WETLAND WATER BALANCE RISK ASSESSMENT

BOLTON NORTH HILL OPTION 1 & OPTION 2 LANDS

TOWN OF CALEDON REGION OF PEEL

PREPARED FOR:

BOLTON NORTH HILL LANDOWNERS GROUP

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 2800 HIGH POINT DRIVE, SUITE 100 MILTON, ON L9T 6P4

APRIL 2022

CFCA FILE NO. 708-3446

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

TABLE OF CONTENTS

1.0		Introduction	. 1
1.	1	Determine which Retained Wetland(s) may be Impacted	2
1.5	2	Determine the Magnitude of Potential Hydrological Change	3
1.3	3	Determine the Sensitivity of the Wetland	5
1 4	4	Risk Characterization	7

LIST OF TABLES

Table 1:Wetland Summary

 Table 2:
 Hydrologic Changes Risk Evaluation Summary

Table 3: Wetland Sensitivity Evaluation Summary

Table 4: Highest Level of Risk

LIST OF APPENDICES

Appendix A: Wetland Water Balance Risk Assessment Calculations

LIST OF FIGURES

Figure 1: Site Location Plan

Figure 2: Wetland Communities (Dillon Consulting)
Figure 3: Wetland Impervious Cover Score Areas

Figure 4: Post-Development Wetland Catchment Areas

Figure 5: Significant Groundwater Recharge Areas

Figure 6: Proposed Monitoring Locations

1.0 INTRODUCTION

C.F. Crozier & Associates Inc. (Crozier) was retained by the Bolton North Hill Landowners Group (BNHLG) to prepare a Wetland Water Balance Risk Evaluation. Crozier will address comments received from Town of Caledon via email dated February 7, 2022, in accordance with the Toronto and Region Conservation Authority (TRCA) guidelines.

The Bolton North Hill study area is generally located north of Columbia Way, in the vicinity of Regional Road 50 within the Town of Bolton.

The following feature-based risk assessment pertains to the Option 1 and Option 2 Lands, herein referred to as the Subject Lands, which are part of six (6) parcels of potential development areas around the existing community of Bolton (Options 1 to 6).

Please refer to Figure 1 for a site location plan and landowner boundaries.

Per the TRCA Wetland Water Balance Risk Evaluation guide (November 2017), there are four (4) steps in evaluating wetland water balance risk, as follows:

- Step 1: Determine which retained wetland(s) may be impacted
- Step 2: Determine the magnitude of potential hydrological change
- Step 3: Determine the sensitivity of the wetland
- Step 4: Risk characterization

In preparing this letter, the following background documents were referenced and reviewed:

- Concept Plan prepared by Bousfields Inc. (December 20, 2021)
- Wetland Water Balance Risk Evaluation Guide prepared by TRCA (November 2017)
- Town of Caledon Zoning By-Law (July 2018)
- Housing Statistics, Statistics Canada (December 2021)
- Groundwater by Freeze and Cherry (1979)
- Secondary Plan Natural Heritage Study Report prepared by Dillion Consulting Ltd. (December 2021)
- Hydrogeological Investigation prepared by C.F. Crozier & Associates Inc. (April 2022)

C.F. Crozier & Associates Inc.

The following sections (1.1 to 1.4) outline each of the steps undertaken to assess the risk associated with the proposed development on the wetland communities in the Bolton North Hill study area.

1.1 Determine which Retained Wetland(s) may be Impacted

Dillon Consulting has been retained by the Bolton North Hill Landowners Group to prepare a Secondary Plan Natural Heritage Study Report (December 2021) for the Subject Lands.

Based on the findings of the Natural Heritage Report, Dillon identified a total of 12 wetlands in the vicinity of the Site, which may be impacted by the proposed development. Each of these 12 wetlands was assigned a unique identifier (A, B, C, etc.) as shown on Figure 2 – Wetland Communities, enclosed with this letter.

A summary of the wetlands, their respective areas, and Ecological Land Classifications communities is provided in Table 1.

Table 1: Wetland Summary

Wetland ID	ELC Community	Area (ha)		
Α	MAM: Meadow Marsh	0.83		
В	SWD: Deciduous Swamp	0.76		
С	SWD: Deciduous Swamp	0.54		
D	MAM: Meadow Marsh	0.91		
Е	MAM: Meadow Marsh	0.16		
F	MAM: Meadow Marsh	0.15		
G	MAMM1: Graminoid Mineral Meadow Marsh	0.27		
Н	MAMM1: Graminoid Mineral Meadow Marsh	0.17		
I	OAO: Open Aquatic	0.49		
J	MAMM1: Graminoid Mineral Meadow Marsh	0.29		
К	K MAMM1: Graminoid Mineral Meadow Marsh			
L	OAO: Open Aquatic	0.75		

Page 2 of 8

1.2 Determine the Magnitude of Potential Hydrological Change

Surface Water

Based on the existing topography, the pre-development catchment areas to each of the 12 wetlands was delineated by Crozier. The total development area tributary to each wetland and the total area owned by the proponent was outlined as part of the risk evaluation process.

Precent imperviousness was assigned to each catchment area based on the proposed Concept Plan (Bousfields, 2021). Impervious scores were then calculated for each wetland using Equation 1 from the Wetland Water Balance Risk Evaluation guide (TRCA, November 2017).

$$S = \frac{IC(C_{dev})}{C}$$

Where: S = Impervious Cover Score

IC = Proportion of Impervious Cover within the Proponent's Holdings (%)

C_{dev} = Total Development Area of the Catchment (ha)

C = Size of the Wetland's Catchment (ha)

In addition to the impervious score calculations, the proposed increase or decrease to catchment size post development was assessed. The impervious cover score and increase/decrease in catchment size and the resulting sensitivity of the wetland is summarized in Table 2. Figures 3 and 4, showing the pre- and post-development drainage areas, are provided as an attachment to this report. Detailed calculations are provided in Appendix A.

<u>Groundwater</u>

To determine the potential sensitivity to water taking, construction dewatering volumes were estimated for the proposed developments within 500 m of each wetland. At the time of preparation of this assessment, the proposed development was at the conceptual stage of Site Plan Development.

Therefore, details such as finished floor elevations or excavation depths were unknown in preparing this memo and several assumptions were made in calculating the proposed water taking. The assumptions are summarized in Appendix A.

Construction dewatering rates were estimated using the DuPuy equation as described in Construction Dewatering and Groundwater Control: New Methods and Applications by Powers et al. 2007.

The Dupuit equation assumed a steady linear flow from all four sides of an excavation and is described by the following equation:

$$Q_w = \frac{\pi K (H^2 - h_w^2)}{\ln \frac{R_0}{r_w}}$$

Where:

 $Q_w = discharge rate in m³/s$

K = hydraulic conductivity in m/s

H = static groundwater elevation in masl

hw = head above base of the excavation at maximum dewatering in masl

R₀ = radius of influence of point source from the centre of excavation in m

rw = equivalent radius of the well in m

The estimated construction dewatering rates within 500 m of each wetland ranged from approximately 150,000 L/day to 94,000 L/day considering a safety factor of 2 to account for heterogeneity of the soils and precipitation during construction. A risk level was assigned for each wetland based on total anticipated water taking volumes and anticipated duration of the water taking activity. Results are summarized in Table 2. Detailed calculations are enclosed with this letter in Appendix A.

According to Ministry of Environment, Conservation and Parks (MECP) Source Protection mapping, areas of significant groundwater recharge are located within the study area boundaries, within 500 m of Wetlands A and D as shown in Figure 5. Based on proposed land use outlined in the Concept Plan (Bousfields, 2021), the areas of significant recharge are estimated to be over 25% paved post-development and hence been assigned a high magnitude risk as shown in Appendix A.

Risk levels associated with each of the hydrologic parameters as previously mentioned were assigned based on criteria in Table 2 of the Wetland Water Balance Risk Evaluation guide.

Detailed calculations for the hydrologic changes to each wetland are provided in Appendix A and results are summarized in Table 2.

Table 2: Hydrologic Changes Risk Evaluation Summary

Wetland ID	Impervious Cover Score Sensitivity	Increase/Decrease in Catchment Size Sensitivity	Water Taking Discharge Sensitivity	Impact to Recharge Areas Sensitivity	Highest Level of Hydrologic Sensitivity
А	Medium	Low	Medium	High	Medium
В	Low	Low	Low	Low	Low
С	Low	Low	Low	Low	Low
D	High	Low	Medium	High	High
Е	Low	Low	Low	Low	Low
F	Low	Low	Low	Low	Low
G	Medium	High	Medium	Low	High
Н	Medium	Medium	Medium	Low	Medium
I	Medium	Medium	Medium	Low	Medium
J	High	High	Medium	Low	High
К	Medium	Low	Medium	Low	Medium
L	Medium	Low	Medium	Low	Medium

1.3 Determine the Sensitivity of the Wetland

Dillon Consulting conducted surveys of vegetation communities, flora species, and fauna species at the identified wetlands to evaluate the sensitivity of each wetland feature to hydrologic changes. Access to Wetlands A, B, C, and D was not available to facilitate Flora and Fauna species surveys, therefore Dillon has recommended that conservative assumptions be made for sensitivity of these wetlands (i.e., Assume 'High' risk). It is further noted that the Ecological Land Classifications (ELC) for Wetlands E and F were aerial interpreted.

Detailed survey results are enclosed with this letter and sensitivity results for each category of vegetation, fauna, and flora are summarized in Table 3.

Table 3: Wetland Sensitivity Evaluation Summary

Wetland ID	Vegetation Community Sensitivity	Fauna Sensitivity	Flora Sensitivity	Highest Level of Sensitivity
А	Low		rey access. igh Sensitivity.	High
В	Low		rey access. igh Sensitivity.	High
С	Low		rey access. igh Sensitivity.	High
D	Low		rey access. igh Sensitivity.	High
Е	Low	High	Low	High
F	Low	High	Low	High
G	Low	High	Medium	High
Н	Low	High	Medium	High
I	Low	High	Low	High
J	Low	High	High Medium	
K	Low	High	Medium	High
L	Low	High	Low	High

As can be seen from the summary table above, each of the 12 wetlands has been classified as a high sensitivity risk to hydrologic change.

1.4 Risk Characterization

Based on the results of the hydrologic and sensitivity analyses an overall level of risk/sensitivity has been assigned to each of the 12 wetlands. The overall level of risk/sensitivity is based on the highest level of risk associated with any category of the wetland evaluation. Refer to summary presented in Table 4.

Table 4: Highest Level of Risk

Wetland ID	Highest Level of Risk	Notes
А	High	
В	High	No impacts to groundwater or surface water catchments are anticipated
С	High	No impacts to groundwater or surface water catchments are anticipated
D	High	
E	High	No impacts to groundwater or surface water catchments are anticipated
F	High	
G	High	
Н	High	
I	High	
J	High	
K	High	
L	High	

As per the Table 4, each of the 12 wetlands has been identified as high risk. It is noted that there is no drainage from the Subject Lands that drain to Wetlands B, C, or E. Therefore, it is anticipated there will be no impact to Wetlands, B, C, or E from the proposed development.

For each of the remaining wetlands (Wetlands A, D and F-L), pre-development monitoring of wetland hydrology is required per Wetland Water Balance Monitoring Protocol (TRCA, 2016). Crozier has completed a preliminary hydrogeological investigation for the Subject Lands (April 2022) and future updates will include wetland and stream monitoring.

To establish baseline conditions, it is proposed to monitor each wetland inlet and outlet using shallow piezometers and staff gauges within standing water locations prior to construction. Manual measurements will be taken at each monitoring location on at least a bi-monthly basis for a minimum of 1-year to establish seasonally high conditions. Automatic water level recording devices will be installed at selected locations to collect a comprehensive data set for modelling purposes. Proposed monitoring locations are shown in Figure 6.

Prior to construction, it is recommended a mitigation and contingency plan be prepared. The mitigation and contingency plan should identify each high-risk feature and measures to maintain the water balance at that location and mitigate the impacts. If the period between construction and implementation of any mitigation measures will exceed 2-years, an interim mitigation plan may also be required.

It is recommended monitoring of the wetlands continue throughout construction and post - construction at Wetlands A, D and F – L to observe local conditions and detect in real-time any impact to the wetland communities. It should be noted that Wetlands A and D are not within the subject lands and access to these wetlands could be limited. From aerial imagery, Wetlands A and D appear to be hydrologically connected. Therefore, it is recommended if access is limited that only A or D be monitored, as it is anticipated any impacts to one of the wetlands (A or D) will impact the other. Prior to pre-construction monitoring, it should be confirmed if and how Wetland A or D can be accessed by the landowner.

A continuous hydrological model will be prepared and calibrated using monitoring data. It is possible that an integrated model may be required (to be determined through consultation with TRCA) if it is determined that groundwater constitutes a significant portion of the total inflows or outflows to the feature.

Should you have any questions or require any further information, please do not hesitate to contact the undersigned.

Sincerely,

C.F. CROZIER & ASSOCIATES INC.

Rebecca Archer, P.Eng. Senior Project Engineer

RA/cj

N:\708-Bolton NH Landowners Grp\3446-Bolton North Hill\Reports\2022.04.14_Wetland Water Balance Risk Assessment\2022.04.14_(0708-3446)_Wetland Water Balance Risk Assessment (Crozier).docx

APPENDIX A

Wetland Water Balance Risk Assessment Calculations

Bolton North Hill (Option 1 &2

Project: Lands) Project No.: 0708-3446 March 16, 2022 Created By:

J.N.L. Checked By: R.S.A.

Evaluation of Hydrologic Change to Wetlands

Impervious Cover Score (S) Equation:

 $S = \frac{IC \cdot C_{dev}}{C}$

where: IC = Percent Impervious Cover planned within the Proponent's Holdings (%)

C dev = Total Development Area within Wetland Catchment (ha)

C = Total Catchment Area to Wetland (ha)

				Impe	ervious Cover Score			We	etland Catchment			Water Taking / Discharg	ee	Impact to Recharge Areas		
Wetland ID ¹	Wetland Area ¹ (ha)	Pre-Development Catchment Area to Wetland (C, ha)	Total Development Area of Wetland Catchment (<i>C</i> _{Dev} , ha)	Area of the Wetland Catchment Owned by the Proponent (ha)	Accum. Area of the Wetland Catchment Owned by the Proponent (ha)	% Impervious Cover Planned within the Proponent's Holdings (IC,%)	Impervious Cover Score ² (5) Low Magnitude (<10%) Medium Magnitude (10-25%) High Magnitude (>25%)	Post- Development Catchment Area to Wetland (C _{Post} , ha)	Percent Increase or Decrease in Catchment Size (%) Low Magnitude (<10%) Medium Magnitude (10-25%) High Magnitude (>25%)	Proposed Water Taking or Discharge (L/day)	Anticipated Duration of Water Taking or Discharge (# of months)		Hydrologic Risk Assessment Due to Water Taking or Discharge Low Magnitude (50,000-400,000L/d for <6mos) Medium Magnitude (50,000-400,000L/d for >6mos) OR >400,000L/d for <6mos) High Magnitude (>400,000L/d for >6mos)	Locally Significant Recharge Area (ha)	Locally Significant Recharge Area to be Paved (ha)	Percent Impact to Recharge Areas (%) Low Magnitude (<10%) Medium Magnitude (10-25%) High Magnitude (>25%)
А	0.83	71.73	18.12	18.12	18.12	54%	14%	73.03	2%	148,994	6	assumption table	MEDIUM	251,210	188,408	75%
В	0.76	4.33	0.28	0.28	0.28	0%	0%	4.33	0%	0	0	Not anticipated to be groundwater fed	LOW			0%
С	0.54	1.04	0.75	0.75	0.75	0%	0%	1.04	0%	0	0	Not anticipated to be groundwater fed	LOW			0%
D	0.91	62.75	43.95	41.45	42.47	49%	35%	61.24	2%	173,910	12	See Water Taking Calculations assumption table	MEDIUM	7,091	4,609	65%
E	0.16	-	-	-	-	-	0%	-	0%	0	0	Not anticipated to be groundwater fed	LOW			0%
F	0.15	2.80	0.04	0.04	0.04	51%	1%	2.77	1%	0	0	Not anticipated to be groundwater fed	LOW			0%
G	0.27	43.06	16.88	16.88	16.88	55%	22%	53.93	25%	105,136	6	See Water Taking Calculations assumption table	MEDIUM			0%
Н	0.17	53.80	21.53	0.00	21.53	57%	23%	60.16	12%	105,136	6	See Water Taking Calculations assumption table	MEDIUM			0%
I	0.49	51.34	21.53	4.66	21.53	55%	23%	57.71	12%	131,896	6	See Water Taking Calculations assumption table	MEDIUM			0%
J	0.29	157.87	81.41	46.81	81.41	61%	31%	112.90	28%	94,076	6	See Water Taking Calculations assumption table	MEDIUM			0%
К	0.47	79.27	33.78	12.25	33.78	55%	24%	71.61	10%	94,076	6	See Water Taking Calculations assumption table	MEDIUM			0%
L	0.75	84.37	34.60	0.81	34.60	55%	23%	76.11	10%	108,038	6	See Water Taking Calculations assumption table	MEDIUM			0%

Notes: 1. Wetland IDs and Wetland Areas obtained from Figure 1 - Wetland Communities (Dillon Consulting, 2022-03-01)

2. Impervious cover scores calculated based on Equation 1 of the Wetland Water Balance Risk Evaluation (TRCA, November 2017)

PROJECT: Bolton North Hill PROJECT No.: 0708-3446 CREATED BY: J.N.L. CHECKED BY: R.S.A. DATE: 2022.03.16 UPDATED: -

Post-Development Percent Impervious Calculations

own of Caledon Standard Runoff Coefficients:

lown of Caledon Standard	KUNOTI COETTICIENTS:
Landuse	С
Residential (Low-Density)	0.60
Residential (Medium-Density)	0.70
Residential (High-Density)	0.75
Commercial	0.90

Landuse	С
Institutional (Schools & Churches)	0.75
Parks / Open Space	0.25
Woodlot	0.25
SWM Pond	0.50

Runof coefficients, C, as per Town of Caledon Development Standards Manual 2019 - STD DWG 103.
CN Values as per MTO Design Chart 1.09, based on Soil Type King Clay Loam' from Ontario Soils Map

Proposed Site Conditions

TIMP = 100* (RC - 0.25) / (0.90 - 0.25)

Weighted Runoff Coefficient C:

Wetland Catchment	Landuse	Area (ha)	С	XIMP	TIMP
	Residential (Low-Density)	4.72	0.60	36%	54%
	Residential	3.08	0.70	46%	69%
	(Medium-Density) Institutional (School)	2.49	0.75	77%	77%
A	Parks and Open Space	2.34	0.25	0%	0%
	SWM Pond	0.96	0.50	50%	50%
	Roads	4.52	0.64	60%	60%
	Total/ Weighted C:	18.12	0.60	45%	54%
	Parks and Open Space	0.28	0.25	0%	0%
В	Total/ Weighted C:	0.28	0.25	0%	0%
	Parks and Open Space	0.75	0.25	0%	0%
С	Total/ Weighted C:	0.75	0.67	0%	0%
	Residential (Low-Density)	3.71	0.60	36%	54%
	Residential (Medium-Density)	11.73	0.70	46%	69%
	Residential (High-Density)	3.75	0.75	77%	77%
	Institutional (School)	0.00	0.75	77%	77%
D	Commercial	1.44	0.90	100%	100%
	Woodlot	3.07	0.25	0%	0%
	Parks and Open Space	6.59	0.25	0%	0%
	SWM Pond	1.84	0.50	50%	50%
	Roads	9.31	0.64	60%	60%
	Total/ Weighted C:	41.45	0.58	42%	51%
	Residential (Low-Density)	0.01	0.60	36%	54%
F	SWM Pond	0.03	0.50	50%	50%
	Total/ Weighted C:	0.04	0.53	46%	51%
	Residential (Low-Density)	10.52	0.60	36%	54%
G	SWM Pond	1.87	0.50	50%	50%
Ü	Roads	4.48	0.64	60%	60%
	Total/ Weighted C:	16.88	0.60	44%	55%
	Residential (Low-Density)	1.64	0.60	36%	54%
	Parks and Open Space	0.02	0.25	0%	0%
1	Institutional (School)	1.72	0.75	77%	77%
	Roads	1.27	0.64	60%	60%
	Total/ Weighted C:	4.66	0.66	57%	64%
	Residential (Low-Density)	4.53	0.60	36%	54%
	Residential (Medium-Density)	1.64	0.70	46%	69%
К	Parks and Open Space	1.44	0.25	0%	0%
	Institutional (School)	0.65	0.75	77%	77%
	Roads	4.00	0.64	60%	60%
	Total/ Weighted C:	12.25	0.59	43%	53%
	Residential (Low-Density)	0.56	0.60	36%	54%
L	Roads	0.25	0.64	60%	60%
	Total/ Weighted C:	0.81	0.61	43%	56%
	Residential (Low-Density)	4.89	0.60	36%	54%
	Residential (Medium-Density)	13.24	0.70	46%	69%
	Residential (High-Density)	10.94	0.75	77%	77%
J	Institutional (School)	7.97	0.75	77%	77%
	Parks and Open Space	2.40	0.25	0%	0%
	SWM Pond	3.08	0.50	50%	50%
	Roads	4.29	0.64	60%	60%
	Total/ Weighted C:	46.81	0.67	56%	65%

Project:
Project No.:
Date:
Created By:
Checked By:

Bolton North Hill (Option 1 &2 Lands) 0708-3446

March 23, 2022 J.N.L. R.S.A

Evaluation of Wetland Sensitivity

		V	egetation ²		Fauna ³								Flora ³							
Wetland ID ¹	Notes/ Assumptions	Vegetation Community Type	ELC Code	Sensitivity	Herpetofauna Species	Sensitivity	Bird Species	Sensitivity	Mammal Species	Sensitivity	Fish Species	Sensitivity	Flora Species (Scientific Name)	Flora Species (Common Name)	Sensitivity					
А	No Survey access to this wetland; Aerial only.	Meadow Marsh	MAM	Low																
В	No Survey access to this wetland; Aerial only.	Deciduous Swamp	SWD	Low																
С	No Survey access to this wetland; Aerial only.	Deciduous Swamp	SWD	Low																
D	No Survey access to this wetland; Aerial only.	Deciduous Swamp	SWD	Low																
E	ELC Aerial Interpreted	Meadow Marsh	MAM	Low	northern spring peeper	High														
					gray treefrog	High														
F	ELC Aerial Interpreted	Meadow Marsh	MAM	Low	northern spring peeper	High														
					gray treefrog northern spring peeper	High High	Canada goose	Low					Symphyotrichum puniceum var. puniceum	swamp aster	Medium					
					American toad	Medium	mallard	Low					Typha latifolia	broad-leaved cattail	Low					
G		Gramminoid Mineral Meadow Marsh						MAMM1	Low	green frog	Medium	great blue heron	Low					Typha lathola	broad reaved cattain	Low
					gray treefrog	High														
					northern spring peeper	High	Canada goose	Low					Symphyotrichum puniceum var. puniceum	swamp aster	Medium					
н		Gramminoid Mineral Meadow Marsh	MAMM1	Low	American toad	Medium	mallard	Low					Typha latifolia	broad-leaved cattail	Low					
					green frog	Medium														
					northern spring peeper	High	Canada goose	Low												
1		Open Aquatic	OAO	Low	American toad	Medium	mallard	Low												
					green frog	Medium														
					northern spring peeper	High	Canada goose	Low					typha latifolia	broad-leaved cattail	Low					
J		Gramminoid Mineral Meadow Marsh	MAMM1	Low	American toad	Medium	mallard	Low					symphyotrichum puniceum var. puniceum	swamp aster	Medium					
													impatiens capensis	orange touch-me-not	Medium					
К		Gramminoid Mineral	MAMM1	Low	northern spring peeper	High	Canada goose	Low					typha latifolia	broad-leaved cattail	Low					
		Meadow Marsh					mallard	Low					symphyotrichum puniceum var. puniceum	swamp aster	Medium					
					northern spring peeper	High	Canada goose	Low							-					
							mallard	Low							-					
L		Open Aquatic	OAO	Low			hooded merganser	High							-					
							wood duck	Medium							-					
							great blue heron	Low												

Notes:

^{1.} Wetland IDs obtained from Figure 1 - Wetland Communities (Dillon Consulting, 2022-03-01)

^{2.} Vegetation Community Types, ELC Codes, and sensitivity classified by Dillon Consulting based on Appendix 2 of the TRCA Wetland Water Balance Risk Evaluation Guide (Nov. 2017)

^{3.} Flora and fauna Types and sensitivity classified by Dillon Consulting based on Appendix 3 of the TRCA Wetland Water Balance Risk Evaluation Guide (Nov. 2017)

 Project:
 Bolton North Hill

 Project No.:
 0708-3446

 Date:
 March 30, 2021

 Created By:
 C.M.

Checked By: C.G.

WATER TAKING CALCULATIONS

	Table 1: Evaluation of Groundwater Fed Wetlands									
Wetland ID ¹	Hand ID' Wetland Area' (ha) Resident Marea' (has) Estimated Seasonal High Groundwater Elevation ³ (masl)		Nearest Monitoring Well ³	Groundwater Flora Indicators ⁴	Groundwater Fed (Y/N)	Reasoning				
A	0.83	263	263	MW19		Y	groundwater elevation = ground elevation			
В	0.76	275	266	MW17		N				
С	0.54	271	266	MW17		N				
D	0.91	264	266	MW8		Y	groundwater elevation > ground elevation			
E	0.16	271	265	MW14		N				
F	0.15	271	265	MW14		N				
G	0.27	263	263	MW10	Orange Touch- Me-Not	Υ	flora indicator; groundwater elevation = groundwater elevation			
Н	0.17	263	263	MW10		Y	connected to wetland G			
I	0.49	261.5	263	MW10		Υ	standing water; connected to wetland I			
J	0.29	260	260	MW4		Y	groundwater elevation = ground elevation			
K	0.47	260	260	MW4		Y	groundwater elevation = ground elevation			
L	0.75	259	260	MW4		Υ	standing water; connected to J & K			

Notes:

- 1. Wetland IDs and Wetland Areas obtained from Figure 1 Wetland Communities (Dillon Consulting, 2022-03-01)
- 2. Estimated average ground elevation of wetland area from Drone LIDAR Survey conducted by Drone Survey Canada (October 2021)
- 3. Estimated groundwater elevation from Hydrogeological Investigation (Crozier, 2022-04-01)
- 4. Flora and fauna classified by Dillon Consulting based on Appendix 3 of the TRCA Wetland Water Balance Risk Evaluation Guide (Nov. 2017)

Table 2: Summary Table ESTIMATED DEWATERING VOLUMES							
Wetland ID		Total Estimated Short Term Dewatering Volumes (L/day)					
		with SF of 2	Activity				
A	74,497	148,994	12 months				
В							
С							
D	86,955	173,910	24 months				
E							
F							
G	52,568	105,136	12 months				
Н	52,568	105,136	12 months				
I	65,948	131,896	12 months				
J	47,038	94,076	12 months				
K	47,038	94,076	12 months				
	54.019	108.038	12 months				

Assumptions:

-Low density residential single family dwellings are estimated to be 10 m by 25 m based on an average

home size of 250 m². (Concept Plan, Bousfields Inc., December 20, 2021)

(Zoning By-Law, Town of Caledon, July 2018) (Housing Statistics, Statistics Canada, December 2021)

—Townhouses are estimated to be 6 m by 20 m based on an average home size of 120 m² (Concept Plan, Bousfields Inc., December 20, 2021) (Zoning By-Law, Town of Caledon, July 2018) (Housing Statistics, Statistics Canada, December 2021)

-Average basement ceiling height is estimated to be 7 ft or 2.25 m (Ontario Building Code)

—Average hydraulic conductivity value for silty clay to clayey silt till is approximately 7.5 x 10⁸ cm/s to 2.5 x 10⁴ cm/s based on literature values and regional testing (Freeze and Cherry, 1979) (Soil Engineers Ltd., January 2020)

—Calculation of short-term dewatering was chosen to represent greatest water taking as short-term volumes are greater than long-term values.

Table 3: Assumed Excavation Areas for Type of Development within 500 m of Wetland

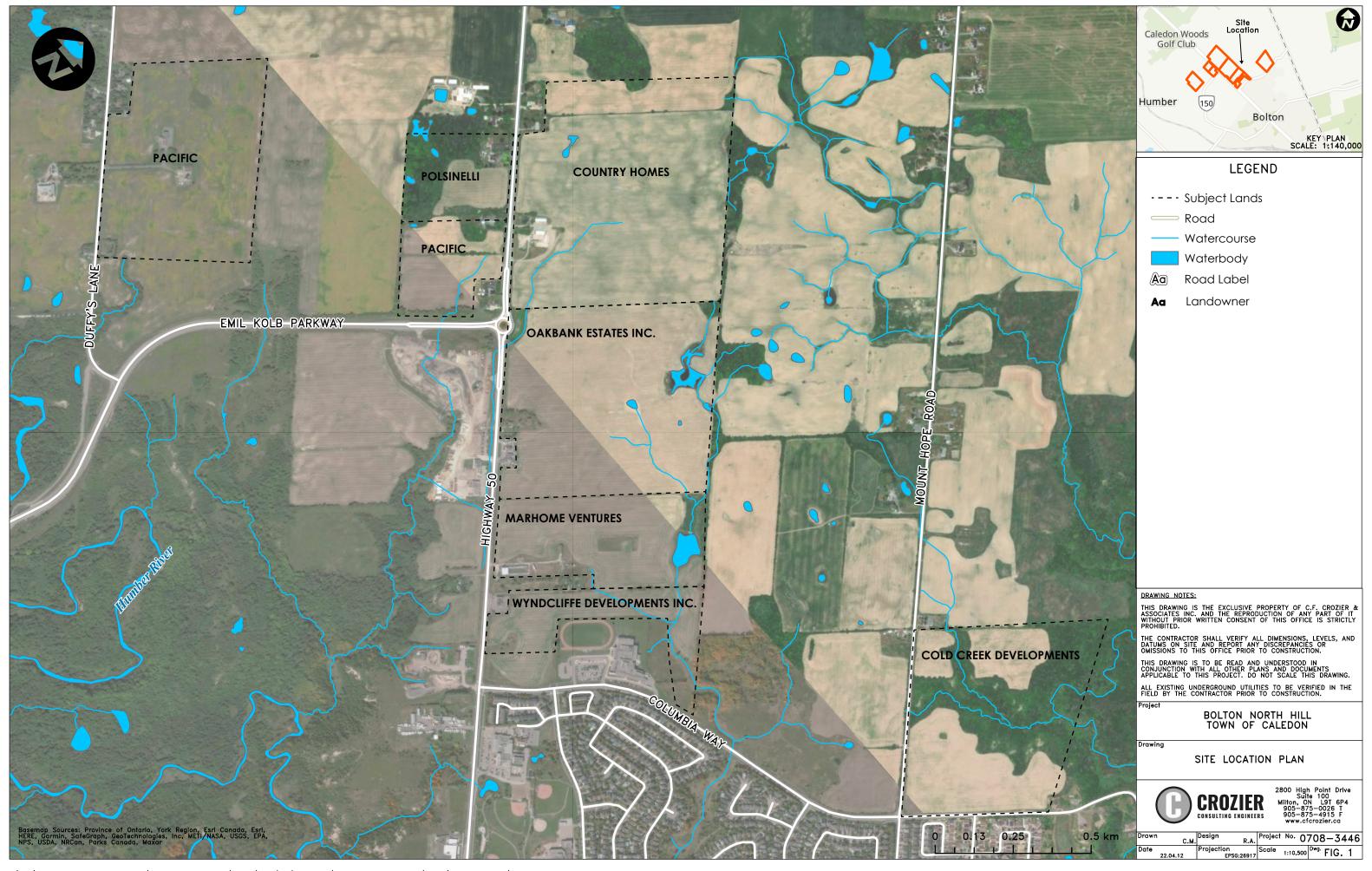
		Estimated Number of Homes within 500 m of					
Wetland ID	LD (m²)	MD (m²)	HD (m ²)	School (m²)	Commerical (m²)	LD	MD
Α	25,000	18,000	0	25,000	0	100	150
В							
С							
D	12,500	12,000	15,600	0	9,300	50	100
E							
F							
G	50,000	9,000	0	0	0	200	75
H	50,000	9,000	0	0	0	200	75
!	50,000	9,000	0	0	0	200	75
J K	50,000 50,000	3,000	0	0	0	200 200	25 25
I N	50,000	3,000	0	0	0	200	25 25

			EST	TIMATE CONSTRUCTION DEWATERING VOLUME CALCULATIONS
		Based o	n Dupuit Equat	tion for Radial Flow to a Well or Point Source Excavation in an Unconfined Aquifer
Component	Variable	Units	Value	Note
Hydraulic Conductivity of	K	m/s	2.50E-07	estimated based on regional studies and literature values, ranges from 7.5×10^8 m/s to 2.5×10^7 m/s.
Base of Aquifer		masl	253.75	elevation of extent of excavation - 1.0 m (estimated based on borehole logs).
Groundwater Elevation		masl	260.00	estimated seasonal high groundwater level based on Hydrogeological Investigation by Crozier (April 2022).
Elevation Requiring Dewatering		masl	254.75	assumed to be 2.0 m below the extent of excavation.
Extent of Excavation		masl	256.75	estimated to be approximately 7 ft or 2.25 mbgs based on Ontario Building Code minimum of 6.5 ft.
Equivalent Radius of the Well	r _w	m	126.19	squareroot of excavation area divided by pi.
Excavation Area		m ²	50000	estimated from the Concpet Plan prepared by Bousfields Inc. December 2021 per single family home.
Calculations Hydraulic Head of Water				
able	Н	m	6.25	
Hydraulic Head at Max. Dewatering	h	m	1.00	
Radius of Influence	R_0	m	134.06	
Pumping Rate	Q	m³/s	4.94E-04	
Dewatering Volume per	Q	L/day	42644.40	

			Fet	TABLE 4b - MEDIUM DENSITY DWELLING IMATE CONSTRUCTION DEWATERING VOLUME CALCULATIONS					
Based on Dupuit Equation for Radial Flow to a Well or Point Source Excavation in an Unconfined Aquifer									
		basea	ii Dopoli Equal	ion of Radia flow to a free of Four Society Excavation in an offeninea Aquiter					
Component	Variable	Units	Value	Note					
ioil	K	m/s	2.50E-07	estimated based on regional studies and literature values, ranges from 7.5×10^8 m/s to 2.5×10^7 m/s.					
Base of Aquifer		masl	253.75	elevation of extent of excavation - 1.0 m (estimated based on borehole logs).					
Groundwater Elevation		masl	260.00	estimated seasonal high groundwater level based on Hydrogeological Investigation by Crozier (April 2022).					
Dewatering		masl	254.75	assumed to be 2.0 m below the extent of excavation.					
Extent of Excavation		masl	256.75	estimated to be approximately 7 ft or 2.25 mbgs based on Ontario Building Code minimum of 6.5 ft.					
Well	r _w	m	30.91	squareroot of excavation area divided by pi.					
Excavation Area		m ²	3000	estimated from the Concpet Plan prepared by Bousfields Inc. December 2021 per townhouse.					
Calculations									
Hydraulic Head of Water	Н	m	6.25						
Hydraulic Head at Max.	h	m	1.00						
Radius of Influence	R_0	m	38.78						
rumping Rate	Q	m³/s	1.32E-04						
Dewatering Volume per		• • • • • • • • • • • • • • • • • • • •							
Jewarening volume per	Q	L/day	11374.71						
OTAL ESTIMATED CONS	TRUCTION DE	WATERING VOLUME			Q =	11375 L/day			
OTAL ESTIMATED CONS	TRUCTION DE	WATERING VOLUME W/ SAFETY	FACTOR OF 2.0		Q =	22749 L/day			

42644 L/day 85289 L/day

Q = Q =


TOTAL ESTIMATED CONSTRUCTION DEWATERING VOLUME
TOTAL ESTIMATED CONSTRUCTION DEWATERING VOLUME W/ SAFETY FACTOR OF 2.0

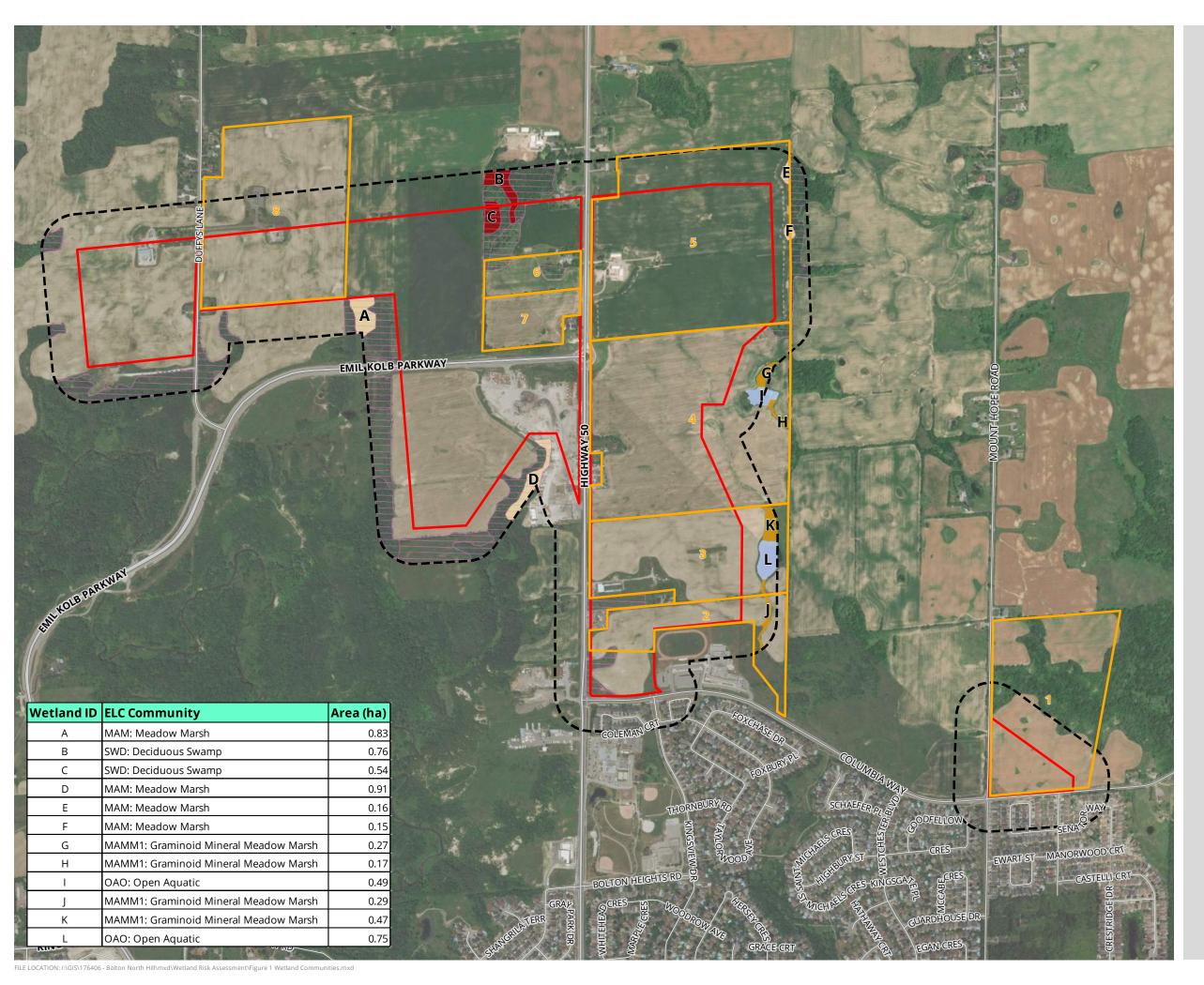

				TABLE 4c - HIGH DENSITY DWELLING				
				IMATE CONSTRUCTION DEWATERING VOLUME CALCULATIONS				
Based on Dupuit Equation for Radial Flow to a Well or Point Source Excavation in an Unconfined Aquifer								
Component	Variable	Units	Value	Note				
Soil	K	m/s	2.50E-07	estimated based on regional studies and literature values, ranges from 7.5 x 10 ⁻⁸ m/s to 2.5 x 10 ⁻⁷ m/s.				
Base of Aquifer		masl	259.75	elevation of extent of excavation - 1.0 m (estimated based on borehole logs).				
Groundwater Elevation		masl	266.00	estimated seasonal high groundwater level based on Hydrogeological Investigation by Crozier (April 2022).				
Dewatering		masl	260.75	assumed to be 2.0 m below the extent of excavation.				
Extent of Excavation		masl	262.75	estimated to be approximately 1 level of underground parking, or 3 m parking lot height.				
Well	r _w	m	70.49	squareroot of excavation area divided by pi.				
Excavation Area		m ²	15600	estimated from the Concpet Plan prepared by Bousfields Inc. December 2021 per apartment complex				
Calculations								
Hydraulic Head of Water	Н	m	6.25					
Hydraulic Head at Max.	h	m	1.00					
Radius of Influence	R ₀	m	78.36					
Pumping Rate	Q	m³/s	2.82E-04					
Dewatering Volume per	Q	L/day	24374.15					
TOTAL ESTIMATED CONS					Q=	24374 L/day		
IOTAL ESTIMATED CONS	TRUCTION D	EWATERING VOLUME W/ SAFETY	FACTOR OF 2.0		Q =	48748 L/day		

TABLE 4d - SCHOOLS									
	ESTIMATE CONSTRUCTION DEWATERING VOLUME CALCULATIONS								
		Based	on Dupuit Equati	on for Radial Flow to a Well or Point Source Excavation in an Unconfined Aquifer					
Component	Variable	Units	Value	Note					
Soil	K	m/s	2.50E-07	estimated based on regional studies and literature values, ranges from 7.5 x 10°8 m/s to 2.5 x 10°7 m/s.					
Base of Aquifer		masl	257.75	elevation of extent of excavation - 1.0 m (estimated based on borehole logs).					
Groundwater Elevation		masl	263.00	estimated seasonal high groundwater level based on Hydrogeological Investigation by Crozier (April 2022).					
Dewatering		masl	258.75	assumed to be 2.0 m below the extent of excavation.					
Extent of Excavation		masl	260.75	estimated to be approximately 7 ft or 2.25 mbgs based on Ontario Building Code minimum of 6.5 ft.					
Well	r _w	m	89.23	squareroot of excavation area divided by pi.					
Excavation Area		m²	25000	estimated from the Concpet Plan prepared by Bousfields Inc. December 2021 per school					
			•						
Calculations									
Hydraulic Head of Water	Н	m	5.25						
Hydraulic Head at Max.	h	m	1.00						
Radius of Influence	R ₀	m	95.60						
İ									
Pumping Rate	Q	m³/s	3.02E-04						
Dewatering Volume per	Q	L/day	26106.49						
TOTAL ESTIMATED CONS	TRUCTION DI	WATERING VOLUME	•		Q =	26106 L/day			
TOTAL ESTIMATED CONS	STRUCTION DI	WATERING VOLUME W/ SAFE	TY FACTOR OF 2.0		Q =	52213 L/day			

	TABLE 4e - COMMERCIAL								
	ESTIMATE CONSTRUCTION DEWATERING VOLUME CALCULATIONS								
		Based o	n Dupuit Equat	ion for Radial Flow to a Well or Point Source Excavation in an Unconfined Aquifer					
Component	Variable	Units	Value	Note					
Soil	K	m/s	2.50E-07	estimated based on regional studies and literature values, ranges from 7.5×10^{-8} m/s to 2.5×10^{-7} m/s.					
Base of Aquifer		masl	259.75	elevation of extent of excavation - 1.0 m (estimated based on borehole logs).					
Groundwater Elevation		masl	266.00	estimated seasonal high groundwater level based on Hydrogeological Investigation by Crozier (April 2022).					
Dewatering		masl	260.75	assumed to be 2.0 m below the extent of excavation.					
Extent of Excavation		masl	262.75	assuming no basement					
Well	r _w	m	54.42	squareroot of excavation area divided by pi.					
Excavation Area		m²	9300	estimated from the Concpet Plan prepared by Bousfields Inc. December 2021 per development.					
Calculations									
Hydraulic Head of Water	Н	m	6.25						
Hydraulic Head at Max.	h	m	1.00						
Radius of Influence	R ₀	m	62.30						
Pumping Rate	Q	m³/s	2.21E-04						
Dewatering Volume per	Q	L/day	19102.20						
TOTAL ESTIMATED CONS					Q =	19102 L/day			
TOTAL ESTIMATED CONS	TRUCTION D	EWATERING VOLUME W/ SAFETY	FACTOR OF 2.0		Q =	38204 L/day			

FIGURES

BOLTON NORTH HILL SECONDARY PLAN

FIGURE 1 WETLAND COMMUNITIES

Participating Landowner Property Boundary

Option 1/2 Lands

Study Area (120 m Setback)

Aerial Interpretation

Wetland

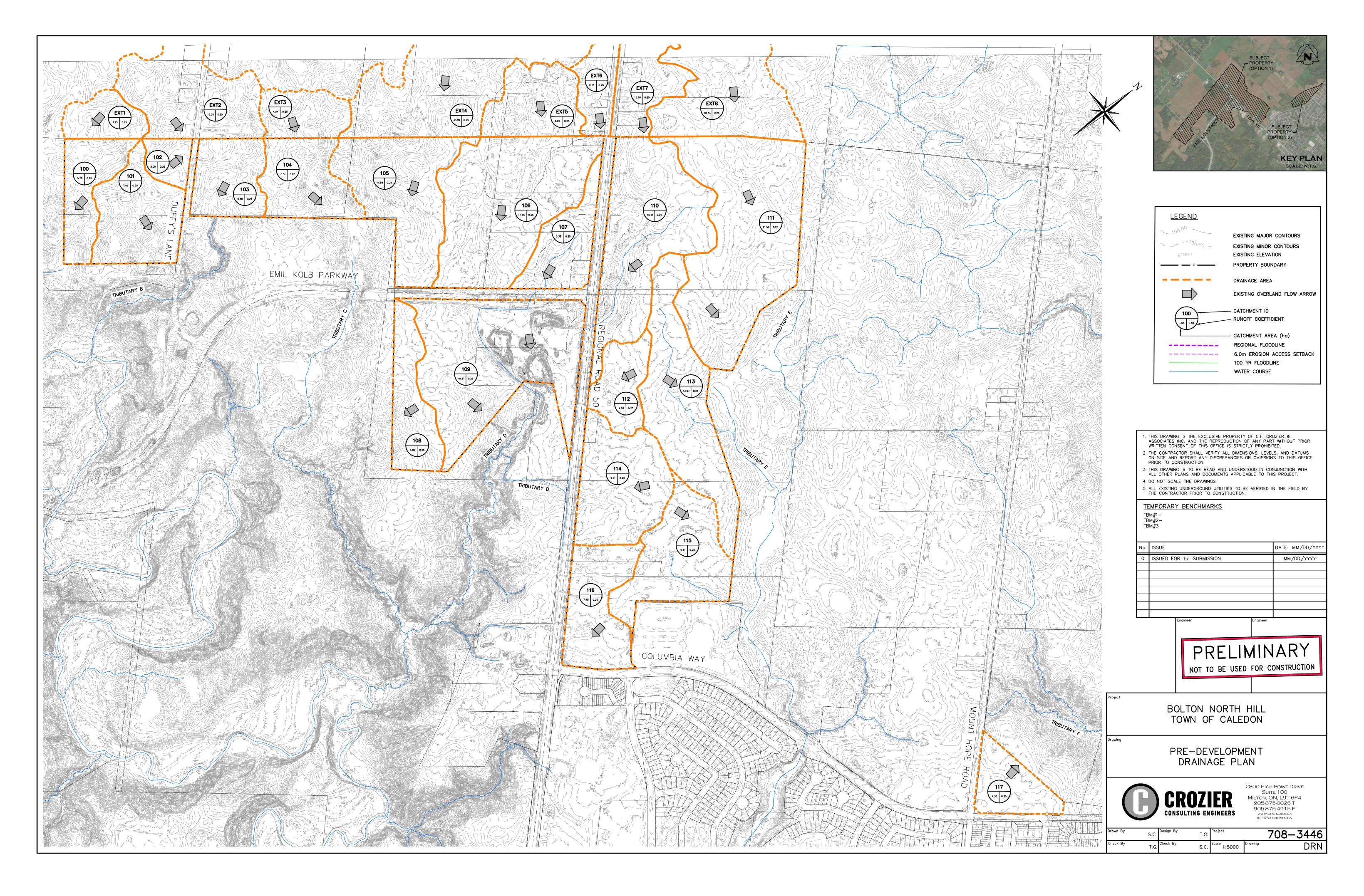
MAM: Meadow Marsh

MAMM1: Graminoid Mineral Meadow Marsh

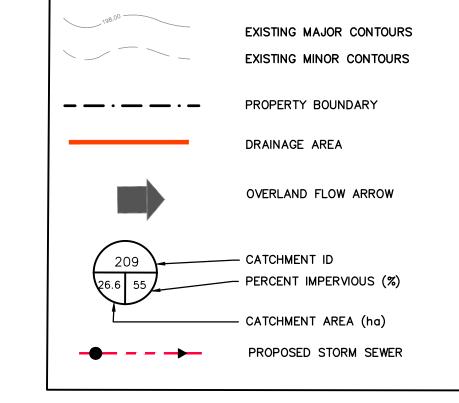
OAO: Open Aquatic

SWD: Deciduous Swamp

1:12,000


MAP DRAWING INFORMATION: DATA PROVIDED BY MNRF, REGION OF PEEL, TRCA

MAP CREATED BY: GM

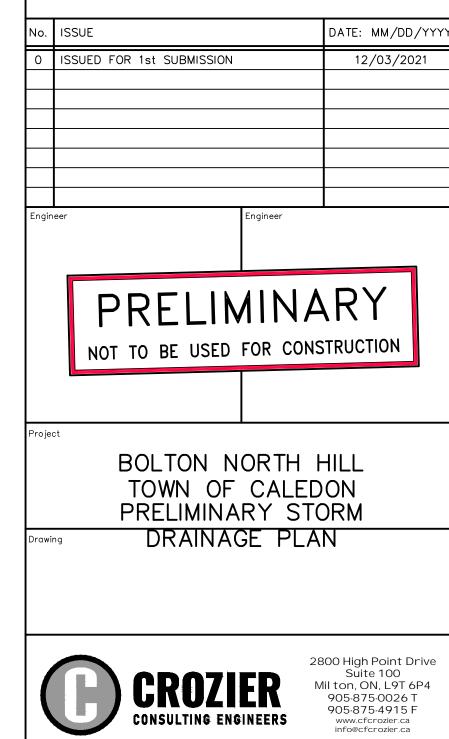

PROJECT: 176406

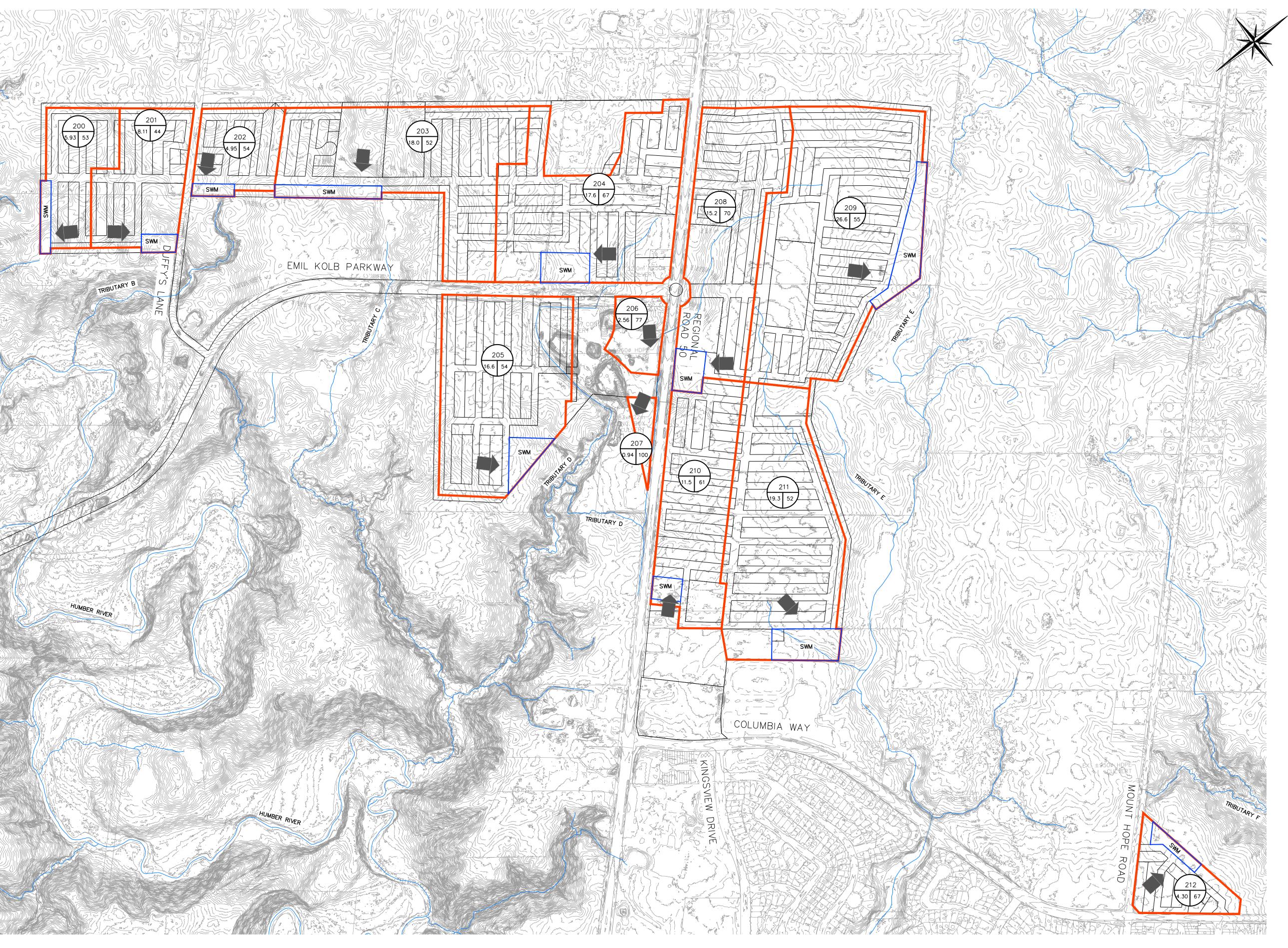
STATUS: DRAFT DATE: 2022-03-01

SCALE: N.T.S.

<u>LEGEND</u>

1. THIS DRAWING IS THE EXCLUSIVE PROPERTY OF C.F. CROZIER & ASSOCIATES INC. AND THE REPRODUCTION OF ANY PART WITHOUT PRIOR WRITTEN CONSENT OF THIS OFFICE IS STRICTLY PROHIBITED.


2. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, LEVELS, AND DATUMS ON SITE AND REPORT ANY DISCREPANCIES OR OMISSIONS TO THIS OFFICE PRIOR TO CONSTRUCTION.

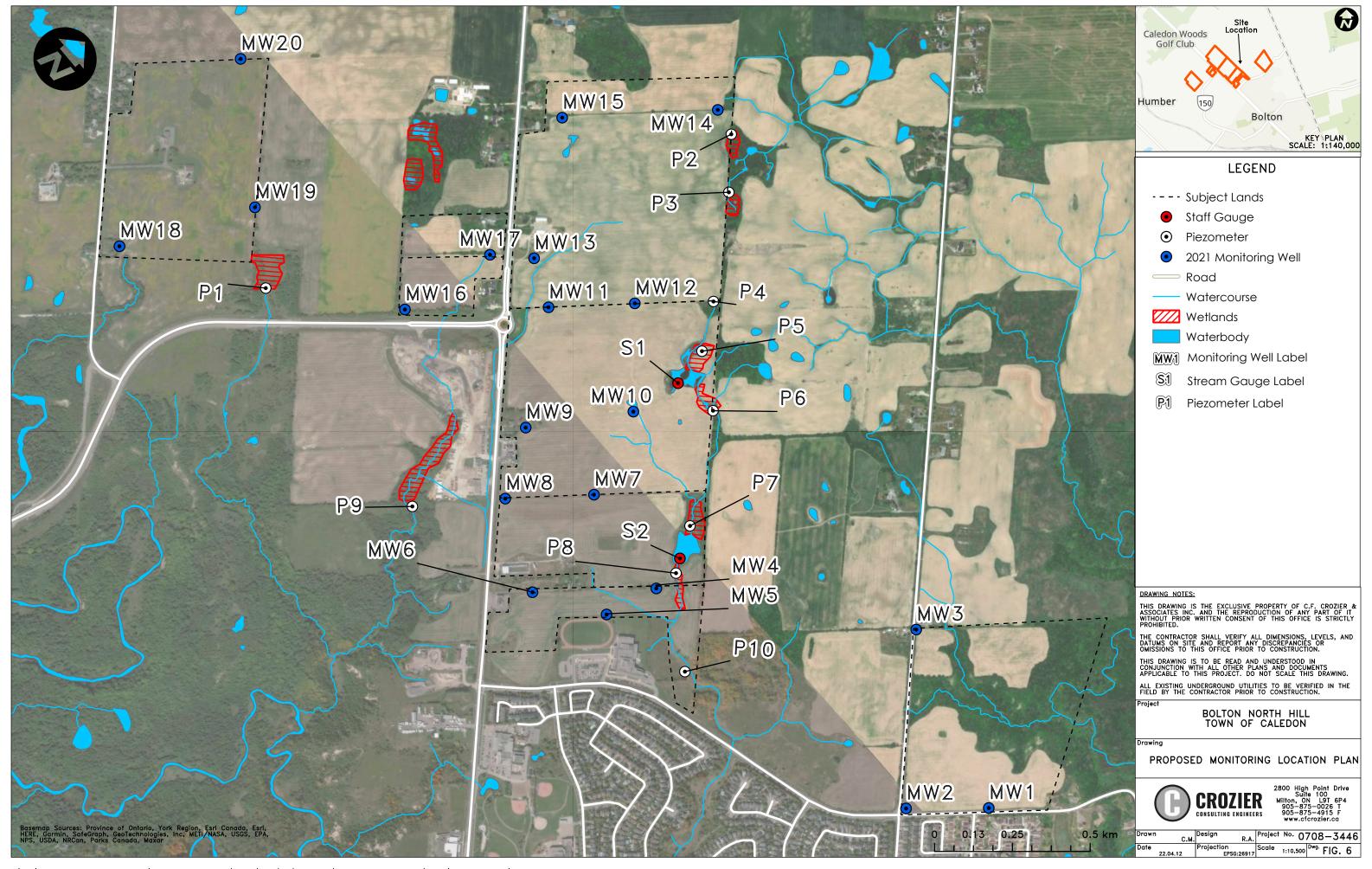

3. THIS DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION WITH ALL OTHER PLANS AND DOCUMENTS APPLICABLE TO THIS PROJECT.

4. DO NOT SCALE THE DRAWINGS.

5. ALL EXISTING UNDERGROUND UTILITIES TO BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION.

EXISTING GROUND CONTOURS DERIVED FROM AERIAL SURVEY BY DRONE SURVEY CANADA (JULY 2021). ADDITIONAL CONTOUR DATA ADAPTED FROM THE ONTARIO DIGITAL TERRAIN MODEL (LIDAR-DERIVED) LAND INFORMATION ONTARIO (LIO) DATASET (MINISTRY OF NATURAL RESOURCES AND FORESTRY, 2017).

N:\700\708-Bolton NH Landowners Grp\3446-Bolton North Hill\CAD\Civil_Sheets\Figures\3446_C706 - STM.dwg, 2021-11-26 11:20:00 AM, edodd, DWG To PDF.pc3


CONSULTING ENGINEERS

905-875-4915 F
www.cfcrozier.ca
info@cfcrozier.ca

Project

708—3446

