/11/03 | 92           | 75 - 125  | 105          | 80 - 120  | <0.20                                                        | B/Bn  | 23        | 30        |
| 7033161  | Acid Extractable Arsenic (As)    | 2020/11/03 | 66           | 75 - 125  | 104          | 80 - 120  | <1.0                                                         | B/Bn  | 0.66      | 30        |
| 7033161  | Acid Extractable Barium (Ba)     | 2020/11/03 | NC           | 75 - 125  | 102          | 80 - 120  | <0.50                                                        | g/gn  | 0.41      | 30        |
| 7033161  | Acid Extractable Beryllium (Be)  | 2020/11/03 | 97           | 75 - 125  | 100          | 80 - 120  | <0.20                                                        | a/an  | 3.6       | 30        |
| 7033161  | Acid Extractable Boron (B)       | 2020/11/03 | 91           | 75 - 125  | 66           | 80 - 120  | <5.0                                                         | B/Bn  | NC        | 30        |
| 7033161  | Acid Extractable Cadmium (Cd)    | 2020/11/03 | 86           | 75 - 125  | 104          | 80 - 120  | <0.10                                                        | a/gn  | 22        | 30        |
| 7033161  | Acid Extractable Chromium (Cr)   | 2020/11/03 | 66           | 75 - 125  | 110          | 80 - 120  | <1.0                                                         | a/an  | 1.6       | 30        |
| 7033161  | Acid Extractable Cobalt (Co)     | 2020/11/03 | 65           | 75 - 125  | 106          | 80 - 120  | <0.10                                                        | g/gn  | 4.3       | 30        |
| 7033161  | Acid Extractable Copper (Cu)     | 2020/11/03 | 92           | 75 - 125  | 103          | 80 - 120  | <0.50                                                        | ug/g  | 2.9       | 30        |
| 7033161  | Acid Extractable Lead (Pb)       | 2020/11/03 | NC           | 75 - 125  | 104          | 80 - 120  | <1.0                                                         | a/gn  | 2.5       | 30        |
| 7033161  | Acid Extractable Mercury (Hg)    | 2020/11/03 | 9/           | 75 - 125  | 06           | 80 - 120  | <c.050< td=""><td>B/Bn</td><td></td><td></td></c.050<>       | B/Bn  |           |           |
| 7033161  | Acid Extractable Molybdenum (Mo) | 2020/11/03 | 96           | 75 - 125  | 103          | 80 - 120  | <0.50                                                        | g/gn  | NC        | 30        |
| 7033161  | Acid Extractable Nickel (Ni)     | 2020/11/03 | 96           | 75 - 125  | 104          | 80 - 120  | <0.50                                                        | a/gn  | 0.28      | 30        |
| 7033161  | Acid Extractable Selenium (Se)   | 2020/11/03 | 97           | 75 - 125  | 108          | 80 - 120  | <0.50                                                        | g/gn  | NC        | 30        |
| 7033161  | Acid Extractable Silver (Ag)     | 2020/11/03 | 101          | 75 - 125  | 103          | 80 - 120  | <0.20                                                        | g/gn  | NC        | 30        |
| 7033161  | Acid Extractable Thallium (Tl)   | 2020/11/03 | 94           | 75 - 125  | 103          | 80 - 120  | <c.050< td=""><td>g/gn</td><td>0.87</td><td>30</td></c.050<> | g/gn  | 0.87      | 30        |
| 7033161  | Acid Extractable Uranium (U)     | 2020/11/03 | 94           | 75 - 125  | 103          | 80 - 120  | <c.050< td=""><td>g/gn</td><td>3.5</td><td>30</td></c.050<>  | g/gn  | 3.5       | 30        |
| 7033161  | Acid Extractable Vanadium (V)    | 2020/11/03 | NC           | 75 - 125  | 105          | 80 - 120  | <5.0                                                         | a/an  | 1.9       | 30        |
| 7033161  | Acid Extractable Zinc (Zn)       | 2020/11/03 | NC           | 75 - 125  | 108          | 80 - 120  | <5.0                                                         | 8/gn  | 3.1       | 30        |
| 7033522  | Moisture                         | 2020/11/02 |              |           |              |           |                                                              |       | 0         | 20        |
| 7034794  | Chromium (VI)                    | 2020/11/05 | 88           | 70 - 130  | 90           | 80 - 120  | <0.18                                                        | a/an  | NC        | 35        |
| 7035108  | Available (CaCl2) pH             | 2020/11/03 |              |           | 66           | 97 - 103  |                                                              |       | 1.7       | N/A       |
| 7035278  | WAD Cyanide (Free)               | 2020/11/04 | 95           | 75 - 125  | 91           | 80 - 120  | <0.01                                                        | g/gn  | NC        | 35        |
| 7042852  | a-Chlordane                      | 2020/11/07 | 85           | 50 - 130  | 80           | 50 - 130  | <0 0020                                                      | a/gn  | NC        | 40        |
| 7042852  | Aldrin                           | 2020/11/07 | 7.7          | 50 - 130  | 72           | 50 - 130  | <0 0020                                                      | B/Bn  | NC        | 40        |
| 7042852  | Dieldrin                         | 2020/11/07 | 101          | 50 - 130  | 93           | 50 - 130  | <0 0020                                                      | a/gn  | NC        | 40        |
| 7042852  | Endosulfan I (alpha)             | 2020/11/07 | 79           | 50 - 130  | 71           | 50 - 130  | <0 0020                                                      | g/gn  | NC        | 40        |
| 7042852  | Endosulfan II (beta)             | 2020/11/07 | 79           | 50 - 130  | 73           | 50 - 130  | <0 0020                                                      | g/gn  | NC        | 40        |
|          |                                  |            | 2 2          | 717       |              |           |                                                              |       |           | y         |

Page 13 of 15

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www,bvlatz, com



# QUALITY ASSURANCE REPORT(CONT'D)

Soil Engineers Ltd Client Project #: 2009-E126 Site Location: 12494 THE GORE ROAD Sampler Initials: EL

|          |                     |            | Matrix Spike | Spike     | SPIKED BLANK | BLANK     | Method Blank | Slank | RPD       |           |
|----------|---------------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|
| QC Batch | Parameter           | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits |
| 7042852  | Endrin              | 2020/11/07 | 93           | 50 - 130  | 84           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 7042852  | g-Chlordane         | 2020/11/07 | 102          | 50 - 130  | 66           | 50 - 130  | <0.0020      | 8/8n  | NC        | 40        |
| 7042852  | Heptachlor epoxide  | 2020/11/07 | 82           | 50 - 130  | 78           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 7042852  | Heptachlor          | 2020/11/07 | 80           | 50 - 130  | 92           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 7042852  | Hexachlorobenzene   | 2020/11/07 | 9/           | 50 - 130  | 87           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 7042852  | Hexachlorobutadiene | 2020/11/07 | 75           | 50 - 130  | 83           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 7042852  | Hexachloroethane    | 2020/11/07 | 26           | 50 - 130  | 58           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 7042852  | Lindane             | 2020/11/07 | 73           | 50 - 130  | 72           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 7042852  | Methoxychlor        | 2020/11/07 | 95           | 50 - 130  | 68           | 50 - 130  | <0.0050      | g/gn  | NC        | 40        |
| 7042852  | O'b-DDD             | 2020/11/07 | 96           | 50 - 130  | 91           | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 7042852  | o,p-DDE             | 2020/11/07 | 98           | 50 - 130  | 80           | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 7042852  | o,p-DDT             | 2020/11/07 | 111          | 50 - 130  | 105          | 50 - 130  | <0.0020      | ng/g  | NC        | 40        |
| 7042852  | DDD-d'd             | 2020/11/07 | 94           | 50 - 130  | 84           | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 7042852  | p,p-DDE             | 2020/11/07 | 102          | 50 - 130  | 88           | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 7042852  | p,p-DDT             | 2020/11/07 | 94           | 50 - 130  | 83           | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 7078042  | WAD Cyanide (Free)  | 2020/11/27 | 06           | 75 - 125  | 92           | 80 - 120  | <0.01        | ug/g  | NC        | 35        |
|          |                     |            |              |           |              |           |              |       |           |           |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



Report Date: 2020/11/27

Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: 12494 THE GORE ROAD

Sampler Initials: EL

### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Your Project #: 2009-E126

Site Location: TOWN OF CALEDON

Your C.O.C. #: N/A

Attention: Munir Ahmad

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

> Report Date: 2024/05/15 Report #: R8149495

Version: 2 - Final

### **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C4D5075 Received: 2024/05/06, 15:35

Sample Matrix: Soil # Samples Received: 6

|                                       |          | Date       | Date       |                   |                      |
|---------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| Free (WAD) Cyanide                    | 5        | 2024/05/09 | 2024/05/10 | CAM SOP-00457     | OMOE E3015 m         |
| Hexavalent Chromium in Soil by IC (1) | 5        | 2024/05/10 | 2024/05/10 | CAM SOP-00436     | EPA 3060A/7199 m     |
| Acid Extractable Metals by ICPMS      | 6        | 2024/05/09 | 2024/05/09 | CAM SOP-00447     | EPA 6020B m          |
| Moisture                              | 5        | N/A        | 2024/05/07 | CAM SOP-00445     | Carter 2nd ed 70.2 m |
| OC Pesticides (Selected) & PCB (2)    | 1        | 2024/05/10 | 2024/05/11 | CAM SOP-00307     | EPA 8081B/ 8082A     |
| OC Pesticides (Selected) & PCB (2)    | 4        | 2024/05/09 | 2024/05/10 | CAM SOP-00307     | EPA 8081B/ 8082A     |
| OC Pesticides Summed Parameters       | 5        | N/A        | 2024/05/08 | CAM SOP-00307     | EPA 8081B/ 8082A     |
| pH CaCl2 EXTRACT                      | 5        | 2024/05/09 | 2024/05/09 | CAM SOP-00413     | EPA 9045 D m         |

### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference-
- (1) Soils are reported on a dry weight basis unless otherwise specified.
- (2) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane



Your Project #: 2009-E126

Site Location: TOWN OF CALEDON

Your C.O.C. #: N/A

Attention: Munir Ahmad

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

> Report Date: 2024/05/15 Report #: R8149495

> > Version: 2 - Final

### **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C4D5075 Received: 2024/05/06, 15:35

**Encryption Key** 



Bureau Veritas 15 May 2024 10:58:23

Please direct all questions regarding this Certificate of Analysis to:
Antonella Brasil, Senior Project Manager
Email: Antonella.Brasil@bureauveritas.com
Phone# (905)817-5817

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: TOWN OF CALEDON

Sampler Initials: AB

### O.REG 153 ICPMS METALS (SOIL)

| Bureau Veritas ID                                                    |       | ZCA732     |       |       |          |
|----------------------------------------------------------------------|-------|------------|-------|-------|----------|
| Sampling Date                                                        |       | 2024/05/03 |       |       |          |
| COC Number                                                           |       | N/A        |       |       |          |
|                                                                      | UNITS | DUP S2     | RDL   | MDL   | QC Batch |
| Metals                                                               |       |            |       |       |          |
| Acid Extractable Antimony (Sb)                                       | ug/g  | <0.20      | 0.20  | 0.10  | 9382632  |
| Acid Extractable Arsenic (As)                                        | ug/g  | 3.3        | 1.0   | 0.10  | 9382632  |
| Acid Extractable Barium (Ba)                                         | ug/g  | 100        | 0.50  | 0.30  | 9382632  |
| Acid Extractable Beryllium (Be)                                      | ug/g  | 0.78       | 0.20  | 0.020 | 9382632  |
| Acid Extractable Boron (B)                                           | ug/g  | 6.6        | 5.0   | 1.0   | 9382632  |
| Acid Extractable Cadmium (Cd)                                        | ug/g  | 0.19       | 0.10  | 0.030 | 9382632  |
| Acid Extractable Chromium (Cr)                                       | ug/g  | 25         | 1.0   | 0.20  | 9382632  |
| Acid Extractable Cobalt (Co)                                         | ug/g  | 11         | 0.10  | 0.020 | 9382632  |
| Acid Extractable Copper (Cu)                                         | ug/g  | 17         | 0.50  | 0.20  | 9382632  |
| Acid Extractable Lead (Pb)                                           | ug/g  | 16         | 1.0   | 0.10  | 9382632  |
| Acid Extractable Molybdenum (Mo)                                     | ug/g  | <0.50      | 0.50  | 0.10  | 9382632  |
| Acid Extractable Nickel (Ni)                                         | ug/g  | 21         | 0.50  | 0.20  | 9382632  |
| Acid Extractable Selenium (Se)                                       | ug/g  | <0.50      | 0.50  | 0.10  | 9382632  |
| Acid Extractable Silver (Ag)                                         | ug/g  | <0.20      | 0.20  | 0.040 | 9382632  |
| Acid Extractable Thallium (Tl)                                       | ug/g  | 0.16       | 0.050 | 0.010 | 9382632  |
| Acid Extractable Uranium (U)                                         | ug/g  | 0.55       | 0.050 | 0.030 | 9382632  |
| Acid Extractable Vanadium (V)                                        | ug/g  | 38         | 5.0   | 0.50  | 9382632  |
| Acid Extractable Zinc (Zn)                                           | ug/g  | 85         | 5.0   | 0.50  | 9382632  |
| Acid Extractable Mercury (Hg)                                        | ug/g  | <0.050     | 0.050 | 0.030 | 9382632  |
| RDL = Reportable Detection Limit<br>QC Batch = Quality Control Batch |       |            |       |       |          |



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: TOWN OF CALEDON

Sampler Initials: AB

### O.REG 153 METALS & INORGANICS PKG (SOIL)

| Bureau Veritas ID                |       | ZCA727     | ZCA728     | ZCA729     | ZCA730     | ZCA731     |       |        |          |
|----------------------------------|-------|------------|------------|------------|------------|------------|-------|--------|----------|
| Sampling Date                    |       | 2024/05/03 | 2024/05/03 | 2024/05/03 | 2024/05/03 | 2024/05/03 |       |        |          |
| COC Number                       |       | N/A        | N/A        | N/A        | N/A        | N/A        |       |        |          |
|                                  | UNITS | TP-1       | TP-2       | TP-3       | TP-4       | TP-5       | RDL   | MDL    | QC Batch |
| Inorganics                       |       |            |            |            |            |            |       |        |          |
| Available (CaCl2) pH             | рН    | 6.72       | 7.21       | 7.15       | 6.78       | 7.34       |       |        | 9383644  |
| WAD Cyanide (Free)               | ug/g  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | 0.01  | 0.0019 | 9383965  |
| Chromium (VI)                    | ug/g  | <0.18      | <0.18      | <0.18      | <0.18      | <0.18      | 0.18  | 0.050  | 9385314  |
| Metals                           |       |            |            |            |            |            |       |        |          |
| Acid Extractable Antimony (Sb)   | ug/g  | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | 0.20  | 0.10   | 9382881  |
| Acid Extractable Arsenic (As)    | ug/g  | 2.9        | 3.4        | 3.1        | 2.9        | 3.9        | 1.0   | 0.10   | 9382881  |
| Acid Extractable Barium (Ba)     | ug/g  | 91         | 120        | 93         | 85         | 97         | 0.50  | 0.30   | 9382881  |
| Acid Extractable Beryllium (Be)  | ug/g  | 0.73       | 0.81       | 0.77       | 0.75       | 0.88       | 0.20  | 0.020  | 9382881  |
| Acid Extractable Boron (B)       | ug/g  | 6.2        | 5,9        | 6.0        | <5.0       | 6.7        | 5.0   | 1.0    | 9382881  |
| Acid Extractable Cadmium (Cd)    | ug/g  | 0.23       | 0.21       | 0.15       | 0.22       | 0.19       | 0.10  | 0.030  | 9382881  |
| Acid Extractable Chromium (Cr)   | ug/g  | 22         | 24         | 24         | 22         | 25         | 1.0   | 0.20   | 9382881  |
| Acid Extractable Cobalt (Co)     | ug/g  | 8.7        | 11         | 9.6        | 8.7        | 10         | 0.10  | 0.020  | 9382881  |
| Acid Extractable Copper (Cu)     | ug/g  | 14         | 17         | 16         | 15         | 20         | 0.50  | 0.20   | 9382881  |
| Acid Extractable Lead (Pb)       | ug/g  | 14         | 16         | 15         | 14         | 17         | 1.0   | 0.10   | 9382881  |
| Acid Extractable Molybdenum (Mo) | ug/g  | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | 0.50  | 0.10   | 9382881  |
| Acid Extractable Nickel (Ni)     | ug/g  | 18         | 22         | 20         | 17         | 24         | 0.50  | 0.20   | 9382881  |
| Acid Extractable Selenium (Se)   | ug/g  | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | 0.50  | 0.10   | 9382881  |
| Acid Extractable Silver (Ag)     | ug/g  | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | 0.20  | 0.040  | 9382881  |
| Acid Extractable Thallium (Tl)   | ug/g  | 0.14       | 0.16       | 0.16       | 0.15       | 0.16       | 0.050 | 0.010  | 9382881  |
| Acid Extractable Uranium (U)     | ug/g  | 0.82       | 0.56       | 0.57       | 0.94       | 0.71       | 0.050 | 0.030  | 9382881  |
| Acid Extractable Vanadium (V)    | ug/g  | 34         | 37         | 37         | 34         | 36         | 5.0   | 0.50   | 9382881  |
| Acid Extractable Zinc (Zn)       | ug/g  | 62         | 81         | 67         | 63         | 75         | 5.0   | 0.50   | 9382881  |
| Acid Extractable Mercury (Hg)    | ug/g  | <0.050     | <0.050     | <0.050     | <0.050     | <0.050     | 0.050 | 0.030  | 9382881  |
| RDL = Reportable Detection Limit |       |            |            |            |            |            |       |        |          |

QC Batch = Quality Control Batch



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: TOWN OF CALEDON

Sampler Initials: AB

### O.REG 153 OC PESTICIDES (SOIL)

| Bureau Veritas ID            |       | ZCA727     | ZCA728     | ZCA729     | ZCA730     |          | ZCA731     |        |         |          |
|------------------------------|-------|------------|------------|------------|------------|----------|------------|--------|---------|----------|
| Sampling Date                |       | 2024/05/03 | 2024/05/03 | 2024/05/03 | 2024/05/03 |          | 2024/05/03 |        |         |          |
| COC Number                   |       | N/A        | N/A        | N/A        | N/A        |          | N/A        |        |         |          |
|                              | UNITS | TP-1       | TP-2       | TP-3       | TP-4       | QC Batch | TP-5       | RDL    | MDL     | QC Batch |
| Calculated Parameters        |       |            |            |            |            |          |            |        |         |          |
| Chlordane (Total)            | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9374827  | <0.0020    | 0.0020 | N/A     | 9374827  |
| o,p-DDD + p,p-DDD            | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9374827  | <0.0020    | 0.0020 | N/A     | 9374827  |
| o,p-DDE + p,p-DDE            | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9374827  | <0.0020    | 0.0020 | N/A     | 9374827  |
| o,p-DDT + p,p-DDT            | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9374827  | <0.0020    | 0.0020 | N/A     | 9374827  |
| Total Endosulfan             | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9374827  | <0.0020    | 0.0020 | N/A     | 9374827  |
| Pesticides & Herbicides      |       |            |            | ,          |            |          |            |        |         |          |
| Aldrin                       | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| a-Chlordane                  | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    |        | 0.00040 |          |
| g-Chlordane                  | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| o,p-DDD                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| p,p-DDD                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| o,p-DDE                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| p,p-DDE                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| o,p-DDT                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| p,p-DDT                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| Dieldrin                     | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| Lindane                      | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| Endosulfan i (alpha)         | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| Endosulfan II (beta)         | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| Endrin                       | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| Heptachlor                   | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| Heptachlor epoxide           | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| Hexachlorobenzene            | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | 0.00040 | 9385070  |
| Hexachlorobutadiene          | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | N/A     | 9385070  |
| Hexachloroethane             | ug/g  | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 9382458  | <0.0020    | 0.0020 | N/A     | 9385070  |
| Methoxychlor                 | ug/g  | <0.0050    | <0.0050    | <0.0050    | <0.0050    | 9382458  | <0.0050    | 0.0050 | 0.0016  | 9385070  |
| Surrogate Recovery (%)       |       |            |            |            |            |          |            |        |         |          |
| 2,4,5,6-Tetrachloro-m-xylene | %     | 95         | 81         | 90         | 85         | 9382458  | 85         |        |         | 9385070  |
| Decachlorobiphenyl           | %     | 98         | 85         | 99         | 93         | 9382458  | 97         |        |         | 9385070  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: TOWN OF CALEDON

Sampler Initials: AB

### **RESULTS OF ANALYSES OF SOIL**

| Bureau Veritas ID      | 2 0        | ZCA727     | ZCA728     | ZCA729     | ZCA730     | ZCA731     |     |      |          |
|------------------------|------------|------------|------------|------------|------------|------------|-----|------|----------|
| Sampling Date          |            | 2024/05/03 | 2024/05/03 | 2024/05/03 | 2024/05/03 | 2024/05/03 |     |      |          |
| COC Number             |            | N/A        | N/A        | N/A        | N/A        | N/A        |     |      |          |
|                        | UNITS      | TP-1       | TP-2       | TP-3       | TP-4       | TP-5       | RDL | MDL  | QC Batch |
| Inorganics             |            |            |            |            |            |            |     |      |          |
| Moisture               | %          | 24         | 23         | 25         | 22         | 20         | 1.0 | 0.50 | 9377365  |
| RDL = Reportable Detec | tion Limit |            |            |            |            |            |     |      |          |
| QC Batch = Quality Con | 10.1       |            |            |            |            |            |     |      |          |



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: TOWN OF CALEDON

Sampler Initials: AB

### **TEST SUMMARY**

Bureau Veritas ID: ZCA727 Sample ID: TP-1

Matrix: Soil

**Collected:** 2024/05/03

Shipped:

Received: 2024/05/06

| Test Description                  | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------|-----------------|---------|------------|---------------|--------------------|
| Free (WAD) Cyanide                | TECH            | 9383965 | 2024/05/09 | 2024/05/10    | Prgya Panchal      |
| Hexavalent Chromium in Soil by IC | IC/SPEC         | 9385314 | 2024/05/10 | 2024/05/10    | Rupinder Sihota    |
| Acid Extractable Metals by ICPMS  | ICP/MS          | 9382881 | 2024/05/09 | 2024/05/09    | Viviana Canzonieri |
| Moisture                          | BAL             | 9377365 | N/A        | 2024/05/07    | Frances Gacayan    |
| OC Pesticides (Selected) & PCB    | GC/ECD          | 9382458 | 2024/05/09 | 2024/05/10    | Akruti Patel       |
| OC Pesticides Summed Parameters   | CALC            | 9374827 | N/A        | 2024/05/08    | Automated Statchk  |
| pH CaCl2 EXTRACT                  | AT              | 9383644 | 2024/05/09 | 2024/05/09    | Kien Tran          |

Bureau Veritas ID: ZCA728 Sample ID: TP-2 Matrix: Soil

**Collected:** 2024/05/03 Shipped:

Received: 2024/05/06

| Test Description                  | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------|-----------------|---------|------------|---------------|--------------------|
| Free (WAD) Cyanide                | TECH            | 9383965 | 2024/05/09 | 2024/05/10    | Prgya Panchal      |
| Hexavalent Chromium in Soil by IC | IC/SPEC         | 9385314 | 2024/05/10 | 2024/05/10    | Rupinder Sihota    |
| Acid Extractable Metals by ICPMS  | ICP/MS          | 9382881 | 2024/05/09 | 2024/05/09    | Viviana Canzonieri |
| Moisture                          | BAL             | 9377365 | N/A        | 2024/05/07    | Frances Gacayan    |
| OC Pesticides (Selected) & PCB    | GC/ECD          | 9382458 | 2024/05/09 | 2024/05/10    | Akruti Patel       |
| OC Pesticides Summed Parameters   | CALC            | 9374827 | N/A        | 2024/05/08    | Automated Statchk  |
| pH CaCl2 EXTRACT                  | AT              | 9383644 | 2024/05/09 | 2024/05/09    | Kien Tran          |

Bureau Veritas ID: ZCA729 Sample ID: TP-3

Matrix: Soil

Shipped:

Collected: 2024/05/03

Received: 2024/05/06

| Test Description                  | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------|-----------------|---------|------------|---------------|--------------------|
| Free (WAD) Cyanide                | TECH            | 9383965 | 2024/05/09 | 2024/05/10    | Prgya Panchal      |
| Hexavalent Chromium in Soil by IC | IC/SPEC         | 9385314 | 2024/05/10 | 2024/05/10    | Rupinder Sihota    |
| Acid Extractable Metals by ICPMS  | ICP/MS          | 9382881 | 2024/05/09 | 2024/05/09    | Viviana Canzonieri |
| Moisture                          | BAL             | 9377365 | N/A        | 2024/05/07    | Frances Gacayan    |
| OC Pesticides (Selected) & PCB    | GC/ECD          | 9382458 | 2024/05/09 | 2024/05/10    | Akruti Patel       |
| OC Pesticides Summed Parameters   | CALC            | 9374827 | N/A        | 2024/05/08    | Automated Statchk  |
| pH CaCl2 EXTRACT                  | AT              | 9383644 | 2024/05/09 | 2024/05/09    | Kien Tran          |

Bureau Veritas ID: ZCA730 Sample ID: TP-4

Matrix: Soil

**Collected:** 2024/05/03

Shipped:

**Received:** 2024/05/06

| Test Description                  | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------|-----------------|---------|------------|---------------|--------------------|
| Free (WAD) Cyanide                | TECH            | 9383965 | 2024/05/09 | 2024/05/10    | Prgya Panchal      |
| Hexavalent Chromium in Soil by IC | IC/SPEC         | 9385314 | 2024/05/10 | 2024/05/10    | Rupinder Sihota    |
| Acid Extractable Metals by ICPMS  | ICP/MS          | 9382881 | 2024/05/09 | 2024/05/09    | Viviana Canzonieri |
| Moisture                          | BAL             | 9377365 | N/A        | 2024/05/07    | Frances Gacayan    |
| OC Pesticides (Selected) & PCB    | GC/ECD          | 9382458 | 2024/05/09 | 2024/05/10    | Akruti Patel       |



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: TOWN OF CALEDON

Sampler Initials: AB

### **TEST SUMMARY**

Bureau Veritas ID: ZCA730 Sample ID: TP-4

Collected: 2024/05/03

Matrix: Soil

Shipped:

Received: 2024/05/06

| Test Description                | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |  |
|---------------------------------|-----------------|---------|------------|---------------|-------------------|--|
| OC Pesticides Summed Parameters | CALC            | 9374827 | N/A        | 2024/05/08    | Automated Statchk |  |
| pH CaCl2 EXTRACT                | AT              | 9383644 | 2024/05/09 | 2024/05/09    | Kien Tran         |  |

Bureau Veritas ID: ZCA731

Sample ID: TP-5

Matrix: Soil

**Collected:** 2024/05/03

Shipped:

**Received:** 2024/05/06

| Test Description                  | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|-----------------------------------|-----------------|---------|------------|---------------|--------------------|
| Free (WAD) Cyanide                | TECH            | 9383965 | 2024/05/09 | 2024/05/10    | Prgya Panchal      |
| Hexavalent Chromium in Soil by IC | IC/SPEC         | 9385314 | 2024/05/10 | 2024/05/10    | Rupinder Sihota    |
| Acid Extractable Metals by ICPMS  | ICP/MS          | 9382881 | 2024/05/09 | 2024/05/09    | Viviana Canzonieri |
| Moisture                          | BAL             | 9377365 | N/A        | 2024/05/07    | Frances Gacayan    |
| OC Pesticides (Selected) & PCB    | GC/ECD          | 9385070 | 2024/05/10 | 2024/05/11    | Li Peng            |
| OC Pesticides Summed Parameters   | CALC            | 9374827 | N/A        | 2024/05/08    | Automated Statchk  |
| pH CaCl2 EXTRACT                  | AT              | 9383644 | 2024/05/09 | 2024/05/09    | Kien Tran          |

Bureau Veritas ID: ZCA732 Sample ID: DUP S2

Matrix: Soil

**Collected:** 2024/05/03

Shipped:

Received: 2024/05/06

| Test Description                 | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|----------------------------------|-----------------|---------|------------|---------------|--------------------|
| Acid Extractable Metals by ICPMS | ICP/MS          | 9382632 | 2024/05/09 | 2024/05/09    | Viviana Canzonieri |



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: TOWN OF CALEDON

Sampler Initials: AB

### **GENERAL COMMENTS**

| Each temperature is the   | average of up to three cooler temperatures taken at receipt |  |
|---------------------------|-------------------------------------------------------------|--|
| Package 1                 | 7.0°C                                                       |  |
| Results relate only to th | e items tested.                                             |  |



OUALITY A

QUALITY ASSURANCE REPORT

Soil Engineers Ltd Client Project #: 2009-E126

Site Location: TOWN OF CALEDON Sampler Initials: AB

|          |                                 |            | Matrix Spike | Spike     | SPIKED BLANK | LANK      | Method Blank | lank  | RPD       |           |
|----------|---------------------------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|
| QC Batch | Parameter                       | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits |
| 9382458  | 2,4,5,6-Tetrachloro-m-xylene    | 2024/05/10 | 88           | 50 - 130  | 79           | 50 - 130  | 93           | %     |           |           |
| 9382458  | Decachlorobiphenyl              | 2024/05/10 | 103          | 50 - 130  | 93           | 50 - 130  | 118          | %     |           |           |
| 9385070  | 2,4,5,6-Tetrachloro-m-xylene    | 2024/05/11 | 95           | 50 - 130  | 83           | 50 - 130  | 82           | %     |           |           |
| 9385070  | Decachlorobiphenyl              | 2024/05/11 | 104          | 50 - 130  | 88           | 50 - 130  | 93           | %     |           |           |
| 9377365  | Moisture                        | 2024/05/07 |              |           |              |           |              |       | 5.6       | 20        |
| 9382458  | a-Chlordane                     | 2024/05/10 | 109          | 50 - 130  | 98           | 50 - 130  | <0 0020      | B/Bn  | NC        | 40        |
| 9382458  | Aldrin                          | 2024/05/10 | 88           | 50 - 130  | 78           | 50 - 130  | <0 0020      | B/Bn  | NC        | 40        |
| 9382458  | Dieldrin                        | 2024/05/10 | 122          | 50 - 130  | 105          | 50 - 130  | <0 0020      | B/Bn  | NC        | 40        |
| 9382458  | Endosulfan I (alpha)            | 2024/05/10 | 127          | 50 - 130  | 107          | 50 - 130  | <0 0020      | B/Bn  | NC        | 40        |
| 9382458  | Endosulfan II (beta)            | 2024/05/10 | 116          | 50 - 130  | 96           | 50 - 130  | <0 0020      | B/Bn  | NC        | 40        |
| 9382458  | Endrin                          | 2024/05/10 | 120          | 50 - 130  | 102          | 50 - 130  | <0 0020      | 8/Bn  | NC        | 40        |
| 9382458  | g-Chlordane                     | 2024/05/10 | 113          | 50 - 130  | 06           | 50 - 130  | <0 0020      | g/gn  | NC        | 40        |
| 9382458  | Heptachlor epoxide              | 2024/05/10 | 112          | 50 - 130  | 93           | 50 - 130  | <0 0020      | g/gn  | NC        | 40        |
| 9382458  | Heptachlor                      | 2024/05/10 | 85           | 50 - 130  | 74           | 50 - 130  | <0 0020      | g/gn  | NC        | 40        |
| 9382458  | Hexachlorobenzene               | 2024/05/10 | 98           | 50 - 130  | 87           | 50 - 130  | <0 0020      | ng/g  | NC        | 40        |
| 9382458  | Hexachlorobutadiene             | 2024/05/10 | 79           | 50 - 130  | 88           | 50 - 130  | <0 0020      | ng/g  | NC        | 40        |
| 9382458  | Hexachloroethane                | 2024/05/10 | 61           | 50 - 130  | 75           | 50 - 130  | <0 0020      | ug/g  | NC        | 40        |
| 9382458  | Lindane                         | 2024/05/10 | 105          | 50 - 130  | 85           | 50 - 130  | <0.0020      | ng/g  | NC        | 40        |
| 9382458  | Methoxychlor                    | 2024/05/10 | 130          | 50 - 130  | 116          | 50 - 130  | <0.0050      | g/gn  | NC        | 40        |
| 9382458  | DDD DDD                         | 2024/05/10 | 121          | 50 - 130  | 103          | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 9382458  | o,p-DDE                         | 2024/05/10 | 109          | 50 - 130  | 90           | 50 - 130  | <0.0020      | a/gn  | NC        | 40        |
| 9382458  | o,p-DDT                         | 2024/05/10 | 112          | 50 - 130  | 97           | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 9382458  | DDD                             | 2024/05/10 | 125          | 50 - 130  | 105          | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 9382458  | p,p-DDE                         | 2024/05/10 | 90           | 50 - 130  | 87           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 9382458  | p,p-DDT                         | 2024/05/10 | 125          | 50 - 130  | 105          | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 9382632  | Acid Extractable Antimony (Sb)  | 2024/05/09 | 107          | 75 - 125  | 102          | 80 - 120  | <2.20        | a/an  | NC        | 30        |
| 9382632  | Acid Extractable Arsenic (As)   | 2024/05/09 | 109          | 75 - 125  | 102          | 80 - 120  | <1.0         | B/Bn  | 5.9       | 30        |
| 9382632  | Acid Extractable Barium (Ba)    | 2024/05/09 | 108          | 75 - 125  | 103          | 80 - 120  | <2.50        | B/Bn  | 4.8       | 30        |
| 9382632  | Acid Extractable Beryllium (Be) | 2024/05/09 | 112          | 75 - 125  | 102          | 80 - 120  | <0.20        | B/Bn  | NC        | 30        |
| 9382632  | Acid Extractable Boron (B)      | 2024/05/09 | 106          | 75 - 125  | 101          | 80 - 120  | <5.0         | B/Bn  | NC        | 30        |
| 9382632  | Acid Extractable Cadmium (Cd)   | 2024/05/09 | 105          | 75 - 125  | 97           | 80 - 120  | <2.10        | B/Bn  | NC        | 30        |

Page 10 of 14

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tel. (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Microbiology testing is conducted at 6660 Campobello Rd, Chemistry testing is conducted at 6740 Campobello Rd.



# QUALITY ASSURANCE REPORT(CONT'D)

Site Location: TOWN OF CALEDON Sampler Initials: AB Client Project #: 2009-E126 Soil Engineers Ltd

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00       | Matrix Spike  | Spike     | SPIKED BLANK | SLANK     | Vethod Blank | lank  | RPD       |           |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|
| do Do     | - Commercial Commercia | Dato       | % Recovery    | Of limits | % Recovery   | OC limits | Value        | INITS | Value (%) | OC Limits |
| ער שפונוו |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ממנה       | , a mecoacily |           | ,            | 200       |              |       | 77        |           |
| 9382632   | Acid Extractable Chromium (Cr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/05/09 | 10/           | /5 - 125  | 66           | 071 - 08  | <1.U         | g/gn  | 1.7       | 30        |
| 9382632   | Acid Extractable Cobalt (Co)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024/05/09 | 105           | 75 - 125  | 98           | 80 - 120  | <0.10        | g/gn  | 5.1       | 30        |
| 9382632   | Acid Extractable Copper (Cu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024/05/09 | 107           | 75 - 125  | 101          | 80 - 120  | <2.50        | g/gn  | 0.80      | 30        |
| 9382632   | Acid Extractable Lead (Pb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2024/05/09 | 106           | 75 - 125  | 101          | 80 - 120  | <1.0         | g/gn  | 0.70      | 30        |
| 9382632   | Acid Extractable Mercury (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2024/05/09 | 114           | 75 - 125  | 108          | 80 - 120  | <0.050       | a/gn  | 3.9       | 30        |
| 9382632   | Acid Extractable Molybdenum (Mo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2024/05/09 | 106           | 75 - 125  | 96           | 80 - 120  | <2.50        | B/Bn  | NC        | 30        |
| 9382632   | Acid Extractable Nickel (Ni)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024/05/09 | 106           | 75 - 125  | 100          | 80 - 120  | <0.50        | g/gn  | 4.5       | 30        |
| 9382632   | Acid Extractable Selenium (Se)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/05/09 | 106           | 75 - 125  | 66           | 80 - 120  | <0.50        | g/gn  | NC        | 30        |
| 9382632   | Acid Extractable Silver (Ag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024/05/09 | 104           | 75 - 125  | 96           | 80 - 120  | <0.20        | g/gn  | NC        | 30        |
| 9382632   | Acid Extractable Thallium (TI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/05/09 | 110           | 75 - 125  | 104          | 80 - 120  | <0.050       | B/Bn  | NC        | 30        |
| 9382632   | Acid Extractable Uranium (U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024/05/09 | 108           | 75 - 125  | 100          | 80 - 120  | <0.050       | g/gn  | 19        | 30        |
| 9382632   | Acid Extractable Vanadium (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2024/05/09 | 110           | 75 - 125  | 101          | 80 - 120  | <5.0         | ng/g  | 7.7       | 30        |
| 9382632   | Acid Extractable Zinc (Zn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2024/05/09 | 06            | 75 - 125  | 100          | 80 - 120  | <5.0         | g/gn  | 24        | 30        |
| 9382881   | Acid Extractable Antimony (Sb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/05/09 | 6             | 75 - 125  | 106          | 80 - 120  | <0.20        | g/gn  |           |           |
| 9382881   | Acid Extractable Arsenic (As)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2024/05/09 | 92            | 75 - 125  | 106          | 80 - 120  | <1.0         | B/Bn  | NC        | 30        |
| 9382881   | Acid Extractable Barium (Ba)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024/05/09 | 66            | 75 - 125  | 112          | 80 - 120  | <0.50        | g/gn  |           |           |
| 9382881   | Acid Extractable Beryllium (Be)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2024/05/09 | 98            | 75 - 125  | 104          | 80 - 120  | <0.20        | a/gn  |           |           |
| 9382881   | Acid Extractable Boron (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2024/05/09 | 95            | 75 - 125  | 102          | 80 - 120  | <5.0         | g/gn  |           |           |
| 9382881   | Acid Extractable Cadmium (Cd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2024/05/09 | 92            | 75 - 125  | 102          | 80 - 120  | Ф.10         | ng/g  |           |           |
| 9382881   | Acid Extractable Chromium (Cr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/05/09 | 92            | 75 - 125  | 100          | 80 - 120  | <1.0         | a/gn  |           |           |
| 9382881   | Acid Extractable Cobalt (Co)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024/05/09 | 89            | 75 - 125  | 100          | 80 - 120  | Ф.10         | B/Bn  |           |           |
| 9382881   | Acid Extractable Copper (Cu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024/05/09 | 93            | 75 - 125  | 103          | 80 - 120  | ⊄0.50        | B/Bn  |           |           |
| 9382881   | Acid Extractable Lead (Pb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2024/05/09 | 93            | 75 - 125  | 106          | 80 - 120  | <1.0         | g/gn  |           |           |
| 9382881   | Acid Extractable Mercury (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2024/05/09 | 100           | 75 - 125  | 113          | 80 - 120  | <0.050       | B/Bn  |           |           |
| 9382881   | Acid Extractable Molybdenum (Mo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2024/05/09 | 93            | 75 - 125  | 100          | 80 - 120  | <0.50        | g/gn  |           |           |
| 9382881   | Acid Extractable Nickel (Ni)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024/05/09 | 91            | 75 - 125  | 103          | 80 - 120  | <0.50        | g/gn  |           |           |
| 9382881   | Acid Extractable Selenium (Se)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/05/09 | 92            | 75 - 125  | 104          | 80 - 120  | <0.50        | g/gn  |           |           |
| 9382881   | Acid Extractable Silver (Ag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024/05/09 | 90            | 75 - 125  | 100          | 80 - 120  | <0.20        | g/gn  |           |           |
| 9382881   | Acid Extractable Thallium (TI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/05/09 | 97            | 75 - 125  | 109          | 80 - 120  | <0.050       | g/gn  |           |           |
| 9382881   | Acid Extractable Uranium (U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024/05/09 | 95            | 75 - 125  | 105          | 80 - 120  | <0.050       | g/gn  | 10        | 30        |
| 9382881   | Acid Extractable Vanadium (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2024/05/09 | 86            | 75 - 125  | 103          | 80 - 120  | <5.0         | g/gn  |           |           |

Page 11 of 14

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



BUTE AU. WERDLAS. Bureau Veritas Job #: C4D5075 Report Date: 2024/05/15

# QUALITY ASSURANCE REPORT(CONT'D)

Soil Engineers Ltd Client Project #: 2009-E126

Client Project #: 2009-E126 Site Location: TOWN OF CALEDON Sampler Initials: AB

|          |                            |            | Matrix Spike | Spike     | SPIKED BLANK | SLANK     | Method Blank | lank  | RPD       |           |
|----------|----------------------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|
| QC Batch | Parameter                  | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits |
| 9382881  | Acid Extractable Zinc (Zn) | 2024/05/09 | 88           | 75 - 125  | 100          | 80 - 120  | <5.0         | g/gn  |           |           |
| 9383644  | Available (CaCl2) pH       | 2024/05/09 |              |           | 100          | 97 - 103  |              |       | 0.11      | N/A       |
| 9383965  | WAD Cyanide (Free)         | 2024/05/10 | 88           | 75 - 125  | 97           | 80 - 120  | <0.07        | B/Bn  | NC        | 35        |
| 9385070  | a-Chlordane                | 2024/05/11 | 108          | 50 - 130  | 91           | 50 - 130  | <0.0020      | 8/8n  | NC        | 40        |
| 9385070  | Aldrin                     | 2024/05/11 | 86           | 50 - 130  | 84           | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 9385070  | Dieldrin                   | 2024/05/11 | 115          | 50 - 130  | 105          | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 9385070  | Endosulfan I (alpha)       | 2024/05/11 | 116          | 50 - 130  | 104          | 50 - 130  | <0.0020      | a/an  | NC        | 40        |
| 9385070  | Endosulfan II (beta)       | 2024/05/11 | 110          | 50 - 130  | 26           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 9385070  | Endrin                     | 2024/05/11 | 115          | 50 - 130  | 101          | 50-130    | <0.0020      | g/gn  | NC        | 40        |
| 9385070  | g-Chlordane                | 2024/05/11 | 106          | 50 - 130  | 06           | 50 - 130  | <0.0020      | a/an  | NC        | 40        |
| 9385070  | Heptachlor epoxide         | 2024/05/11 | 104          | 50 - 130  | 91           | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 9385070  | Heptachlor                 | 2024/05/11 | 93           | 50 - 130  | 83           | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 9385070  | Hexachlorobenzene          | 2024/05/11 | 06           | 50 - 130  | 81           | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 9385070  | Hexachlorobutadiene        | 2024/05/11 | 95           | 50 - 130  | 85           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 9385070  | Hexachloroethane           | 2024/05/11 | 69           | 50 - 130  | 71           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 9385070  | Lindane                    | 2024/05/11 | 94           | 50 - 130  | 83           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 9385070  | Methoxychlor               | 2024/05/11 | 128          | 50 - 130  | 126          | 50 - 130  | <0.0050      | ng/g  | NC        | 40        |
| 9385070  | QQQ-d'0                    | 2024/05/11 | 120          | 50 - 130  | 107          | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 9385070  | o,p-DDE                    | 2024/05/11 | 116          | 50 - 130  | 97           | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 9385070  | o,p-DDT                    | 2024/05/11 | 122          | 50 - 130  | 109          | 50 - 130  | <0.0020      | g/gn  | NC        | 40        |
| 9385070  | DDD-q,q                    | 2024/05/11 | 126          | 50 - 130  | 111          | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 9385070  | p,p-DDE                    | 2024/05/11 | 95           | 50 - 130  | 86           | 50 - 130  | <0.0020      | B/Bn  | NC        | 40        |
| 9385070  | p,p-DDT                    | 2024/05/11 | 129          | 50 - 130  | 123          | 50 - 130  | <0.0020      | ng/g  | NC        | 40        |



# QUALITY ASSURANCE REPORT(CONT'D)

Client Project #: 2009-E126 Soil Engineers Ltd

Site Location: TOWN OF CALEDON Sampler Initials: AB

|                     |                    | 200        |              |           |                                                 |           |              |       |                     |           |
|---------------------|--------------------|------------|--------------|-----------|-------------------------------------------------|-----------|--------------|-------|---------------------|-----------|
|                     |                    |            | Matrix Spike | Spike     | SPIKED BLANK                                    | BLANK     | Method Blank | lank  | RPD                 |           |
| QC Batch            | QC Batch Parameter | Date       | % Recovery   | QC Limits | % Recovery   QC Limits   % Recovery   QC Limits | QC Limits | Value        | UNITS | Value (%) QC Limits | QC Limits |
| 9385314             | Chromium (VI)      | 2024/05/10 | 0 (1)        | 70 - 130  | 92                                              | 80 - 120  | <0.18        | B/Bn  | NC                  | 35        |
| /A = Not Applicable | plicable           |            |              |           |                                                 |           |              |       |                     |           |
|                     |                    |            |              |           |                                                 |           |              |       |                     |           |

N/A

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.



Soil Engineers Ltd

Client Project #: 2009-E126

Site Location: TOWN OF CALEDON

Sampler Initials: AB

### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Ciristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



Your Project #: 2009-E126 Your C.O.C. #: N/A

### Attention: Munir Ahmad

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2024/06/18

Report #: R8196583 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C4H8291 Received: 2024/06/11, 14:30

Sample Matrix: Soil # Samples Received: 3

|                                          |          | Date       | Date       |                          |                      |
|------------------------------------------|----------|------------|------------|--------------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Analytical Method    |
| Methylnaphthalene Sum                    | 2        | N/A        | 2024/06/14 | CAM SOP-00301            | EPA 8270D m          |
| Hot Water Extractable Boron              | 2        | 2024/06/15 | 2024/06/17 | CAM SOP-00408            | R153 Ana. Prot. 2011 |
| 1,3-Dichloropropene Sum                  | 2        | N/A        | 2024/06/17 |                          | EPA 8260C m          |
| Conductivity                             | 2        | 2024/06/17 | 2024/06/17 | CAM SOP-00414            | OMOE E3530 v1 m      |
| Hexavalent Chromium in Soil by IC (1)    | 2        | 2024/06/15 | 2024/06/17 | CAM SOP-00436            | EPA 3060A/7199 m     |
| Petroleum Hydrocarbons F2-F4 in Soil (2) | 2        | 2024/06/13 | 2024/06/14 | CAM SOP-00316            | CCME CWS m           |
| Acid Extractable Metals by ICPMS         | 3        | 2024/06/15 | 2024/06/15 | CAM SOP-00447            | EPA 6020B m          |
| Moisture                                 | 2        | N/A        | 2024/06/13 | CAM SOP-00445            | Carter 2nd ed 70.2 m |
| PAH Compounds in Soil by GC/MS (SIM)     | 2        | 2024/06/13 | 2024/06/14 | CAM SOP-00318            | EPA 8270E            |
| Sodium Adsorption Ratio (SAR)            | 2        | N/A        | 2024/06/17 | CAM SOP-00102            | EPA 6010C            |
| Volatile Organic Compounds and F1 PHCs   | 2        | N/A        | 2024/06/14 | CAM SOP-00230            | EPA 8260C m          |

### Remarks

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.



Your Project #: 2009-E126 Your C.O.C. #: N/A

Attention: Munir Ahmad

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

> Report Date: 2024/06/18 Report #: R8196583

> > Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

### **BUREAU VERITAS JOB #: C4H8291**

Received: 2024/06/11, 14:30

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request, Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

**Encryption Key** 



Bureau Veritas 18 Jun 2024 14:11:23

Please direct all questions regarding this Certificate of Analysis to: Antonella Brasil, Senior Project Manager Email: Antonella.Brasil@bureauveritas.com Phone# (905)817-5817

\_\_\_\_\_\_

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



Soil Engineers Ltd Client Project #: 2009-E126 Sampler Initials: AP

## O.REG 153 ICPMS METALS (SOIL)

| Bureau Veritas ID                                                    |       | ZKZ620     |       |       |          |
|----------------------------------------------------------------------|-------|------------|-------|-------|----------|
| Sampling Date                                                        |       | 2024/06/07 |       |       |          |
| COC Number                                                           |       | N/A        |       |       |          |
|                                                                      | UNITS | DUP S3     | RDL   | MDL   | QC Batch |
| Metals                                                               |       |            |       |       |          |
| Acid Extractable Antimony (Sb)                                       | ug/g  | <0.20      | 0.20  | 0.10  | 9458231  |
| Acid Extractable Arsenic (As)                                        | ug/g  | 4.1        | 1.0   | 0.10  | 9458231  |
| Acid Extractable Barium (Ba)                                         | ug/g  | 97         | 0.50  | 0.30  | 9458231  |
| Acid Extractable Beryllium (Be)                                      | ug/g  | 0.99       | 0.20  | 0.020 | 9458231  |
| Acid Extractable Boron (B)                                           | ug/g  | 6.0        | 5.0   | 1.0   | 9458231  |
| Acid Extractable Cadmium (Cd)                                        | ug/g  | <0.10      | 0.10  | 0.030 | 9458231  |
| Acid Extractable Chromium (Cr)                                       | ug/g  | 28         | 1.0   | 0.20  | 9458231  |
| Acid Extractable Cobalt (Co)                                         | ug/g  | 15         | 0.10  | 0.020 | 9458231  |
| Acid Extractable Copper (Cu)                                         | ug/g  | 22         | 0.50  | 0.20  | 9458231  |
| Acid Extractable Lead (Pb)                                           | ug/g  | 12         | 1.0   | 0.10  | 9458231  |
| Acid Extractable Molybdenum (Mo)                                     | ug/g  | <0.50      | 0.50  | 0.10  | 9458231  |
| Acid Extractable Nickel (Ni)                                         | ug/g  | 28         | 0.50  | 0.20  | 9458231  |
| Acid Extractable Selenium (Se)                                       | ug/g  | <0.50      | 0.50  | 0.10  | 9458231  |
| Acid Extractable Silver (Ag)                                         | ug/g  | <0.20      | 0.20  | 0.040 | 9458231  |
| Acid Extractable Thallium (Tl)                                       | ug/g  | 0.16       | 0.050 | 0.010 | 9458231  |
| Acid Extractable Uranium (U)                                         | ug/g  | 0.58       | 0.050 | 0.030 | 9458231  |
| Acid Extractable Vanadium (V)                                        | ug/g  | 38         | 5.0   | 0.50  | 9458231  |
| Acid Extractable Zinc (Zn)                                           | ug/g  | 68         | 5.0   | 0.50  | 9458231  |
| Acid Extractable Mercury (Hg)                                        | ug/g  | <0.050     | 0.050 | 0.030 | 9458231  |
| RDL = Reportable Detection Limit<br>QC Batch = Quality Control Batch |       |            |       |       |          |



Soil Engineers Ltd Client Project #: 2009-E126 Sampler Initials: AP

# O.REG 153 METALS & INORGANICS PKG (SOIL)

| Bureau Veritas ID                |       | ZKZ614     | ZKZ619     |       |        |          |
|----------------------------------|-------|------------|------------|-------|--------|----------|
| Sampling Date                    |       | 2024/06/07 | 2024/06/07 |       |        |          |
| COC Number                       |       | N/A        | N/A        |       |        |          |
|                                  | UNITS | BH101/1    | BH102/1    | RDL   | MDL    | QC Batch |
| Calculated Parameters            |       |            |            |       |        |          |
| Sodium Adsorption Ratio          | N/A   | 0.30       | 1.1        |       |        | 9450121  |
| Inorganics                       |       |            |            |       |        |          |
| Conductivity                     | mS/cm | 0.31       | 0.29       | 0.002 | 0.0005 | 9459170  |
| Chromium (VI)                    | ug/g  | <0.18      | <0.18      | 0.18  | 0.050  | 9457909  |
| Metals                           |       |            |            |       |        |          |
| Hot Water Ext. Boron (B)         | ug/g  | 0.11       | 0.055      | 0.050 | 0.030  | 9457914  |
| Acid Extractable Antimony (Sb)   | ug/g  | <0.20      | <0.20      | 0.20  | 0.10   | 9458231  |
| Acid Extractable Arsenic (As)    | ug/g  | 4.0        | 3.9        | 1.0   | 0.10   | 9458231  |
| Acid Extractable Barium (Ba)     | ug/g  | 110        | 94         | 0.50  | 0.30   | 9458231  |
| Acid Extractable Beryllium (Be)  | ug/g  | 1.1        | 0.82       | 0.20  | 0.020  | 9458231  |
| Acid Extractable Boron (B)       | ug/g  | 6.4        | 10         | 5.0   | 1.0    | 9458231  |
| Acid Extractable Cadmium (Cd)    | ug/g  | <0.10      | <0.10      | 0.10  | 0.030  | 9458231  |
| Acid Extractable Chromium (Cr)   | ug/g  | 29         | 25         | 1.0   | 0.20   | 9458231  |
| Acid Extractable Cobalt (Co)     | ug/g  | 14         | 13         | 0.10  | 0.020  | 9458231  |
| Acid Extractable Copper (Cu)     | ug/g  | 25         | 23         | 0.50  | 0.20   | 9458231  |
| Acid Extractable Lead (Pb)       | ug/g  | 12         | 10         | 1.0   | 0.10   | 9458232  |
| Acid Extractable Molybdenum (Mo) | ug/g  | <0.50      | <0.50      | 0.50  | 0.10   | 9458231  |
| Acid Extractable Nickel (Ni)     | ug/g  | 31         | 30         | 0.50  | 0.20   | 9458231  |
| Acid Extractable Selenium (Se)   | ug/g  | <0.50      | <0.50      | 0.50  | 0.10   | 9458233  |
| Acid Extractable Silver (Ag)     | ug/g  | <0.20      | <0.20      | 0.20  | 0.040  | 9458233  |
| Acid Extractable Thallium (TI)   | ug/g  | 0.17       | 0.18       | 0.050 | 0.010  | 9458233  |
| Acid Extractable Uranium (U)     | ug/g  | 0.62       | 0.67       | 0.050 | 0.030  | 9458233  |
| Acid Extractable Vanadium (V)    | ug/g  | 39         | 35         | 5.0   | 0.50   | 945823:  |
| Acid Extractable Zinc (Zn)       | ug/g  | 68         | 59         | 5.0   | 0.50   | 9458233  |
| Acid Extractable Mercury (Hg)    | ug/g  | <0.050     | <0.050     | 0.050 | 0.030  | 945823   |
| RDL = Reportable Detection Limit |       |            |            |       |        |          |
| QC Batch = Quality Control Batch |       |            |            |       |        |          |



Soil Engineers Ltd Client Project #: 2009-E126 Sampler Initials: AP

### O.REG 153 PAHS (SOIL)

| Bureau Veritas ID         |       | ZKZ614     | ZKZ619     |        |        |          |
|---------------------------|-------|------------|------------|--------|--------|----------|
| Sampling Date             |       | 2024/06/07 | 2024/06/07 |        |        |          |
| COC Number                |       | N/A        | N/A        |        |        |          |
|                           | UNITS | BH101/1    | BH102/1    | RDL    | MDL    | QC Batch |
| Calculated Parameters     |       |            |            |        |        |          |
| Methylnaphthalene, 2-(1-) | ug/g  | <0.0071    | <0.0071    | 0.0071 | N/A    | 9449413  |
| Polyaromatic Hydrocarbons |       |            |            |        |        |          |
| Acenaphthene              | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0020 | 9454188  |
| Acenaphthylene            | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0010 | 9454188  |
| Anthracene                | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0010 | 9454188  |
| Benzo(a)anthracene        | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0020 | 9454188  |
| Benzo(a)pyrene            | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0010 | 9454188  |
| Benzo(b/j)fluoranthene    | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0020 | 9454188  |
| Benzo(g,h,i)perylene      | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0040 | 9454188  |
| Benzo(k)fluoranthene      | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0020 | 9454188  |
| Chrysene                  | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0020 | 9454188  |
| Dibenzo(a,h)anthracene    | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0040 | 9454188  |
| Fluoranthene              | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0010 | 9454188  |
| Fluorene                  | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0010 | 9454188  |
| Indeno(1,2,3-cd)pyrene    | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0040 | 9454188  |
| 1-Methylnaphthalene       | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0010 | 9454188  |
| 2-Methylnaphthalene       | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0010 | 9454188  |
| Naphthalene               | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0010 | 9454188  |
| Phenanthrene              | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0010 | 9454188  |
| Pyrene                    | ug/g  | <0.0050    | <0.0050    | 0.0050 | 0.0010 | 9454188  |
| Surrogate Recovery (%)    |       |            |            |        |        |          |
| D10-Anthracene            | %     | 97         | 96         |        |        | 9454188  |
| D14-Terphenyl (FS)        | %     | 92         | 86         |        |        | 9454188  |
| D8-Acenaphthylene         | %     | 85         | 83         |        |        | 9454188  |

N/A = Not Applicable



Soil Engineers Ltd Client Project #: 2009-E126

Sampler Initials: AP

### O.REG 153 VOCS BY HS & F1-F4 (SOIL)

| Bureau Veritas ID                   |       | ZKZ614     | ZKZ619     |        |        |          |
|-------------------------------------|-------|------------|------------|--------|--------|----------|
| Sampling Date                       |       | 2024/06/07 | 2024/06/07 |        |        |          |
| COC Number                          |       | N/A        | N/A        |        |        |          |
|                                     | UNITS | BH101/1    | BH102/1    | RDL    | MDL    | QC Batcl |
| Calculated Parameters               |       |            |            |        |        |          |
| 1,3-Dichloropropene (cis+trans)     | ug/g  | <0.050     | <0.050     | 0.050  | 0.010  | 9449414  |
| Volatile Organics                   |       |            |            |        |        |          |
| Acetone (2-Propanone)               | ug/g  | <0.49      | <0.49      | 0.49   | 0.49   | 9455734  |
| Benzene                             | ug/g  | <0.0060    | <0.0060    | 0.0060 | 0.0060 | 9455734  |
| Bromodichloromethane                | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| Bromoform                           | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| Bromomethane                        | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| Carbon Tetrachloride                | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| Chlorobenzene                       | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| Chloroform                          | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| Dibromochloromethane                | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| 1,2-Dichlorobenzene                 | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| 1,3-Dichlorobenzene                 | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| 1,4-Dichlorobenzene                 | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| Dichlorodifluoromethane (FREON 12)  | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| 1,1-Dichloroethane                  | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| 1,2-Dichloroethane                  | ug/g  | <0.049     | <0.049     | 0.049  | 0.049  | 9455734  |
| 1,1-Dichloroethylene                | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| cis-1,2-Dichloroethylene            | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| trans-1,2-Dichloroethylene          | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| 1,2-Dichloropropane                 | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| cis-1,3-Dichloropropene             | ug/g  | <0.030     | <0.030     | 0.030  | 0.030  | 945573   |
| trans-1,3-Dichloropropene           | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 945573   |
| Ethylbenzene                        | ug/g  | <0.010     | <0.010     | 0.010  | 0.010  | 945573   |
| Ethylene Dibromide                  | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| Hexane                              | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 9455734  |
| Methylene Chloride(Dichloromethane) | ug/g  | <0.049     | <0.049     | 0.049  | 0.049  | 945573   |
| Methyl Ethyl Ketone (2-Butanone)    | ug/g  | <0.40      | <0.40      | 0.40   | 0.40   | 945573   |
| Methyl Isobutyl Ketone              | ug/g  | <0.40      | <0.40      | 0.40   | 0.40   | 945573   |
| Methyl t-butyl ether (MTBE)         | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 945573   |
| Styrene                             | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 945573   |
| 1,1,1,2-Tetrachloroethane           | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 945573   |
| 1,1,2,2-Tetrachloroethane           | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 945573   |
| Tetrachloroethylene                 | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 945573   |
| Toluene                             | ug/g  | <0.020     | <0.020     | 0.020  | 0.020  | 945573   |
| 1,1,1-Trichloroethane               | ug/g  | <0.040     | <0.040     | 0.040  | 0.040  | 945573   |

QC Batch = Quality Control Batch



Report Date: 2024/06/18

Soil Engineers Ltd Client Project #: 2009-E126 Sampler Initials: AP

# O.REG 153 VOCS BY HS & F1-F4 (SOIL)

| Bureau Veritas ID                                                            |       | ZKZ614     | ZKZ619     |       |       |          |
|------------------------------------------------------------------------------|-------|------------|------------|-------|-------|----------|
| Sampling Date                                                                |       | 2024/06/07 | 2024/06/07 |       |       |          |
| COC Number                                                                   |       | N/A        | N/A        |       |       |          |
|                                                                              | UNITS | BH101/1    | BH102/1    | RDL   | MDL   | QC Batch |
| 1,1,2-Trichloroethane                                                        | ug/g  | <0.040     | <0.040     | 0.040 | 0.040 | 9455734  |
| Trichloroethylene                                                            | ug/g  | <0.010     | <0.010     | 0.010 | 0.010 | 9455734  |
| Trichlorofluoromethane (FREON 11)                                            | ug/g  | <0.040     | <0.040     | 0.040 | 0.040 | 9455734  |
| Vinyl Chloride                                                               | ug/g  | <0.019     | <0.019     | 0.019 | 0.019 | 9455734  |
| p+m-Xylene                                                                   | ug/g  | <0.020     | <0.020     | 0.020 | 0.020 | 9455734  |
| o-Xylene                                                                     | ug/g  | <0.020     | <0.020     | 0.020 | 0.020 | 9455734  |
| Total Xylenes                                                                | ug/g  | <0.020     | <0.020     | 0.020 | 0.020 | 9455734  |
| F1 (C6-C10)                                                                  | ug/g  | <10        | <10        | 10    | 2.0   | 9455734  |
| F1 (C6-C10) - BTEX                                                           | ug/g  | <10        | <10        | 10    | 2.0   | 9455734  |
| F2-F4 Hydrocarbons                                                           |       | "          |            |       |       |          |
| F2 (C10-C16 Hydrocarbons)                                                    | ug/g  | <10        | <10        | 10    | 5.0   | 9453443  |
| F3 (C16-C34 Hydrocarbons)                                                    | ug/g  | <50        | <50        | 50    | 5.0   | 9453443  |
| F4 (C34-C50 Hydrocarbons)                                                    | ug/g  | <50        | <50        | 50    | 10    | 9453443  |
| Reached Baseline at C50                                                      | ug/g  | Yes        | Yes        |       |       | 9453443  |
| Surrogate Recovery (%)                                                       |       | ··         |            |       |       |          |
| o-Terphenyl                                                                  | %     | 100        | 101        |       |       | 9453443  |
| 4-Bromofluorobenzene                                                         | %     | 96         | 96         |       |       | 9455734  |
| D10-o-Xylene                                                                 | %     | 107        | 111        |       |       | 9455734  |
| D4-1,2-Dichloroethane                                                        | %     | 107        | 107        |       |       | 9455734  |
| D8-Toluene                                                                   | %     | 93         | 92         |       |       | 9455734  |
| D8-Toluene RDL = Reportable Detection Limit QC Batch = Quality Control Batch | %     | 93         | 92         |       |       |          |



Soil Engineers Ltd Client Project #: 2009-E126 Sampler Initials: AP

### **RESULTS OF ANALYSES OF SOIL**

| Bureau Veritas ID |       | ZKZ614     | ZKZ619     | ZKZ619             |     |      |          |
|-------------------|-------|------------|------------|--------------------|-----|------|----------|
| Sampling Date     |       | 2024/06/07 | 2024/06/07 | 2024/06/07         |     |      |          |
| COC Number        |       | N/A        | N/A        | N/A                |     |      |          |
|                   | UNITS | BH101/1    | BH102/1    | BH102/1<br>Lab-Dup | RDL | MDL  | QC Batch |
| Inorganics        |       |            |            |                    |     |      |          |
| Moisture          | %     | 15         | 14         | 15                 | 1.0 | 0.50 | 9452824  |

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



Bureau Veritas Job #: C4H8291

Report Date: 2024/06/18

Soil Engineers Ltd Client Project #: 2009-E126 Sampler Initials: AP

### **TEST SUMMARY**

Bureau Veritas ID: ZKZ614 Sample ID: BH101/1

Matrix: Soil

**Collected:** 2024/06/07

Shipped:

Received: 2024/06/11

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                    |
|----------------------------------------|-----------------|---------|------------|---------------|----------------------------|
| Methylnaphthalene Sum                  | CALC            | 9449413 | N/A        | 2024/06/14    | Automated Statchk          |
| Hot Water Extractable Boron            | ICP             | 9457914 | 2024/06/15 | 2024/06/17    | Aswathy Neduveli Suresh    |
| 1,3-Dichloropropene Sum                | CALC            | 9449414 | N/A        | 2024/06/17    | Automated Statchk          |
| Conductivity                           | AT              | 9459170 | 2024/06/17 | 2024/06/17    | Gurparteek KAUR            |
| Hexavalent Chromium in Soil by IC      | IC/SPEC         | 9457909 | 2024/06/15 | 2024/06/17    | Rupinder Sihota            |
| Petroleum Hydrocarbons F2-F4 in Soil   | GC/FID          | 9453443 | 2024/06/13 | 2024/06/14    | Mohammed Abdul Nafay Shoeb |
| Acid Extractable Metals by ICPMS       | ICP/MS          | 9458231 | 2024/06/15 | 2024/06/15    | Jaswinder Kaur             |
| Moisture                               | BAL             | 9452824 | N/A        | 2024/06/13    | Frances Gacayan            |
| PAH Compounds in Soil by GC/MS (SIM)   | GC/MS           | 9454188 | 2024/06/13 | 2024/06/14    | Mitesh Raj                 |
| Sodium Adsorption Ratio (SAR)          | CALC/MET        | 9450121 | N/A        | 2024/06/17    | Automated Statchk          |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 9455734 | N/A        | 2024/06/14    | Anna Gabrielyan            |

Bureau Veritas ID: ZKZ619 Sample ID: BH102/1

Matrix: Soil

Collected: 2024/06/07

Shipped:

Received: 2024/06/11

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                    |
|----------------------------------------|-----------------|---------|------------|---------------|----------------------------|
| Methylnaphthalene Sum                  | CALC            | 9449413 | N/A        | 2024/06/14    | Automated Statchk          |
| Hot Water Extractable Boron            | ICP             | 9457914 | 2024/06/15 | 2024/06/17    | Aswathy Neduveli Suresh    |
| 1,3-Dichloropropene Sum                | CALC            | 9449414 | N/A        | 2024/06/17    | Automated Statchk          |
| Conductivity                           | AT              | 9459170 | 2024/06/17 | 2024/06/17    | Gurparteek KAUR            |
| Hexavalent Chromium in Soil by IC      | IC/SPEC         | 9457909 | 2024/06/15 | 2024/06/17    | Rupinder Sihota            |
| Petroleum Hydrocarbons F2-F4 in Soil   | GC/FID          | 9453443 | 2024/06/13 | 2024/06/14    | Mohammed Abdul Nafay Shoeb |
| Acid Extractable Metals by ICPMS       | ICP/MS          | 9458231 | 2024/06/15 | 2024/06/15    | Jaswinder Kaur             |
| Moisture                               | BAL             | 9452824 | N/A        | 2024/06/13    | Frances Gacayan            |
| PAH Compounds in Soil by GC/MS (SIM)   | GC/MS           | 9454188 | 2024/06/13 | 2024/06/14    | Mitesh Raj                 |
| Sodium Adsorption Ratio (SAR)          | CALC/MET        | 9450121 | N/A        | 2024/06/17    | Automated Statchk          |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 9455734 | N/A        | 2024/06/14    | Anna Gabrielyan            |

Bureau Veritas ID: ZKZ619 Dup Sample ID: BH102/1

Matrix: Soil

Collected: 2024/06/07

Shipped:

**Received:** 2024/06/11

| Test Description | Instrumentation | Batch   | Extracted | Date Analyzed | Analyst         |  |
|------------------|-----------------|---------|-----------|---------------|-----------------|--|
| Moisture         | BAL             | 9452824 | N/A       | 2024/06/13    | Frances Gacayan |  |

Bureau Veritas ID: ZKZ620 Sample ID: DUP S3 Matrix: Soil

Collected: 2024/06/07 Shipped:

**Received:** 2024/06/11

| Test Description                 | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst        |
|----------------------------------|-----------------|---------|------------|---------------|----------------|
| Acid Extractable Metals by ICPMS | ICP/MS          | 9458231 | 2024/06/15 | 2024/06/15    | Jaswinder Kaur |



Soil Engineers Ltd Client Project #: 2009-E126 Sampler Initials: AP

### **GENERAL COMMENTS**

| Each temperature is the   | average of up to th | ree cooler temperature | es taken at receipt |  |
|---------------------------|---------------------|------------------------|---------------------|--|
| Package 1                 | 5.7°C               |                        |                     |  |
| Results relate only to th | e items tested.     |                        |                     |  |



# **QUALITY ASSURANCE REPORT**

Soil Engineers Ltd Client Project #: 2009-E126 Sampler Initials: AP

|          |                           |            | Matrix Spike | Spike     | SPIKED BLANK | SLANK     | Method Blank | Slank | RPD       |           |
|----------|---------------------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits |
| 9453443  | o-Terphenyl               | 2024/06/13 | 101          | 60 - 130  | 102          | 60 - 130  | 104          | %     |           |           |
| 9454188  | D10-Anthracene            | 2024/06/13 | 102          | 50 - 130  | 107          | 50 - 130  | 109          | %     |           |           |
| 9454188  | D14-Terphenyl (FS)        | 2024/06/13 | 111          | 50 - 130  | 107          | 50 - 130  | 102          | %     |           |           |
| 9454188  | D8-Acenaphthylene         | 2024/06/13 | 95           | 50 - 130  | 95           | 50 - 130  | 68           | %     |           |           |
| 9455734  | 4-Bromofluorobenzene      | 2024/06/14 | 102          | 60 - 140  | 101          | 60 - 140  | 97           | %     |           |           |
| 9455734  | D10-o-Xylene              | 2024/06/14 | 109          | 60 - 130  | 113          | 60 - 130  | 101          | %     |           |           |
| 9455734  | D4-1,2-Dichloroethane     | 2024/06/14 | 102          | 60 - 140  | 101          | 60 - 140  | 102          | %     |           |           |
| 9455734  | D8-Toluene                | 2024/06/14 | 104          | 60 - 140  | 105          | 60 - 140  | 93           | %     |           |           |
| 9452824  | Moisture                  | 2024/06/13 |              |           |              |           |              |       | 4.2       | 20        |
| 9453443  | F2 (C10-C16 Hydrocarbons) | 2024/06/13 | 112          | 60 - 130  | 108          | 80 - 120  | <10          | ug/g  | NC        | 30        |
| 9453443  | F3 (C16-C34 Hydrocarbons) | 2024/06/13 | 113          | 60 - 130  | 109          | 80 - 120  | <50          | B/Bn  | NC        | 30        |
| 9453443  | F4 (C34-C50 Hydrocarbons) | 2024/06/13 | 108          | 60 - 130  | 103          | 80 - 120  | <50          | g/gn  | NC        | 30        |
| 9454188  | 1-Methylnaphthalene       | 2024/06/13 | 105          | 50 - 130  | 104          | 50 - 130  | <0.0050      | g/gn  | NC        | 40        |
| 9454188  | 2-Methylnaphthalene       | 2024/06/13 | 103          | 50 - 130  | 102          | 50 - 130  | <0.0050      | g/gn  | NC        | 40        |
| 9454188  | Acenaphthene              | 2024/06/13 | 104          | 50 - 130  | 102          | 50 - 130  | <0.0050      | g/gn  | NC        | 40        |
| 9454188  | Acenaphthylene            | 2024/06/13 | 100          | 50 - 130  | 66           | 50 - 130  | <0.0050      | B/Bn  | 4.4       | 40        |
| 9454188  | Anthracene                | 2024/06/13 | 108          | 50 - 130  | 110          | 50 - 130  | <0.0050      | g/gn  | NC        | 40        |
| 9454188  | Benzo(a)anthracene        | 2024/06/13 | 122          | 50 - 130  | 103          | 50 - 130  | <0.0050      | a/gn  | 30        | 40        |
| 9454188  | Benzo(a)pyrene            | 2024/06/13 | 114          | 50 - 130  | 104          | 50 - 130  | <0.0050      | g/gn  | 28        | 40        |
| 9454188  | Benzo(b/j)fluoranthene    | 2024/06/13 | 107          | 50 - 130  | 107          | 50 - 130  | <0.0050      | B/Bn  | 24        | 40        |
| 9454188  | Benzo(g,h,i)perylene      | 2024/06/13 | 105          | 50 - 130  | 104          | 50 - 130  | <0.0050      | g/gn  | 17        | 40        |
| 9454188  | Benzo(k)fluoranthene      | 2024/06/13 | 109          | 50 - 130  | 108          | 50 - 130  | <0.0050      | B/Bn  | 28        | 40        |
| 9454188  | Chrysene                  | 2024/06/13 | 116          | 50 - 130  | 104          | 50 - 130  | <0.0050      | g/gn  | 33        | 40        |
| 9454188  | Dibenzo(a,h)anthracene    | 2024/06/13 | 106          | 50 - 130  | 93           | 50 - 130  | <0.0050      | B/Bn  | NC        | 40        |
| 9454188  | Fluoranthene              | 2024/06/13 | 130 (1)      | 50 - 130  | 112          | 50 - 130  | <0.0050      | B/Bn  | 25        | 40        |
| 9454188  | Fluorene                  | 2024/06/13 | 104          | 50 - 130  | 101          | 50 - 130  | <0.0050      | g/gn  | NC        | 40        |
| 9454188  | Indeno(1,2,3-cd)pyrene    | 2024/06/13 | 105          | 50 - 130  | 110          | 50 - 130  | <0.0050      | g/gn  | 25        | 40        |
| 9454188  | Naphthalene               | 2024/06/13 | 93           | 50 - 130  | 95           | 50 - 130  | <0.0050      | g/gn  | NC        | 40        |
| 9454188  | Phenanthrene              | 2024/06/13 | 107          | 50 - 130  | 105          | 50 - 130  | <0.0050      | g/gn  | NC        | 40        |
| 9454188  | Pyrene                    | 2024/06/13 | 125          | 50 - 130  | 111          | 50 - 130  | <0.0050      | g/gn  | 23        | 40        |
| 9455734  | 1,1,1,2-Tetrachloroethane | 2024/06/14 | 66           | 60 - 140  | 66           | 60 - 130  | <0.040       | g/gn  | NC        | 50        |
|          |                           |            |              |           |              |           |              |       |           |           |

Page 11 of 15

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www,bvna.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.



QUALITY ASSURANCE REPORT(CONT'D)

Soil Engineers Ltd Client Project #: 2009-E126 Sampler Initials: AP

|          |                                     |            | Matrix Spike | Spike     | SPIKED BLANK | SLANK     | Method Blank | lank  | RPD       |           |
|----------|-------------------------------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|
| QC Batch | Parameter                           | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits |
| 9455734  | 1,1,1-Trichloroethane               | 2024/06/14 | 101          | 60 - 140  | 100          | 60 - 130  | <0.040       | B/Bn  | NC        | 50        |
| 9455734  | 1,1,2,2-Tetrachloroethane           | 2024/06/14 | - 6          | 60 - 140  | 95           | 60 - 130  | <0.040       | B/Bn  | NC        | 50        |
| 9455734  | 1,1,2-Trichloroethane               | 2024/06/14 | 26           | 60 - 140  | 96           | 60 - 130  | <0.040       | B/Bn  | NC        | 50        |
| 9455734  | 1,1-Dichloroethane                  | 2024/06/14 | 104          | 60 - 140  | 103          | 60 - 130  | <0.040       | B/Bn  | NC        | 50        |
| 9455734  | 1,1-Dichloroethylene                | 2024/06/14 | 103          | 60 - 140  | 103          | 60 - 130  | <0.040       | g/gn  | NC        | 50        |
| 9455734  | 1,2-Dichlorobenzene                 | 2024/06/14 | 94           | 60 - 140  | 96           | 60 - 130  | <0.040       | g/gn  | NC        | 50        |
| 9455734  | 1,2-Dichloroethane                  | 2024/06/14 | 98           | 60 - 140  | 98           | 60 - 130  | <0.049       | g/gn  | NC        | :05       |
| 9455734  | 1,2-Dichloropropane                 | 2024/06/14 | 98           | 60 - 140  | 98           | 60 - 130  | <0.040       | g/gn  | NC        | 50        |
| 9455734  | 1,3-Dichlorobenzene                 | 2024/06/14 | 97           | 60 - 140  | 66           | 60 - 130  | <0.040       | g/gn  | NC        | 50        |
| 9455734  | 1,4-Dichlorobenzene                 | 2024/06/14 | 95           | 60 - 140  | 86           | 60 - 130  | <0.040       | g/gn  | NC        | 50        |
| 9455734  | Acetone (2-Propanone)               | 2024/06/14 | 95           | 60 - 140  | 97           | 60 - 140  | ⊄0.49        | a/an  | NC        | 50        |
| 9455734  | Benzene                             | 2024/06/14 | 6            | 60 - 140  | 97           | 60 - 130  | <0.0060      | g/gn  | NC        | 50        |
| 9455734  | Bromodichloromethane                | 2024/06/14 | 100          | 60 - 140  | 86           | 60 - 130  | <0.040       | g/gn  | NC        | 50        |
| 9455734  | Bromoform                           | 2024/06/14 | 92           | 60 - 140  | 91           | 60 - 130  | <0.040       | g/gn  | NC        | 50        |
| 9455734  | Bromomethane                        | 2024/06/14 | 93           | 60 - 140  | 94           | 60 - 140  | <0.040       | ng/g  | NC        | 50        |
| 9455734  | Carbon Tetrachloride                | 2024/06/14 | 103          | 60 - 140  | 102          | 60 - 130  | <0.040       | g/gn  | NC        | 50        |
| 9455734  | Chlorobenzene                       | 2024/06/14 | 95           | 60 - 140  | 96           | 60 - 130  | <0.040       | g/gn  | NC        | 50        |
| 9455734  | Chloroform                          | 2024/06/14 | 101          | 60 - 140  | 66           | 60 - 130  | <0.040       | a/gn  | NC        | 50        |
| 9455734  | cis-1,2-Dichloroethylene            | 2024/06/14 | 101          | 60 - 140  | 101          | 60 - 130  | <0.040       | a/gn  | NC        | 50        |
| 9455734  | cis-1,3-Dichloropropene             | 2024/06/14 | 101          | 60 - 140  | 105          | 60 - 130  | <0.030       | ng/g  | NC        | 50        |
| 9455734  | Dibromochloromethane                | 2024/06/14 | 96           | 60 - 140  | 96           | 60 - 130  | <0.040       | ug/g  | NC        | 50        |
| 9455734  | Dichlorodifluoromethane (FREON 12)  | 2024/06/14 | 93           | 60 - 140  | 92           | 60 - 140  | <0.040       | ng/g  | NC        | 50        |
| 9455734  | Ethylbenzene                        | 2024/06/14 | 94           | 60 - 140  | 96           | 60 - 130  | <0.010       | g/gn  | NC        | 50        |
| 9455734  | Ethylene Dibromide                  | 2024/06/14 | 96           | 60 - 140  | 97           | 60 - 130  | <0.040       | g/gn  | NC        | 50        |
| 9455734  | F1 (C6-C10) - BTEX                  | 2024/06/14 |              |           |              |           | <10          | ug/g  | NC        | 30        |
| 9455734  | F1 (C6-C10)                         | 2024/06/14 | 91           | 60 - 140  | 90           | 80 - 120  | <10          | g/gn  | NC        | 30        |
| 9455734  | Hexane                              | 2024/06/14 | 108          | 60 - 140  | 109          | 60 - 130  | <0.040       | B/Bn  | NC        | 50        |
| 9455734  | Methyl Ethyl Ketone (2-Butanone)    | 2024/06/14 | 101          | 60 - 140  | 102          | 60 - 140  | <0.40        | B/Bn  | NC        | 50        |
| 9455734  | Methyl Isobutyl Ketone              | 2024/06/14 | 100          | 60 - 140  | 100          | 60 - 130  | <0.40        | B/Bn  | NC        | 50        |
| 9455734  | Methyl t-butyl ether (MTBE)         | 2024/06/14 | 93           | 60 - 140  | 95           | 60 - 130  | <0.040       | B/Bn  | NC        | 50        |
| 9455734  | Methylene Chloride(Dichloromethane) | 2024/06/14 | 66           | 60 - 140  | 86           | 60 - 130  | <0.049       | g/gn  | NC        | 50        |

Page 12 of 15

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



QUALITY ASSURANCE REPORT(CONT'D)

Soil Engineers Ltd Client Projec: #: 2009-E126 Sampler Initials: AP

| 3        |                                   |            | Matrix Spike | Spike     | SPIKED BLANK | LANK      | Method Blank | lank   | RPD       |           |
|----------|-----------------------------------|------------|--------------|-----------|--------------|-----------|--------------|--------|-----------|-----------|
| QC Batch | Parameter                         | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS  | Value (%) | QC Limits |
| 9455734  | o-Xylene                          | 2024/06/14 | 95           | 60 - 140  | 96           | 60 - 130  | <0.020       | 3/3n   | NC        | 50        |
| 9455734  | p+m-Xylene                        | 2024/06/14 | 94           | 60 - 140  | 96           | 60 - 130  | <0.020       | B/Bn   | NC        | 50        |
| 9455734  | Styrene                           | 2024/06/14 | 77           | 60 - 140  | 78           | 60 - 130  | <0.040       | B/Bn   | NC        | 50        |
| 9455734  | Tetrachloroethylene               | 2024/06/14 | 102          | 60 - 140  | 101          | 60 - 130  | <0.040       | 8/8n   | NC        | 50        |
| 9455734  | Toluene                           | 2024/06/14 | 97           | 60 - 140  | 98           | 60 - 130  | <0.020       | 8/8n   | NC        | 50        |
| 9455734  | Total Xylenes                     | 2024/06/14 |              |           |              |           | <0.020       | B/Bn   | NC        | 50        |
| 9455734  | trans-1,2-Dichloroethylene        | 2024/06/14 | 102          | 60 - 140  | 101          | 60 - 130  | <0.040       | B/Bn   | NC        | 50        |
| 9455734  | trans-1,3-Dichloropropene         | 2024/06/14 | 105          | 60 - 140  | 112          | 60 - 130  | <0.040       | B/Bn   | NC        | 50        |
| 9455734  | Trichloroethylene                 | 2024/06/14 | 100          | 60 - 140  | 66           | 60 - 130  | <0.010       | B/Bn   | NC        | 50        |
| 9455734  | Trichlorofluoromethane (FREON 11) | 2024/06/14 | 108          | 60 - 140  | 106          | 60 - 130  | <0.040       | B/Bn   | NC        | 50        |
| 9455734  | Vinyl Chloride                    | 2024/06/14 | 105          | 60 - 140  | 104          | 60 - 130  | <0.019       | B/Bn   | NC        | 50        |
| 9457909  | Chromium (VI)                     | 2024/06/17 | 87           | 70 - 130  | 90           | 80 - 120  | <0.18        | B/Bn   | NC        | 35        |
| 9457914  | Hot Water Ext. Boron (B)          | 2024/06/17 | 101          | 75 - 125  | 95           | 75 - 125  | <0.050       | B/Bn   | 1.6       | 40        |
| 9458231  | Acid Extractable Antimony (Sb)    | 2024/06/15 | 103          | 75 - 125  | 101          | 80 - 120  | <0.20        | B/Bn   | NC        | 30        |
| 9458231  | Acid Extractable Arsenic (As)     | 2024/06/15 | 107          | 75 - 125  | 66           | 80 - 120  | <1.0         | B/Bn   | NC        | 30        |
| 9458231  | Acid Extractable Barium (Ba)      | 2024/06/15 | NC           | 75 - 125  | 96           | 80 - 120  | <0.50        | g/gn   | 4.3       | 30        |
| 9458231  | Acid Extractable Beryllium (Be)   | 2024/06/15 | 104          | 75 - 125  | 95           | 80 - 120  | <0.20        | g/gn   | 4.1       | 30        |
| 9458231  | Acid Extractable Boron (B)        | 2024/06/15 | 66           | 75 - 125  | 92           | 80 - 120  | <5.0         | g/gn   | NC        | 30        |
| 9458231  | Acid Extractable Cadmium (Cd)     | 2024/06/15 | 104          | 75 - 125  | 97           | 80 - 120  | <0.10        | g/gn   | NC        | 30        |
| 9458231  | Acid Extractable Chromium (Cr)    | 2024/06/15 | 106          | 75 - 125  | 95           | 80 - 120  | <1.0         | g/gn   | 1.9       | 30        |
| 9458231  | Acid Extractable Cobalt (Co)      | 2024/06/15 | 105          | 75 - 125  | 96           | 80 - 120  | <0.10        | ug/g   | 1.3       | 30        |
| 9458231  | Acid Extractable Copper (Cu)      | 2024/06/15 | 103          | 75 - 125  | 97           | 80 - 120  | <0.50        | g/gn   | 2.1       | 30        |
| 9458231  | Acid Extractable Lead (Pb)        | 2024/06/15 | 105          | 75 - 125  | 97           | 80 - 120  | <1.0         | g/gn   | 5.2       | 30        |
| 9458231  | Acid Extractable Mercury (Hg)     | 2024/06/15 | 109          | 75 - 125  | 103          | 80 - 120  | <0.050       | l ug/g | NC        | 30        |
| 9458231  | Acid Extractable Molybdenum (Mo)  | 2024/06/15 | 100          | 75 - 125  | 94           | 80 - 120  | <0.50        | ng/g   | NC        | 30        |
| 9458231  | Acid Extractable Nickel (Ni)      | 2024/06/15 | 110          | 75 - 125  | 100          | 80 - 120  | 40.50        | ug/g   | 0.15      | 30        |
| 9458231  | Acid Extractable Selenium (Se)    | 2024/06/15 | 109          | 75 - 125  | 101          | 80 - 120  | ∞.50         | ug/g   | NC        | 30        |
| 9458231  | Acid Extractable Silver (Ag)      | 2024/06/15 | 103          | 75 - 125  | 96           | 80 - 120  | ⊄0.20        | g/gn   | NC        | 30        |
| 9458231  | Acid Extractable Thallium (TI)    | 2024/06/15 | 104          | 75 - 125  | 86           | 80 - 120  | <0.050       | g/gn   | NC        | 30        |
| 9458231  | Acid Extractable Uranium (U)      | 2024/06/15 | 108          | 75 - 125  | 101          | 80 - 120  | <0.050       | a/gn   | 0.42      | 30        |
| 9458231  | Acid Extractable Vanadium (V)     | 2024/06/15 | 109          | 75 - 125  | 97           | 80 - 120  | <5.0         | B/Bn   | 4.2       | 30        |

Page 13 of 15

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



Report Date: 2024/06/18

QUALITY ASSURANCE REPORT(CONT'D)

Soil Engineers Ltd Client Project #: 2009-E126 Sampler Initials: AP

Value (%) 5.4 1.7 mS/cm UNITS g/gn **Method Blank** <-j.002 Value <5.0 % Recovery | QC Limits 90 - 110 80 - 120 SPIKED BLANK 101 104 QC Limits 75 - 125 Matrix Spike % Recovery 110 2024/06/15 2024/06/17 Date Acid Extractable Zinc (Zn) Conductivity Parameter QC Batch 9459170 9458231

QC Limits

RPD

8 2

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.



Soil Engineers Ltd Client Project #: 2009-E126 Sampler Initials: AP

### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by:

| Cuistina        | Carriere                         |  |
|-----------------|----------------------------------|--|
| Cristina Carrie | re, Senior Scientific Specialist |  |

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.