FUNCTIONAL SERVICING REPORT

May 9, 2024

MAYFIELD WEST PHASE 2 STAGE 3

PROPOSED RESIDENTIAL SUBDIVISION

Part Lot 21 and 22, Concession 1and 2 West of Township of Chinguacousy

Town of Caledon

APRIL 2024

File Number W23093

GTA WEST OFFICE 9358 GOREWAY DRIVE BRAMPTON, ONTARIO L6P 0M7 T: (905) 794-0600 F: (905) 794-0611 PROVIDING CONSULTING SERVICES IN: MUNICIPAL ENGINEERING TRANSPORTATION PLANNING TRAFFIC & PARKING STUDIES ROADS & BRIDGES STRUCTURAL ENGINEERING

.. DEVELOPMENT ENGINEERING SERVICES WATER RESOURCES ENVIRONMENTAL NOISE STUDIES LAND USE & ENVIRONMENTAL PLANNING

Contents

1.	IN	TRO	DUCTION	3
2.	RI	ELAT	ED TECHNICAL STUDIES	5
2	.1	R.J.	. Burnside & Associates Limited	5
2	.2	The	e Municipal Infrastructure Group Ltd	5
2	.3	Urb	pantech Consulting	6
3.	Εž	KISTI	ING AND PLANNED WATER AND WASTEWATER INFRASTRUCTURE	8
3	.1	Wa	ter	8
3	.2	Wa	stewater	8
4. МА			RE/REQUIRED WATER, WASTEWATER AND STORM WATER IENT INFRASTRUCTURE	11
	.1		ter	
-	.2		stewater	
•		2.1	Sanitary Pumping Station and Forcemain	
5			IWATER MANAGEMENT DESIGN CRITERIA	
-	.1		jor/ Minor System Flows 1	
-	.1		rmwater Management Pond Design	
-	5.2	2.1	Stormwater Pond Locations	
	5.2	2.2	Stormwater Pond Control Targets and Sizing	18
6	ST	ſAGI	NG	23
7	EF	ROSI	ON AND SEDIMENT CONTROL	24
8	SU	J MM	ARY AND COMPLIANCE DECLARATION	26
7	.1	Sun	nmary	26
7	.2	Cor	mpliance Declaration	26

FIGURES

FIGURE 1	Location Plan
FIGURE 2	2023 Region of Peel Water DC Map
FIGURE 3	2023 Region of Peel Wastewater DC Map
FIGURE 4	Staging Plan

DRAWINGS

Draft Plan Drawing SA1-SA4 Drawing ST1-ST4 Drawing WM1-WM4 prepared by MGP dated March 28, 2024 Sanitary Drainage Plan Storm Drainage Plan Watermain Distribution Plan

APPENDICES

- APPENDIX A Sanitary design and
- APPENDIX B Storm Sewer Design Calculations
- APPENDIX C Geotech report
- APPENDIX D Hydrogeological report
- APPENDIX E Strom water Management Calculations
- APPENDIX F TMIG Servicing Report Drawings, January 2014

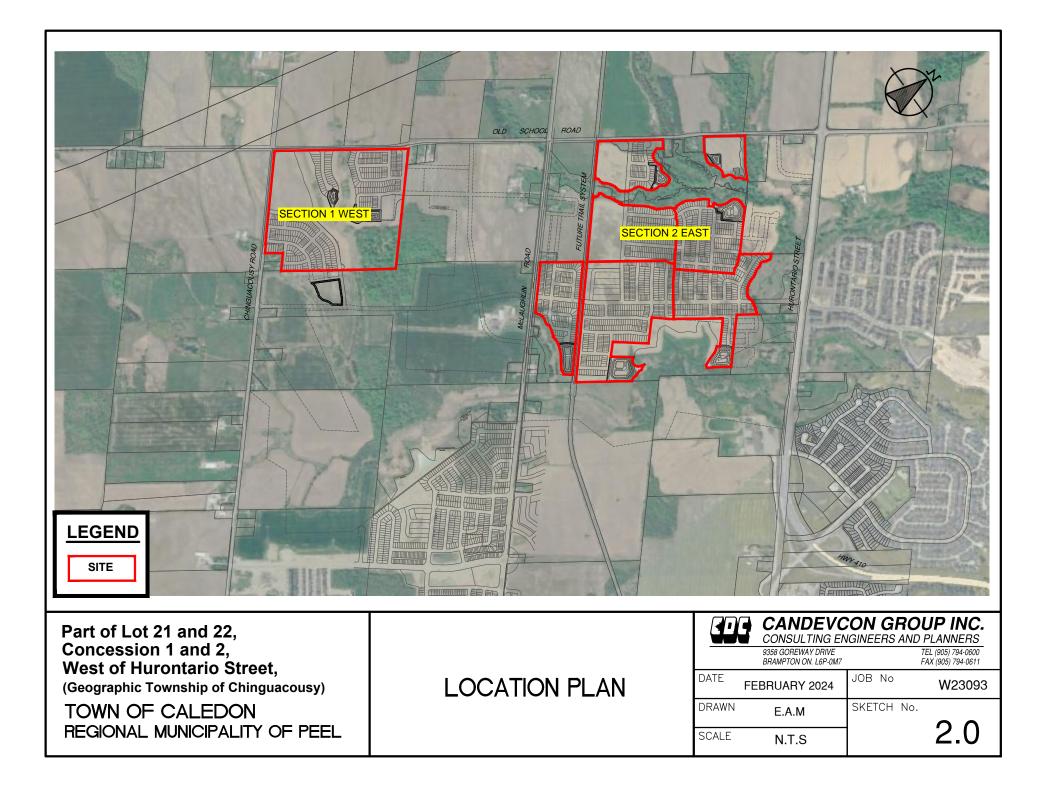
1. INTRODUCTION

Brookvalley is proposing a draft plan in the Mayfield West Phase 2 Stage 3 Lands in the Town of Caledon. The Mayfield West Phase 2 Stage 3 Lands are shown on Figure 1 and comprise a total area of approximately 270 hectares made up of two sections

Section 1 (herein after called the west side) is bounded by Old School Road to the north, Chincoussy Road to the west and agricultural lands to the south and east.

Section 2 (herein after called the east side) is bounded by Mclaughlin Road to the west, Old School Road to the north, Hurontario Road HWY 10) to the east and Etobicoke Creek to the south.

This study, which addresses water, wastewater and storm water management servicing, is one of several Technical Studies that have been prepared to support the draft plan that consists of the following;


Section 1 West side

- 258 single detached units
- 126 Townhouse units
- 1 Medium density Blocks
- 1 park block
- 2 Storm water management blocks
- 1 Natural Heritage System bocks

Section 2 East side

- 767 single detached units
- 636 Townhouse units
- 2 Medium density Blocks
- 2 commercial blocks
- 1 elementary school block
- 3 park blocks
- 6 Storm water management blocks
- 4 vista/walkway blocks
- 7 Natural Heritage System bocks

- 1 future Natural Heritage System block
- 47 Future development/part lot blocks
- 7 roadway widening blocks
- 3 Arterial Road widening blocks

2. RELATED TECHNICAL STUDIES

The following Studies have been completed over the last fifteen years which relate to the servicing of the subject lands.

2.1 R.J. Burnside & Associates Limited

Mayfield West Phase 2 Secondary Plan Water and Wastewater Servicing Study Town of Caledon

- Part A Report dated May 2009
- Part B Report dated October 8th 2010

The Study, which was commissioned by the Town of Caledon, was one of several component studies prepared in support of the Mayfield West Phase 2 (MW2) Secondary Plan.

The Study Area comprised the lands bounded by Chinguacousy Road to the west, Old School Road to the north, Dixie Road to the east and Mayfield Road to the south.

The Part B report evaluated water and wastewater servicing for three (3) Community Development Scenarios that were under consideration and also identified potential external regional servicing improvements that would be required to service the Community Development Scenarios.

2.2 The Municipal Infrastructure Group Ltd.

Mayfield West - Phase 2 Secondary Plan Water and Wastewater Servicing Study, January 2014

The Study, which was commissioned by the Mayfield Station Landowners Group, was prepared in support of the Mayfield West Phase 2 Secondary Plan, and was undertaken to address servicing requirements as a result of changes to the MW2 Plan through OPA 226 (dated September 11th 2012) and the Planning Report DP-2013-092 dated September 3rd 2013.

The purpose of the study was to:

- Identify existing and planned water and wastewater infrastructure;
- Provide a summary of proposed water and wastewater demands;
- Identify proposed water and wastewater infrastructure to support the Study Area;
- Identify possible interim servicing opportunities utilizing existing water and wastewater infrastructure, and
- Identify potential development planning limits based on planned and proposed Infrastructure timing.

The proposed water and wastewater network/routing design addressed the servicing requirements for three (3) areas as follows:

- Stage 1:Lands within the Town of Caledon Council Endorsed Framework Plan;
- Stage 2:Potential development lands beyond the Council Endorsed Framework Plan and south of the Etobicoke Creek
- North Lands: Potential development lands north of Etobicoke Creek having an approximate gross area of 325 ha.

Copies of Figures 4, 6 and 7 of the report showing the Servicing Areas and the Recommended Water and Wastewater Servicing Plans are included in Appendix F for reference.

2.3 Urbantech Consulting

Functional Servicing Reports - Mayfield West Phase 2 - May 2016 and August 2017

The Town of Caledon Council adopted the Mayfield West Phase 2 Secondary Plan (MW2) Official Plan Amendment OPA 222 on November 10th 2015. The approved MW2 Secondary Plan included the Stage 1 Area only.

The Study, which was prepared for the Mayfield West Landowners Group, along with companion reports (EIR, Transportation) was intended to support the individual Draft Plans of Subdivision within the MW2 Phase 2 Stage 1 lands and to demonstrate how the Stage 2 lands would be integrated into the Stage 1 development.

The Study report (August 2017) includes the preliminary design of the sanitary sewer system which included the MW2 Phase 2 Stage 1 and Stage 2 lands as well as future development north of the Etobicoke Creek/Green Belt to Old School Road (i.e. Mayfield West Phase 2 Stage 3 Lands). The relevant Sanitary Sewer Design Sheets are included in Appendix AB@ and a print of the Sanitary Sewer Plan (Drawing 801) is included as a Reference Drawing to this report. *As shown on the Sanitary Sewer Design Sheets, the sanitary sewers in the Stage 1 and Stage lands are designed to accommodate the future development of the Stage 3 lands at a population density of 80 persons/ha.*

The Study report (August 2017) also included the future/planned trunk watermain infrastructure on Chinguacousy Road (600mm diameter) and on McLaughlin Road (400mm diameter) which will accommodate development of the Stage 3 lands.

2.4 **GM Blueplan**

Settlement Area boundary expansion (SABE) Water and wastewater servicing Analysis. August 12, 2021

The Region of Peel commissioned the SABE as a follow-up to the Region's 2020 Water and Wastewater Master Plan to review the servicing needs in the Caledon area including future growth north of Mayfield Road beyond the "2041 servicing boundary". The study confirmed the water and wastewater upgrades, required for the area, identified in the 2020 Water and Wastewater Masterplan

2.5 **AMEC**

Mayfield West Phase 2 Secondary Plan comprehensive Environmental Impact Study and Management Plan August 2010

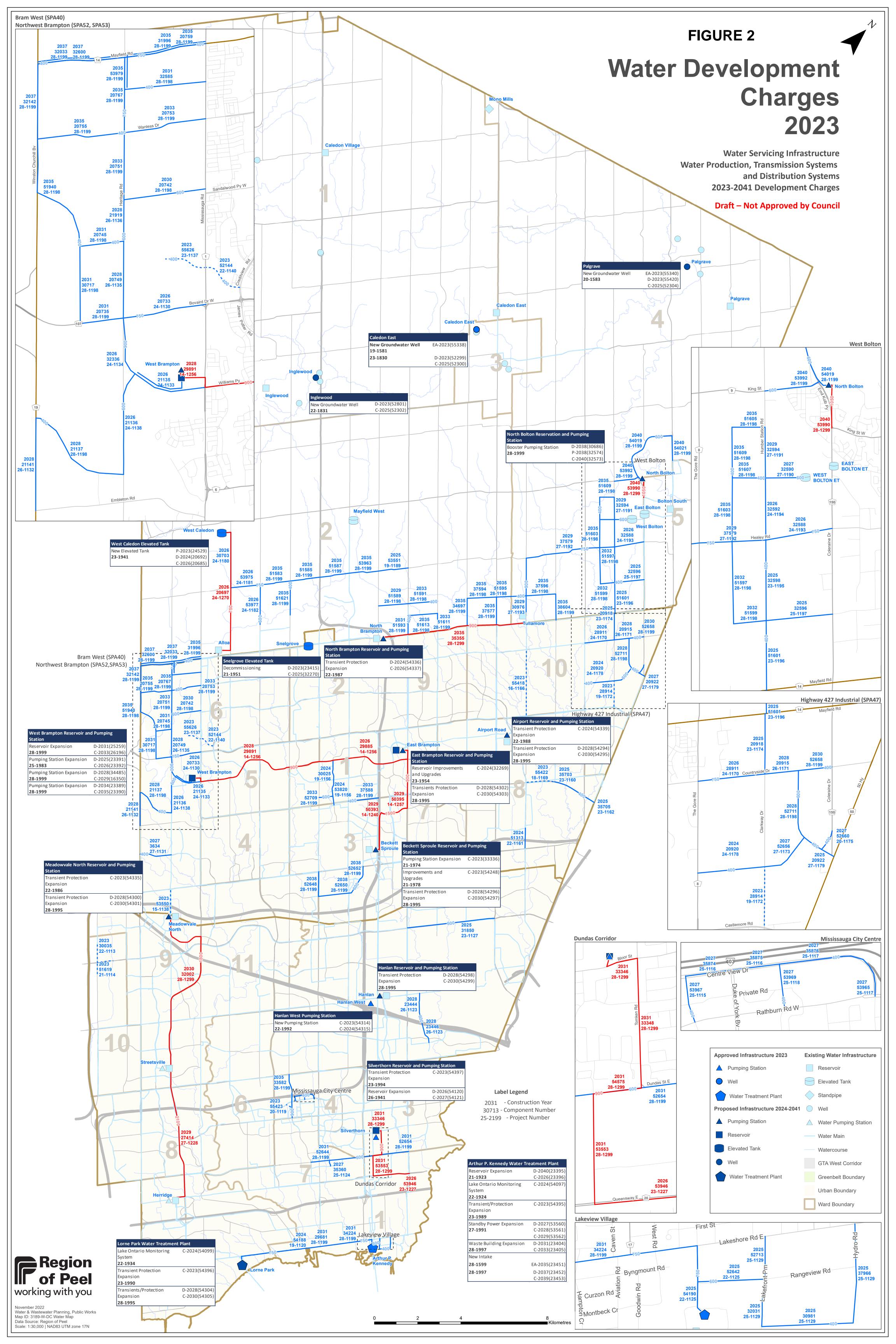
The plan was commissioned by the Town of Caledon in 2008 to review the hydrogeology, hydrology, water quality, fisheries and terrestrial resources in the Mayfield West Secondary Plan. The report reviewed possible impacts to the above noted resources due to proposed developments in the area and recommended constraints and opportunities within the subject lands.

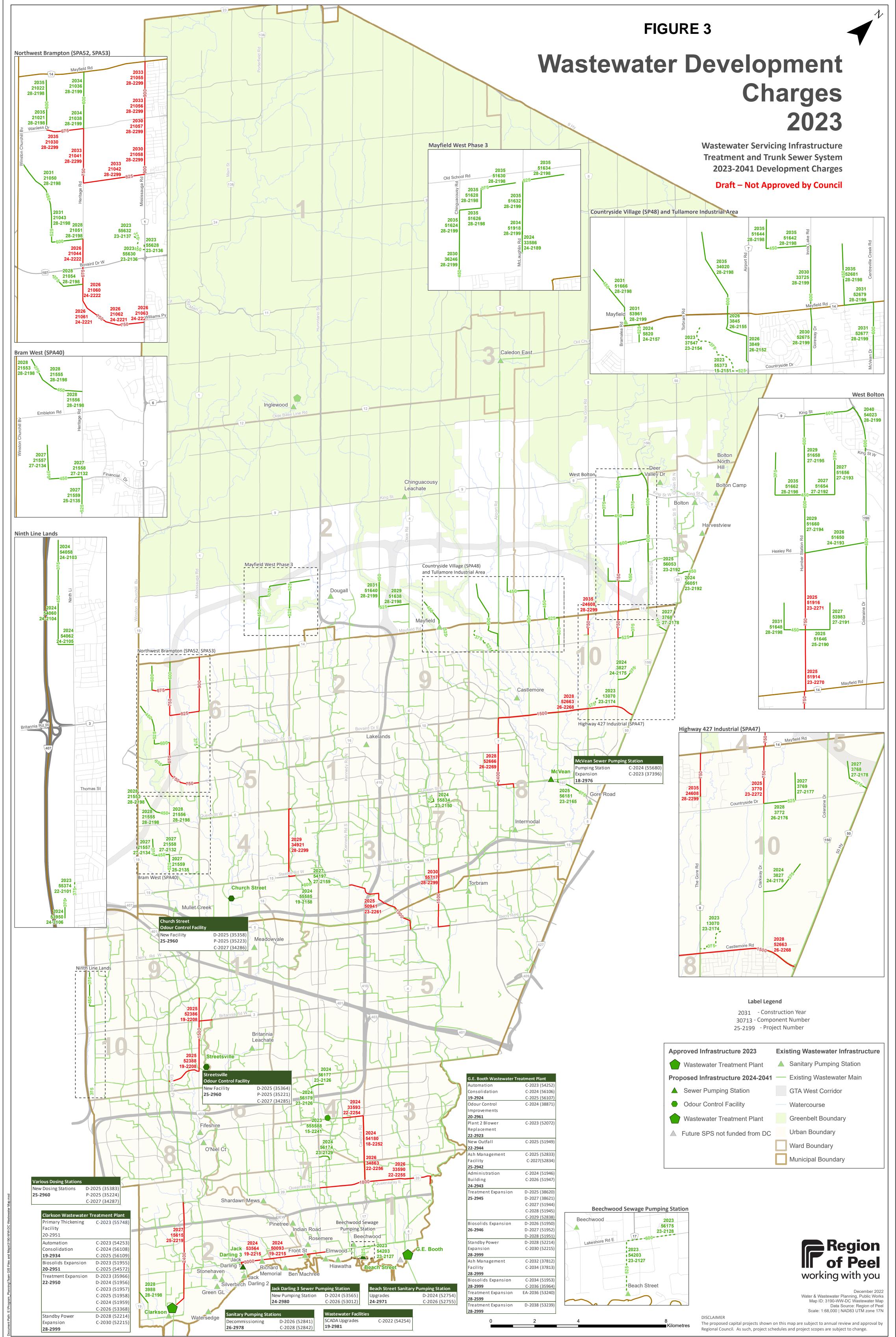
3. EXISTING AND PLANNED WATER AND WASTEWATER INFRASTRUCTURE

3.1 Water

The subject Stage 3 lands are located in the existing Region of Peel Pressure Zone 7. The planned watermain infrastructure, based on the Region of Peel Water DC Map 2023, is shown on Figure 2 and includes the following trunk watermains which will service the Phase 2, Stage 3 lands.

- 750mm diameter main on Chinguacousy Road from the Tim Manley Road to Old School Road;
- 600mm diameter main on McLaughlin Road from Tim Manley Road to Old School Road;
- 750mm diameter main on Old School Road from Chinguacousy Road to Hurontario Road
- 600mm watermain on Hurontario Street


3.2 Wastewater


At present there is no wastewater infrastructure serving the Phase 2, Stage 3 lands. The planned wastewater infrastructure, based on the Region of Peel Wastewater DC Map 2023 is shown on Figure 3 and includes the following infrastructure which will service the Phase 2 Stage 3 lands:

- 450mm diameter trunk sanitary sewer on Chinguacousy Road from Tim Manley Road in the MW Phase 2 Stage 1/2 lands to Old School Road. *Note: Based on the Urbantech Functional Servicing Report (August 2017), this sewer is designed to accommodate a drainage area of 95.70 ha (at 80 p/ha) in the Phase 2 Stage 3 lands.*
- 525mm diameter trunk sanitary sewer on McLaughlin Road from the Tim Manley Road in the MW Phase 2 Stage 1/2 lands to the south side of Etobicoke creek. Note: Based on the Urbantech Functional Servicing Report (August 2017), this sewer is designed to accommodate a drainage area of 151.5 ha (at 80 p/ha) in the Stage 3 lands. A pumping station (and forcemain) will be required to service the Stage 3 lands.
- 375mm diameter sanitary sewer serving the lands west of McLaughlin Road between Etobicoke Creek and Old School road, to the 450mm sanitary sewer on

Chinguacousy Road

- 525mm diameter sanitary sewer serving the lands east of McLaughlin Road between Old School Road and Etobicoke Creek to the proposed pumping station on Mclaughlin Road north of Etobicoke
- Sewage pumping station located on Mclaughlin Road north of Etobicoke Creek outletting to the 525mm sanitary sewer south of Etobicoke Creek

4. FUTURE/REQUIRED WATER, WASTEWATER AND STORM WATER MANAGEMENT INFRASTRUCTURE

4.1 Water

As noted in section 4.1 the Region of Peel has planned several trunk watermains in the area to serve the subject lands. The internal water distribution system will consist of a combination of 300mm and 150mm watermains. The conceptual configuration of the required water infrastructure to service the Phase 2 Stage 3 lands is shown on Drawing WM1 to WM4 and generally will comprise the following

Section 1 Lands west of Mclaughlin

• 150mm watermains on all internal streets

Section 2 Lands east of McLaughlin:

- 300mm diameter main on Street A from McLaughlin Road to Hurontario
- 300mm watermain on the Stret D to Old School Road
- 150mm watermain on all other streets

Anticipated water demands base on unit type are shown in tables 4.1a and 4.1b. A copy of the Region of Peel Connection Multi-Use Demand Table for the subdivision is included in Appendix "A".

Developable area(ha)	23.71		
unit type	units	pop/unit	population
Single detached	258	4.2	1084
Medium density (ha)	5.2	175	910
Townhouse	126	3.1	391
	total p	opulation	2385
Average day (l/s)	7.73		
Max Day	15.45		
Peak hour	23.18		
Fire Flow	115.45		

TABLE 4.1A WATER DEMAND BASED ON UNIT TYPESECTION 1 WEST OF MCLAUGHLIN ROAD

TABLE 4.1B WATER DEMAND BASED ON UNIT TYPESECTION 2 EAST OF MCLAUGHLIN

Developable area(ha)	66.3		
unit type	units	pop/unit	population
Single detached	767	4.2	3221
Medium density (ha)	2.7	175	472
Townhouse	636	3.1	1972
Elementary school	1	600	600
Commercial	4.92	50	246
Reserve (single detached)	.22	50	11
	total p	opulation	6523
Average day (l/s)	21.14		
Max day	42.28		
Peak hour	63.41		
Fire flow	142.28		

4.2 Wastewater

As noted in section 3.2 the Region of Peel has planned for several trunk sanitary sewers to service the subject lands. The configuration of the sub-trunk and local sanitary sewers to service the Phase 2 Stage 3 lands are shown on drawing SA1 to SA4.

A pumping station to be located on Mclaughlin Road, north of the Etobicoke Creek will pump wastewater from the lands to the east side of the site to the existing 525mm diameter sanitary sewer south of Etobicoke Creek on McLaughlin Road.

Wastewater from the lands to the west of McLaughlin Road will outlet to a proposed sanitary sewer to be constructed on Chinguacousy Road. The proposed sanitary sewers will connect to a trunk sanitary sewer to be constructed on Old School Road and connect to the proposed trunk on Chincoussy

The sewer system is designed in accordance with the Region of Peel Criteria and

Standards.

Sanitary flows shown in Appendix "A". are based on the values shown in table 4.2. A copy of the Region of Peel Connection Multi-Use Demand Table for the subdivision is included in Appendix "A".

Density	Pop. /Hectare	
Single family (greater than 10m frontage)	50 persons/hectare	
Single family (less than 10m frontage)	70 persons/hectare	
Semi detached	70 persons/hectare	
Row dwellings	175 persons/hectare	
Apartments	475 persons/hectare	
Commercial	50 persons/hectare	
Junior Public Schools	1/3 x number of students (600 students minimum)	
Senior Public Schools	1/2 x number of students (900 students minimum)	
Secondary Schools	2/3 x number of students (1500 students minimum)	

TABLE 4.2 SANITARY DESIGN POPULATIONS PER HECTARE

The anticipated sanitary flows from the development based on actual unit types and count are as shown in table 4.2A and 4.2B Populations per unit type are shown in table 4.2 and are based current Region of Peel standards

Unit type	population
Single detached	4.2
Semi detached	4.2
townhouse	3.4
Condo	3.1
Apartment	3.1
Reserve	50.00

TABLE 4.2 SANITARY DESIGN POPULATIONS PER UNIT TYPE

As noted earlier there are two (2) distinct sanitary drainage areas within the proposed site. The following is a breakdown of anticipated sanitary flows per drainage area.

TABLE 4.2A SANITARY FLOWS BASED ON UNIT TYPESECTION 1 WEST OF MCLAUGHLIN ROAD

Developable area(ha)	23.71		
unit type	units	pop/unit	population
Single detached	258	4.2	1084
Medium density (ha)	5.2	175	910
Townhouse	126	3.1	391
	total p	opulation	2385
Average day (l/s)	8.36		
peak factor	3.53		
infiltration	4.74		
total peak sanitary flow (l/s)	34.2		

TABLE 4.2B SANITARY FLOWS BASED ON UNIT TYPESECTION 2 EAST OF MCLAUGHLIN

Developable area(ha)	66.3		
unit type	units	pop/unit	population
Single detached	767	4.2	3221
Medium density (ha)	2.7	175	472
Townhouse	636	3.1	1972
Elementary school	1	600	600
Commercial	4.92	50	246
Reserve (single detached)	.22	50	11
	total p	opulation	6523
Average day (l/s)	22.86		
peak factor	3.14		
infiltration	13.26		
total peak sanitary flow (l/s)	84.9		

4.2.1 Sanitary Pumping Station and Forcemain

As noted above, a sanitary pumping station will be required to service the lands to the east of Mclauglin Road. The station is proposed to be located on McLaughlin Road, north of Etobicoke Creek as shown on drawing PS-1.

The pumping station will be designed to have a minimum ultimate pumping capacity of 107l/s. As per the Region of Peel Sanitary Pumping Station Design Guidelines, the above flow would be classified as a Type III pumping station. Therefore, the station will be designed as a dual wet well facility as per Region of Peel standard drawing SPS 104 (copy attached) in Appendix H

It is noted that the development of the lands draining to the station will be staged and the station will need to be designed to allow for upgrades to the pumps as development proceeds. A preliminary staging plan is discussed in greater detail in Section 6. It is also anticipated that dual forcemain will be required for the site. With one serving the station until flows velocities within the main require the second forcemain to be brought into service.

The station will require permanent on site back up power and shall be connected to the Region of Peel SCADA system

As noted, the station will pump under Etobicoke Creek and connect to the existing 525mm sanitary sewer located south of the Creek on McLaughlin Road.

5 STORMWATER MANAGEMENT DESIGN CRITERIA

The stormwater management design criteria pertinent to development within the Humber River Watershed were identified by the TRCA Stormwater Management Criteria Manual and Etobicoke Creek Stormwater Management Plan (2012). The stormwater management design within the FSR Study Area includes:

- Water Quality: Water quality control with an Enhanced Level (Level 1) of Protection or a minimum of 80% TSS (Total Suspended Solids) removal is mandated for the proposed development area, as outlined in the Stormwater Management Practices Planning and Design Manual (MECP, March 2003).
- Water Quantity for Erosion Control: 25mm Erosion Control Criteria outlined in the TRCA SWM Criteria specified the detention and gradual release the runoff generated from the 25mm storm event over a period of at least 24 hours, with a preference for a 48-hour duration for stormwater management ponds.
- Water Quantity Control: The proposed SWM Ponds are located within Etobicoke Creek Subwatershed and the quantity control targets are established based on Etobicoke Creek Stormwater Management Quantity Control Release Rates. The Table I1 (Precited Unit Peak Runoff Rates on Catchment-by-Catchment Basis) provides unit target rates for 2 to 100-Year storm events. The peak discharges for the SWM ponds are set to meet the calculated target flows which were derived from the Etobicoke Creek unit flow values.
- Water Balance: Identification of stormwater management measures to be integrated into the development concept with the aim of preserving existing infiltration targets, wherever feasible.

5.1 Major/ Minor System Flows

In general, the storm sewer system will be designed to comply with the Town of Caledon Design Criteria i.e. "Storm sewer systems must be designed to accommodate a 10-year storm in cases where foundation drains are to be connected. Alternatively, for systems that do not permit foundation drains, a 5-year design will be permissible."

Overland flows will be directed to the SWM Ponds. Routing of the Regional Storm through the SWM Ponds will be determined as part of the final Engineering Design.

5.2 Stormwater Management Pond Design

To meet the SWM Criteria outlined above for the subject development, eight (8) wet ponds are proposed as illustrated in Draft Plan. The proposed locations of the stormwater management ponds, and the determination of the associated drainage areas are based on the following considerations:

a) Selection of the conceptual stormwater pond locations also considered the existing drainage patterns to minimize drainage diversions and maintain the drainage areas contributing to each of the watercourse systems to the extent possible. Post Development Drainage Area to each pond are summarized in Table I.

Derel New	Drainage Area to SWM
Pond Nos.	Pond (Ha)*
1	2.30
2	9.34
3	8.79
4	33.72
5	18.01
6	7.94
7	2.99
8	11.66

TABLE I
Post- Development Drainage Areas to Proposed SWM Ponds

*Includes SWM Pond Areas

- b) The ponds are generally located in or adjacent to topographical low areas to minimize the extent of cut and fill.
- c) The ponds are designed to provide Enhanced Level quality control, erosion control as well as quantity control up to and including the 100-year storm event.
- d) The proposed SWM ponds were reviewed from a natural heritage perspective to confirm implications to the NHS. All ponds are generally located adjacent to the NHS.

5.2.1 Stormwater Pond Locations

The proposed stormwater ponds will be designed to provide the required water quality, quantity and erosion control for development in the upstream catchments and future road improvements. These facility locations have been selected based on a cursory assessment of the general topography of the study area, existing drainage patterns, and the proposed development patterns.

The facilities will be designed with sediment forebays to receive inflows from the contributing drainage system, consisting of storm sewers, swales or other conveyance LID measures. Outlet structures will discharge to the adjacent stream/valley and will be sized to capture and release the necessary storage volumes, as described in **Section 1**. The basic components of a stormwater management pond and its typical location relative to a creek/headwater corridor are illustrated in **Drawing SD-1**.

5.2.2 Stormwater Pond Control Targets and Sizing

Stormwater management targets to be applied over the subdivision development area were developed through consultation with TRCA and Town of Caledon. The water quality control, erosion control, and flood control targets which were established are outlined below together with conceptual storage volumes required to meet these targets.

SWM Pond Water Quality Control

A significant portion of the nutrients and metals found in stormwater runoff are in the form of small particles attached to the suspended sediment. Therefore, removal of the sediment with stormwater management ponds will reduce the steam loadings for many contaminants. The 2003 MOE Stormwater Management Planning and Design Manual defines specific water quality control targets for stormwater facilities. The targets are based on:

- the type of facility (stormwater pond, infiltration practice, etc.).
- the land uses within the contributing area (in terms of an impervious component); and
- the level of control required.

Table II summarizes the Impervious levels used to represent various land uses.

TABLE II

Land Use Classification	Total Impervious Area (%)	Directly Connected Impervious Area (%)
Park/Open Space	10%	10%
Low/Medium Density Residential	60%	50%
High Density Residential	80%	75%
Commercial	95%	90%
Elementary School	80%	75%
SWM Pond	100%	90%

TRCA Impervious Levels based on Land Use Type

To achieve the target of Enhanced water quality control for a typical medium density residential development with an impervious component of 60%, for example, the MOE Manual specifies a target storage volume of 205 m3/hectare, of which:

- 165 m3/ha is permanent pool storage; and
- 40 m3/ha is extended detention, or "active" storage.

SWM Pond Extended Detention for Erosion Control

For this Development, an interim erosion control target using the most stringent criteria in TRCA' s jurisdiction is to be applied; detain and release runoff from a 25 mm storm event over 48 hours.

In addition to the extended detention requirements noted above, the 2012 TRCA Stormwater Criteria document requires a minimum of 5mm of retention be applied to all development lands to reduce runoff volumes, and to minimize impacts to groundwater recharge and the overall water balance.

SWM Pond Flood Control

For this Development, Consistent with current TRCA requirements in the West Humber River and Etobicoke Creeks Subwatershed, future development will also require flood (quantity) control facilities to attenuate post-development stormwater runoff rates to predevelopment levels for the 2-year through 100-year storm events. TRCA defines the predevelopment release rates for the Etobicoke watershed through a series of unit runoff rates (L/s/Ha) established for Etobicoke creek Watershed. The applicable unit flows for the development area are summarized in Table III.

Catchment ID No.	231
Catchment Type Visual Otthymo Hydrograph Command	Rural NasHyd
Area	307.2 Ha
Storm Event	Unit Runoff Rates (L/s/Ha)
2-Year	5.6
5-Year	10.1
10-Year	13.6
25-Year	18.3
50-Year	22.2
100-Year	26.1

TABLE III Pre-Development Unit Flow Targets*

*Values extracted from Table II from TRCA's SWM Criteria

Hydrologic analyses were completed using the Visual Otthymo Model to estimate the storage requirements to meet the above erosion and flood control targets for each of the proposed stormwater ponds. The model was run for TRCA AES 6, and 12 hours run. SWM Pond Storage Calculations and modelling parameters are summarized in SWM Appendix. Table IV below summarizes the Summary of Design details Volumes for each Pond.

TAI	BLE	IV
-----	-----	----

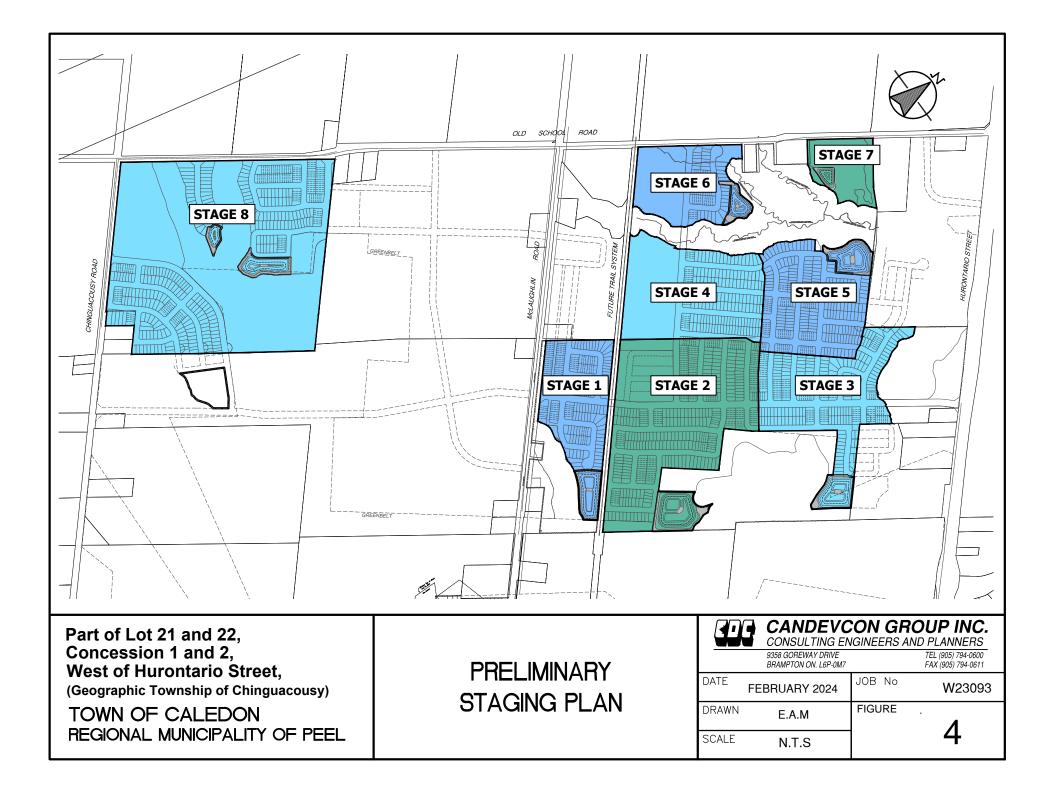
Summary of SWM Ponds Volume Design

	Pond 1	Pond 2	Pond 3	Pond 4	Pond 5	Pond 6	Pond 7	Pond 8
Drainage Area (Ha)	2.30	9.34	8.79	33.72	18.01	7.94	2.99	11.66
Composite Imperviousness (%)	65%	62%	71%	58%	59%	78%	64%	66%
Permanent Pool Storage Required (m ³)*	491	1,562	1,998	6,615	3,597	1,579	631	2,520
Permanent Pool Storage Provided (m ³)	623	1,687	5,033	10,650	6,007	1,769	828	5,641
Permanent Pool WL	264.00	264.00	258.00	258.00	256.00	262.00	261.00	262.00
Erosion Control Storage Required (m ³)**	352	1,400	1,474	4,722	2,548	1,358	450	1,839
Erosion Control Storage Provided (m ³)	379	1,601	1,479	4,972	2,809	1,465	463	2,076
100-Yr Storage Required (m ³) **	1,116	4,485	4,502	14,991	8,070	4,033	1,427	5,615
100-Yr Storage Provided (m ³)	1,200	5,000	5,000	15,400	8,300	4,200	1,500	6,000

* Based on Table 3.2, Water Quality Storage Requirements based on Receiving Waters, MOE Design Manual dated March, 2003

** Based on VO Results Output

SWM Pond Design Elements


The preliminary configuration of the stormwater management ponds is provided on **Drawing SWM-1**. The preliminary design is based on the pond design guidelines provided in Town of Caledon Development Standards Manual (Version 5.0, 2019). The eight ponds are

designed in accordance meet the Length to Width Ratio and Grading requirements.

6 STAGING

Proposed staging is shown on Figure 4. Staging is based on areas draining to the proposed SWM facilities.

In addition to the SWM facilities dictating staging it is noted that as part of Stage 1 The sewage pumping station will be constructed and a the 300mm watermain will be installed within the east west collector from Mclaughlin Road to Hurontario Street in order to provide two sources of supply.

7 EROSION AND SEDIMENT CONTROL

Erosion and sedimentation are naturally occurring processes that involve particle detachment, sediment transport and deposition of soil particles. Construction activities commonly alter the landscapes where they are located, exacerbating these natural processes. One of the most significant alterations encountered during construction is the removal of the vegetation that stabilizes the subsoil. In the absence of the vegetation, the underlying soils are fully or partially exposed to various natural forces such as rain, flowing water, wind, and gravity

The discharge of high sediment loads to natural watercourses has significant impacts on receiving waters and aquatic habitat. Some specific examples include:

- Degradation of water quality;
- · Damage or destruction of fish habitat;
- · Increased flooding.

In consideration of the above, it is necessary as part of the Final Design and implementation of infrastructure and development servicing to incorporate a comprehensive Erosion and Sediment Control Plan. The objectives are:

- (i) Minimize wherever possible the extent of vegetation removal;
- Provide appropriate sediment control measures to minimize the off-site transport of sediment;
- (iii) Minimize the extent of time that sites are devoid of stabilizing vegetation;
- (iv) Provide interim erosion control measures where permanent restoration is not feasible.
- (v) Provide permanent restoration to eliminate future erosion.

The Erosion and Sediment Control Plan should consider the specific characteristics of each development site and address the requirements relating to the following typical construction stages:

Topsoil Stripping and Site Pre-Grading

Infrastructure Servicing Building Construction

•

A "treatment train" approach is recommended in the development of an appropriate Erosion and Sediment Control Plan in compliance with the *Erosion and Sediment Control Guidelines for Urban Construction*. Typical sediment control measures include:

Installation of double silt fencing along the boundary of work areas adjacent to the NHS; Construction of vegetated cut off swales including sediment traps and rock check dams; Stabilization of temporary sediment traps and provision of vegetated filter strips adjacent to the NHS;

Provision of catch basin sediment controls.

Inherent in the Erosion and Sediment Control Plan is a monitoring program with an Action Plan to implement remedial measures in a timely manner where required.

As part of the final engineering design, the Sediment and Erosion Control Plan will be prepared including sizing of temporary sedimentation ponds and sediment traps.

8 SUMMARY AND COMPLIANCE DECLARATION

7.1 Summary

Based on the findings of this report, the conclusions and recommendations are as follows:

- (i) For the east side, sanitary sewer servicing can be achieved by connecting to a proposed Sewage Pumping Station on McLaughlin Road that will outlet to an existing trunk sewer on Mclaughlin road
- (ii) For the west side sanitary servicing can be achieved by connecting to a proposed sanitary trunk sewer to be constructed on Chinguacousy Rad
- (iii) For the east side water supply can be provided via connections to the proposed trunk watermains to be constructed on Mclaughlin road and Hurontario Street
- (iv) For the west side water supply water supply can be provided via connections to the proposed trunk watermains to be constructed on Old School Road and Chinguacousy Road
- Stormwater management objectives can be achieved through the proposed SWM Ponds 1-8
- (vi) It should be noted that the details of the stormwater management system will be finalized during the detailed design stage of the Subdivision;
- (vii) Erosion and sediment control measures will be installed as recommended.

7.2 Compliance Declaration

The undersigned hereby confirm that:

- The Functional Servicing/Stormwater Management Study complies with the Town of Caledon current edition of the Subdivision Design Manual
- (ii) The drainage of the adjacent lands will not be adversely affected by the proposed stormwater management provisions.

Scott Lang, P. Eng

APPENDIX A

SANITARY SEWER CALCULATIONS AND MULTI USE TABLES

Subdivision:	Mayfield West	CITY OF BRAMPTON	Project No.: W19174
File No.:		SANITARY DRAINAGE	Date: 2023-04-19
Consultant:	Candevcon Limited		Prepared By: JRE
Drainage Area Plan:	SA-1-3		Checked By: SDL

	LOC	CATION		SECTION AF	REA (Ha)									PO	PULATION					FLC	ows								REMARKS
STREET			MAINTANANCE HOLES	Executive Residential	Low Density	Low / Medium y Density	Medium Density	High density	Commercial /Retail	Junior School	Senior School	High School	Residential	Commercial	School	TOTAL	ACCUM.	PEAK		ACCUM.	PK. DAY	INFILT.	TOTAL	SIZE	SLOPE	CAPACITY		DCITY	DESIGN FLOW / FULL FLOW %
		ID	Upstream Downstream													POP	POP.	FACTOR	AREA (ha)	AREA (ha)	FLOW (m ³ /s)	(m ³ /s)	<i>FLOW</i> (m³/s)	(mm)	(%)	(m ³ /s)	FULL FLOW (m/s)	ACT. FLOW (m/s)	
1		2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
		152	MH128.2 MH128		0.32								22	0.00	0.00	22	22		0.32	0.32	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		153	MH128 MH129		0.03								2	0.00	0.00	2	25		0.03	0.35	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		154	MH129 MH130				0.25						44	0.00	0.00	44	68		0.25	0.60	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
					-																						ļ]	·	
		155	MH197 MH130		0.72								50	0.00	0.00	50	50		0.72	0.72	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		156	MH130 MH131		0.28								20	0.00	0.00	20	138		0.28	1.60	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
		157	MH131 MH321A		0.14								10	0.00	0.00	10	148		0.14	1.74	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
		159	MH132 MH133										0	0.00	0.00	0	148		0.00	1.74	0.013	0.000	0.013	250	0.50%	0.042	0.86		
		EXT3	EXT3 MH133													2132	2280		30.45	30.45							 		
		158	MH133 MH134				0.14						25	0.00	0.00	25	2453	3.52	0.14	32.33	0.028	0.006	0.034	250	0.50%	0.042	0.86	0.97	82
		160	MH134 MH135				0.17						30	0.00	0.00	30	2482	3.51	0.17	32.50	0.028	0.007	0.035	250	0.50%	0.042	0.86	0.97	83
																											└────┤		
		167	MH138 MH137		0.18								13	0.00	0.00	13	13		0.18	0.18	0.013	0.000	0.013		0.50%	0.042	0.86	0.69	31
		166	MH137 MH136		0.22								15	0.00	0.00	15	28		0.22	0.40	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		161	MH136 MH144B		0.11								8	0.00	0.00	8	36		0.11	0.51	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		162	MH144B MH144A		0.22								15	0.00	0.00	15	51		0.22	0.73	0.013	0.000	0.013			0.042	0.86	0.70	31
		163	MH144A MH144		0.13								9	0.00	0.00	9	60		0.13	0.86	0.013	0.000	0.013			0.042	0.86	0.70	31
		164	MH144 MH145		0.77								54	0.00	0.00	54	1		0.77	1.63	0.013	0.000	0.013			0.042	0.86	0.70	32
		165	MH145 MH146		0.16								11	0.00	0.00	11	125		0.16	1.79	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
					-																								
		168	MH139.2 MH139				0.35						61	0.00	0.00				0.35	0.35	0.013		0.013			0.042	0.86	0.70	31
		169	MH139 MH140				0.32						56	0.00	0.00	56			0.32	0.67			0.013			0.042	0.86	0.70	31
		170	MH140 MH141				0.09						16	0.00	0.00	16	133		0.09	0.76	0.013	0.000	0.013			0.042	0.86	0.70	31
		171	MH141 MH142				0.45						79	0.00	0.00	79	212		0.45	1.21	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		172	MH136A MH143				0.61						107	0.00	0.00	107	107		0.61	0.61	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		172	MH136A MH143 MH143 MH142				0.81						56	0.00			163		0.81			0.000							31
		1/3	WIT143 WI⊓142			1	0.32						96	0.00	0.00	00	103		0.32	0.93	0.013	0.000	0.013	200	0.50%	0.042	0.86	0.70	
		17/	MH142 MH146				0.32						56	0.00	0.00	56	431		0.32	2 /6	0.013	0.000	0.012	250	0 50%	0.042	0.86	0.71	32
			MH146 MH147		0.23		0.02	1					16						0.32			0.000	0.013			0.042	0.86	0.71	33
			MH147 MH135		0.20		0.14	1	1	1			25						0.23			0.001	0.014	1	0.50%		0.86	0.72	33
					1		5.14					1	23	0.00	0.00		000		0.14	4.02	0.010	0.001	0.014	200	0.0070	0.042	0.50	0.12	
		177	MH135 MH135.2		1								٥	0.00	0.00	0	3079	3.43	0.04	37 16	0.034	0.007	0.042	300	0.50%	0.068	0.97	1.05	61
			MH135.2 MH149		1		0.62					1	109					3.43	0.62			0.008	0.042		0.50%		0.97	1.05	63
			MH149 MH150				5.02						0	0.00	0.00			3.42	0.26		0.035		0.043		0.50%		0.97	1.05	63
			MH150 MH151										0	0.00				3.42	0.16		0.035		0.043		0.50%		0.97	1.05	63
			MH151 MH152										0	0.00				3.42	0.17		0.035		0.043	1	0.50%		0.97	1.05	63
			MH152 MH153										0	0.00	0.00		3187	3.42	0.17		0.035		0.043		0.50%		0.97	1.05	63
			MH153A MH159										0	0.00	0.00			3.42	0.14		0.035		0.043		0.50%		0.97	1.05	63
													Ĭ																
		184	MH155A MH156A		0.27								19	0.00	0.00	19	19		0.27	0.27	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
L			MITTOUR	í	U.L.1	- E		1					. 15	0.00	0.00				0.21	0.21	0.010	0.000	0.010	200	0.0070	V. U TE		0.10	0.

023-04-19
JRE
SDL
,

	L	OCATIO	N	SECTION AF	REA (Ha)									POI	PULATION					FLC	ows								REMARKS
STRE	ET	AREA	MAINTANANCE HOLES	Executive Residential	Low Density	Low / Medium y Density			Commercial /Retail	Junior School	Senior School	High School	Residential	Commercial	School	TOTAL	ACCUM.	PEAK		ACCUM.	PK. DAY	INFILT.	TOTAL	SIZE	SLOPE	CAPACITY	VELOC		DESIGN FLOW / FULL FLOW %
		ID	Upstream Downstream													POP	POP.	FACTOR	AREA (ha)	AREA (ha)	FLOW (m ³ /s)	(m ³ /s)	FLOW (m³/s)	(mm)	(%)	(m ³ /s)	FULL FLOW (m/s)	ACT. FLOW (m/s)	
	1	2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
		185	MH156A MH157A		0.18	3							13	0.00	0.00	13	32		0.18	0.45	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		186	MH157A MH158A		0.48	3		_					34	0.00	0.00	34	65		0.48	0.93	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		187	MH158A MH159		0.70								49	0.00	0.00	49	114		0.70	1.63	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
							_	_																↓ '					
		189	MH159 MH160										0	0.00	0.00	0	3301	3.41	0.17	38.85	0.036	0.008	0.044	300	0.50%	0.068	0.97	1.06	65
		190	MH160 MH161										0	0.00	0.00	0	3301	3.41	0.16	39.01	0.036	0.008	0.044	300	0.50%	0.068	0.97	1.06	65
		191	MH161 MH162				-	-					0	0.00	0.00	0	3301	3.41	0.15	39.16	0.036	0.008	0.044	300	0.50%	0.068	0.97	1.06	65
		192	MH162 MH163										0	0.00	0.00	0	3301	3.41	0.15	39.31	0.036	0.008	0.044	300	1.00%	0.097	1.37	1.32	46
		193	MH163 MH164										0	0.00	0.00	0	3301	3.41	0.16	39.47	0.036	0.008	0.044	300		0.068	0.97	1.06	65
		195	MH164 MH165										0	0.00	0.00	0	3301	3.41	0.20	39.67	0.036	0.008	0.044	300		0.068	0.97	1.06	65
		196	MH165 MH166										0	0.00	0.00	0	3301	3.41	0.20	39.87	0.036	0.008	0.044	300	0.50%	0.068	0.97	1.06	65
																								<u> </u>					
		197	MH167 MH169		0.41								29	0.00	0.00		29		0.41	0.41		0.000	0.013		0.50%	0.042	0.86	0.70	31
		198	MH169 MH170		0.20								14	0.00	0.00	14	43		0.20	0.61	0.013	0.000	0.013	250		0.042	0.86	0.70	31
		199	MH170 mh171		0.48								34	0.00	0.00	34	76		0.48	1.09	0.013	0.000	0.013	250		0.042	0.86	0.70	31
		200	mh171 MH172 MH172 MH173		0.42								29	0.00	0.00	29 15	106 120		0.42	1.51 1.72	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
		201 202	MH172 MH173 MH173 MH174		0.21								15	0.00	0.00	15			0.21 0.17	1.72	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
		202			0.17								12	0.00	0.00	12	132		0.17	1.09	0.013	0.000	0.013	230	0.30%	0.042	0.00	0.70	3z
		204	MH168 MH175		0.34								24	0.00	0.00	24	24		0.34	0.34	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		204	MH175 MH176		0.18								13	0.00	0.00				0.11	0.45	0.013	0.000	0.013	250		0.042	0.86	0.70	31
		206	MH176 MH177		0.31								22	0.00	0.00	36	72		0.31	0.76	0.013	0.000	0.013	250		0.042	0.86	0.70	31
		207	MH177 MH178		0.56								39	0.00	0.00	39	124		0.56	1.49	0.013	0.000	0.013	250		0.042	0.86	0.70	32
		208	MH178 MH179		0.46								32	0.00	0.00	32	156			1.49									
		209	MH179 MH180		0.21								15	0.00	0.00	15	170		0.21	1.70	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
		210	MH180 MH181		0.21								15	0.00	0.00	15	185		0.21	0.21	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.69	31
212	2	212	MH175 MH183		0.53								37	0.00	0.00	37	37		0.53	0.53	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		213	MH182 MH183		0.17								12	0.00	0.00	12	49		0.17	0.70	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		214	MH183 MH184		0.10	b							7	0.00	0.00	7	7		0.10	0.10	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.69	31
		215	MH184 MH185		0.31	1							22	0.00	0.00	22	29		0.31	0.41	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		216	MH185 MH186		0.23		_						16	0.00	0.00	16	45		0.23	0.64	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
		217	MH186 MH178				0.44	1			ļ		77	0.00	0.00	77	77		0.44	0.44	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
ļ							_			-	ļ													 '					
	-	218	MH186 MH187		0.33	_	_						23	0.00	0.00	23	100		0.33	0.77	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	-	218A	MH187 mh188		0.18	_							13						0.18					└─── ′					
		219	MH187 MH192A		0.08	_		_					6	0.00	0.00	6	106		0.08	0.85				 '					
						_		_																 '					
			MH190 MH191		0.65			+					46	0.00	0.00	46	151		0.65	1.50	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
	-	224			0.40	_							28						0.40					├────'			ł	_	
	-	225	MH192 MH188		0.37	7							26	0.00	0.00	26	222		0.37	2.51	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.71	32
																								<u> </u>				L	

Subdivision:	Mayfield West	CITY OF BRAMPTON	Project No.: W19174
File No.:		SANITARY DRAINAGE	Date: 2023-04-19
Consultant:	Candevcon Limited		Prepared By: JRE
Drainage Area Plan:	SA-1-3		Checked By: SDL

	LC	OCATION			SECTION AF	EA (Ha)									PO	PULATION					FL(ows							<u> </u>	REMARKS
STREE	ΞT	AREA ID	MAINTANA	NCE HOLES	Executive Residential	Low Density	Low / Medium Density	Medium Density	High density	Commercial /Retail	Junior School	Senior School	High School	Residential	Commercial	School	TOTAL POP	ACCUM. POP.	PEAK FACTOR	AREA	ACCUM. AREA	PK. DAY FLOW	INFILT.	TOTAL FLOW	SIZE	SLOPE	CAPACITY	FULL FLOW	OCITY ACT. FLOW	DESIGN FLOW / FULL FLOW %
			Upstream	Downstream	1															(ha)	(ha)	(m ³ /s)	(m³/s)	(m³/s)	(mm)	(%)	(m ³ /s)	(m/s)	(m/s)	
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
		219	MH188	MH193		0.17								12	0.00	0.00	12	340		0.17	2.68	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.71	32
		220	MH193	MH195-2		0.29								20	0.00	0.00	20	360			2.68									
		221	MH195A	MH195-2		0.08								6	0.00	0.00	6	365		0.08	2.76	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.71	32
		222	MH195A	MH181		0.41								29	0.00	0.00	29	394		0.41	3.17	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.71	32
		211	MH181	MH174										0	0.00	0.00	0	579		0.11	3.49	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.71	33
		203	MH174	MH166		0.41								29	0.00	0.00	29	740		0.11	5.49	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.72	33
		226	MH166	MHXX										0	0.00	0.00	0	4042	3.33	0.16	45.52	0.044	0.009	0.053	300	0.50%	0.068	0.97	1.10	77

Subdivision:	Mayfield West	CITY OF BRAMPTON	Project No.: W19174
File No.:		SANITARY DRAINAGE	Date: 2023-04-19
Consultant:	Candevcon Limited		Prepared By: JRE
Drainage Area Plan:	SA-1-3		Checked By: SDL

		LOCATIO	N		SECTION AR	REA (Ha)									PO	PULATION					FLC	ows								REMARKS
	STREET		MAINTANA	NCE HOLES		Low Density	Medium				Junior School	Senior School	High School	Residential	Commercial	School				AREA			INFILT.		SIZE	SLOPE	CAPACITY		СІТҮ	DESIGN FLOW / FULL FLOW %
I I <			Upstream	Downstream														-		(ha)		(m ³ /s)	(m ³ /s)	(m³/s)			(m ³ /s)		(m/s)	
1 1 <	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1 1 <						-			-																					
1 1 <																														
1 3 3 5 <		1	1A	2A		0.32								22	0.00	0.00	22	22		0.32	0.32	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
1 <		2	2A	ЗA		0.08								6	0.00	0.00	6	28		0.08	0.40	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
1 1 0 0 0 0 <		3	ЗA	4A		0.33								23	0.00	0.00	23	51		0.33	0.73	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
1 5 5 5 5 <		4	5A	4A		0.76								53	0.00	0.00	53	53		0.76	0.76	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
Image Image <th< td=""><td></td><td>5</td><td>4A</td><td>6A</td><td></td><td>0.16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td>0.00</td><td>0.00</td><td>11</td><td>116</td><td></td><td>0.16</td><td>1.65</td><td>0.013</td><td>0.000</td><td>0.013</td><td>250</td><td>0.50%</td><td>0.042</td><td>0.86</td><td>0.70</td><td>32</td></th<>		5	4A	6A		0.16								11	0.00	0.00	11	116		0.16	1.65	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
N N N N N <		6	6A	7A		0.13			-					9	0.00	0.00	9	125		0.13	1.78	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
1 1 <						-			-																					
Image Image <th< td=""><td></td><td>EXT1</td><td>EXT1</td><td>MH10A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		EXT1	EXT1	MH10A																										
1 1 <		7																											_	
Image Image <th< td=""><td></td><td>8</td><td>11A</td><td>12A</td><td></td><td></td><td></td><td>0.25</td><td></td><td></td><td></td><td></td><td></td><td>65</td><td></td><td>0.00</td><td>65</td><td>372</td><td></td><td></td><td>4.94</td><td>0.013</td><td>0.001</td><td></td><td></td><td>1.00%</td><td>0.060</td><td>1.21</td><td>0.82</td><td>23</td></th<>		8	11A	12A				0.25						65		0.00	65	372			4.94	0.013	0.001			1.00%	0.060	1.21	0.82	23
Image Image <th< td=""><td></td><td>9</td><td>12A</td><td>13A</td><td></td><td>0.32</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>22</td><td>0.00</td><td>0.00</td><td>22</td><td>394</td><td></td><td>0.32</td><td>5.26</td><td>0.013</td><td>0.001</td><td>0.014</td><td>250</td><td>0.50%</td><td>0.042</td><td>0.86</td><td>0.72</td><td>33</td></th<>		9	12A	13A		0.32								22	0.00	0.00	22	394		0.32	5.26	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.72	33
1 1 1 1 1 0		10	13A	14A		0.16								11	0.00	0.00	11	405		0.16	5.42	0.013	0.001	0.014	250		0.042	0.86	0.72	33
Image Image <th< td=""><td></td><td>11</td><td>14A</td><td>15A</td><td></td><td>0.35</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25</td><td>0.00</td><td>0.00</td><td>25</td><td>430</td><td></td><td>0.35</td><td>5.77</td><td>0.013</td><td>0.001</td><td>0.014</td><td>250</td><td>0.50%</td><td>0.042</td><td>0.86</td><td>0.72</td><td>34</td></th<>		11	14A	15A		0.35								25	0.00	0.00	25	430		0.35	5.77	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.72	34
Image Image <th< td=""><td></td><td>12</td><td>16A</td><td>15A</td><td></td><td></td><td></td><td>0.36</td><td></td><td></td><td></td><td></td><td></td><td>63</td><td>0.00</td><td>0.00</td><td>63</td><td>63</td><td></td><td>0.36</td><td>0.36</td><td>0.013</td><td>0.000</td><td>0.013</td><td>250</td><td>0.50%</td><td>0.042</td><td>0.86</td><td>0.70</td><td>31</td></th<>		12	16A	15A				0.36						63	0.00	0.00	63	63		0.36	0.36	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
Image Image <th< td=""><td></td><td>13</td><td>15A</td><td>9A</td><td></td><td>-</td><td></td><td>0.44</td><td>-</td><td></td><td></td><td></td><td></td><td>77</td><td>0.00</td><td>0.00</td><td>77</td><td>570</td><td></td><td>0.44</td><td>6.57</td><td>0.013</td><td>0.001</td><td>0.014</td><td>250</td><td>0.50%</td><td>0.042</td><td>0.86</td><td>0.72</td><td>34</td></th<>		13	15A	9A		-		0.44	-					77	0.00	0.00	77	570		0.44	6.57	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.72	34
Image Image <th< td=""><td></td><td></td><td>17A</td><td>9A</td><td></td><td>1</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>35</td><td></td><td>0.00</td><td>35</td><td>35</td><td></td><td>0.50</td><td>0.50</td><td>0.013</td><td>0.000</td><td>0.013</td><td>250</td><td></td><td>0.042</td><td>0.86</td><td>0.70</td><td></td></th<>			17A	9A		1			-					35		0.00	35	35		0.50	0.50	0.013	0.000	0.013	250		0.042	0.86	0.70	
Image: bit in the state of the state state of the state of the state of the state of the st		15	9A	7A		0.20			-					14	0.00	0.00	14	619		50.10	57.17	0.013	0.011	0.024	250	0.50%	0.042	0.86	0.92	58
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																														
Image Image <th< td=""><td></td><td>16</td><td>7A</td><td>18A</td><td></td><td>0.35</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>25</td><td>0.00</td><td>0.00</td><td>25</td><td>768</td><td></td><td>0.35</td><td>59.30</td><td>0.013</td><td>0.012</td><td>0.025</td><td>250</td><td>0.50%</td><td>0.042</td><td>0.86</td><td>0.92</td><td>59</td></th<>		16	7A	18A		0.35			-					25	0.00	0.00	25	768		0.35	59.30	0.013	0.012	0.025	250	0.50%	0.042	0.86	0.92	59
Image 1mage 1mage <th< td=""><td></td><td>17</td><td>26A</td><td>18A</td><td></td><td></td><td></td><td>0.44</td><td></td><td></td><td></td><td></td><td></td><td>77</td><td>0.00</td><td>0.00</td><td>77</td><td>77</td><td></td><td>0.18</td><td>0.18</td><td>0.013</td><td>0.000</td><td>0.013</td><td>250</td><td>0.50%</td><td>0.042</td><td>0.86</td><td>0.69</td><td>31</td></th<>		17	26A	18A				0.44						77	0.00	0.00	77	77		0.18	0.18	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.69	31
Image: black Image: black <th< td=""><td></td><td>18</td><td>18A</td><td>19A</td><td></td><td>0.36</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25</td><td>0.00</td><td>0.00</td><td>25</td><td>870</td><td></td><td>0.36</td><td>59.84</td><td>0.013</td><td>0.012</td><td>0.025</td><td>250</td><td>0.50%</td><td>0.042</td><td>0.86</td><td>0.92</td><td>59</td></th<>		18	18A	19A		0.36								25	0.00	0.00	25	870		0.36	59.84	0.013	0.012	0.025	250	0.50%	0.042	0.86	0.92	59
Image: black 21		19	19A	20A		0.42								29	0.00	0.00	29	900		0.11	59.95	0.013	0.012	0.025	250	0.50%	0.042	0.86	0.92	59
Image: Normal biase		20	20A	21A				0.09						16	0.00	0.00	36	936		0.09	60.04	0.013	0.012	0.025	250	0.50%	0.042	0.86	0.92	59
1 23 22A 23A 0.2A 0.2B 0.		21	21A	22A				0.41						72	0.00	0.00	72	1007	3.80	0.41	60.45	0.012	0.012	0.024	250	0.50%	0.042	0.86	0.92	58
1 23 234 234 234 234 234 234 244 0.21 1	├ ─── ├ ──																													
1 24 24 24 24 0.0 <td>├───├──</td> <td></td> <td>9</td> <td></td> <td></td> <td>9</td> <td>9</td> <td></td>	├ ─── ├ ──													9			9	9												
Image: space s	├ ─── ├ ──													15	0.00															
1 2 15A 25A 0.24 0.24 0 0 0 17 0.00 0.01 17 0.02 0.01 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.01 0.02 0.00 0.02 0.00 0.01 0.01 0.002 0.00 0.01 0.01 0.010	├ ─── ├ ──																													
1 27 26A 26A 0.04 0.	├ ─── ├ ──							0.25																						
Image: Second state Image: Second state<	├ ─── ├ ──																													
	├ ─── ├ ──	27	25A	26A		0.24								17	0.00	0.00	17	1133	3.76	0.24	62.16	0.014	0.012	0.026	250	0.50%	0.042	0.86	0.93	62
	├ ─── ├ ──																													
29 28A 26A 0.10 0.42 81 0.0 81 0.00 81 112 0.52 0.97 0.013 0.00 0.013 250 0.064 0.06 0.07 31	├ ─── ├ ──					1																								
	├ ─── ├ ──	29	28A	26A		0.10		0.42						81	0.00	0.00	81	112		0.52	0.97	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
30 26A 29A 0.10 0.20 0.20 42 0.00 0.00 42 1287 3.73 0.30 63.43 0.016 0.013 0.028 250 0.50% 0.042 0.86 0.95 67		30	26A	29A		0.10		0.20						42	0.00	0.00	42	1287	3.73	0.30	63.43	0.016	0.013	0.028	250	0.50%	0.042	0.86	0.95	67
	├ ─── ├ ──																													
31 30A 31A 0.46 0.46 0.46 0.013 0.000 0.013 250 0.50% 0.042 0.86 0.70 31	├ ─── ├ ──					1																								
32 31A 29A 0.17 0.40 Image: Constraint of the cons	├ ─── ├ ──							0.40																						
33 29A 32A 0.39 0.39 27 0.00 27 1428 3.69 0.39 64.85 0.017 0.013 0.030 375 0.50% 0.124 1.12 0.78 24		33	29A	32A		0.39		<u> </u>						27	0.00	0.00	27	1428	3.69	0.39	64.85	0.017	0.013	0.030	375	0.50%	0.124	1.12	0.78	24

023-04-19
JRE
SDL
,

Image: Proper biase		LOC	ATION		SEC	TION ARE	EA (Ha)									PO	PULATION					FLC	ows								REMARKS
I J	STREET				ES Res		Low Density	Medium					Senior School	High School	Residential	Commercial	School					AREA	FLOW		FLOW				FULL FLOW	ACT. FLOW	FULL FLOW
	1		2			F	6	7	0	0	10	11	10	12	14	15	16	17	10	10	(-)		()					. ,			
N N	1		2	3 4		5	0	1	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	21	28	29	30
1 1 10 00 0.0									0.04						50			50	50		0.40	0.40	0.010	0.000		075	0.500/				
N N																															
			35	34A 32A	\		0.10								93	0.00	0.00	93	152		0.59	1.07	0.013	0.000	0.013	375	0.50%	0.124	1.12	0.46	
1 0 00 <td></td> <td></td> <td>36</td> <td>32A 22A</td> <td>A</td> <td></td> <td>0.20</td> <td></td> <td>0.20</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>49</td> <td>0.00</td> <td>0.00</td> <td>49</td> <td>1629</td> <td>3.65</td> <td>0.18</td> <td>66.10</td> <td>0.019</td> <td>0.013</td> <td>0.033</td> <td>375</td> <td>0.50%</td> <td>0.124</td> <td>1.12</td> <td>0.82</td> <td>26</td>			36	32A 22A	A		0.20		0.20	-			-		49	0.00	0.00	49	1629	3.65	0.18	66.10	0.019	0.013	0.033	375	0.50%	0.124	1.12	0.82	26
1 0 00 <td></td> <td>-</td> <td></td> <td> </td> <td>⊢−−−−</td> <td></td>																-													 	⊢−−−−	
N N			37	35A 36A	\		0.25		0.25						61	0.00	0.00	61	61		0.50	0.50	0.013	0.000	0.013	375	0.50%	0.124	1.12	0.46	11
I I			38	36A 22A	A		0.40		0.22			_		_	67	0.00	0.00	67	128		0.62	1.12	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
N N			39	22AA 37A	\										0	0.00	0.00	0	1757	3.63	0.00	67.22	0.021	0.013	0.034	250	0.50%	0.042	0.86	0.98	81
N N																															
N Q MA MA <td></td> <td></td> <td>40</td> <td>38A 39A</td> <td>\</td> <td></td> <td>0.51</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>36</td> <td>0.00</td> <td>0.00</td> <td>36</td> <td>1792</td> <td>3.62</td> <td>0.51</td> <td>67.73</td> <td>0.021</td> <td>0.014</td> <td>0.035</td> <td>250</td> <td>0.50%</td> <td>0.042</td> <td>0.86</td> <td>0.97</td> <td>82</td>			40	38A 39A	\		0.51								36	0.00	0.00	36	1792	3.62	0.51	67.73	0.021	0.014	0.035	250	0.50%	0.042	0.86	0.97	82
N A A A A A A A A A A A A A A A B B BA B			41	39A 37A	\		0.65								46	0.00	0.00	46	1838	3.61	0.65	68.38	0.022	0.014	0.035	250	0.50%	0.042	0.86	0.97	84
I A B			42	37A 40A	\		0.42								29	0.00	0.00	29	3624	3.37	0.42	68.80	0.040	0.014	0.053	300	0.50%	0.068	0.97	1.10	78
I A B			43	41A 42A	\ \		0.57								40	0.00	0.00	40	40		0.57	0.57	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
N A B BA BA <td></td> <td>47</td> <td></td> <td></td> <td></td> <td>87</td> <td></td>															47				87												
N N																			3735	3 36											
Image: bold			43		`		0.04								27	0.00	0.00	27	5755	0.00	0.54	10.50	0.041	0.014	0.000	500	0.5070	0.000	0.57	1.10	
Image: Normal and the state of the stat			40	404 444			0.07								20	0.00	0.00	26	26		0.07	0.07	0.012	0.000	0.012	250	0.50%	0.042	0.96	0.70	
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>26</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																			26												
Image Image <th< td=""><td></td><td></td><td>47</td><td>44A 45A</td><td>\</td><td></td><td>0.85</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>60</td><td>0.00</td><td>0.00</td><td>60</td><td>85</td><td></td><td>0.85</td><td>1.22</td><td>0.013</td><td>0.000</td><td>0.013</td><td>250</td><td>0.50%</td><td>0.042</td><td>0.86</td><td>0.70</td><td>31</td></th<>			47	44A 45A	\		0.85								60	0.00	0.00	60	85		0.85	1.22	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>┢───┤</td><td>·</td><td></td></th<>										-																			┢───┤	·	
Image Image <th< td=""><td></td><td></td><td>48</td><td>46A 47A</td><td>\</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td>0.00</td><td>0.00</td><td>10</td><td>10</td><td></td><td>0.14</td><td>0.14</td><td>0.013</td><td>0.000</td><td>0.013</td><td>250</td><td></td><td>0.042</td><td>0.86</td><td>0.69</td><td>31</td></th<>			48	46A 47A	\										10	0.00	0.00	10	10		0.14	0.14	0.013	0.000	0.013	250		0.042	0.86	0.69	31
Image: bit single sin			49	47A 48A	4		0.29								20	0.00	0.00	20	30		0.29	0.43	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
1 1			50	48A 49A	\		0.75							-	53	0.00	0.00	53	83		0.12	0.55	0.013	0.000	0.013	450	0.50%	0.202	1.27	0.39	6
1 1			51	50A 49A	× _		0.15								11	0.00	0.00	11	11		0.15	0.15	0.013	0.000	0.013	450	0.50%	0.202	1.27	0.39	6
Image: bit in the state in thestatestate in thestate in the state in the state in thes			52	49A 45A	A		0.23								16	0.00	0.00	16	109		0.23	0.93	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
Image: bit			53	45A 52A	\				0.53						93	0.00	0.00	93	287		0.53	1.46	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
Image Image <th< td=""><td></td><td></td><td>54</td><td>51A 52A</td><td></td><td></td><td>0.66</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>46</td><td>0.00</td><td>0.00</td><td>46</td><td>334</td><td></td><td>0.66</td><td>2.12</td><td>0.013</td><td>0.000</td><td>0.013</td><td>250</td><td>0.50%</td><td>0.042</td><td>0.86</td><td>0.70</td><td>32</td></th<>			54	51A 52A			0.66								46	0.00	0.00	46	334		0.66	2.12	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
Image: bit im			55	52A 65A	4				0.44						77	0.00	0.00	77	411		0.44	2.56	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.71	32
Image: bit im																															
Image: bit im			56	54AA 54A	\		0.17								12	0.00	0.00	12	12		0.17	0.17	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.69	31
1 58 544 554 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.71 0.71 0.72 0.72 0.71 0.71 0.72 0.72 0.72 0.72 0.71 0.71 0.72 0.72 0.71 0.			57	53A 54A	4		0.32								22	0.00	0.00	22	22		0.32	0.32	0.013	0.000		250	0.50%	0.042	0.86	0.70	31
Image: Serie of the			58	54A 55A	`		0.72								50	0.00	0.00	50	85		0.72	3.01	0.013							0.71	32
Image: series of the																						-								i 1	
Image: series of the			59	56A 57A	\		0.42								29	0.00	0.00	29	114		0.42	3.43	0.013	0,001	0.014	250	0,50%	0.042	0.86	0.71	33
1 6 57 55 0.0 0.0 0.0 0.01 0.01 0.01								1					1						1												
1 1 1 0 0 0 1 0																															
Image: Normal Series (Series (S							0.20		0.62																						
64 59A 61A C 0.27 C 0.27 C 0.27 <td></td> <td></td> <td>02</td> <td>59A 59A</td> <td></td> <td></td> <td></td> <td>1</td> <td>0.62</td> <td>1</td> <td></td> <td>+</td> <td>+</td> <td>+</td> <td>109</td> <td>0.00</td> <td>0.00</td> <td>109</td> <td>347</td> <td></td> <td>0.62</td> <td>0.62</td> <td>0.013</td> <td>0.000</td> <td>0.013</td> <td>250</td> <td>0.50%</td> <td>0.042</td> <td>0.66</td> <td>0.70</td> <td>31</td>			02	59A 59A				1	0.62	1		+	+	+	109	0.00	0.00	109	347		0.62	0.62	0.013	0.000	0.013	250	0.50%	0.042	0.66	0.70	31
64 59A 61A C 0.27 C 0.27 C 0.27 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.65</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td>							0.65																				0				
Image: Note Note Note Note Note Note Note Note							0.60					1		1																	
66 63A 61A 0.25 0.12 0.11 <td< td=""><td></td><td></td><td>64</td><td>59A 61A</td><td></td><td></td><td></td><td></td><td>0.27</td><td></td><td></td><td></td><td></td><td></td><td>47</td><td>0.00</td><td>0.00</td><td>47</td><td>453</td><td></td><td>0.27</td><td>0.97</td><td>0.013</td><td>0.000</td><td>0.013</td><td>250</td><td>0.50%</td><td>0.042</td><td>0.86</td><td>0.70</td><td>31</td></td<>			64	59A 61A					0.27						47	0.00	0.00	47	453		0.27	0.97	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
66 63A 61A 0.25 0.12 0.11 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>┝───┤</td><td></td><td></td></td<>																			<u> </u>										┝───┤		
												-		+																	
67 61A 64A 0.20 0.18 46 0.00 0.00 46 553 0.38 1.95 0.013 0.000 0.042 0.86 0.70 32																			1						0.013				0.86		
			67	61A 64A	\		0.20		0.18						46	0.00	0.00	46	553		0.38	1.95	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32

CANDEVCON LIMITED CONSULTING ENGINEERS AND PLANNERS 9358 GOREWAY DRIVE BRAMPTON ON. L6P-0M7 FAX (905) 794-0611

Subdivision:	Mayfield West	CITY OF BRAMPTON	Project No.: W19174
File No.:		SANITARY DRAINAGE	Date: 2023-04-19
Consultant:	Candevcon Limited		Prepared By: JRE
Drainage Area Plan:	SA-1-3		Checked By: SDL
2 anage / a cu i lain	00		0.000.000 291 022

	LOCATI	ON		SECTION AR	EA (Ha)									PO	PULATION					FLC	ows								REMARKS
STREET	ARE/ ID	MAINTAN	ANCE HOLES	Executive Residential	Low Density	Low / Medium / Density	Medium Density	High density	Commercial /Retail	Junior School	Senior School	High School	Residential	Commercial	School	TOTAL POP	ACCUM. POP.	PEAK FACTOR	AREA	ACCUM. AREA	PK. DAY FLOW	INFILT.	TOTAL FLOW	SIZE	SLOPE	CAPACITY	VELO FULL FLOW	OCITY	DESIGN FLOW / FULL FLOW %
		Upstream	Downstream																(ha)	(ha)	(m ³ /s)	(m ³ /s)	(m³/s)	(mm)	(%)	(m ³ /s)	(m/s)	(m/s)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	68	64A	65A		0.13		0.25						53	0.00	0.00	53	606		0.38	2.33	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
	69	65A	66A		0.28		0.28			-		-	69	0.00	0.00	69	1085	3.78	0.56	2.89	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.71	33
	70	66A	67A							_			0	0.00	0.00	0	1085	3.78	0.00	2.89	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.71	33
	71	67A	68A		0.46								32	0.00	0.00	32	1118	3.77	0.46	3.35	0.014	0.001	0.014	250	0.50%	0.042	0.86	0.73	34
	72	69A	70A		0.48	5							34	0.00	0.00	34	34		0.48	0.48	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	73	70A	71A		0.73								51	0.00	0.00	51	85		0.73	1.21	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	74	71A	72A		0.35								25	0.00	0.00	25	109		0.35	1.56	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
	75	72A	73A		0.28								20	0.00	0.00	20	129		0.28	1.84	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
	76	73A	74A		0.57								40	0.00	0.00	40	169		0.57	2.41	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.71	32
	77	74A	75A		0.66								46	0.00	0.00		215		0.66	3.07	0.013	0.001	0.014	250		0.042	0.86	0.71	32
	78	74A 75A	76A		0.35	,							25	0.00	0.00	25	239		0.35	3.42	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.71	32
		754			0.35		0.00						51			51	51					1							31
	79		76A				0.29						0.	0.00	0.00	01	01		0.29	0.29	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	-
	80	76A	77A				0.30						53	0.00	0.00	53	343		0.30	4.01	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.71	33
																											\vdash		
	81	78A	79A		0.66								46	0.00	0.00	46	46		0.07	0.07	0.013	0.000	0.013	450	0.50%	0.202	1.27	0.39	6
	82	79A	80A		0.61					-		-	43	0.00	0.00	43	89		0.61	0.68	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	83	80A	77A		0.48								34	0.00	0.00	119	119		0.97	0.97	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	84	77A	81A							_			0	0.00	0.00	0	462		0.00	4.98	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.72	33
	85	82A	83A		0.67								47	0.00	0.00	47	47		0.67	0.67	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	86	83A	84A		0.61								43	0.00	0.00	43	90		0.61	1.28	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	87	84A	81A		0.46								32	0.00	0.00	32	122		0.46	1.74	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
	88	81A	68A				0.30						53	0.00	0.00	53	636		0.30	2.04	0.013	0.000	0.013	250		0.042	0.86	0.70	32
	89	68A	68AA				0.17						30	0.00	0.00		1783	3.62	0.17	2.21	0.021	0.000	0.021	250		0.042	0.86	0.86	51
	90	68AA	85A				0.47						82	0.00	0.00	82	1866	3.61	0.47	2.68	0.022	0.001	0.022	250	0.50%	0.042	0.86	0.88	53
	91	85A	43A				0.40						70	0.00	0.00	70	1936	0.01	0.40	3.08	0.000	0.001	0.001	250	0.50%	0.042	0.86	0.05	1
			45A 86A		0.21		0.40											2.40											
	92	43A	60A		0.31			1					22	0.00	0.00	22	5692	3.19	9.10	82.56	0.059	0.017	0.075	375	0.50%	0.124	1.12	1.21	61
			c=-			1	0.05						44	0.00	0.00	44			0.05	0.05	0.010	0.000		050	0 5000	0.010			
	93	37A	87A				0.25							0.00	0.00	44	44		0.25	0.25	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.69	31
	94	87A	88A		<u> </u>	+	0.28	<u> </u>			+	+	49	0.00	0.00		93		0.28	0.53			0.013		0.50%		0.86	0.70	31
	95		89A		0.31								22		0.00				0.31	0.84			0.013		0.50%		0.86	0.70	31
	96	89A	90A		1.05								74	0.00	0.00	74	188		0.17	1.01	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
																											┝───┤		
	97	88A	91A				0.28						49	0.00	0.00	49	49		0.28	0.28	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	98	91A	92A		0.70		0.08						63	0.00	0.00	63	112		0.78	1.06	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	99	92A	93A		0.74								52	0.00	0.00	52	164		0.74	1.80	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	32
	100	95A	96A				0.24						42	0.00	0.00	42	42		0.24	0.24	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.69	31
	101		93A				0.21						37	0.00	0.00		79		0.21	0.45			0.013				0.86	0.70	31
	102		102A			1	0.32						56	0.00	0.00		299		0.32	2.57			0.014				0.86	0.71	32
														0.00	0.00														
	103	94A	95A		0.25	1	1	1			1		18	0.00	0.00	18	18		0.25	0.25	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.69	31
	103	94A	ACE		0.20	1	1	1	1	1	I	1	1 10	0.00	0.00	10	10	I	0.23	0.20	0.013	0.000	0.013	200	0.00%	0.042	0.00	0.09	51

CANDEVCON LIMITED CONSULTING ENGINEERS AND PLANNERS 9358 GOREWAY DRIVE BRAMPTON ON. L6P-0M7 TEL 1905) 794-0600 FAX (905) 794-0611

Subdivision: File No.: Consultant: Drainage Area Plan: Project No.: W19174 Date: 2023-04-19 Prepared By: JRE Checked By: SDL CITY OF BRAMPTON SANITARY DRAINAGE Mayfield West Candevcon Limited SA-1-3

LO	CATION		SECTION A	REA (Ha)							•		PO	PULATION					FLC	ows			r					REMARKS
STREET	AREA MAIN	TANANCE H	Executive DLES Residential	Low Density	Low / Medium Density	Medium Density	High density	Commercial /Retail	Junior School	Senior School	High School	Residential	Commercial	School	TOTAL		PEAK			PK. DAY	INFILT.	TOTAL	SIZE	SLOPE	CAPACITY	VELOO		DESIGN FLOW / FULL FLOW %
		ream Down	stream												POP	POP.	FACTOR	AREA (ha)	AREA (ha)	FLOW (m ³ /s)	(m ³ /s)	FLOW (m³/s)	(mm)	(%)	(m ³ /s)	FULL FLOW (m/s)	(m/s)	
1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
			1A	0.39								27	0.00	0.00	27			0.39	0.64	0.013	0.000	0.013	250		0.042	0.86	0.70	31
			2A	0.34		0.35						85	0.00	0.00	85	100		0.69	1.33	0.013	0.000	0.013	250		0.042	0.86	0.70	32
	107 10	2A 10	3A	0.22								15	0.00	0.00	15	444		0.22	4.12	0.013	0.001	0.014	250	0.50%	0.042	0.86	0.71	33
			7A	0.09								6	0.00	0.00		6 32		0.08	0.08	0.013	0.000	0.013			0.042	0.86	0.69	
			BA DA	0.37								26	0.00	0.00		02		0.37 0.46	0.45 0.91	0.013	0.000	0.013	250 250		0.042	0.86	0.70 0.70	
			0A	0.40		0.42						74	0.00	0.00	32 74	04		0.46	1.33	0.013	0.000	0.013	250		0.042	0.86	0.70	32
			3A	0.35		0.42						25	0.00	0.00	25	100		9.73	11.06	0.013	0.000	0.015	250		0.042	0.86	0.75	36
			4A	0.55		0.25						44	0.00	0.00				0.04	11.10	0.013	0.002	0.015	250		0.042	0.86	0.75	36
			5A			0.20						0	0.00	0.00	0	650		0.04	11.12	0.013	0.002	0.015	250		0.042	0.86	0.75	36
			7A	0.39								27	0.00	0.00	27	677		0.39	11.51	0.013	0.002	0.015	250		0.042	0.86	0.75	36
)A	0.24								17		0.00	17			0.24	11.75	0.013	0.002	0.015	250		0.042	0.86	0.75	
	117 90)A 8	6A	0.44								31	0.00	0.00	31	913		0.44	12.19		0.002	0.015	250		0.042	0.86	0.75	37
	118 8	6A 10	6A						1.00			0	0.00	200.00	200	6805	3.12	0.12	94.87	0.069	0.019	0.088	375	0.50%	0.124	1.12	1.26	71
	119 10	6A 12	8A	0.20								14	0.00	0.00	14	6819	3.12	0.20	95.07	0.069	0.019	0.088	375	0.50%	0.124	1.12	1.26	71
	120 10	8A 10	9A	0.21								15	0.00	0.00	15	15		0.21	0.21	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.69	31
	121 10	9A 1'	0A	0.29								20	0.00	0.00	20	35		0.06	0.27	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	122 11	0A 10	7A	0.31								22	0.00	0.00	22	57		0.31	0.58	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	123 10	7A 1'	4A	0.35		0.24						67	0.00	0.00	67	123		0.07	0.65	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	124 10	8A 1'	2A	0.64								45	0.00	0.00	45	45		0.08	0.08	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.69	31
				_																								
	EXT2 EX	T2 MH	11A													785		8.31	8.31									
	125 11	1A 1'	2A			0.15						26	0.00	0.00	26	811		0.11	8.42	0.013	0.002	0.015	250	0.50%	0.042	0.86	0.73	35
		2A 1'	3A	+		0.52	├					91	0.00	0.00	91			0.09	8.51	0.013	0.002	0.015	250		0.042	0.86	0.73	
	127 11	3A 1'	4A			0.51						89	0.00	0.00	89	992		0.51	9.02	0.013	0.002	0.015	250	0.50%	0.042	0.86	0.74	35
							<u> </u>																			+	 	
	128 11			0.54			├					38						0.54			0.000		250		1		0.70	
	129 11		7A	0.31								22						0.31		0.013		0.013		0.50%		0.86	0.70	
	130 11		8A	0.16								11						1.33		0.013		0.013		0.50%		0.86	0.70	
	131 11	8A 1'	9A	0.61	1	1	├		1			43	0	0.00	43	92		0.61	2.48	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.71	32
	132 11	60 47	0A	0.38		0.20						62	0	0.00	62	62		0.58	0.50	0.012	0.000	0.013	250	0.50%	0.042	0.86	0.70	31
	132 11 133 12		9A	0.38		0.20						0						0.58			0.000	0.013		0.50%		0.86	0.70	
	133 12					0.56						98						0.10		0.013		0.013		0.50%		0.86	0.70	
	134 11		1A			0.56						90	0.00				3.71	0.00		0.013		0.013		0.50%		0.86	0.70	
	100 11		17.1		1	1						0	0.00	0.00	0	1300	5.71	0.00	10.01	0.010	0.002	0.019	200	0.00%	0.042	0.00	0.02	
	136 13	0A 13	1A	0.1								7	0.00	0.00	7	7		0.10	0.10	0.013	0.000	0.013	250	0.50%	0.042	0.86	0.69	31
L I				. 0.1	1							. ,	. 0.00	0.00				0.10	0.10	0.010	0.000	0.010		0.0070	U.UTL		0.00	

Mayfield west Phase 2 Stage 3

WEST SIDE

Connection Multi use Demand Table

WATER CONNECTION

Con	nection point ³⁾			
Pres	ssure zone of connection point		7	,
Tota	al equivalent population to be se	rviced ¹⁾	23	84
Tota	I lands to be serviced		23.	71
Hyd	rant flow test		N/A	
	Hydrant flow test location			
				T '
		Pressure (kPa)	Flow (in I/s)	Time
	Minimum water pressure	N/A		
	Maximum water pressure	N/A		
		Water demands		
No.			Demand (in I/s	5)
	Demand type	Use 1 ⁵⁾	Use 2 ⁵⁾	Total
1	Average day flow	7.73		7.73
2	Maximum day flow	15.45		15.45
Ũ	Peak hour flow	23.18		23.18
4	Fire flow ²⁾	100.00		100.00
Ana	lysis	·		
5	Maximum day plus fire flow	115.45		115.45

		Tota I
Connection point ⁴⁾		
Total equivalent population to be serviced ¹⁾	2384	2384
Total lands to be serviced	23.71	23.710
6 Wastewater sewer effluent (in I/s)	34.2	34.2

population

area (Ha)	23.71
land use	residential
population /Ha	
total population	2384

unit type	units	pop/unit	population		
Single detached town house Medium density (ha) elementary school Reserve	258 126 5.2 0 0	4.2 3.1 175 200 50.00 total population	1084 390.6 910 0 0 2384		
Water demand demand type	factor	demand		per capita water demand (l/day)	280
ave day max day peak hour	2 3	7.73 15.45 23.18			
Sanitary demand				per capita sanitary demand(lpcd)	302.8
Average day (I/s)	8.36			infiltration (l/sec/ha)	0.2
peak factor infiltration	3.53 4.74			,	
total peak sanitary flow (l/s)	34.2				
<u>fire flow</u> unit type townhouse	floor area (sn	n)			
total	0				
fire flow (l/s)	133.00	per note J			
F	 coefficient 1.5 for we combustibl 1.0 for or combustibl 0.8 for no 	d fire flow in lit related to the t ood frame con e). dinary constru e floor and inte	construction (unprote	asonry walls,	ructural
	-	-	struction (fully protected	ed frame, floo	rs, roof).
A :	The total fl	oor area in squ basements at le	are metres (including east 50 percent below	all storeys, bu	ut
	plus 50 p	ercent of each	gs, consider the two la of any floors immedia openings are inadequ	tely above the	em up to

openings and exterior vertical communications are properly protected (one hour rating), consider only the area of the largest floor plus 25 percent of each of the two immediately adjoining floors.

1. To the value obtained above a percentage should be added for structures exposed within 45 metres by the fire area under consideration. This percentage shall depend upon the height, area, and construction of the building(s) being exposed, the separation, openings in the exposed building(s), the length and height of exposure, the provision of automatic sprinklers and/or outside sprinklers in the building(s) exposed, the occupancy of the exposed building(s), and the effect of hillside locations on the possible spread of fire.

The charge for any one side generally should not exceed the following limits for the separation:

Separation Charge	Separation Charge
0 to 3m 25%	20.1 to 30 m 10%
3.1 to 10m 20%	30.1 to 45m 5%

The total percentage shall be the sum of the percentage for all sides, but shall not exceed 75 %.

The fire flow shall not exceed 45,000 L/min nor be less than 2,000 L/min.

Note A: The guide is not expected to necessarily provide an adequate value for lumber

Note B: Judgement must be used for business, industrial, and other occupancies not

Note C: Consideration should be given to the configuration of the building(s) being

Note D: Wood frame structures separated by less than 3 metres shall be considered as one

Note E: Fire Walls: - In determining floor areas, a fire wall that meets or exceeds the Normally any unpierced party wall considered to form a boundary when determining floor
 Note F: High one storey buildings: When a building is stated as 1=2, or more storeys, the However, if the building is being used for steel fabrication and the extra height is provided

Note G: If a building is exposed within 45 metres, normally some surcharge for exposure will

Note H: Where wood shingle or shake roofs could contribute to spreading fires, add 2,000 L/min to 4,000 L/min in accordance with extent and condition.

Note I: Any non-combustible building is considered to warrant a 0.8 coefficient.

Note J: Dwellings: For groupings of detached one family and small two family dwellings not exceeding 2 stories in height, the following short method may be used. (For other residential buildings, the regular method should be used.)

	sugested fire flow						
Exposure distances		Masonry or Brick					
Less than 3m	See Note "D" 4,000 L/min	6,000 L/min					
3 to 10m	3,000 L/min	4,000 L/min					
10.1 to 30m	2,000 L/min	3,000 L/min					

Over 30m	2,000 L/min
	=,

If the buildings are contiguous, use a minimum of 8,000 L/min. Also consider Note H.

OUTLINE OF PROCEDURE

- A. Determine the type of construction.
- **B.** Determine the ground floor area.
- C. Determine the height in storeys.

Using the fire flow formula, determine the required fire flow to the nearest 1,000 L/min. **E.** Determine the increase or decrease for occupancy and apply to the value obtained in D above. Do not round off the answer.

F. Determine the decrease, if any, for automatic sprinkler protection. Do not round off the value.

G. Determine the total increase for exposures, Do not round off the value.

H. To the answer obtained in E, subtract the value obtained in F and add the value obtained in G. The final figure is customarily rounded off to the nearest 1,000 L/min.

Mayfield west Phase 2 Stage 3

EAST SIDE

Connection Multi use Demand Table

WATER CONNECTION

Con	nection point ³⁾			
Pres	ssure zone of connection point		7	,
Tota	al equivalent population to be se	rviced ¹⁾	652	23
Tota	al lands to be serviced		66	.3
Hyd	rant flow test		N/A	
	Hydrant flow test location			
				·
		Pressure (kPa)	Flow (in I/s)	Time
	Minimum water pressure	N/A		
	Maximum water pressure	N/A		
		Water demands		
No.			Demand (in I/s	5)
	Demand type	Use 1 ⁵⁾	Use 2 5)	Total
1	Average day flow	21.14		21.14
2	Maximum day flow	42.28		42.28
Ũ	Peak hour flow	63.41		63.41
4	Fire flow ²⁾	100.00		100.00
Ana	lysis	·		
5	Maximum day plus fire flow	142.28		142.28

		Tota I
Connection point ⁴⁾		
Total equivalent population to be serviced ¹⁾	6523	6523
Total lands to be serviced	66.3	66.300
6 Wastewater sewer effluent (in I/s)	84.9	84.9

population

area (Ha)	66.3
land use	residential
population /Ha	
total population	6523

unit type	units	pop/unit	population		
unit type	units	pop/unit	population		
Single detached	767	4.2	3221		
Semi detached	0	4.2	0		
townhouse	636	3.1	1972		
Medium Density	2.7	175	472.5		
elementary school	1	600	600		
commercial block	4.92	50	246		
Reserve	0.22	50.00	11		
		total population	6523		
Weter demond					
Water demand demand type	factor	demand		per capita	280
demand type	Tactor	uemanu		water demand	200
				(l/day)	
				(i/ddy)	
ave day		21.14			
max day	2	42.28			
peak hour	3	63.41			
.					
Sanitary demand				per capita	302.8
				sanitary demand(lpcd)	
Average day (I/s)	22.86			infiltration	0.2
Average day (#3)	22.00			(l/sec/ha)	0.2
peak factor	3.14			(1/000/114)	
infiltration	13.26				
total peak sanitary flow (I/s)	84.9				
fire flow					
unit type	floor area (sm	ו)			
townhouse					
total	0				
lotal	0				
fire flow (I/s)	133.00	per note J			
F :	= (220CA^. ⁵)/60)			
F =	the require	d fire flow in liti	res per secound		
			ype of construction.		
C C			struction (structure es	lle vileitnes	
			struction (structure est	Sentially all	
	combustible	,			
			ction (brick or other ma	asonry walls,	
	combustible	e floor and inte	erior).		
	– 0.8 for no	n-combustible	construction (unprote	cted metal st	ructural
					aotarai
	•	s, masonry or			
	= 0.6 for fire	e-resistive con	struction (fully protected	ed frame, floo	rs, roof).
Λ _	The total fl	or area in cau	are metres (including	all storage by	ı +
A =			east 50 percent below		
	beina cons			grade) in the	Suluing

being considered.

For fire-resistive buildings, consider the two largest adjoining floors plus 50 percent of each of any floors immediately above them up to eight, when the vertical openings are inadequately protected. If the vertical

openings and exterior vertical communications are properly protected (one hour rating), consider only the area of the largest floor plus 25 percent of each of the two immediately adjoining floors.

1. To the value obtained above a percentage should be added for structures exposed within 45 metres by the fire area under consideration. This percentage shall depend upon the height, area, and construction of the building(s) being exposed, the separation, openings in the exposed building(s), the length and height of exposure, the provision of automatic sprinklers and/or outside sprinklers in the building(s) exposed, the occupancy of the exposed building(s), and the effect of hillside locations on the possible spread of fire.

The charge for any one side generally should not exceed the following limits for the separation:

Separation Charge	Separation Charge
0 to 3m 25%	20.1 to 30 m 10%
3.1 to 10m 20%	30.1 to 45m 5%

The total percentage shall be the sum of the percentage for all sides, but shall not exceed 75 %.

The fire flow shall not exceed 45,000 L/min nor be less than 2,000 L/min.

Note A: The guide is not expected to necessarily provide an adequate value for lumber

Note B: Judgement must be used for business, industrial, and other occupancies not

Note C: Consideration should be given to the configuration of the building(s) being

Note D: Wood frame structures separated by less than 3 metres shall be considered as one

Note E: Fire Walls: - In determining floor areas, a fire wall that meets or exceeds the

Normally any unpierced party wall considered to form a boundary when determining floor **Note F:** High one storey buildings: When a building is stated as 1=2, or more storeys, the However, if the building is being used for steel fabrication and the extra height is provided

Note G: If a building is exposed within 45 metres, normally some surcharge for exposure will

Note H: Where wood shingle or shake roofs could contribute to spreading fires, add 2,000 L/min to 4,000 L/min in accordance with extent and condition.

Note I: Any non-combustible building is considered to warrant a 0.8 coefficient.

Note J: Dwellings: For groupings of detached one family and small two family dwellings not exceeding 2 stories in height, the following short method may be used. (For other residential buildings, the regular method should be used.)

	suggeste	d fire flow
Exposure distances		Masonry or Brick
Less than 3m	See Note "D" 4,000 L/min	6,000 L/min

3 to 10m	3,000 L/min	4,000
	0,000 E/mm	L/min
10.1 to 30m	2,000 L/min	3,000
10.1 10 3011	2,000 L/IIIII	L/min
Over 30m		2,000
		L/min

If the buildings are contiguous, use a minimum of 8,000 L/min. Also consider Note H.

OUTLINE OF PROCEDURE

- **A.** Determine the type of construction.
- **B.** Determine the ground floor area.
- **C**. Determine the height in storeys.

Using the fire flow formula, determine the required fire flow to the nearest 1,000 L/min. **E.** Determine the increase or decrease for occupancy and apply to the value obtained in D above. Do not round off the answer.

F. Determine the decrease, if any, for automatic sprinkler protection. Do not round off the value.

G. Determine the total increase for exposures, Do not round off the value.

H. To the answer obtained in E, subtract the value obtained in F and add the value obtained in G. The final figure is customarily rounded off to the nearest 1,000 L/min.

APPENDIX B

STORM SEWER CALCULATIONS

Subdivisi File No.: Consulta Drainage	nt:	an:		Mayfiel REGIO Candev STM 1-	N:21T-) vcon Li	XX / Cl	TY:CXX	K				CALE DRAIN			FILE NUM DATE PREPARE		W23093 March 5, SDL	2024										
EAST SIDE							Si M In	ark ingle/s Aultiple ndustria	e/inst	0.25 0.50 0.75 0.90 0.90												For 1		I ₁₀ = 3	22.1* T ^ (714 35.1* T ^ (695 51.3* T ^ (686	5)		
Core System	Area No.	Up- stream	Down- stream	Contrib	outing Are	ea (ha)	Breal	Ikdown	of Areas	Ar	ea x St	orm Co	-eff	с	Total	Cummulative	Time (min)	I ₂	I ₁₀	FLOW Q= 2.78AC I/1000				PIPE			
POND 3		Node	Node	In Area	Control	Total	0.25 (0.50	0.75 0.90	0.25	0.50	0.75	0.90		AxC	AxC	In Area	Total			Q _{design}	Length (m)	Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
POND 3																												
	1	MH58	MH59	0.05	0.00	0.05			0.05	0.00	0.00	0.00	0.05	0.90	0.05	0.05	5 10	0 10.8	6	115.7	0.014	35.20	300	0.30	0.053	0.75	0.78	27%
	21	MH59	MH60	0.86	0.05	0.91		0.86		0.00			0.00	0.50	0.43	0.48				107.8	0.142	75.80	525		0.235		1.16	
	3	MH60	MH62	0.77	0.91	1.68		0.77		0.00	0.39	0.00	0.00	0.50	0.39	0.86	6 11	9 13.0		101.4	0.242	77.90	600	0.30	0.336	1.19	1.09	72%
																											ا 	
	4 1	MH61	MH62	0.17	0.00	0.17			0.17	0.00	0.00	0.00	0.15	0.90	0.15	0.15	5 10	0 11.3	6	112.0	0.048	67.80	375	0.30	0.096	0.87	1.30	50%
																	_	_									, 	
	-		MH66	0.74	0.00	0.74		0.74		0.00		-		0.50	0.37	0.37			-	109.1	0.112	102.00	450		0.156		1.73	
	61	MH66	MH67	0.41	0.74	1.15		0.41		0.00	0.21	0.00	0.00	0.50	0.21	0.58	3 11	7 12.9		102.4	0.164	73.30	525	0.30	0.235	1.09	1.12	70%
	7.1	MH60	MH67	0.51	0.00	0.51		0.51		0.00	0.26	0.00	0.00	0.50	0.26	0.26	6 10	0 12.1		106.8	0.076	109.70	375	0.30	0.096	0.87	2.10	79%
	7 1			0.51	0.00	0.51		0.51		0.00	0.20	0.00	0.00	0.50	0.20	0.20		0 12.1		100.0	0.076	109.70	375	0.30	0.090	0.07	2.10	79%
	8	MH67	MH69	0.31	1.66	1.97		0.31		0.00	0.16	0.00	0.00	0.50	0.16	0.99) 12	9 13.9)	97.2	0.266	77.80	675	0.30	0.460	1.29	1.01	58%
				0.01				0.01		0.00	0.10	0.00	0.00	0.00	0.10	0.00	/ 12	0 1010		07.2	0.200		0.0	0.00	01100			5070
	91	MH68	MH69	0.20	0.00	0.20		0.20		0.00	0.10	0.00	0.00	0.50	0.10	0.26	6 10	0 10.7	,	116.6	0.083	38.90	450	0.30	0.156	0.98	0.66	53%
																										1		
	10	MH69	MH62	0.55	2.17	2.72		0.55		0.00	0.28	0.00	0.00	0.50	0.28	1.52	2 13	9 15.2		91.1	0.384	111.10	750	0.30	0.610	1.38	1.34	63%
																											ا 	
			MH63	0.68	4.57	5.25		0.68		0.00				0.50	0.34				-	88.0	0.702	76.90	975	1 1	1.227	1 1	0.78	
			MH64	0.27	5.25	5.52		0.27		0.00				0.50	0.14	3.00				85.3	0.712	71.70	975	0.30	1.227	1.64	0.73	
	13	MH64	MH65	0.60	0.00	0.60		0.60		0.00	0.30	0.00	0.00	0.50	0.30	3.30) 16	7 17.6	6	82.3	0.756	92.10	1050	0.30	1.495	1.73	0.89	51%
	4.4	ицер	MH70	0.04	0.00	0.04		0.64		0.00	0.04	0.00	0.00	0.50	0.04	0.04	1 40	0 44 7	,	100.4	0.000	102.40	450	0.00	0.450	0.00	4 70	E 00/
			MH70 MH71	0.61	0.00 0.61	0.61 0.72		0.61 0.11		0.00				0.50 0.50	0.31	0.31			-	109.1 108.1	0.093 0.108	102.10 9.50	450 450		0.156 0.156		1.73 0.16	
			MH65	0.11	0.01	1.04		0.11		0.00				0.50	0.06			9 13.0	-	100.1	0.108	64.30	450		0.156	1 1	1.09	
				0.02	0.12	1.04		0.02		0.00	0.10	0.00	0.00	0.00	0.10	0.02	-	- 10.0		101.7	0.147	07.00	-50	0.00	0.100	0.00	1.05	5470
	17	MH65	MH66	0.36	1.64	2.00		0.36		0.00	0.18	0.00	0.00	0.50	0.18	3.82	2 10	0 10.6		117.2	1.246	66.10	1200	0.30	2.134	1.89	0.58	58%
															0.10	0.07	- 10	0 10.0		111.2	1,240	00.10		0.00	Z. 134	1.0%		

For 2-yr storm I ₂	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

Subdivisi File No.: Consultai Drainage	nt:	an:		Mayfie REGIO Cande STM 1-	N:21T-) vcon Li	XX / CI	TY:CX	X				Y OF ()RM D				FILE NUMI DATE PREPARE		W23093 March 5, 2 SDL	2024									
EAST SIDE								Park Single/ Multip Industi Roads	le/inst		0.25 0.50 0.75 0.90 0.90							1			FLOV	For 1		I I ₁₀ =	22.1* T ^ (714) 35.1* T ^ (695) 51.3* T ^ (686))		
Core System	Area No.	Up- stream	Down- stream	Contrib	outing Are	a (ha)	Bre	eakdow	n of Area	as	Ar	ea x Sto	orm Co	-eff	С	Total	Cummulative	Time (m	nin)	I ₂ I ₁₀	Q= 2.78A I/1000		I	T	PIPE			
		Node	Node	In Area	Control	Total	0.25	0.50	0.75	0.90	0.25	0.50	0.75	0.90		AxC	AxC	In Area	Total		Q _{desig}	Length n (m)	Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
pond 4	1	MH1	MH2	0.19	0.00	0.19		0.19			0.00	0.10	0.00	0.00	0.50	0.10	0.10) 10.0	10.8	11:	.3 0.03	0 43.50	375	0.30	0.096	0.87	0.83	32%
·																												
	2	МНЗ	MH4	0.28	0.00	0.28		0.28			0.00	0.14	0.00	0.00	0.50	0.14	0.14	4 10.0	10.7	116	.3 0.04	5 36.60	375	0.30	0.096	0.87	0.70	47%
			MH5	0.57	0.28	0.85		0.57			0.00				0.50	0.29	0.43						525			1.09	1.14	
		MH4	MH6	0.66	0.85	1.51		0.66			0.00				0.50	0.33	0.76			101			600			1.19	1.13	
	5	MH6	MH2	0.50	1.51	2.01		0.50			0.00	0.25	0.00	0.00	0.50	0.25	1.01	13.0	14.0	96	.5 0.27	0 73.10	600	0.30	0.336	1.19	1.02	80%
	6	MH2	MH7	0.30	2.20	2.50		0.30			0.00	0.15	0.00	0.00	0.50	0.15	1.25	5 10.0	11.0	114	.4 0.39	8 79.70	750	0.30	0.610	1.38	0.96	65%
			MH9	0.71	0.00	0.71		0.71			0.00			0.00	0.50	0.36	0.36	6 10.0	11.6			9 93.90	450	0.30	0.156	0.98	1.59	
			MH10	0.66	0.71	1.37		0.66			0.00				0.50	0.33	0.69			102			600	0.30		1.19	1.27	
	9	MH10	MH7	0.40	1.37	1.77		0.40			0.00	0.20	0.00	0.00	0.50	0.20	0.89	9 12.9	14.1	95	.9 0.23	6 90.60	600	0.30	0.336	1.19	1.27	70%
	10			0.00	4.07	4 57			0.00		0.00	0.00	0.00	0.00	0.75	0.00	0.00		45.0	0	4 0.00	4 74.00	005		0.700	4 47	0.04	770/
	10	MH7	MH11	0.30	4.27	4.57			0.30		0.00	0.00	0.23	0.00	0.75	0.23	2.36	5 14.1	15.0	92	.1 0.60	4 74.20	825	0.30	0.786	1.47	0.84	77%
	11	MH12	MH13	0.72	0.00	0.72		0.72			0.00	0.36	0.00	0.00	0.50	0.36	1.6′	10.0) 11.1	11:	.7 0.50	7 93.30	825	0.30	0.786	1.47	1.06	65%
	1 1		MH14	0.65	0.72			0.65						0.00					12.1				825			1.47	1.00	
			MH11	0.50	1.37	1.87		0.50						0.00		0.25	2.18		13.1				825			1.47	0.99	
	14	MH11	MH15	0.30	6.44	6.74		0.30			0.00	0.15	0.00	0.00	0.50	0.15	4.69	9 15.0	15.8	88	.8 1.15	8 78.40	975	0.30	1.227	1.64	0.79	94%
	15	MH16	MH17	0.62	0.00	0.62		0.42	0.20		0.00	0.21	0.15	0.00	0.58	0.36	0.36	6 10.0	11.6	11(.3 0.11	0 91.80	450	0.30	0.156	0.98	1.56	71%
			MH18	0.58	0.62	1.20		0.30			0.00			0.00		0.36	0.72		5 12.8				600	0.30	-	1.19	1.26	
	17	MH18	MH15	0.50	1.20	1.70		0.40	0.10		0.00	0.20	0.08	0.00	0.55	0.28	3.50) 12.8	13.8	97	.5 0.94	9 91.70	900	0.30	0.991	1.56	0.98	96%
																						_						
	18	MH15	MH19	0.07	8.44	8.51				0.07	0.00	0.00	0.00	0.06	0.90	0.06	8.26	5 15.8	16.1	87	.7 2.01	2 37.30	1350	0.30	2.922	2.04	0.30	69%

For 2-yr storm I_2	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

Subdivisi File No.: Consultar Drainage	nt:	an:		Mayfiel REGIO Candev STM 1-	N:21T-X vcon Li	XX / CI	TY:CXX				(of (RM D				FILE NUMI DATE PREPARE		W23093 March 5, 2 SDL	2024										
EAST SIDE							Park Single, Multip Indust Roads	ole/inst rial		0.25 0.50 0.75 0.90 0.90												For 1		I ₁₀ =	22.1* T ^ (714) 35.1* T ^ (695) 51.3* T ^ (686))		
Core System	Area No.	Up- stream	Down- stream	Contrib	uting Are	a (ha)	Breakdow	n of Are	eas	Ar	ea x Sto	orm Co	eff	С	Total	Cummulative	Time (m	in)	l ₂	I ₁₀	FLOW Q= 2.78AC I/1000				PIPE			
		Node	Node	In Area	Control	Total	0.25 0.50	0.75	0.90	0.25	0.50	0.75	0.90		AxC	AxC	In Area	Total			Q_{design}	Length (m)	Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
		MH19	MH20	0.50	8.51	9.01		0.50		0.00	0.00	0.38	0.00	0.75	0.38	8.63	3 16.1	16.9		84.8	2.035	95.60	1350	0.30	2.922	2.04	0.78	70%
	20	MH20	MH21	0.41	9.01	9.42		0.41		0.00	0.00	0.31	0.00	0.75	0.31	8.94	16.9	17.6		82.2	2.042	96.30	1350	0.30	2.922	2.04	0.79	70%
		MH22	MH23	0.55	0.00	0.55				0.00										112.7			450	0.30	0.156	0.98	1.21	
		MH23	MH245	0.70	0.55	1.25		0.35		0.00				0.63		0.71				103.7	0.205	101.70	600	0.30	0.336	1.19	1.42	
	23	MH24	MH25	0.13	1.25	1.38			0.13	0.00	0.00	0.00	0.12	0.90	0.12	0.83	3 12.6	13.7		98.2	0.226	72.90	600	0.30	0.336	1.19	1.02	67%
	24	MH26	MH27	0.57	0.00	0.57	0.57	,		0.00	0.29	0.00	0.00	0.50	0.29	0.29) 10.0	11.4		111.2	0.088	83.70	450	0.30	0.156	0.98	1.42	56%
			MH25	0.65	0.00	1.22				0.00					0.23					101.8	0.235	110.00	600	0.30	0.336	1.19	1.42	
	20			0.00	0.07	1.22	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00		10.0		101.0	0.200	110.00	000	0.00	0.000	1.10	1.04	7070
	26	MH25	MH28	0.42	2.60	3.02	0.20	0.22		0.00	0.10	0.17	0.00	0.63	0.27	1.92	2 13.7	14.5		94.4	0.505	75.10	900	0.30	0.991	1.56	0.80	51%
	27	MH29	MH30	0.62	0.00	0.62	0.62	2		0.00	0.31	0.00	0.00	0.50	0.31	0.31	10.0	11.5		110.9	0.096	86.00	450	0.30	0.156	0.98	1.46	61%
	28	MH30	MH28	0.67	0.62	1.29	0.27	0.40	_	0.00	0.14	0.30	0.00	0.65	0.44	0.75	5 11.5	12.9		102.3	0.212	100.80	600	0.30	0.336	1.19	1.41	63%
	29	MH28	MH21	0.35	0.00	0.35	0.35	•		0.00	0.18	0.00	0.00	0.50	0.18	2.84	10.0	10.6		116.9	0.924	70.70	1200	0.30	2.134	1.89	0.62	43%
	30	MH21	MH30	0.42	9.77	10.19	0.42			0.00	0.21	0.00	0.00	0.50	0.21	11.99) 17.6	18.3		80.1	2.669	82.90	1350	0.30	2.922	2.04	0.68	91%
	04	MUDA	MUDO	2.07	0.00	2 07		2.07		0.00	0.00	0.45	0.00	0.75	0.45	0.47	40.0	10.0		445.0	0 700	70.00	000	0.00	0.004	1.50	0.70	
	31	MH31	MH30	3.27	0.00	3.27		3.27		0.00	0.00	2.45	0.00	0.75	2.45	2.45	5 10.0	10.8		115.9	0.790	70.90	900	0.30	0.991	1.56	0.76	80%

For 2-yr storm I ₂	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

File No.: REGION:2					GION:21T-XX / CITY:CXX S ⁻ ndevcon Limited M 1-3							STORM DRAINAGE E					FILE NUMBER DATE PREPARED BY												
EAST SIDE							:	Park Single/ Multip Industr Roads	le/inst		0.25 0.50 0.75 0.90 0.90												· For 10-y	yr storm yr storm yr storm	I ₁₀ =	22.1* T ^ (714) 35.1* T ^ (695) 51.3* T ^ (686)			
Core System	Area No.	Up- stream	Down- stream	Contrib	uting Are	a (ha)	Bre	akdow	n of Areas	6	Are	ea x Sto	orm Co	-eff	С	Total	Cummulative	Time (m	nin)	I ₂	¹ 10 2.78	DW = BAC 000				PIPE			
		Node	Node	In Area			0.25	0.50	0.75 0).90			0.75	0.90		AxC	AxC	In Area	Total		Q _d) (Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
	32	MH30	MH32	0.44	13.46	13.90			0.44		0.00	0.00	0.33	0.00	0.75	0.33	14.78	3 18.3	8 18.9		78.5 3	223 75	.60	1650	0.30	4.990	2.33	0.54	65%
	33	MH25	MH26	0.26	0.00	0.26		0.26			0.00	0.13	0.00	0.00	0.50	0.13	0.13	3 10.0	10.9		115.2 0	042 44	50	375	0.30	0.096	0.87	0.85	429/
			MH27	0.20	0.00	0.20		0.20			0.00					0.13	0.10					042 44 081 49		450	0.30	0.090	0.87	0.83	43% 52%
			MH28	0.31	0.53	0.84		0.31			0.00					0.16	0.42	-				119 74		450	0.30	0.156	0.98	1.27	
			MH29	0.59	0.84	1.43		0.59			0.00	0.30				0.30	0.72		-			191 76		600	0.30	0.336	1.19	1.08	
	37	MH29	MH32	0.12	1.43	1.55		0.12			0.00	0.06				0.06	0.78					197 76	.50	600	0.30	0.336	1.19	1.07	
	38	MH32	MH33	0.28	15.45	15.73		0.28			0.00	0.14	0.00	0.00	0.50	0.14	15.69	9 18.9	19.2		77.4 3	377 51	.30	1650	0.30	4.990	2.33	0.37	68%
	39	MH33	MH34	0.40	15.73	16.13		0.40			0.00	0.20	0.00	0.00	0.50	0.20	15.89	9 19.2	19.7		76.2 3	366 62	.70	1650	0.30	4.990	2.33	0.45	67%
	40	MH34	MH35	0.27	16.13	16.40			0.27		0.00	0.00	0.20	0.00	0.75	0.20	16.09	9 19.7	20.2		74.8 3	345 75	.30	1650	0.30	4.990	2.33	0.54	67%
			MH36	0.29	0.00	0.29			0.29		0.00	0.00				0.22	0.22		-			074 82		450	0.30	0.156	0.98	1.39	47%
		MH36	MH37	0.59	0.29	0.88		0.59			0.00					0.30	0.51					159 100		600	0.30	0.336	1.19	1.40	47%
		MH37	MH38	0.50	0.88	1.38		0.50			0.00					0.25	0.76		-			219 89		600	0.30	0.336	1.19	1.26	
		MH38	MH39	0.50	1.38	1.88		0.50			0.00	0.25				0.25	1.01	-	-			277 78		750	0.30	0.610	1.38	0.95	
	45	MH39	MH35	0.22	1.88	2.10		0.22			0.00	0.11	0.00	0.00	0.50	0.11	1.12	13.6	5 14.5		94.1 0	294 75	.90	750	0.30	0.610	1.38	0.92	48%
	46	MH35	MH44	0.35	18.50	18.85		0.35			0.00	0.10	0.00	0.00	0.50	0.18	17.39	34.7	35.6	$\left \right $	50.5 2	440 112	60	1500	0.20	3.870	2.19	0.86	C20/
		MH44	MH44 MH45	0.35	18.85	18.85		0.55	0.34		0.00					0.18	17.35					440 112 451 68		1500	0.30 0.30	3.870	2.19	0.86	
			MH46	0.07	19.19	19.19		0.07	0.04		0.00					0.20	17.68					451 12		1500	0.30	3.870	2.19	0.32	63%
			MH47	0.42	19.26	19.68		0.07			0.00			0.00		0.04	17.89	-				457 64		1500	0.30	3.870	2.19	0.49	
			MH48	0.37	19.68	20.05		0.42			0.00					0.19	18.08					460 62		1500	0.30	3.870	2.19	0.48	
			MH49	0.16	20.05	20.21		0.16			0.00					0.08	18.16	-				465 18		1500	0.30	3.870	2.19	0.14	64%
			MH52	0.09	20.21	20.30		0.09			0.00		0.00			0.05	18.20					465 17		1500	0.30	3.870	2.19	0.13	64%
																			1										
	53	MH39	MH23	0.70	0.00	0.70		0.35	0.35		0.00	0.18	0.26	0.00	0.63	0.44	0.44	l 10.0	11.7		109.4 0	133 110	.40	525	0.30	0.235	1.09	1.69	57%
	54	MH44	MH23	0.23	0.70	0.93		0.23			0.00	0.12	0.00	0.00	0.50	0.12	0.55	5 11.7	' 12.9		102.1 0	157 79	.20	525	0.30	0.235	1.09	1.21	67%
	55	MH23	MH41	0.20	0.93	1.13		0.20			0.00	0.10	0.00	0.00	0.50	0.10	0.65	5 12.9	14.1		96.1 0	174 76	.70	525	0.30	0.235	1.09	1.17	74%

For 2-yr storm I ₂	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

Subdivisi File No.: Consulta Drainage	nt:	an:		REGIO	ld West N:21T- vcon Li -3	XX / CI	TY:CX	X					CALE DRAIN			FILE NUM DATE PREPARE		W23093 March 5, 2 SDL	2024										
EAST SIDE								Park Single/ Multip Industr Roads	le/inst		0.25 0.50 0.75 0.90 0.90												For 2	10-yr storm	I ₁₀ =	22.1* T ^ (714 35.1* T ^ (695 51.3* T ^ (686)		
Core System	Area No.	Up- stream	Down- stream	Contrib	outing Are	ea (ha)	Bre	akdow	n of Are	eas	Ar	ea x St	orm Co	-eff	С	Total	Cummulative	Time (m	nin)	l ₂	I ₁₀	FLOW Q= 2.78AC I/1000				PIPE			
	, <u>,</u>	Node	Node	In Area	Control	Total	0.25	0.50	0.75	0.90	0.25	0.50	0.75	0.90		A x C	AxC	In Area	Total			Q _{design}	Length (m)	Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
	56 1	MH38	MH40	0.21	0.00	0.21			0.21		0.00	0.00	0.16	0.00	0.75	0.16	0.16	6 10.0	10.8		115.3	0.050	49.40	450	0.30	0.156	0.98	0.84	32%
			MH41	0.23	0.21	0.44			0.23		0.00										108.0	0.099	62.70	450		0.156	0.98	1.06	63%
	58 N	MH41	MH42	0.15	1.57	1.72		0.15			0.00	0.08	0.00	0.00	0.50	0.08	1.06	6 14.1	14.6		93.6	0.275	43.40	675	0.30	0.460	1.29	0.56	60%
POND 5	1	MH1	MH2	0.05	0.00	0.05				0.05	0.00	0.00	0.00		0.90	0.05	0.05	10.0	10.0		110.0	0.015	28.40	300	0.20	0.053	0.75	0.02	2004
		MH2	MH2 MH3	0.05	0.00 0.05	0.05 0.19			0.14	0.05	0.00			-	-						116.9 111.4	0.015 0.046	28.40 39.10	300		0.053	0.75 0.87	0.63 0.75	28% 48%
		MH3	MH4	0.14	0.03	0.19		0.20	0.30		0.00		-	_							105.1	0.139	64.90	525		0.030	1.09	0.99	48% 59%
			MH5	0.58	0.69	1.27		0.20	0.58		0.00	-									97.5	0.247	101.20	600		0.336	1.19	1.42	73%
			MH5	0.33	0.00	0.33		0.33			0.00										115.7	0.053	40.90	375		0.096	0.87	0.78	55%
	6 N	MH5	MH7	0.34	1.60	1.51		0.34			0.00	0.17	0.00	0.00	0.50	0.17	1.25	5 13.8	14.7		93.3	0.323	74.60	750	0.30	0.610	1.38	0.90	53%
					0.00	0.11			0.44		0.00	0.00	0.00						44.0		444-	0.400	70.00	450	0.00				
		MH2 MH8	MH8 MH9	0.44	0.00 0.44	0.44 0.91		0.47	0.44		0.00			-							111.7 102.3	0.103 0.161	78.80 100.00	450 525		0.156 0.235	0.98 1.09	1.34 1.53	66%
		MH9	MH9 MH7	0.47	0.44	1.51		0.47	0.4		0.00			_							95.3	0.161	99.50	525 600		0.235	1.19	1.53	68% 76%
				0.00	0.01	1.01		0.20	0.4		0.00	0.10	0.00	0.00	5.07	0.40	0.01	12.0	17.0		00.0	0.200	00.00	000	0.00	0.000	1.13	1.00	7.078
	10 <mark>N</mark>	MH7	MH10	0.50	3.02	3.52		0.20	0.3		0.00	0.10	0.23	0.00	0.65	0.33	2.54	4 14.7	15.5		89.8	0.633	73.80	825	0.30	0.786	1.47	0.84	81%

For 2-yr storm I ₂	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

Subdivisi File No.: Consultar Drainage	nt:	an:		Mayfiel REGIO Candev STM 1-	N:21T-) /con Li	XX / CI	TY:C)	x					CALEI DRAIN			FILE NUME DATE PREPAREI		W23093 March 5 SDL	, 2024										
EAST SIDE								Park Single/ Multip Industr Roads	le/inst		0.25 0.50 0.75 0.90 0.90												For 1		I ₁₀ =	22.1* T ^ (714) 35.1* T ^ (695) 51.3* T ^ (686)			
Core System	Area No.	Up- stream	Down- stream	Contrib	uting Are	a (ha)	Bre	eakdow	n of Area	as	Are	ea x Sto	orm Co	eff	С	Total	Cummulative	Time	(min)	l ₂	I ₁₀	FLOW Q= 2.78AC I/1000				PIPE			
		Node	Node	In Area			0.25	0.50	0.75	0.90	0.25			0.90		AxC	AxC	In Area				Q _{design}	Length (m)	Size (mm)	Grade (%)	(m ³ /sec)	Velocity (m/s)	Time (min)	% Full
		MH8	MH11	0.44	0.00	0.44			0.44		0.00		0.33			0.33	0.33).0 11.		112.1			450	0.30	0.156	0.98	1.29	66%
		MH11	MH12	0.51	0.44	0.95		0.51			0.00	0.26				0.26	0.59		.3 12.		102.0			525	0.30	0.235	1.09	1.64	70%
	13	MH12	MH10	0.52	0.95	1.47		0.52			0.00	0.26	0.00	0.00	0.50	0.26	0.85	5 12	2.9 14.	2	95.8	0.225	87.70	600	0.30	0.336	1.19	1.23	67%
																				_									
	14	MH10	MH13	0.45	4.99	5.44			0.45		0.00	0.00	0.34	0.00	0.75	0.34	3.72	2 15	5.5 16.	3	86.8	0.897	76.60	975	0.30	1.227	1.64	0.78	73%
				0.50		0.50														_				(=0					
		MH14	MH15	0.50	0.00	0.50		0.11	0.5		0.00					0.38	0.38	-	0.0 11.		110.5			450	0.30	0.156	0.98	1.53	74%
		MH15	MH16	0.44	0.50	0.94		0.44			0.00		0.00			0.22	0.60		.5 13.		101.6			525	0.30	0.235	1.09	1.47	71%
	17	MH16	MH13	0.30	0.94	1.24		0.30			0.00	0.15	0.00	0.00	0.50	0.15	0.75	5 13	3.0 14.	5	94.2	0.195	97.60	525	0.30	0.235	1.09	1.49	83%
	10	MH17	MH18	0.50	0.00	0.50		0.20	0.3		0.00	0.40	0.00	0.00	0.65	0.33	0.33).0 11.	0	108.8	0.098	104.90	450	0.30	0.156	0.98	1.78	
	10			0.50	0.00	0.50		0.20	0.5		0.00	0.10	0.23	0.00	0.65	0.33	0.53		.0 11.	0	100.0	0.090	104.90	400	0.30	0.156	0.90	1.70	63%
	10	MH11	MH21	0.89	0.00	0.89		0.89			0.00	0.45	0.00	0.00	0.50	0.45	0.45	5 10	0.0 12.	0	107.5	0.133	129.40	525	0.30	0.235	1.09	1.98	56%
		MH21	MH22	0.33	0.00	1.22		0.89			0.00		0.00			0.43	0.40		2.0 13.		107.3			525	0.30	0.235	1.09	1.90	73%
	20			0.00	0.00	1.22		0.00			0.00	0.17	0.00	0.00	0.00	0.17	0.0	1 12		-	101.7	0.172	00.00	020	0.00	0.200		1.00	7570
	40	MH23	MH24	0.18	0.00	0.18		0.18			0.00	0.09	0.00	0.00	0.50	0.09	0.09	9 10).0 10.	9	115.1	0.029	44.80	375	0.30	0.096	0.87	0.86	30%
	-	-																1									-		
	42	MH25	MH24	0.30	0.00	0.30		0.30			0.00	0.15	0.00	0.00	0.50	0.15	0.15	5 10).0 10.	7	116.4	0.049	36.30	375	0.30	0.096	0.87	0.70	51%
	41	MH24	MH22	0.56	0.30	0.86		0.56			0.00				0.50	0.28	0.43	3 10).7 11.		108.6		-	525	0.30	0.235	1.09	1.12	
	21	MH22	MH20	0.32	1.52	1.84		0.32			0.00	0.16	0.00	0.00	0.50	0.16	1.20	13	8.0 14.	0	96.6	0.322	76.70	675	0.30	0.460	1.29	0.99	70%
		MH17	MH19	0.27	0.00	0.27		0.27			0.00	0.14	0.00	0.00	0.50	0.14	0.14	-).0 10.		115.3	0.043		375	0.30	0.096	0.87	0.84	45%
	23	MH19	MH20	0.13	0.27	0.40		0.13			0.00	0.07	0.00	0.00	0.50	0.07	0.20) 10).8 11.	5	110.8	0.062	33.50	375	0.30	0.096	0.87	0.64	64%
	25	MH20	MH26	0.49	2.24	2.73		0.49			0.00	0.25	0.00	0.00	0.50	0.25	1.65	5 14	.0 15.	0	92.0	0.421	85.50	750	0.30	0.610	1.38	1.03	69%
		MH27	MH26	0.54	0.00	0.54			0.54		0.00				0.75	0.41	0.41).0 10.		116.2		47.00	525	0.30	0.235	1.09	0.72	56%
	27	MH26	MH18	0.25	0.54	0.79		0.25			0.00	0.13	0.00	0.00	0.50	0.13	0.53	3 10).7 11.	9	108.0	0.159	77.40	525	0.30	0.235	1.09	1.19	68%

For 2-yr storm I ₂	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

Consultant Drainage A		an:		REGIO Candev STM 1-	vcon Li	XX / CI	TY:CX	X					RAIN			FILE NUME DATE PREPAREI		W23093 March 5, 2 SDL	2024										
EAST SIDE							א ר ו	Park Single/ Multipl ndustr Roads	e/inst		0.25 0.50 0.75 0.90 0.90												For 1		I ₁₀ =	22.1* T ^ (714) 35.1* T ^ (695) 51.3* T ^ (686)			
Core System	Area No.	Up- stream	Down- stream	Contrib	uting Are	a (ha)	Brea	akdowi	n of Are	eas	Are	ea x Sto	orm Co	-eff	С	Total	Cummulative	Time (m	iin)	I ₂	I ₁₀	FLOW Q= 2.78AC I/1000				PIPE			
		Node	Node	In Area		Total	0.25		0.75	0.90			0.75	0.90		AxC	AxC	In Area	Total			Q _{design}	Length (m)	Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
	28	MH18	MH10	0.24	1.29	1.53		0.24			0.00	0.12	0.00	0.00	0.50	0.12	0.98	3 11.9	12.9		102.4	0.278	73.60	675	0.30	0.460	1.29	0.95	60%
	29	MH13	MH29	0.37	6.68	7.05		0.37			0.00	0.19	0.00	0.00	0.50	0.19	4.65	5 16.3	17.3		83.3	1.076	102.60	1050	0.30	1.495	1.73	0.99	72%
 +			N 41 100	0.45	0.00	0.45			0.45		0.00				0.75	0.04			44.0		440.0		70.00	450		0.450	0.00		
┫────┤			MH28	0.45	0.00	0.45			0.45	0.00	0.00					0.34	0.34		-		112.0			450	0.30	0.156	0.98	1.30	
┟───┼		MH28 MH29	MH29 MH31	0.06	0.45 7.56	0.51 7.96		0.40		0.06	0.00 0.00	0.00				0.05 0.20	0.39				106.4 80.9			450 1050	0.30	0.156 1.495	0.98 1.73	0.86 0.75	74% 79%
		MH31	MH37	0.40	7.96	8.46		0.40			0.00	0.20				0.25	5.49		-		78.6	-		1050	0.30	1.495	1.73	0.73	
		MH28	MH33	0.48	0.00	0.48			0.48		0.00			0.00		0.36	0.36				112.1			450	0.30	0.156	0.98	1.29	
		MH33	MH34	0.10	0.48	0.58				0.1	0.00	0.00				0.09	0.45		-		105.4			525	0.30	0.235	1.09	1.04	
┟───┼	37	MH34	MH35	0.18	0.58	0.76			0.18		0.00	0.00	0.14	0.00	0.75	0.14	0.59	9 12.3	13.4		99.6	0.162	68.00	525	0.30	0.235	1.09	1.04	69%
	36	MH31	MH35	0.50	8.46	8.96				0.5	0.00	0.00	0.00	0.45	0.90	0.45	0.45	5 10.0	11.3		111.8	0.140	86.7	525	0.30	0.235	1.09	1.33	59%
POND 8																													
	1	23A	MH1	0.99	0.00	0.99		0.99			0.00	0.50	0.00	0.00	0.50	0.50	0.50	0 10.0	10.2		120.1	0.165	14.5	525	0.30	0.235	1.09	0.22	70%
:		MH18	MH1	0.22	0.00	0.22		0.22			0.00				0.50	0.11	0.6		10.5		117.5			525		0.235	1.09	0.54	
┟───┤	2	MH1	MH2	0.22	1.21	1.43		0.22			0.00	0.11	0.00	0.00	0.50	0.11	1.2	10.5	11.5		110.9	0.373	75.8	750	0.30	0.610	1.38	0.92	61%
┟───┼	2	MH3	MH4	0.66	0.00	0.66		0.66			0.00	0 33	0.00	0.00	0.50	0.33	0.33	10.0	11.9		108.0	0.099	112.2	450	0.30	0.156	0.98	1.90	620/
┟───┼	3		111114	0.00	0.00	0.00		0.00			0.00	0.33	0.00	0.00	0.50	0.33	0.50	, 10.0	11.9		100.0	0.099	112.2	400	0.30	0.100	0.90	1.90	63%
	4	MH5	MH6	0.38	0.22	0.60		0.38			0.00	0.19	0.00	0.00	0.50	0.19	0.19	9 10.0	10.7		116.4	0.061	36.4	375	0.30	0.096	0.87	0.70	64%
	5	MH6	MH7	0.38	0.60	0.98		0.38			0.00			0.00		0.19	0.38		12.0		107.5			450	0.30	0.156	0.98	1.29	73%
		,H7	MH4	0.44	0.98	1.42		0.44			0.00	0.22	0.00	0.00	0.50	0.22	0.60) 12.0	13.2		100.8	0.168	76.1	525	0.30	0.235	1.09	1.17	71%
		MH4	MH2	0.44	2.08	2.52		0.44			0.00			0.00		0.22	1.15				95.9			675	0.30	0.460	1.29	0.98	
	~ ~	MH2	MH8	0.71	3.95	4.66		0.71			0.00	0.36	0.00	0.00	0.50	0.36	1.51	14.1	15.5		90.1	0.377	109.9	750	0.30	0.610	1.38	1.33	62%

For 2-yr storm I ₂	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

Subdivisio File No.: Consultar Drainage	nt:	an:		Mayfiel REGIO Candev STM 1-	N:21T-) /con Li	XX / CI	TY:CX	x				Y OF ()RM [FILE NUMI DATE PREPARE		W23093 March 5, 2 SDL	2024										
EAST SIDE								Park Single/ Multip Indust Roads	le/inst rial		0.25 0.50 0.75 0.90 0.90												For 10		I ₁₀ =	22.1* T ^ (714) 35.1* T ^ (695) 51.3* T ^ (686)	I		
Core System	Area No.	Up- stream	Down- stream	Contrib	uting Are	a (ha)	Bre	eakdow	n of Areas	5	Ar	ea x St	orm Co	-eff	С	Total	Cummulative	Time (n	nin)	I ₂	l ₁₀ 2	LOW Q= .78AC /1000				PIPE			
		Node	Node	In Area			0.25		0.75 0	.90	0.25					AxC	AxC	In Area	Total			Q _{design}	Length (m)	Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
	9	MH8A	MH8	0.17	0.00	0.17		0.17			0.00	0.09	0.00	0.00	0.50	0.09	0.09	9 10.0) 10.9		115.1	0.027	39	300	0.30	0.053	0.75	0.87	51%
	10	MH8	MH9	0.28	4.83	5.11		0.28			0.00	0.14	0.00	0.00	0.50	0.14	1.73	3 15.5	5 16.3		87.0	0.418	66	750	0.30	0.610	1.38	0.80	69%
			MH10	0.28	5.11	5.19		0.28			0.00			-	-		1.77		-			0.425	14	750	0.30	0.610	1.38	0.00	70%
				0.00	0.11	0.10		0.00			0.00	0.01	0.00	0.00	0.00	0.01					00.1	00			0.00	0.010		0.11	7070
	12	MH7	MH11	0.29	0.00	0.29		0.29			0.00	0.15	0.00	0.00	0.50	0.15	0.15	5 10.0) 11.2		113.0	0.046	60.5	375	0.30	0.096	0.87	1.16	47%
	13	MH11	MH12	0.25	0.29	0.54		0.25			0.00	0.13			0.50	0.13	0.27		-		109.1	0.082	48	750	0.30	0.610	1.38	0.58	13%
	14	MH3	MH12	0.12	0.00	0.12		0.12			0.00	0.06	0.00	0.00	0.50	0.06	0.06	6 10.0) 10.7		116.6	0.019	29.6	300	0.30	0.053	0.75	0.66	37%
	15	MH12	MH13	0.58	5.19	5.77		0.58			0.00	0.29	0.00	0.00	0.50	0.29	0.62	2 11.7	' 12.9		101.9	0.176	78.6	525	0.30	0.235	1.09	1.20	75%
	16	MH13	MH14	0.20	5.77	5.97		0.2			0.00	0.10	0.00	0.00	0.50	0.10	0.72	2 12.9	13.3		100.0	0.200	25.7	600	0.30	0.336	1.19	0.36	60%
	17	MH4	MH14	0.64	0.00	0.64		0.64			0.00	0.32	0.00	0.00	0.50	0.32	0.32	2 10.0	36.5		49.5	0.044	1385.2	375	0.30	0.096	0.87	26.55	46%
	18	MH14	MH15	0.23	6.61	6.84		0.23			0.00	0.12	0.00	0.00	0.50	0.12	1.16	36.5	37.6		48.6	0.156	66.7	525	0.30	0.235	1.09	1.02	66%
			MH16	0.23	5.77	5.80		0.03			0.00		0.00				1.17					0.157		525	0.30	0.235	1.09	0.20	
		MH16		0.32	5.97	6.29		0.32			0.00				0.50			-	38.5		47.7			525	0.30	0.235	1.09	0.78	
														1	1														
	21	MH2	MH17	0.24	0.64	0.88		0.24			0.00	0.12	0.00	0.00	0.50	0.12	0.12	2 10.0) 11.5		110.8	0.037	76.8	375	0.30	0.096	0.87	1.47	39%
	22	MH17	MH10	0.43	7.17	7.60		0.43			0.00	0.22	0.00	0.00	0.50	0.22	1.67	7 38.5	6 40.0		46.5	0.215	103.2	600	0.30	0.336	1.19	1.45	64%
POND 6			MH2	0.21	0.00	0.21		0.21							0.50		0.11	-	10.5			0.034		300	0.30	0.053	0.75	0.51	
			MH3	0.21	0.21	0.42		0.21			0.00				0.50		0.21					0.065		375		0.096	0.87	0.76	
	3	MH3	MH4	0.28	0.42	0.70		0.28			0.00	0.14	0.00	0.00	0.50	0.14	0.35	5 11.3	3 12.2		106.5	0.104	52.1	450	0.30	0.156	0.98	0.88	66%
	A		мце	0.44	0.00	0.44		0.44	├ ──		0.00	0.00	0.00	0.00	0.50	0.00	0.00	40.0	44.0		107.0	0.000	100.2	075	0.00	0.000		4.00	6081
			MH6	0.44	0.00	0.44		0.44			0.00			0.00			0.22) 11.9			0.066		375		0.096	0.87	1.92	
	5	MH6	MH4	0.58	0.44	1.02			0.58		0.00	0.00	0.44	0.00	0.75	0.44	0.66	11.8	13.4		99.5	0.181	96.4	525	0.30	0.235	1.09	1.48	77%

For 2-yr storm I ₂	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

Subdivisio File No.: Consultar Drainage	nt:	an:		REGIC	eld West DN:21T-j evcon Li -3	XX / Cl	TY:CX	X				(of (RM d				FILE NUM DATE PREPARE		W23093 March 5, 2 SDL	2024										
							I	Park			0.25												For	2-yr storm	I ₂ =	22.1* T ^ (714)		
								Single/	semi		0.50												For 1	l0-yr storm	I ₁₀ =	35.1* T ^ (695)		
EAST SIDE								-	le/inst		0.75												For 10	00-yr storm	I ₁₀₀ =	51.3* T ^ (686)		
								Indust	rial		0.90																		
											0.90						1					EL OW							
Core System	· CONTIDUIND Area (na) E Breakdown of									as	Ar	ea x Sto	orm Co	-eff	С	Total	Cummulative	Time (m	nin)	I ₂	I	FLOW Q= 2.78AC I/1000				PIPE			
		Node	Node	In Area	Control	Total	0.25	0.50	0.75	0.90	0.25	0.50	0.75	0.90		AxC	AxC	In Area	Total			Q _{design}	Length (m)	Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
	6	MH7	MH8	0.12	0.00	0.12				0.12	0.00	0.00	0.00	0.11	0.90	0.11	0.11	10.0	10.9		114.7		47.7	375	0.30	0.096	0.87	0.91	36%
	7	MH6	MH8	3.66	0.00	3.66				3.66	0.00	0.00	0.00	3.29	0.90	3.29	3.29	9 10.0	10.8		115.6	1.059	82.4	1050	0.30	1.495	1.73	0.80	71%
			MH9	0.73				0.35	0.38		0.00					0.46		-			108.4		96.2	1050		1.495		0.93	78%
			MH10	0.16		4.67		0.16			0.00					0.08			-		107.8	1.182	9.7	1050		1.495		0.09	79%
			MH11	0.26		4.93		0.26			0.00					0.13		-			105.0	1.189	47.7	1050		1.495		0.46	80%
	11	MH11	MH4	0.12	4.93	5.05		0.12			0.00	0.06	0.00	0.00	0.50	0.06	4.13	3 12.4	12.6		103.6	1.190	25.4	1050	0.30	1.495	1.73	0.25	80%

For 2-yr storm I ₂	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

Subdivisi File No.: Consulta Drainage			Mayfiel REGIOI Candev STM 1-3	N:21T-X con Li	XX / CI	TY:C	xx				Ce ale)RAIN			FILE NUMI DATE PREPARE		W19174 Novembe SDL	r 21, 20	023									
WEST SIDE							Park Single/ Multip Indust Roads	le/inst	0.25 0.50 0.75 0.90 0.90												For 1		I ₁₀ =	22.1* T ^ (714) 35.1* T ^ (695) 51.3* T ^ (686)			
Core System	Area Up- No. stream	Down- stream	Contribu	uting Are	a (ha)	Br	reakdow	n of Areas	Are	ea x St	orm Co	-eff	С	Total	Cummulative	Time (m	nin)	I ₂	I ₁₀	FLOW Q= 2.78AC I/1000				PIPE			
	Node	Node	In Area	Control	Total	0.25	0.50	0.75 0.90	0.25	0.50	0.75	0.90		AxC	AxC	In Area	Total			Q _{design}	Length (m)	Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
POND 1																											
	1 MH1	MH2	0.68	0	0.68		0.68		0.00			0.00		0.34		10.0	-		114.7	0.108	60.00	525	0.30		1.09	0.92	
	2 MH2	MH3	0.48	0.68	1.16		0.48		0.00			0.00		0.24					107.5			525	0.30		1.09	1.07	
	3 MH3	MH5	0.45	1.16	1.61		0.45		0.00	0.23	0.00	0.00	0.50	0.23	0.8	12.0	12.8		102.4	0.229	61.10	600	0.30	0.336	1.19	0.86	68%
POND 2																											
	1 MH6	MH7	0.56	0.00	0.56			0.56	0.00	0.00	0.42	0.00	0.75	0.42	0.42	2 10.0	11.5		110.9	0.130	95.10	525	0.30	0.235	1.09	1.46	55%
	2 MH7	MH8	0.07	0.56	0.63			0.07	0.00			0.00		0.05	0.47				106.9			525	0.30		1.09	0.62	
	3 MH9	MH10	0.08	0.00	0.08			0.08	0.00			0.00		0.06	0.06		-		119.4			300	0.30		0.75	0.31	
	4 MH10	MH11	0.45	0.08	0.53			0.45	0.00			0.00		0.34	0.40		-		111.4		64.00	450	0.30		0.98	1.09	
	5 MH11	MH12	0.34	0.53	0.87			0.34	0.00	0.00	0.26	0.00	0.75	0.26	0.65	5 11.4	12.4		105.2	0.191	69.80	600	0.30	0.336	1.19	0.98	57%
			0.57		0.57			0.57	0.00	0.00	0.40	0.00	0.75	0.40			40.0		400.0	0.400	450.00	150		0.450			
-	6 MH9	MH13	0.57	0.00	0.57		0.40	0.57	0.00			0.00		0.43					103.9			450	0.30		0.98	2.60	
	7 MH13	MH14	0.19	0.57	0.76		0.19		0.00			0.00		0.10					100.7			525	0.30		1.09	0.57	
	8 MH14	MH15	0.22	0.76	0.98		0.22		0.00	0.11	0.00	0.00	0.50	0.11	0.63	3 13.2	13.7		98.0	0.172	34.00	525	0.30	0.235	1.09	0.52	73%
	9 MH11	MH16	0.36	0.00	0.36		0.18	0.18	0.00	0.09	0 14	0.00	0.63	0.23	0.23	3 10.0	10.0		121.9	0.076	77.40	375	0.30	0.096	0.87	1.48	79%
	10 MH16	MH15	0.50	0.36	0.86		-	0.25				0.00		0.20	0.54		15.1		91.6		91.80	525			1.09	1.40	
			5.00		5.00										5.0				0.10				0.00				
	11 MH15	MH17	0.11	1.84	1.95		0.11		0.00	0.06	0.00	0.00	0.50	0.06	1.23	3 13.7	14.0		96.3	0.328	27.40	675	0.30	0.460	1.29	0.35	71%
	12 MH17	MH18	0.22	1.95	2.17		0.22		0.00			0.00		0.11	1.34	4 14.0	14.5		94.0		•	750	0.30	0.610	1.38	0.50	57%
	13 MH18	MH19	0.13	2.17	2.30		0.13		0.00	0.07	0.00	0.00	0.50	0.07	1.40) 14.5	14.7		93.4	0.364	11.10	750	0.30	0.610	1.38	0.13	60%
	14 MH19	MH20	0.78	2.30	3.08		0.78		0.00	0.39	0.00	0.00	0.50	0.39	1.79	9 14.7	15.9		88.3	0.439	102.10	750	0.30	0.610	1.38	1.23	72%
	15 MH20	MH12	0.16	3.08	3.24		0.16		0.00	0.08	0.00	0.00	0.50	0.08	1.87	7 15.9	16.3		86.8	0.451	33.40	750	0.30	0.610	1.38	0.40	74%
	16 MH12	MH21	0.22	4.11	4.33		0.22					0.00		0.11			16.7		85.3			825	0.30		1.47	0.42	
	17 MH21	MH8	0.23	4.33	4.56		0.23		0.00	0.12	0.00	0.00	0.50	0.12	2.75	5 16.7	17.1		83.9	0.641	37.70	900	0.30	0.991	1.56	0.40	65%

For 2-yr storm I ₂	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

Subdivisio File No.: Consultar Drainage	nt:	an:		Mayfield REGION Candev STM 1-3	l:21T-X con Li	XX / CI	TY:C)	x				Y OF()RM D				FILE NUM DATE PREPARE		W19174 November SDL	[.] 21, 20)23									
WEST SIDE								Park Single/se Multiple Industria Roads	/inst		0.25 0.50 0.75 0.90 0.90												For 10	2-yr storm D-yr storm D-yr storm	I ₁₀ =	22.1* T ^ (714 35.1* T ^ (695 51.3* T ^ (686)		
Core System	Area No.	Up- stream	Down- stream	Contribu	iting Are	a (ha)	Bre	eakdown	of Areas	S	Ar	ea x Sto	orm Co-	eff	С	Total	Cummulative	Time (m	in)	I ₂	1	FLOW Q= 2.78AC I/1000				PIPE			
		Node	Node	In Area C	Control	Total	0.25	0.50	0.75 0	0.90	0.25	0.50	0.75	0.90		AxC	AxC	In Area	Total			Q _{design}	Length (m)	Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
	18	MH8	MH22	0.08	5.19	5.27				0.08		0.00	0.00	0.07	0.90	0.07	3.29		17.6		82.5			900	0.30	0.991	1.56	0.42	76%
	19	MH22	MH23	0.05	5.27	5.32				0.05	0.00	0.00	0.00	0.05	0.90	0.05	3.34	17.6	17.8		81.6	0.757	25.80	900	0.30	0.991	1.56	0.28	76%
	20	MH23	MH24	0.04	5.32	5.36				0.04	0.00	0.00	0.00	0.04	0.90	0.04	3.37	7 17.8	18.0		81.2	0.761	11.60	900	0.30	0.991	1.56	0.12	77%
	21	MH24	MH25	0.22	5.36	5.58		0.22			0.00	0.11	0.00	0.00	0.50	0.11	3.48	3 18.0	18.4		79.7	0.772	44.50	900	0.30	0.991	1.56	0.48	78%
		MH25	MH26	0.18	5.58	5.76		0.18			0.00								+ +		78.4	0.778	1	900	0.30	0.991	1.56	0.47	
		MH26	MH27	0.09	5.76	5.85		0.09			0.00								-		77.9	0.783		900	0.30	0.991	1.56	0.17	
		MH27	MH28	0.26	5.85	6.11			0.26		0.00						3.81				76.0	0.805		975	0.30	1.227	1.64	0.69	
		MH28	MH29	0.03	6.11	6.14				0.03											75.6	0.807		975	0.30	1.227	1.64	0.14	
	26	MH29	MH30	0.32	6.14	6.46		0.32			0.00	0.16	0.00	0.00	0.50	0.16	4.00) 19.9	20.9		73.1	0.813	95.71	975	0.30	1.227	1.64	0.97	66%
	27	MH27	MH31	0.73	0.00	0.73		0.73			0.00	0.37	0.00	0.00	0.50	0.37	0.37	7 10.0	12.0		107.3	0.109	118.70	450	0.30	0.156	0.98	2.01	700/
			MH31 MH30	0.73	0.00	0.73		0.73		0.13				0.00				-			99.1	0.109	-	450 525	0.30	0.156	1.09	2.01	
	20			0.10	0.70	0.00				0.10	0.00	0.00	0.00	0.12	0.00	0.12	0.40	12.0	10.0		00.1	0.100	00.70	020	0.00	0.200	1.00	1.77	50%

For 2-yr storm I ₂	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

Subdivisio File No.: Consultan Drainage	t:	lan:		Mayfield REGION Candev STM 1-3	N:21T-> con Li	XX / CI	TY:C)	xx				Ce al DRAIN			FILE NUM DATE PREPARE		W1917 Noven SDL		1, 2023										
WEST SIDE								Park Single/semi Multiple/inst Industrial Roads		0.25 0.50 0.75 0.90 0.90													For 1		$I_{10} = 3$	22.1* T ^ (714) 35.1* T ^ (695) 51.3* T ^ (686)			
Core System	Area No.	Up- stream	Down- stream	Contribu	iting Area	a (ha)	Br	eakdown of Ar	eas	A	ea x S	torm Co	o-eff	С	Total	Cummulative	Tin	ne (min)	I ₂		I ₁₀	FLOW Q= 2.78AC I/1000		PIPE					
		Node	Node	In Area C	Control	Total	0.25	0.50 0.75	0.90	0.25	0.50	0.75	6 0.9	0	AxC	AxC	In Ar	ea T	otal			Q _{design}	Length (m)	Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
FUTURE PO		MH210	MUDD	0.42	0.00	0.42		0.42		0.00	0.2	1 0.0	0 0.0	00 0.50	0.01	0.2	4	10.0	11.5		110.0	0.065	76.00	375	0.20	0.096	0.07	1.46	670(
	F1 F2		MH32A	0.42	0.00	1.31		0.42		0.00					0.21	0.2			12.7		110.9 103.3	0.083	39.80	450		0.096	0.87 0.98	0.68	67% 53%
	F3		MH32B	0.10	0.00	0.21		0.10		0.00	-				0.08	-			14.3		94.9	0.003	51.20	450		0.156	0.98	0.87	67%
	F4		MH33	0.41	0.00	0.41		0.41		0.00					0.21	-			15.8		88.8	0.148	93.40	525		0.235	1.09	1.43	63%
	F5	-	MH34	0.49	0.41	0.90		0.49		0.00	-				0.25	-	-		17.3		83.3	0.196	109.60	600		0.336	1.19	1.54	58%
	F6		MH35	0.20	0.90	1.10		0.20		0.00		_			0.10	0.95			18.0		81.0	0.213	49.30	600		0.336	1.19	0.69	63%
	F7		MH36	0.33	0.00	0.33		0.33		0.00	-					-	-		19.1		77.7	0.240	1 1	600		0.336	1.19	1.11	71%
	F8	MH36	MH37	0.06	0.00	0.06			0.06	0.00	0.0	0.0	0 0.		0.05	-			19.6		76.5	0.247	32.60	600	0.30	0.336	1.19	0.46	74%
	F9	MH38	MH38-1	0.08	0.00	0.08		0.08		0.00	0.0	4 0.0	0 0.0	00 0.50	0.04	0.04	1	10.0	10.3	1	119.3	0.013	14.50	300	0.30	0.053	0.75	0.32	25%
	F10		MH38-1	0.00	0.08	0.49		0.41		0.00	-	-				-			11.7		109.2	0.074	72.80	375		0.096	0.73	1.40	77%
	F11		MH39	0.32	0.49	0.81		0.32		0.00		-			0.16	-			12.2		106.1	0.119	29.30	450		0.156	0.98	0.50	77%
	F12		MH40	0.21	0.00	0.21		0.21		0.00		-			0.11	-			12.7		103.4	0.147	29.80	525		0.235	1.09	0.46	62%
	F13		MH41	0.46	0.00	0.46		0.46		0.00						-			13.7		97.9	0.201	74.80	600		0.336	1.19	1.05	60%
	F14	MH33	MH41	0.11	0.46	0.57			0.11	0.00	0.0	0.0	0 0.	10 0.90	0.10	0.84	4	13.7	14.8		93.0	0.217	75.00	600	0.30	0.336	1.19	1.05	65%
								0.70											17.0										
			MH43	0.56	0.57	1.13		0.56		0.00		B 0.0						14.8			88.4	0.457	1	750		0.610	1.38	1.12	75%
			MH44	0.31	0.00	0.31		0.31		0.00		<u>6 0.0</u>						15.9			86.5	0.484		750		0.610	1.38	0.50	79%
	F17	MH44	MH45	0.18	0.31	0.49		0.10		0.00	0.0	9 0.0	0 0.0	00 0.50	0.09	2.10	5	16.4	6.9		84.7	0.495	43.80	825	0.30	0.786	1.47	0.50	63%
	F18	MH38	MH47	0.29	0.49	0.78		0.29		0.00	0.1	5 0.0	0 0	00 0.50	0.15	0.15	5	10.0	11.4	1	111.6	0.045	70.90	375	0.30	0.096	0.87	1.36	47%
-			MH48	0.17	0.78			0.17		0.00		9 0.0						11.4			104.9	0.067	55.20	375		0.096	0.87	1.06	70%
	-								1								1												
	F20	MH48	MH49	0.19	0.95	1.14		0.19		0.00	0.1	0.0	0 0.0	00 0.50	0.10	0.5	1	12.4	13.0	1	101.8	0.143	35.40	525	0.30	0.235	1.09	0.54	61%
	F21	MH49	MH50	0.29	1.14	1.43		0.29		0.00		5 0.0						13.0			97.8	0.177		525		0.235	1.09	0.78	75%
	F22	MH42	MH50	0.44	1.02	1.46		0.44	1	0.00	0.0	0.3	3 0.	00 0.75	0.33	0.33	3	10.0	11.3	1	112.0	0.103	77.00	450	0.30	0.156	0.98	1.31	66%

For 2-yr storm I_2	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

Subdivisi File No.: Consulta Drainage	nt:	lan:		REGIC	eld West DN:21T-2 vcon Li -3	XX / CI	тү:су	κx					Ce alec RAINA			FILE NUM DATE PREPARE		W19 Nove SDL		[.] 21, 20	023									
WEST SIDE								Park Single/ Multip Industr Roads	le/inst ⁻ ial		0.25 0.50 0.75 0.90 0.90													For	r 2-yr storm 10-yr storm 00-yr storm	I ₁₀ =	22.1* T ^ (714 35.1* T ^ (695 51.3* T ^ (686)		
Core System	Area No.	Up- stream	Down- stream	Contril	outing Are	ea (ha)	Bre	eakdow	n of Area	as	Are	ea x Sto	orm Co-	eff	С	Total	Cummulative	; Т	īme (mi	in)	I ₂	L.a	FLOW Q= 2.78AC I/1000				PIPE			
		Node	Node	In Area	Control	Total	0.25	0.50	0.75	0.90	0.25	0.50	0.75	0.90		AxC	AxC	In <i>i</i>	Area	Total			Q _{design}	Length (m)	Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
	F23	MH50	MH51	0.27	1.46	1.73		0.27			0.00	0.14	0.00	0.00	0.50	0.14	1.1	12	13.7	14.3		94.9	0.294	46.50	675	0.30	0.460	1.29	0.60	64%

For 2-yr storm I ₂	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

	Subdivisi File No.: Consulta Drainage	nt:	Plan:		Mayfie REGIC Cande STM 1-	N:21T- vcon L	XX / CI	TY:C)	κx				Y OF()RM D				FILE NUM DATE PREPARE		W19174 November SDL	[.] 21, 20	023									
,	WEST SIDE								Park Single/s Multipl Industr Roads	le/inst rial		0.25 0.50 0.75 0.90 0.90												For 10	2-yr storm 0-yr storm 0-yr storm	I ₁₀ =	22.1* T ^ (714 35.1* T ^ (695 51.3* T ^ (686)		
	Core System	Area No.	Up- stream	Down- stream	Contrik	outing Are	ea (ha)	Bre	eakdow	n of Area	as	Ar	ea x Sto	orm Co-	-eff	С	Total	Cummulative	Time (m	in)	l ₂	I ₁₀	FLOW Q= 2.78AC I/1000				PIPE			
			Node	Node	In Area	Control	Total	0.25	0.50	0.75	0.90	0.25	0.50	0.75	0.90		AxC	AxC	In Area	Total			Q_{design}	Length (m)	Size (mm)	Grade (%)	Capacity (m ³ /sec)	Velocity (m/s)	Time (min)	% Full
		F24	MH51	MH52	0.31	1.73	2.04		0.31			0.00				0.50	0.16	1.27	7 14.3	14.9		92.6		40.60	675	0.30		1.29	0.53	71%
		F25	MH52	MH54					0.10	i T		0.00	0.05			0.50	0.05	1.32	2 14.9	15.4		90.4	0.332	40.60	675	0.30	0.460	1.29	0.53	72%
										i																				
		F26	MH45-2	MH45-1	0.31	0	0.31		0.31			0.00	0.16	0.00	0.00	0.50	0.16	0.16	6 10.0	11.3		112.3	0.048	65.40	375	0.30	0.096	0.87	1.25	50%
		F27	MH45-1	MH45	0.58	0.31	0.89		0.58			0.00	0.29	0.00	0.00	0.50	0.29	0.45	5 11.3	12.6		103.8	0.128	88.40	525	0.30	0.235	1.09	1.35	55%
		F28	MH45	MH57	0.17	0.89	1.06		0.17			0.00	0.09	0.00	0.00	0.50	0.09	2.63	3 12.6	13.0		101.7	0.745	34.40	900	0.30	0.991	1.56	0.37	75%
			4																											
		F29	MH56	MH55	0.65	1.06			0.65			0.00			0.00				-			95.3			450	0.30		0.98	1.29	55%
		F30	MH55	MH54	0.40	3.75			0.40			0.00										92.3		37.90	525	0.30		1.09	0.58	57% 53%
		F31	MH54	MH48	0.36	4.15	4.51	J	0.36			0.00	0.18	0.00	0.00	0.50	0.18	0.71	14.9	15.4		90.3	0.177	37.90	600	0.30	0.336	1.19	0.53	53%

For 2-yr storm I ₂	=	22.1* T ^ (714)
For 10-yr storm I_{10}	=	35.1* T ^ (695)
For 100-yr storm I_{100}	=	51.3* T ^ (686)

APPENDIX C

GEOTECHNICAL REPORT

Soil Engineers Ltd.

CONSULTING ENGINEERS

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

100 NUGGET AVENUE, TORONTO, ONTARIO M1S 3A7 • TEL: (416) 754-8515 • FAX: (416) 754-8516

BARRIE	
TEL: (705) 721-7863	
FAX: (705) 721-7864	

MISSISSAUGA

OSHAWA

NEWMARKET GRAVENHURST TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (416) 754-8516 FAX: (705) 684-8522 FAX: (905) 725-1315

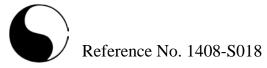
PETERBOROUGH TEL: (705) 684-4242 TEL: (905) 440-2040

HAMILTON TEL: (905) 777-7956 FAX: (905) 542-2769

A REPORT TO BROOKVALLEY DEVELOPMENTS INC.

A SOIL INVESTIGATION FOR PROPOSED **RESIDENTIAL DEVELOPMENT**

PART OF LOT 21, CONCESSION 1 WHS OLD SCHOOL ROAD AND HURONTARIO STREET


TOWN OF CALEDON

Reference No. 1408-S018

NOVEMBER 2014

DISTRIBUTION

3 Copies - Brookvalley Developments Inc. 1 Copy - Soil Engineers Ltd. (Mississauga) 1 Copy - Soil Engineers Ltd. (Toronto)

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE AND PROJECT DESCRIPTION	2
3.0	FIELD WORK	3
4.0	SUBSURFACE CONDITIONS	4
	 4.1 Topsoil	5 6 8 0 1 3
5.0	GROUNDWATER CONDITIONS1	8
6.0	DISCUSSION AND RECOMMENDATIONS	0
	6.1 Foundations26.2 Engineered Fill26.3 Slab-On-Grade26.4 Garages, Driveways, Sidewalks and Interlocking Stone Pavement26.5 Underground Services26.6 Trench Backfilling26.7 Pavement Design36.8 Soil Parameters36.9 Excavation3	4 7 7 8 9 1 2
70	LIMITATIONS OF REPORT	5

TABLES

Table 1 - Estimated Water Content for Compaction	15
Table 2 - Groundwater Levels	18
Table 3 - Pavement Design	31
Table 4 - Soil Parameters	33
Table 5 - Classification of Soils for Excavation	34

DIAGRAM

Diagram 1 - Frost Protection Measures	(Foundations)24
---------------------------------------	-----------------

ENCLOSURES

Figures 1 to 12
Figures 13 to 17
Drawing No. 1

1.0 **INTRODUCTION**

In accordance with written authorization dated August 8, 2014, from Mr. Paul Mondell of Brookvalley Developments Inc., a soil investigation was carried out at a parcel of land at Old School Road and Hurontario Street, in the Town of Caledon, for a proposed Residential Development.

The purpose of the investigation was to reveal the subsurface conditions and determine the engineering properties of the disclosed soils for the design and construction of the proposed project.

The geotechnical findings and resulting recommendations are presented in this Report.

2.0 SITE AND PROJECT DESCRIPTION

The site is situated on Halton-Peel till plain where the drift dominates the soil stratigraphy. In places, the till has been reworked by the water action of Peel Ponding (glacial lake) and the depositing lacustrine sand, silt, clay and reworked till.

The investigated site, irregular in shape, is located at Old School Road and Hurontario Street in the Town of Caledon. The investigated site is a farm field and the area is generally grass-covered with trees. The ground surface is relatively level with some undulations.

It is understood that the proposed project will consist of the construction of a new residential development with municipal services and roadways meeting the municipal standards.

3.0 FIELD WORK

The field work, consisting of 12 boreholes to depths of 6.3 m and 6.6 m, was performed on August 25, 26 and 27, 2014, at the locations shown on the Borehole Location Plan and Subsurface Profile, Drawing No. 1.

The holes were advanced at intervals to the sampling depths by a track-mounted, continuous-flight power-auger machine equipped for soil sampling. Standard Penetration Tests, using the procedures described on the enclosed "List of Abbreviations and Terms", were performed at the sampling depths. The test results are recorded as the Standard Penetration Resistance (or 'N' values) of the subsoil. The relative density of the granular strata and the consistency of the cohesive strata are inferred from the 'N' values. Split-spoon samples were recovered for soil classification and laboratory testing.

The field work was supervised and the findings recorded by a Geotechnical Technician.

The geodetic elevation at each of the borehole locations was obtained by Soil Engineers Ltd. using the Global Navigation Satellite System (GNSS).

4.0 SUBSURFACE CONDITIONS

Detailed descriptions of the encountered subsurface conditions are presented on the Borehole Logs, comprising Figures 1 to 12, inclusive. The revealed stratigraphy is plotted on the subsurface profile on Drawing No. 1, and the engineering properties of the disclosed soils are discussed herein.

The investigation has disclosed that beneath a veneer of topsoil, the site is underlain by strata of silty clay, silty clay till, silt, sandy silt, silty sand till and silty fine sand at various depths and locations.

4.1 **Topsoil** (All Boreholes)

The revealed topsoil ranges from 15 to 36 cm thick. It is dark brown in colour, indicating that it contains appreciable amounts of roots and humus. These materials are unstable and compressible under loads; therefore, the topsoil is considered to be void of engineering value. Due to its humus content, it may produce volatile gases and generate an offensive odour under anaerobic conditions. Therefore, the topsoil must not be buried below any structures or deeper than 1.2 m below the finished grade, so that it will not have an adverse impact on the environmental well-being of the developed areas.

Since the topsoil is considered void of engineering value, it can only be used for general landscaping and landscape contouring purposes. A fertility analysis can determine the suitability of the topsoil as a planting material.

4.2 <u>Silty Clay</u> (All Boreholes, except Boreholes 2, 4 and 9)

The silty clay was encountered at various depths and extends to the maximum investigated depth at Borehole 11. The clay is laminated with sand and silt seams and layers, showing that it is a glaciolacustrine deposit. The clay deposit is weathered to depths of 0.7 m and 1.4 m below the prevailing ground surface.

The obtained 'N' values range from 7 to 23, with a median of 14 blows per 30 cm of penetration, indicating that the consistency of the clay is firm to very stiff, being generally stiff. The firm clay is restricted to the weathered zone of the clay stratum.

The Atterberg Limits of 2 representative samples and the water content values of the samples were determined. The results are plotted on the Borehole Logs and summarized below:

Liquid Limit	50% and 53%
Plastic Limit	25% and 26%
Natural Water Content	12% to 34% (median 21%)

The above results show that the clay is a cohesive material with medium plasticity. The natural water content values generally ranges from below its plastic limits to between its plastic and liquid limits, confirming the generally stiff consistency of the clay as determined from the 'N' values.

Grain size analyses were performed on 2 representative samples of the silty clay; the results are plotted on Figure 13.

Based on the above findings, the following engineering properties are deduced:

- High frost susceptibility and high soil-adfreezing potential.
- Low water erodibility.
- Low permeability, with an estimated coefficient of permeability of 10^{-7} to 10^{-8} cm/sec, an estimated percolation rate of 80 to 100+ min/cm, and runoff coefficients of:

Slope

0% - 2%	0.15
2% - 6%	0.20
6% +	0.28

- A cohesive-frictional soil, its shear strength is derived from consistency and augmented by the internal friction of the silt. Its shear strength is moisture dependent.
- In excavation, the clay will be prone to sloughing if it is exposed for prolonged periods in steep cuts. This would generally be initiated by infiltrating precipitation or groundwater seeping out from the silt and fine sand layers.
- A very poor pavement-supportive material, with an estimated California Bearing Ratio (CBR) value of 3% or less.
- Moderately high corrosivity to buried metal, with an estimated electrical resistivity of 3500 ohm·cm.

4.3 <u>Silty Clay Till</u> (All Boreholes, except Borehole 6)

The silty clay till was encountered at various depths and extends to the maximum investigated depth at Boreholes 3, 5, 7 and 9. It consists of a random mixture of soils; the particle sizes range from clay to gravel, with the clay fraction exerting the

dominant influence on its soil properties. Occasional sand and silt seams and layers were also detected in the clay till mantle. The till is heterogeneous in structure, indicating that it is a glacial deposit. The clay till layer is weathered to a depth of 0.7 m in Borehole 4.

The obtained 'N' values range from 7 blows per 30 cm to 50 blows per 8 cm, with a median of 30 blows per 30 cm, indicating that the consistency of the clay till is firm to hard, being generally very stiff. The firm clay till occurred in the weathered zone of the till stratum.

Hard resistance was encountered during augering, showing that the till is embedded with cobbles and boulders.

The Atterberg Limits of 4 representative samples and the natural water content values of the samples were determined; the results are plotted on the Borehole Logs and summarized below:

Liquid Limit	23%, 24% and 27%
Plastic Limit	14%, 15% and 16%
Natural Water Content	8% to 27% (median 13%)

The results show that the clay till is a cohesive material with low plasticity. The natural water content values generally range from below its plastic limits to close to its liquid limits, confirming the generally very stiff consistency of the till as determined by the 'N' values. The low 'N' values and high moisture content occurred in the weathered zone of the till stratum.

Grain size analyses were performed 4 representative samples of the silty clay till. The results are plotted on Figure 14.

Based on the findings, the engineering properties related to the project are as follows:

- High frost susceptibility, with low water erodibility.
- Low permeability, with an estimated coefficient of permeability of 10^{-7} cm/sec, an estimated percolation rate of 80+ min/cm, and runoff coefficients of:

Slope

0% - 2%	0.15
2% - 6%	0.20
6% +	0.28

- A cohesive soil, its shear strength is primarily derived from consistency which is inversely related to its moisture content. It contains sand; therefore, its shear strength is augmented by internal friction.
- It will generally be stable in a relatively steep cut; however, prolonged exposure will allow the fissures in the weathered zone and the wet sand and silt seams and layers to become saturated, which may lead to localized sloughing.
- A very poor pavement-supportive material, with an estimated CBR value of 3% or less.
- Moderate corrosivity to buried metal, with an estimated electrical resistivity of 4000 ohm·cm.

4.4 **<u>Silt</u>** (Boreholes 1, 2, 6, 8, 9, 10 and 12)

The silt deposit was encountered at various depths and extends to the maximum investigated depth at Boreholes 2, 6, 8, 10 and 12. The silt is embedded with seams and layers of silty clay and fine sand, and it contains a variable amount of clay. The

laminated structure shows that the silt is a glaciolacustrine deposit. The silt layer in Borehole 2 is weathered to a depth of 1.4 m.

The natural water content values of the silt samples range from 12% to 23%, with a median of 18%, indicating it is in a damp to wet, generally wet condition. The wet samples are water bearing and became highly dilatant under tactile examinations, showing the shear strength of the silt will be subject to dynamic disturbance.

The obtained 'N' values range from 13 blows per 30 cm to 50 blows per 10 cm, with a median of 39 blows per 30 cm, indicating that the relative density of the silt is compact to very dense, being generally dense.

Grain size analyses were performed on 2 representative samples and the results are plotted on Figure 15.

Based on the above findings, the engineering properties relating to the project are given below:

- Highly frost susceptible, with high soil-adfreezing potential.
- Highly water erodible; it is susceptible to migration through small openings under seepage pressure.
- Relatively pervious to impervious, with an estimated coefficient of permeability of 10^{-4} to 10^{-5} cm/sec, depending on the clay content, an estimated percolation rate of 40 to 60 min/cm, and runoff coefficients of:

Slope	
0% - 2%	0.07 to 0.11
2% - 6%	0.12 to 0.16
6% +	0.18 to 0.23

- The soil has a high capillarity and water retention capacity.
- A frictional soil, its shear strength is density dependent. Due to the dilatancy, the strength of the wet silt is susceptible to impact disturbance; i.e., the disturbance will induce a build-up of pore pressure within the soil mantle, resulting in soil dilation and a reduction in shear strength.
- In excavation, the moist silt will be stable in relatively steep cuts, while the wet silt will slough and run slowly with seepage bleeding from the cut face, and the bottom will boil under a piezometric head of 0.3 m.
- A poor pavement-supportive material, with an estimated CBR value of 6%.
- Moderate corrosivity to buried metal, with an estimated electrical resistivity of 4500 ohm cm.

4.5 **Sandy Silt** (Boreholes 7 and 9)

The sandy silt layer was encountered below a layer of silty clay till in Borehole 7 and beneath a topsoil layer in Borehole 9. Occasional silty fine sand and silt seams and layers were found laminated in the sandy silt. The laminated structure shows that the sandy silt is a lacustrine deposit. The sandy silt layer in Borehole 9 has been weathered.

The obtained 'N' values are 12 and 32 blows per 30 cm, showing the relative density of the sandy silt is compact to dense.

The natural water content of the samples was determined, and the results are plotted on the Borehole Logs. The values are 12% and 25%, showing the sandy silt deposit is in a wet condition. The wet sandy silt is water bearing.

A grain size analysis was performed on one of the samples and the result is plotted on Figure 16.

Accordingly, the following engineering properties are deduced:

- Highly frost susceptible with high soil-adfreezing potential.
- Highly water erodible.
- A soil of high capillarity and water retention capability.
- Relatively impervious, with an estimated coefficient of permeability of 10^{-4} to 10^{-5} cm/sec, an estimated percolation rate of 20 to 35 min/cm, and runoff coefficients of:

Slope

0% - 2%	0.07 to 0.11
2% - 6%	0.12 to 0.16
6% +	0.18 to 0.23

- A frictional soil, its shear strength is derived from internal friction and is density dependent. Due to its dilatancy, the shear strength of the wet sandy silt is susceptible to impact disturbance; i.e., the disturbance will induce a build-up of pore pressure within the soil mantle, resulting in soil dilation and a reduction of shear strength.
- In relatively steep cuts, the sandy silt will be stable in a damp to moist condition, but will slough if it is wet, run with water seepage and boil with a piezometric head of 0.3 m.
- A fair pavement-supportive material, with an estimated CBR value of 10%.
- Moderately low corrosivity to buried metal, with an estimated electrical resistivity of 5000 ohm·cm.

4.6 **<u>Silty Sand Till</u>** (Boreholes 1 and 4)

The silty sand till was encountered at the lower stratigraphy and extends to the maximum investigated depth at both boreholes. The till consists of a random

mixture of soil particle sizes ranging from clay to gravel, with the sand being the dominant fraction. It is heterogeneous in structure, showing that it is a glacial deposit.

Frequent hard resistance to augering was encountered, showing that appreciable amounts of cobbles and boulders are embedded in the sand till. It should be noted that the size of the boulders in the till may be large.

The natural water content values of the samples were determined, and the results are plotted on the Borehole Logs; the values range from 8% to 15%, with a median of 10%, showing the sand till is in a moist to wet, generally wet condition.

The obtained 'N' values range from 39 blows per 30 cm to 50 blows per 10 cm, with a median of 49 blows per 30 cm, showing that its relative density is dense to very dense, being generally dense.

Grain size analyses were performed on 2 representative samples and the results are plotted on Figure 17.

The deduced engineering properties pertaining to the project are given below:

- High frost susceptibility and moderately high water erodibility.
- Moderately pervious to impervious, depending on the clay content, with an estimated coefficient of permeability of 10⁻⁴ to 10⁻⁵ cm/sec, an estimated percolation rate of about 25 to 45 min/cm, and runoff coefficients of:

Slope 0.07 to 0.11 2% - 6% 0.12 to 0.16 6% + 0.18 to 0.23

- A frictional soil, its shear strength is primarily derived from internal friction and is augmented by cementation. Therefore, its strength is density dependent.
- It will be stable in steep cuts; however, under prolonged exposure, immediate sloughing and sheet collapse will likely occur, particularly where seepage occurs.
- A fair pavement-supportive material, with an estimated CBR value of 8%.
- Moderately low corrosivity to buried metal, with an estimated electrical resistivity of 5000 ohm cm.

4.7 **<u>Silty Fine Sand</u>** (Borehole 2)

The sand deposit was encountered beneath a topsoil layer and sample examination shows that it is non-cohesive. The laminated structure shows the deposit was derived from a lacustrine environment. The sand layer is weathered.

The obtained 'N' value is 8 blows per 30 cm; therefore, the relative density of the sand is loose.

The natural water content was determined and the result is plotted on the Borehole Log. The value is 10%, showing that the sand deposit is in a damp condition.

Accordingly, the following engineering properties are deduced:

- Highly frost susceptible with high soil-adfreezing potential.
- Highly water erodible.
- Relatively pervious, with an estimated coefficient of permeability of 10^{-4} cm/sec, an estimated percolation rate of 20 min/cm, and runoff coefficients of:

Slope	
0% - 2%	0.07
2% - 6%	0.12
6% +	0.18

- A frictional soil, its shear strength is derived from internal friction and is density dependent. Due to its dilatancy, the shear strength of the wet sand is susceptible to impact disturbance; i.e., the disturbance will induce a build-up of pore pressure within the soil mantle, resulting in soil dilation and a reduction of shear strength.
- In relatively steep cuts, the sand will be stable in a damp to moist condition, but will slough if it is wet and run with water seepage. The bottom will boil under a piezometric head of 0.3 m.
- A fair material to support pavement, with an estimated CBR value of at least 8%.
- Moderately low corrosivity to buried metal, with an estimated electrical resistivity of 5000 ohm cm.

4.8 Compaction Characteristics of the Revealed Soils

The obtainable degree of compaction of the on-site material is primarily dependent on the soil moisture and, to a lesser extent, on the type of compactor used and the effort applied.

As a general guide, the typical water content values of the revealed soils for Standard Proctor compaction are presented in Table 1.

	Determined Natural Water		ntent (%) for ctor Compaction
Soil Type	Content (%)	100% (optimum)	Range for 95% or +
Silty Clay	12 to 34 (median 21)	25	21 to 30
Silty Clay Till	8 to 27 (median 13)	16	12 to 21
Silt	12 to 23 (median 18)	13	8 to 17
Sandy Silt	12 and 25	12	8 to 16
Silty Sand Till	8 to 15 (median 10)	10	6 to 15
Silty Fine Sand	10	11	6 to 16

Table 1 - Estimated Water Content for Compaction

Based on the above findings, the silty sand till and silty fine sand, the majority of the silty clay and silty clay till, and a portion of the sandy silt are generally suitable for a 95% or + Standard Proctor compaction. However, some of the clays, most of the silt and a portion of the sandy silt are too wet; these soils will require aeration or mixing with drier soils prior to structural compaction. Aeration of the wet soils can be effectively carried out by spreading them thinly on the ground in the dry, warm weather. In addition, portions of the clay and clay till are too dry and will require wetting or mixing with wetter soils.

The silty clay and tills should be compacted using a heavy-weight, kneading-type roller. The silts and sand can be compacted by a smooth roller with or without vibration, depending on the water content of the soil being compacted. The lifts for compaction should be limited to 20 cm, or to a suitable thickness as assessed by test strips performed by the equipment which will be used at the time of construction.

When compacting the very dense and hard tills on the dry side of the optimum, the compactive energy will frequently bridge over the chunks in the soils and be transmitted laterally in the soil mantle. Therefore, the lifts of these soils must be limited to 20 cm or less (before compaction). It is difficult to monitor the lifts of backfill placed in deep trenches; therefore, it is preferable that the compaction of backfill at depths over 1.0 m below the pavement subgrade be carried out on the wet side of the optimum. This would allow a wider latitude of lift thickness.

One should be aware that, with considerable effort, a $90\% \pm$ Standard Proctor compaction of the wet silts is achievable. Further densification is prevented by the pore pressure induced by the compactive effort; however, large random voids will have been expelled and, with time, the pore pressure will dissipate and the percentage of compaction will increase. There are many cases on record where, after a few months of rest, the density of the compacted mantle has increased to over 95% of its maximum Standard Proctor dry density.

If the compaction of the soils is carried out with the water content within the range for 95% Standard Proctor dry density but on the wet side of the optimum, the surface of the compacted soil mantle will roll under the dynamic compactive load. This is unsuitable for pavement construction since each component of the pavement structure is to be placed under dynamic conditions which will induce the rolling action of the subgrade surface and cause structural failure of the new pavement. The foundation or bedding of the sewer and slab-on-grade will be placed on a subgrade which will not be subjected to impact loads. Therefore, the structurally compacted soil mantle with the water content on the wet side or dry side of the optimum will provide an adequate subgrade for the construction.

The presence of boulders in the tills will prevent transmission of the compactive energy into the underlying material to be compacted. If an appreciable amount of boulders over 15 cm in size is mixed with the material, it must either be sorted or must not be used for structural backfill and/or in the construction of engineered fill.

5.0 GROUNDWATER CONDITIONS

Groundwater seepage encountered during augering was recorded on the field logs. The level of groundwater and the occurrence of cave-in were measured upon completion of the boreholes; the data are plotted on the Borehole Logs and listed in Table 2.

	Borehole	Soil Colour Changes Brown to Grey	Seepage Er During A		Grou Cave-	asured ndwater/ In* Level mpletion			
BH No.	Depth (m)	Depth (m)	Depth (m)	Amount	Depth (m)	El (m)			
1	6.6	3.0	2.2	Some	3.4/2.4*	260.0/261.0*			
2	6.6	4.0	0.4 Some		4.9/5.5*	257.7/257.1*			
3	6.3	2.3	-	-	5.8	256.2			
4	6.6	3.2	-	-	Dry	-			
5	6.6	4.0	-	-	Dry	-			
6	6.6	3.3	0.8	Slight	2.7/3.0*	257.0/256.7*			
7	6.6	3.0	-	-	5.2/5.5*	254.1/253.8*			
8	6.6	3.0	-	-	Dry	-			
9	6.6	3.0	2.2	Some	3.4/3.0*	258.1/258.5*			
10	6.6	3.0	1.0 Slight		5.8/5.5*	* 254.0/254.3*			
11	6.6	4.0	1.0 Slight		Dry	-			
12	6.6	4.0	0.4	Slight	Dry	-			

 Table 2 - Groundwater Levels

* Cave-in level (In the wet sand and silt layers, the level generally represents the groundwater regime at the borehole location.)

Groundwater was measured and/or cave-in occurred at depths ranging from 2.4 to 5.8 m below the prevailing ground surface in the majority of the boreholes. The

detected groundwater generally represents the groundwater regime of the site at the time of the investigation and will be subject to seasonal fluctuation.

The groundwater yield from the silty clay and tills, due to their low to relatively low permeability, will be small and limited. The yield of groundwater from the silts and sand, if encountered, will be moderate to appreciable and persistent.

6.0 DISCUSSION AND RECOMMENDATIONS

The findings from the boreholes have revealed that beneath a veneer of topsoil, the site is underlain by strata of firm to very stiff, generally stiff silty clay, firm to hard, generally very stiff silty clay till, compact to very dense, generally dense silt, compact to dense sandy silt, dense to very dense, generally dense silty sand till and loose silty fine sand at various depths and locations. The surficial soil layers are generally weathered to depths of 0.7 m or 1.4 m below the prevailing ground surface, and the weathered soils are generally loose or firm.

Groundwater was measured and/or cave-in occurred at depths ranging from 2.4 to 5.8 m below the prevailing ground surface in the majority of the boreholes. The detected groundwater generally represents the groundwater regime of the site at the time of the investigation and will fluctuate with the seasons.

The groundwater yield from the silty clay and tills, due to their low to relatively low permeability, will be small and limited. The yield of groundwater from the silts and sand, if encountered, will be moderate to appreciable and persistent.

The geotechnical findings which warrant special consideration are presented below:

- The topsoil must be stripped for the project construction. This material will generate volatile gases under anaerobic conditions and is unsuitable for engineering applications. Therefore, this material should be placed in the landscaped areas only and should not be buried within the building envelope, or deeper than 1.2 m below the exterior finished grade of the project. A fertility test must be carried out to assess its suitability as landscaping material.
- 2. The sound natural soils below the topsoil and weathered soils are suitable for normal spread and strip footing construction. Due to the presence of topsoil

and weathered soils, the footing subgrade must be inspected by a geotechnical engineer, or a geotechnical technician under the supervision of a geotechnical engineer, or a building inspector who has geotechnical experience, to ensure that its condition is compatible with the design of the foundation.

- 3. For basement construction, perimeter subdrains and dampproofing of the foundation walls will be required. Where groundwater seepage occurs at a shallow depth, floor subdrains should also be installed. All the subdrains must be encased in a fabric filter to protect them against blockage by silting and must be connected to a positive outlet. This can be assessed at the time of construction.
- 4. Due to the occurrence of shallow groundwater in some areas, it is recommended that the basement level, if there is one, should remain at least 0.5 m above the detected groundwater level. To provide a dry floor, subdrains consisting of filter-wrapped weepers must be installed beneath the floor slabs and connected to a positive outlet. A vapour barrier must be placed in the granular base of the floor above the crown of the subdrain.
- 5. For slab-on-grade construction, the slab should be placed on relatively sound soils or properly compacted earth fill. Prior to the slab construction, the subgrade must be proof-rolled and inspected. Any weathered or soft soils detected must be subexcavated and replaced with inorganic material compacted to 98% or + Standard Proctor dry density.
- 6. A Class 'B bedding, consisting of compacted 20-mm Crusher-Run Limestone, is recommended for the construction of the underground services. Where water-bearing silts occur, the sewer joints should be leak-proof, or wrapped with an appropriate waterproof membrane, to prevent subgrade migration. If subgrade stabilization is required, the stone immersion technique may be applied. In areas where more extensive dewatering is required for sewer construction, a Class 'A' bedding should be considered.

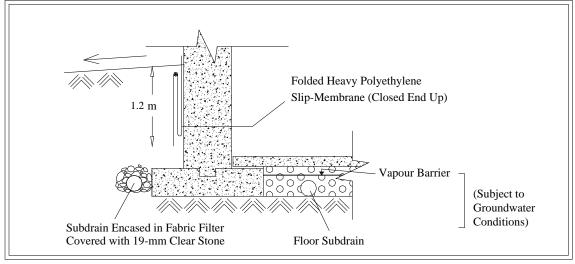
- 7. Some of the soils are highly frost susceptible, with high soil-adfreezing potential. Where these soils are used to backfill against foundation walls, special measures must be incorporated into the building construction to prevent serious damage due to soil adfreezing.
- 8. The tills contain occasional boulders and cobbles. Boulders over 15 cm in size must not be used for structural backfill. Excavation into the till containing boulders will require extra effort and the use of a heavy-duty backhoe.

The recommendations appropriate for the project described in Section 2.0 are presented herein. One must be aware that the subsurface conditions may vary between boreholes. Should this become apparent during construction, a geotechnical engineer must be consulted to determine whether the following recommendations require revision.

6.1 **Foundations**

Based on the borehole findings, it is recommended that the normal spread and strip footings for the proposed project must be placed below the topsoil and weathered soils onto the sound natural native soils; a Maximum Allowable Soil Pressure (SLS) of 150 kPa and a Factored Ultimate Soil Bearing Pressure (ULS) of 250 kPa can be used for the design of the normal spread and strip and foundations at a founding depth of $1.0\pm$ m below the prevailing ground surface.

The recommended soil pressures (SLS) for normal foundations incorporate a safety factor of 3. The total and differential settlements of the foundations are estimated to be 25 mm and 15 mm, respectively.



The foundations exposed to weathering and in unheated areas should have at least 1.2 m of earth cover for protection against frost action, or must be properly insulated.

To ensure that the condition of the subgrade is compatible with the foundation design requirements, the footing subgrade of the normal foundations must be inspected by a geotechnical engineer, or a technician under the supervision of a geotechnical engineer, or a building inspector who has geotechnical experience.

Due to the occurrence of groundwater at shallow depths at some areas, it is recommended that the basement level should remain at least 0.5 m above the detected groundwater level. In areas where groundwater seepage occurs at a shallow depth, or in the areas affected by artesian water, floor subdrains consisting of filter-wrapped weepers must be installed beneath the floor slabs and connected to a positive outlet. A vapour barrier must be placed in the granular base of the floor above the crown of the subdrain. Should the basement level be placed below the groundwater regime, waterproofing will be required and the basement must be designed to resist hydrostatic pressure and uplift, which will be costly and difficult to construct. Otherwise, the groundwater is to be properly controlled to ensure that it will be below the basement level at all times.

Some of the occurring soils are high in frost heave and soil-adfreezing potential. If these soils are to be used for the foundation backfill, the foundation walls should be shielded by a polyethylene slip-membrane for protection against soil adfreezing. The membrane will allow vertical movement of the heaving soil (due to frost) without imposing structural distress on the foundations. The recommended measures are schematically illustrated in Diagram 1.

Diagram 1 - Frost Protection Measures (Foundations)

The necessity to implement the above recommendations should be further assessed by a geotechnical engineer at the time of construction.

The foundations must meet the requirements specified by the latest Ontario Building Code, and the buildings must be designed to resist a minimum earthquake force using Site Classification 'D' (stiff soil).

6.2 Engineered Fill

Where earth fill is required to raise the site or where extended footings are necessary for foundation construction, the engineering requirements for a certifiable fill for road construction, municipal services, slab-on-grade, and footings designed with a Maximum Allowable Soil Pressure (SLS) of 150 kPa and a Factored Ultimate Soil Bearing Pressure (ULS) of 250 kPa for normal footings are presented below:

T

- 1. The topsoil must be removed.
- 2. The weathered and loose or firm soils must be subexcavated, and the subgrade must be inspected and proof-rolled prior to any fill placement.
- 3. Inorganic soils must be used for filling. The fill should be free of topsoil inclusions or other deleterious materials. It must be uniformly compacted in lifts 20 cm thick to 98% or + of their maximum Standard Proctor dry density up to the proposed finished grade. The soil moisture must be properly controlled on the wet side of the optimum.
- 4. If imported fill is to be used, the hauler is responsible for its environmental quality and must provide a document to certify that the material is free of hazardous contaminants.
- If the house foundations are to be built soon after the fill placement, the densification process for the engineered fill must be increased to 100% of the maximum Standard Proctor compaction.
- 6. If the engineered fill is to be left over the winter months, adequate earth cover or equivalent must be provided for protection against frost action.
- 7. The engineered fill must extend over the entire graded area; the engineered fill envelope and finished elevations must be clearly and accurately defined in the field, and they must be precisely documented by qualified surveyors. Foundations partially on engineered fill must be reinforced by two 15-mm steel reinforcing bars in the footings and upper section of the foundation walls, or be designed by a structural engineer, to properly distribute the stress induced by the abrupt differential settlement (about 15 mm) between the natural soil and engineered fill.
- 8. The engineered fill must not be placed during the period from late November to early April when freezing ambient temperatures occur either persistently or intermittently. This is to ensure that the fill is free of frozen soils, ice and snow.

- 9. Where the fill is to be placed on a bank steeper than 1 vertical:3 horizontal, the face of the bank must be flattened to 3 + so that it is suitable for safe operation of the compactor and the required compaction can be obtained.
- 10. Where the ground is wet due to subsurface water seepage, an appropriate subdrain scheme must be implemented prior to the fill placement, particularly if it is to be carried out on sloping ground.
- 11. The fill operation must be inspected on a full-time basis by a technician under the direction of a geotechnical engineer.
- 12. The footing and underground services subgrade must be inspected by the geotechnical consulting firm that supervised the engineered fill placement. This is to ensure that the foundations are placed within the engineered fill envelope, and the integrity of the fill has not been compromised by interim construction, environmental degradation and/or disturbance by the footing excavation.
- 13. Any excavation carried out in certified engineered fill must be reported to the geotechnical consultant who supervised the fill placement in order to document the locations of excavation and/or to supervise reinstatement of the excavated areas to engineered fill status. If construction on the engineered fill does not commence within a period of 2 years from the date of certification, the condition of the engineered fill must be assessed for re-certification.
- 14. Despite stringent control in the placement of the engineered fill, variations in soil type and density may occur in the engineered fill. Therefore, the strip footings and the upper section of the foundation walls constructed on the engineered fill may require continuous reinforcement with steel bars, depending on the uniformity of the soils in the engineered fill and the thickness of the engineered fill underlying the foundations. Should the footings and/or walls require reinforcement, the required number and size of reinforcing bars must be assessed by considering the uniformity as well as the thickness of the engineered fill beneath the foundations. In sewer

construction, the engineered fill is considered to have the same structural proficiency as a natural inorganic soil.

6.3 Slab-On-Grade

For slab-on-grade construction, the subgrade must consist of sound natural soils, or properly compacted inorganic soils, to at least 98% of its maximum Standard Proctor dry density. The slab should be constructed on a granular base, 20 cm thick, consisting of 20-mm Crusher-Run Limestone, or equivalent, compacted to its maximum Standard Proctor dry density.

The sound natural soils are suitable for slab-on-grade construction. The weathered soils should be aerated and surface compacted for slab-on-grade construction.

A Modulus of Subgrade Reaction of 25 MPa/m is recommended for the design of the floor slab.

The ground around the building must be graded to direct water away from the structure to minimize the frost heave phenomenon generally associated with the disclosed soils.

6.4 Garages, Driveways, Sidewalks and Interlocking Stone Pavement

The driveways at the entrances to the garages should be backfilled with non-frostsusceptible granular material, with a frost taper at a slope of 1 vertical:1 horizontal.

Interlocking stone pavement in areas which are sensitive to frost-induced ground movement, such as entrances, must be constructed on a free-draining, non-frostsusceptible granular material such as Granular 'B'. The material must extend to

1.2 m below the slab or pavement surface and be provided with positive drainage such as weeper subdrains connected to manholes or catch basins. Alternatively, the sidewalks and the interlocking stone pavement should be properly insulated with 50-mm Styrofoam, or equivalent, as approved by a geotechnical engineer.

The grading around the structures must be sloped such that surface runoff is directed away from the structures.

6.5 Underground Services

The subgrade for the underground services should consist of natural soils or compacted organic-free earth fill. Where topsoil, loose/firm and badly weathered soils are encountered, these materials must be subexcavated and replaced with properly compacted bedding material.

A Class 'B bedding, consisting of compacted 20-mm Crusher-Run Limestone, is recommended for the construction of the underground services. Where the services are constructed in water-bearing silts, the pipe joints should be leak-proof or wrapped with an appropriate waterproof membrane to prevent subgrade migration. If subgrade stabilization is required, the stone immersion technique may be applied. In areas where more extensive dewatering is required for sewer construction, a Class 'A' bedding should be considered.

In order to prevent pipe floatation when the sewer trench is deluged with water, a soil cover with a thickness equal to the diameter of the pipe should be in place at all times after completion of the pipe installation.

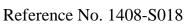
Openings to subdrains and catch basins should be shielded with a fabric filter to prevent blockage by silting.

Since the silty clay has moderately high corrosivity to buried metal, the water main should be protected against corrosion. In determining the mode of protection, an electrical resistivity of 3500 ohm cm should be used. This, however, should be confirmed by testing the soil along the water main alignment at the time of sewer construction.

6.6 Trench Backfilling

The on-site inorganic soils are suitable for trench backfill. In the zone within 1.0 m below the pavement subgrade, the backfill should be compacted to at least 98% of its maximum Standard Proctor dry density with the moisture content 2% to 3% drier than the optimum. In the lower zone, a 95% or + Standard Proctor compaction is considered to be adequate; however, the material must be compacted on the wet side of the optimum.

In normal underground services construction practice, the problem areas of road settlement largely occur adjacent to manholes, catch basins, services crossings, foundation walls and columns, and it is recommended that a sand backfill be used.


The narrow trenches should be cut at 1 vertical:2 or + horizontal so that the backfill can be effectively compacted. Otherwise, soil arching will prevent the achievement of proper compaction. The lift of each backfill layer should either be limited to a thickness of 20 cm, or the thickness should be determined by test strips.

One must be aware of the possible consequences during trench backfilling and exercise caution as described below:

• When construction is carried out in freezing winter weather, allowance should be made for the following conditions. Despite stringent backfill monitoring,

frozen soil layers may inadvertently be mixed with the structural trench backfill. Should the in situ soils have a water content on the dry side of the optimum, it would be impossible to wet the soils due to the freezing condition, rendering difficulties in obtaining uniform and proper compaction. Furthermore, the freezing condition will prevent flooding of the backfill when it is required, such as in a narrow vertical trench section, or when the trench box is removed. The above will invariably cause backfill settlement that may become evident within 1 to several years, depending on the depth of the trench which has been backfilled.

- In areas where the underground services construction is carried out during winter months, prolonged exposure of the trench walls will result in frost heave within the soil mantle of the walls. This may result in some settlement as the frost recedes, and repair costs will be incurred prior to final surfacing of the new pavement and the slab-on-grade construction.
- To backfill a deep trench, one must be aware that future settlement is to be expected, unless the side of the cut is flattened to at least 1 vertical:
 1.5 + horizontal, and the lifts of the fill and its moisture content are stringently controlled; i.e., lifts should be no more than 20 cm (or less if the backfilling conditions dictate) and uniformly compacted to achieve at least 95% of the maximum Standard Proctor dry density, with the moisture content on the wet side of the optimum.
- It is often difficult to achieve uniform compaction of the backfill in the lower vertical section of a trench which is an open cut or is stabilized by a trench box, particularly in the sector close to the trench walls or the sides of the box. These sectors must be backfilled with sand. In a trench stabilized by a trench box, the void left after the removal of the box will be filled by the backfill. It is necessary to backfill this sector with sand, and the compacted backfill must be flooded for 1 day, prior to the placement of the backfill above this sector,

i.e., in the upper sloped trench section. This measure is necessary in order to prevent consolidation of inadvertent voids and loose backfill which will compromise the compaction of the backfill in the upper section. In areas where groundwater movement is expected in the sand fill mantle, seepage collars should be provided.

6.7 Pavement Design

Based on the borehole findings, the recommended pavement design for local roads is presented in Table 3.

Course	Thickness (mm)	OPS Specifications
Asphalt Surface	40	HL-3
Asphalt Binder	65	HL-8
Granular Base	150	20-mm Crusher-Run Limestone or equivalent
Granular Sub-base Local Minor Collector	300 400	50-mm Crusher-Run Limestone or equivalent

Table 3 - Pavement Design

In preparation of the subgrade, the final graded subgrade surface should be proofrolled; any soft spots, topsoil and deleterious materials within 1.0 m below the underside of the granular sub-base should be subexcavated and replaced by properly compacted organic-free earth fill. It is necessary to provide a subgrade consisting of uniform material to minimize any differential heaving during the freezing and thawing seasons.

All the granular bases should be compacted to their maximum Standard Proctor dry density.

In the zone within 1.0 m below the pavement subgrade, the backfill should be compacted to at least 98% of its maximum Standard Proctor dry density, with the water content 2% to 3% drier than the optimum. In the lower zone, a 95% or + Standard Proctor compaction is considered adequate.

The road subgrade will suffer a strength regression if water is allowed to infiltrate prior to paving. The following measures should therefore be incorporated into the construction procedures and road design:

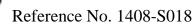
- If the road construction does not immediately follow the trench backfilling, the subgrade should be properly crowned and smooth-rolled to allow interim precipitation to be properly drained.
- Lot areas adjacent to the roads should be properly graded to prevent the ponding of large amounts of water during the interim construction period.
- Curb subdrains will be required. The subdrains should consist of filtersleeved weepers to prevent blockage by silting.
- If the roads are to be constructed during the wet seasons and extensively soft subgrade occurs, the granular sub-base may require thickening. This can be assessed during construction.

6.8 Soil Parameters

The recommended soil parameters for the project design are given in Table 4.

Table 4 - Soil Parameters

Unit Weight and Bulk Factor			
	Unit Weight <u>(kN/m³)</u>		mated <u>Factor</u>
	Bulk	Loose	Compacted
Weathered Soils	21.0	1.20	1.00
Silty Clay and sound Tills	22.0	1.33	1.05
Silts and Sand	22.0	1.30	1.02
Lateral Earth Pressure Coefficients			
	Active K _a	At Rest K _o	Passive K _p
Weathered Soils	0.45	0.55	2.22
Silty Clay and sound Tills	0.40	0.50	2.50
Silts and Sand	0.35	0.45	2.86


6.9 Excavation

Excavation should be carried out in accordance with Ontario Regulation 213/91.

Excavations in excess of 1.2 m should be sloped at 1 vertical:1 horizontal for stability.

Excavation into the tills containing boulders will require extra effort and the use of a heavy-duty, properly equipped backhoe.

For excavation purposes, the types of soils are classified in Table 5.

Material	Туре
Sound Tills	2
Silty Clay, weathered Soils, Silts and Sand above groundwater	3
Silts and Sand below groundwater	4

Table 5 - Classification of Soils for Excavation

The groundwater yield from the silty clay and tills, due to their low to relatively low permeability, will be small, if any, and can be controlled by pumping from sumps. However, the yield from the silts and sand will likely be moderate to appreciable and persistent; it should be controlled by vigorous pumping from closely spaced sumps or, if necessary, the use of a well-point dewatering system should be considered.

Prospective contractors must be asked to assess the in situ subsurface conditions for soil cuts by digging test pits to at least 1.0 m below the intended bottom of excavation. These test pits should be allowed to remain open for a period of at least 4 hours to assess the trenching conditions.

7.0 LIMITATIONS OF REPORT

It should be noted that Phase One Environmental Site Assessment has been carried out, and the results and assessment were presented under separate cover, Reference No. 1408-S018E, dated September 24, 2014. Therefore, this report deals only with a study of the geotechnical aspects of the proposed project.

This report was prepared by Soil Engineers Ltd. for the account of Brookvalley Developments Inc., and for review by its designated consultants and government agencies. The material in it reflects the judgement of Frank Lee, P.Eng., and Daniel Man, P.Eng., in light of the information available to it at the time of preparation. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

SOIL ENGINEERS LTD.

Frank Lee, P.Eng.

LIST OF ABBREVIATIONS AND DESCRIPTION OF TERMS

The abbreviations and terms commonly employed on the borehole logs and figures, and in the text of the report, are as follows:

SAMPLE TYPES

- AS Auger sample
- CS Chunk sample
- DO Drive open (split spoon)
- DS Denison type sample
- FS Foil sample
- RC Rock core (with size and percentage recovery)
- ST Slotted tube
- TO Thin-walled, open
- TP Thin-walled, piston
- WS Wash sample

PENETRATION RESISTANCE

Dynamic Cone Penetration Resistance:

A continuous profile showing the number of blows for each foot of penetration of a 2-inch diameter, 90° point cone driven by a 140-pound hammer falling 30 inches. Plotted as '—•—'

Standard Penetration Resistance or 'N' Value:

The number of blows of a 140-pound hammer falling 30 inches required to advance a 2-inch O.D. drive open sampler one foot into undisturbed soil. Plotted as ' \bigcirc '

- WH Sampler advanced by static weight
- PH Sampler advanced by hydraulic pressure
- PM Sampler advanced by manual pressure
- NP No penetration

SOIL DESCRIPTION

Cohesionless Soils:

<u>'N' (blov</u>	ws/ft)	Relative Density
0 to	4	very loose
4 to	10	loose
10 to	30	compact
30 to	50	dense
over	50	very dense

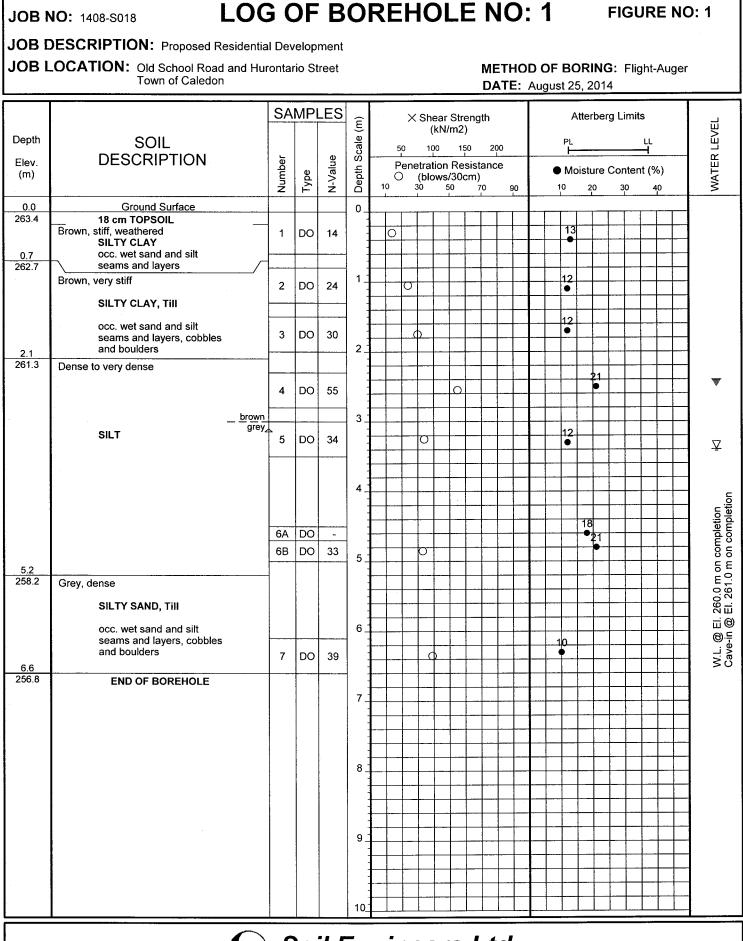
Cohesive Soils:

Undrai <u>Streng</u> t			<u>'N' (</u>	blov	vs/ft)	<u>Consistency</u>
less t		00	0	to	_	very soft
0.25	to	0.50	2	to	4	soft
0.50	to	1.0	4	to	8	firm
1.0	to	2.0	8	to	16	stiff
2.0	to	4.0	16	to	32	very stiff
over		4.0	0	ver	32	hard

Method of Determination of Undrained Shear Strength of Cohesive Soils:

- x 0.0 Field vane test in borehole; the number denotes the sensitivity to remoulding
- \triangle Laboratory vane test
- □ Compression test in laboratory

For a saturated cohesive soil, the undrained shear strength is taken as one half of the undrained compressive strength


METRIC CONVERSION FACTORS

1 ft = 0.3048 metres11b = 0.454 kg 1 inch = 25.4 mm1 ksf = 47.88 kPa

Soil Engineers Ltd.

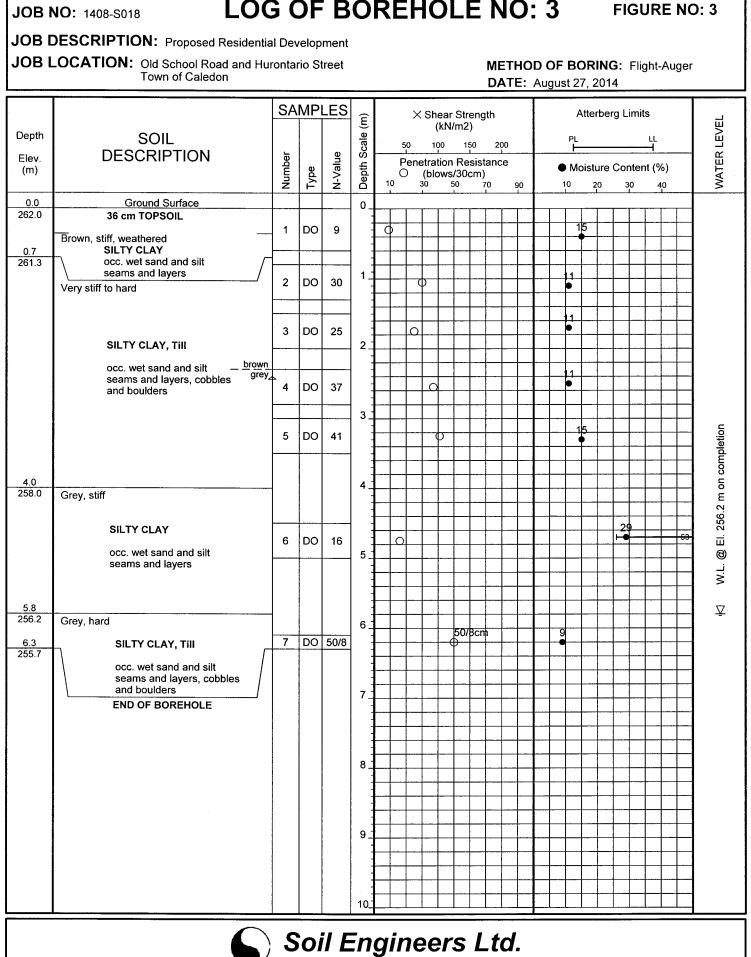
CONSULTING ENGINEERS GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

FIGURE NO: 1

Soil Engineers Ltd.

JOB NO: 1408-S018

LOG OF BOREHOLE NO: 2


FIGURE NO: 2

JOB DESCRIPTION: Proposed Residential Development

JOB LOCATION: Old School Road and Hurontario Street Town of Caledon

METHOD OF BORING: Flight-Auger **DATE:** August 25, 2014

	SAMPLES Shear Stren							imes Shear Strength								Τ	Ļ									
Depth	SOIL		ຍ (kN/m2)																EVEI							
Elev.	DESCRIPTION	Ŀ		e	Sca		50 100 150 200								<u> </u>					- I		-	I. L.			
(m)		Number	Type	N-Value	spth		Penetration Resistance O (blows/30cm)							oisture Content (%)							WATER LEVEL					
		ź		ź			10 30 50 70 90						10 20 30 40							•						
0.0 262.6	Ground Surface 23 cm TOPSOIL	<u> </u>			0.				Т	1				Т										-		
	Brown, loose, weathered SILTY FINE SAND	1	DO	8		E	q									_1	0						_]		
0.7	occ. sandy silt and silt	<u> </u>	-		-	1			_	_				+								-+		-		
261.9	seams and layers				1.	t													21			_				
	SILT	2	DO	13		1				+				-	 				•		\vdash			_		
1.4 261.2	Brown, very stiff to hard	<u> </u>			-	+		+									14						-			
		3	DO	21				>			_						•								tion	
		<u> </u>			2.	-	++		+			-	-								-+		+	-	etior	
	SILTY CLAY, TIII				-	E											13					_			ld no	
	occ. wet sand and silt	4	DO	35		1	+		ф.		+	-	+		·		•		<u> </u>		\vdash	-+		-	5 6 2 6	
	seams and layers, cobbles and boulders				3.	Ŧ																_	_		7 m 6 57.1	
		5		26		+		$\overline{\mathbf{d}}$		+	+	+	+				_ 1	5			\vdash	-+			257. El. 25	
					-	t																	_		Ш®	
						1			+	-		_		_							\vdash	-+		_	W.L. @ El. 257.7 m on completion Cave-in @ El. 257.1 m on completion	
4.0 258.6	Grey, compact to dense	1			4.	╂				+															Cav Cav	
						Ŧ				_											\vdash	+				
		6	DO	41	1	1								-				18 •				-+-		-		
	011 T				5	Ŧ					_											\square		_	$\overline{\Delta}$	
	SILT					1-				+	+			-	-						\vdash	-+-		-		
						t							T									1			T	
						+					+									\vdash			+	-		
		<u> </u>	 		6.	t								<u> </u>			13							_		
6.6		7	DO	21		+		2	_	-			-		-		٠	<u> </u>			$\left - \right $	-+		_		
256.0	END OF BOREHOLE	+		<u> </u>		t																		-		
					7	1							+	-							\vdash	\rightarrow		_		
						$\frac{1}{1}$		-+				-	+								\square	+		-		
						Ŧ															\square		_			
					8	+						-						-			┝╌┤	+				
						1		_	_			_									\square	_	_			
						1			+											-	\vdash	-+		-		
						Ē																_	_	1		
					9	1			_	_					-						\vdash	-+		-		
						t																_	_			
						1				-				<u> </u>				<u> </u>		<u> </u>	┝─┥	\rightarrow				
					10	±																				
					<u> </u>	_									<u>ا</u>									<u> </u>		
		S	50	il E	En	10	gin	e	e	rs	5	Lt	ta													

LOG OF BOREHOLE NO: 3

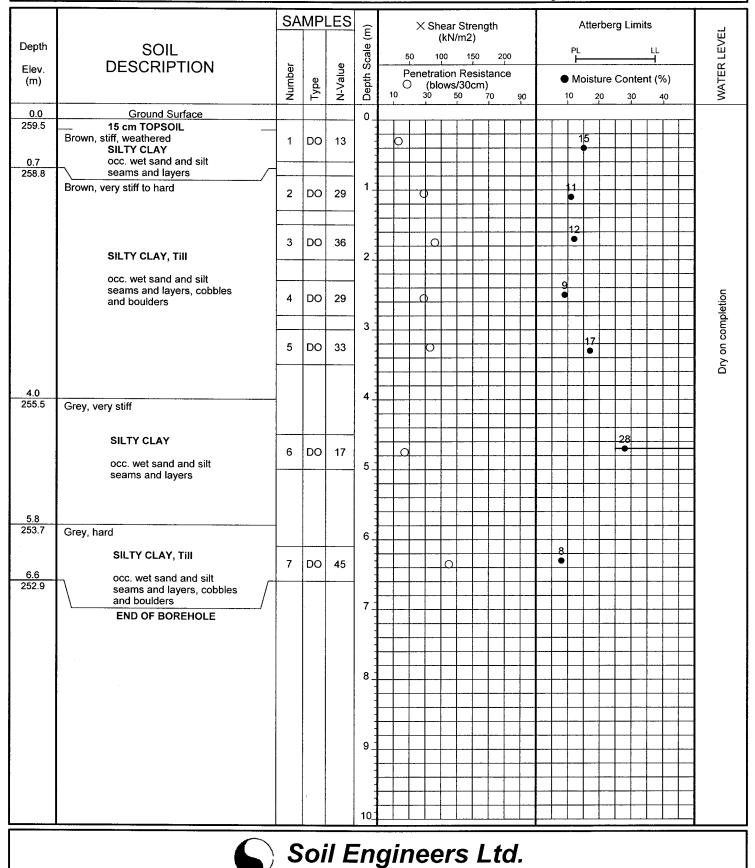
JOB DESCRIPTION: Proposed Residential Development JOB LOCATION: Old School Road and Hurontario Street METHOD OF BORING: Flight-Auger Town of Caledon DATE: August 25, 2014 SAMPLES imes Shear Strength Atterberg Limits £ WATER LEVEL (kN/m2) Scale (Depth SOIL PL Ц 100 150 200 50 DESCRIPTION N-Value Number Elev. Penetration Resistance Depth Moisture Content (%) Type (blows/30cm) 30 50 7 (m) Ο 10 50 10 90 20 30 40 70 0.0 Ground Surface 0 261.6 25 cm TOPSOIL DO 7 16 1 0 Brown, firm to hard weathered 13 1 2 DO 25 Ο ۲ SILTY CLAY, TIII 16 occ. wet sand and silt 3 DO 37 seams and layers, cobbles 2 and boulders 10 • 4 DO 44 \cap Dry on completion 3 silty fine sand 3.2 15 258.4 5 DO 53 5 Grey, dense to very dense 4 SILTY SAND, Till 50/10cm C DO 50/10 δ 6 occ. wet sand and silt seams and layers, cobbles 5. and boulders 6. 8 ē 7 DO 44 0 6.6 255.0 END OF BOREHOLE 7 8 9 10_

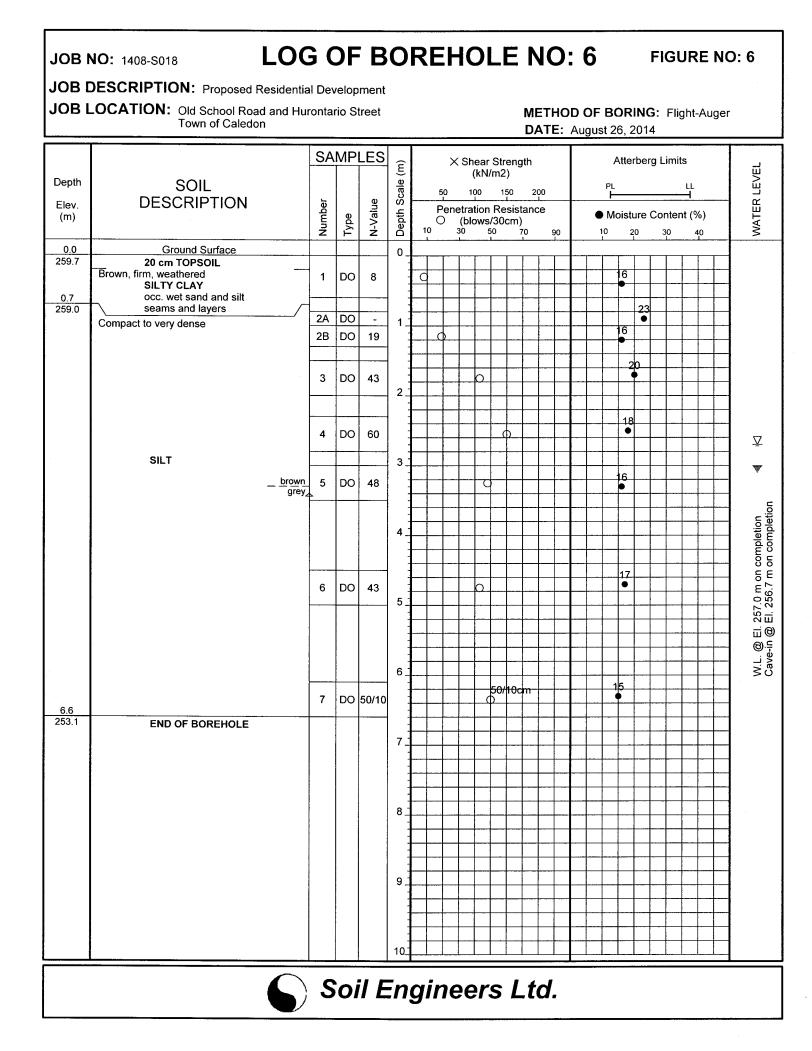
Soil Engineers Ltd.

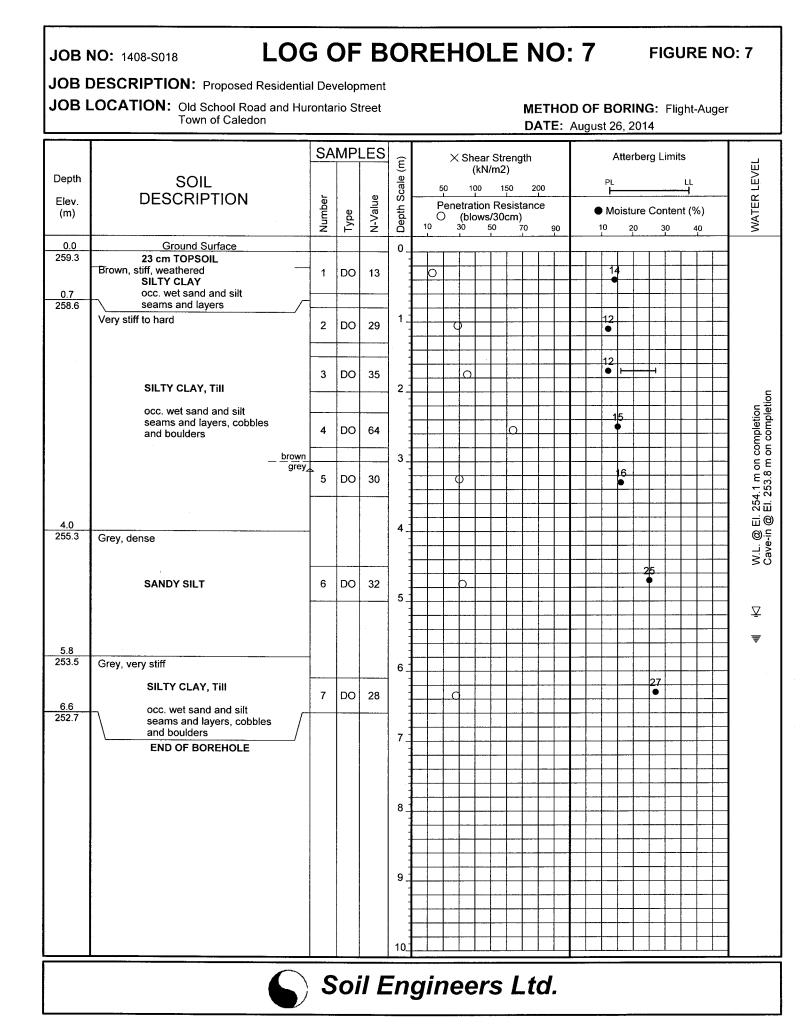
FIGURE NO: 4

JOB NO: 1408-S018 LOG OF BOREHOLE NO: 4

JOB NO: 1408-S018


LOG OF BOREHOLE NO: 5


FIGURE NO: 5


JOB DESCRIPTION: Proposed Residential Development

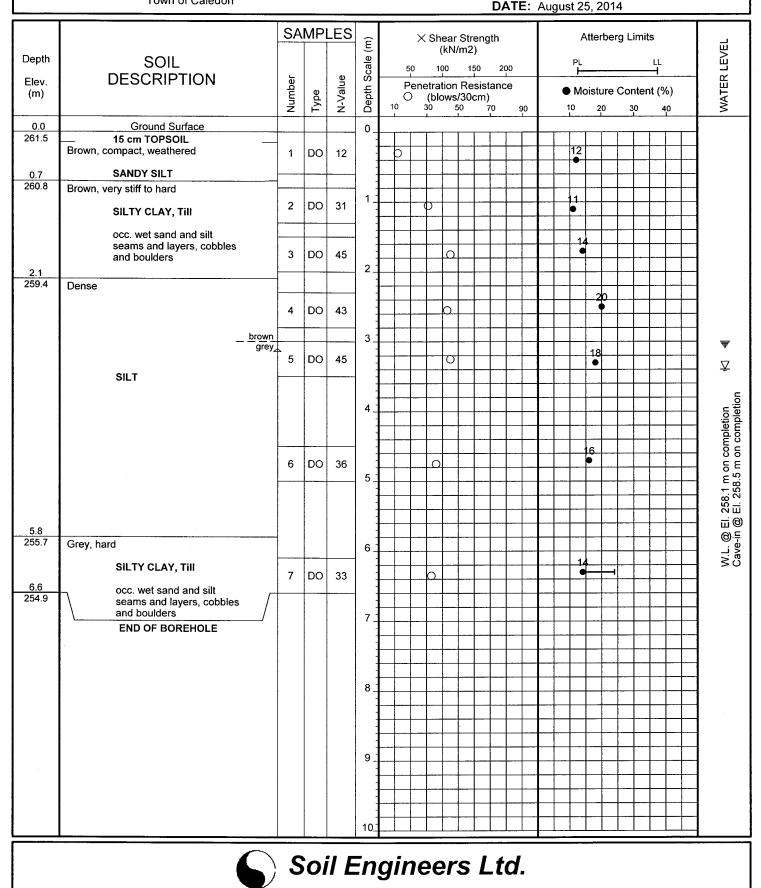
JOB LOCATION: Old School Road and Hurontario Street Town of Caledon

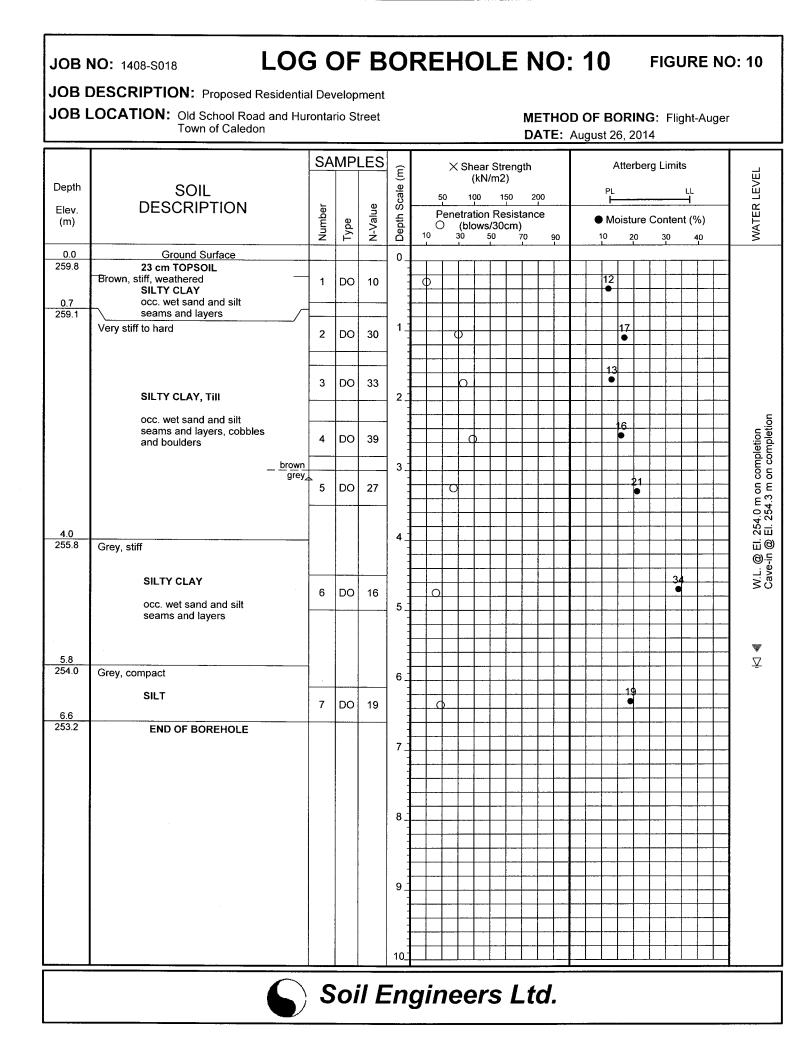
METHOD OF BORING: Flight-Auger **DATE:** August 26, 2014

LOG OF BOREHOLE NO: 8 **FIGURE NO: 8 JOB NO:** 1408-S018 JOB DESCRIPTION: Proposed Residential Development JOB LOCATION: Old School Road and Hurontario Street METHOD OF BORING: Flight-Auger Town of Caledon DATE: August 25, 2014 SAMPLES Atterberg Limits X Shear Strength Ē WATER LEVEL (kN/m2) Depth Depth Scale SOIL PL ц -50 100 150 200 DESCRIPTION N-Value Number Elev. Penetration Resistance Moisture Content (%) Type (m) Ο (blows/30cm) 10 зò 50 70 90 10 20 30 40 0.0 Ground Surface 0 259.6 15 cm TOPSOIL Brown, firm, weathered 1 DO 7 C SILTY CLAY occ. wet sand and silt 0.7 258.9 seams and layers Very stiff to hard 1 DO 2 23 • 12 • DO 3 30 2 SILTY CLAY, TIII 12 occ. wet sand and silt . DO 33 4 seams and layers, cobbles Dry on completion and boulders _ brown 3 grey 1 5 DO 36 C 4.0 4 255.6 Grey, very stiff SILTY CLAY 6 DO 21 occ. wet sand and silt 5 seams and layers 5.8 253.8 Grey, compact 6 SILT 7 DO 20 6.6 253.0 END OF BOREHOLE 7 8 9 10

Soil Engineers Ltd.

JOB NO: 1408-S018


LOG OF BOREHOLE NO: 9


FIGURE NO: 9

METHOD OF BORING: Flight-Auger

JOB DESCRIPTION: Proposed Residential Development

JOB LOCATION: Old School Road and Hurontario Street Town of Caledon

JOB DESCRIPTION: Proposed Residential Development JOB LOCATION: Old School Road and Hurontario Street METHOD OF BORING: Flight-Auger Town of Caledon DATE: August 26, 2014 SAMPLES imes Shear Strength Atterberg Limits £ WATER LEVEL (kN/m2) Scale (Depth SOIL PL ц 100 150 200 50 N-Value DESCRIPTION Number Elev. Penetration Resistance Depth Moisture Content (%) Type (m) Ο (blows/30cm) 10 30 50 10 20 70 90 30 40 0.0 Ground Surface 0 260.0 23 cm TOPSOIL 2 DO 8 1 d • Brown, firm to stiff, weathered SILTY CLAY 1 2 DO 15 σ occ. wet sand and silt seams and layers 1.4 258.6 Brown, very stiff 18 . 3 DO 23 Ο 2 Dry on completion SILTY CLAY, TIII . ሐ 4 DO 30 occ. wet sand and silt seams and layers, cobbles 3 and boulders 12 5 DO 29 . 4.0 4 256.0 Grey, very stiff DO 23 6 \cap SILTY CLAY 5 occ. wet sand and silt seams and layers 6. 2 7 DO 17 C 6.6 253.4 END OF BOREHOLE 7 8 9

LOG OF BOREHOLE NO: 11

JOB NO: 1408-S018

FIGURE NO: 11

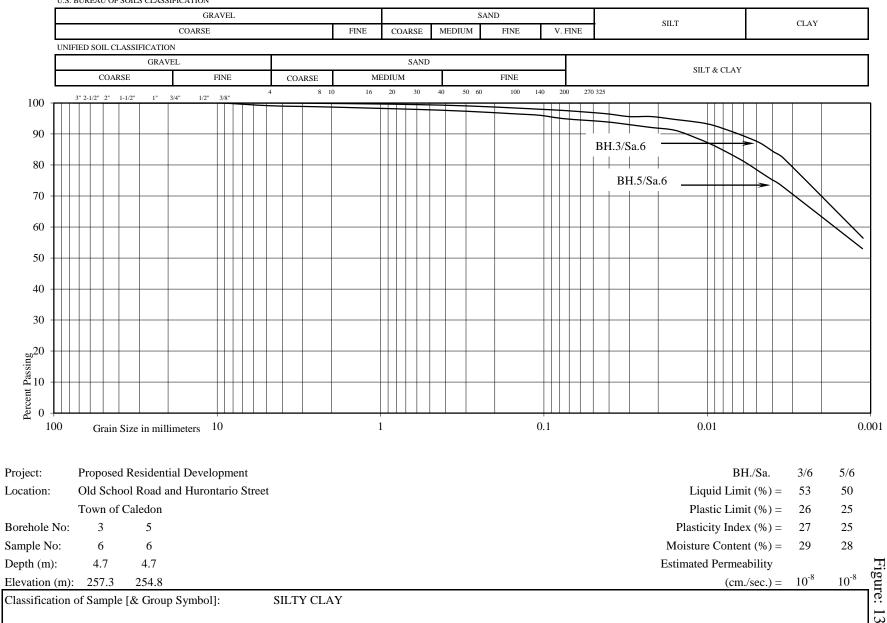
Soil Engineers Ltd.

10

JOB LOCATION: Old School Road and Hurontario Street METHOD OF BORING: Flight-Auger Town of Caledon DATE: August 26, 2014 SAMPLES Atterberg Limits X Shear Strength E WATER LEVEL (kN/m2) Scale (Depth SOIL PL Ļ 100 150 200 50 DESCRIPTION Number N-Value Elev. Penetration Resistance Depth Moisture Content (%) Type (m) (blows/30cm) 30 50 7 Ο 10 10 20 70 90 30 40 0.0 Ground Surface 0 257.7 15 cm TOPSOIL Brown, stiff, weathered DO 20 9 1 a SILTY CLAY occ. wet sand and silt 0.7 seams and layers 257.0 Brown, very stiff to hard 12 1 2 DO 22 • 13 . 3 DO 26 Ο SILTY CLAY, Till 2 occ. wet sand and silt 10 seams and layers, cobbles 4 DO 43 \cap and boulders Dry on completion 3 5 DO 25 σ . 4.0 4 253.7 Grey, stiff 23 SILTY CLAY . 6 DO 16 \cap occ. wet sand and silt 5 seams and layers 5.8 251.9 Grey, compact 6 19 SILT 7 DO 25 0 6.6 251.1 END OF BOREHOLE 7 8 9 10

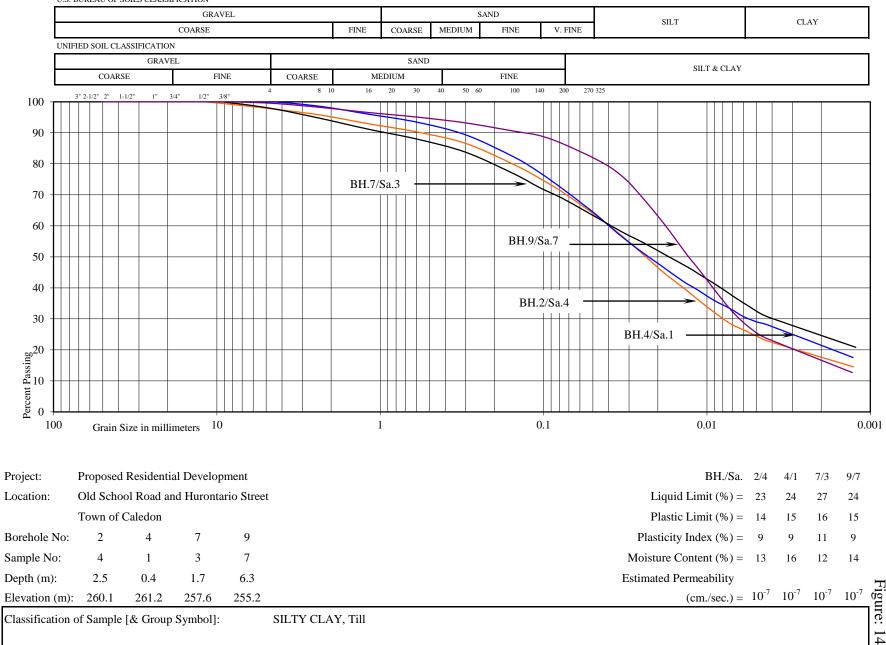
Soil Engineers Ltd.

LOG OF BOREHOLE NO: 12

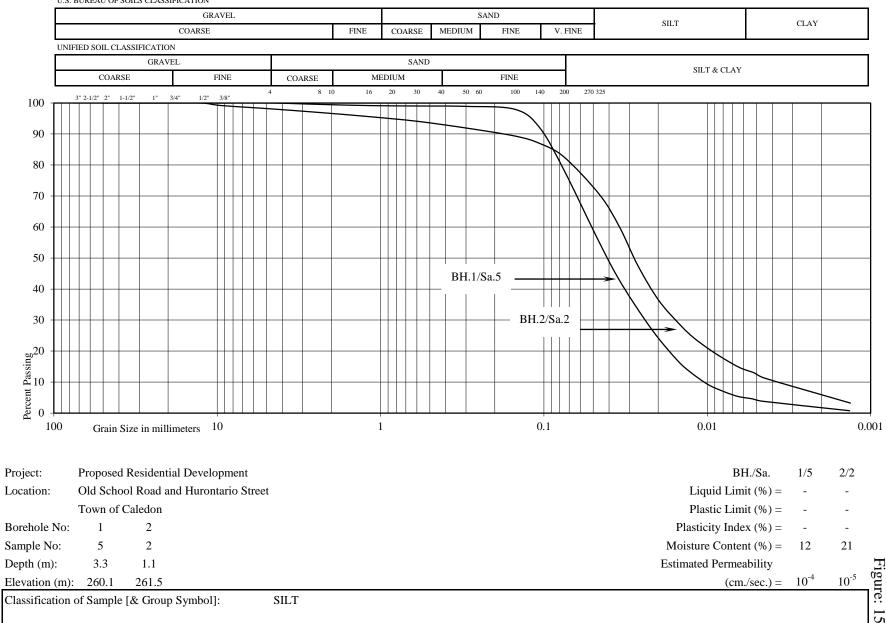

JOB DESCRIPTION: Proposed Residential Development

JOB NO: 1408-S018

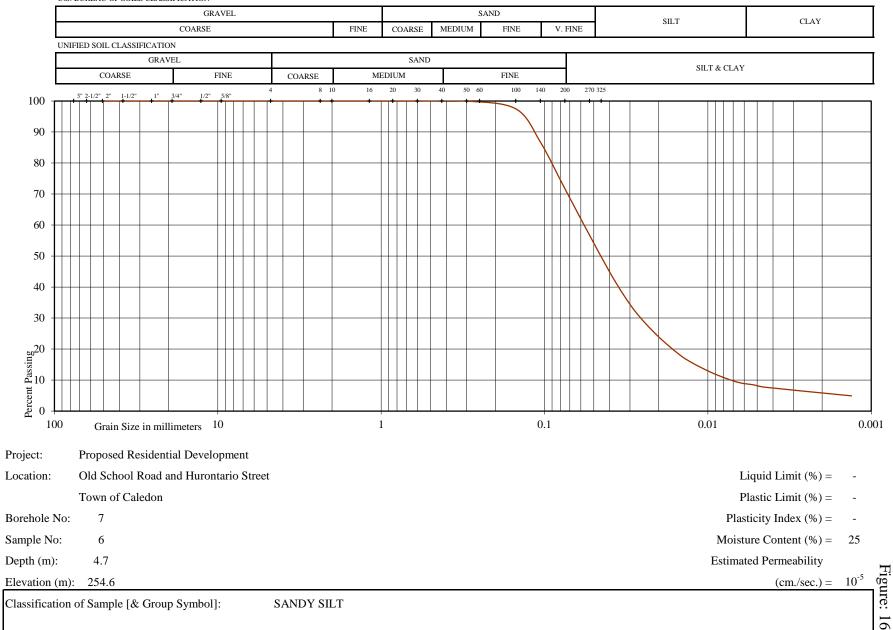
FIGURE NO: 12



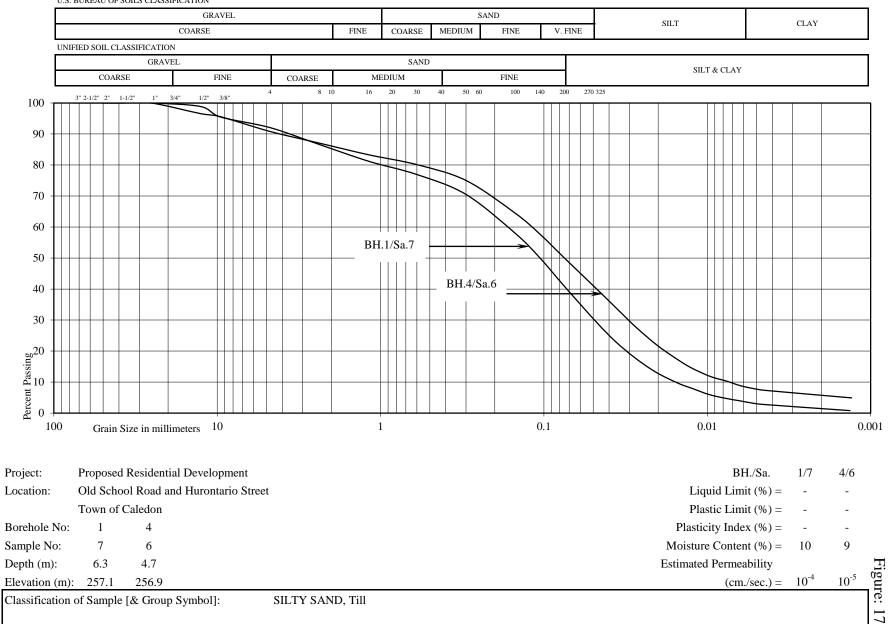
Reference No: 1408-S018

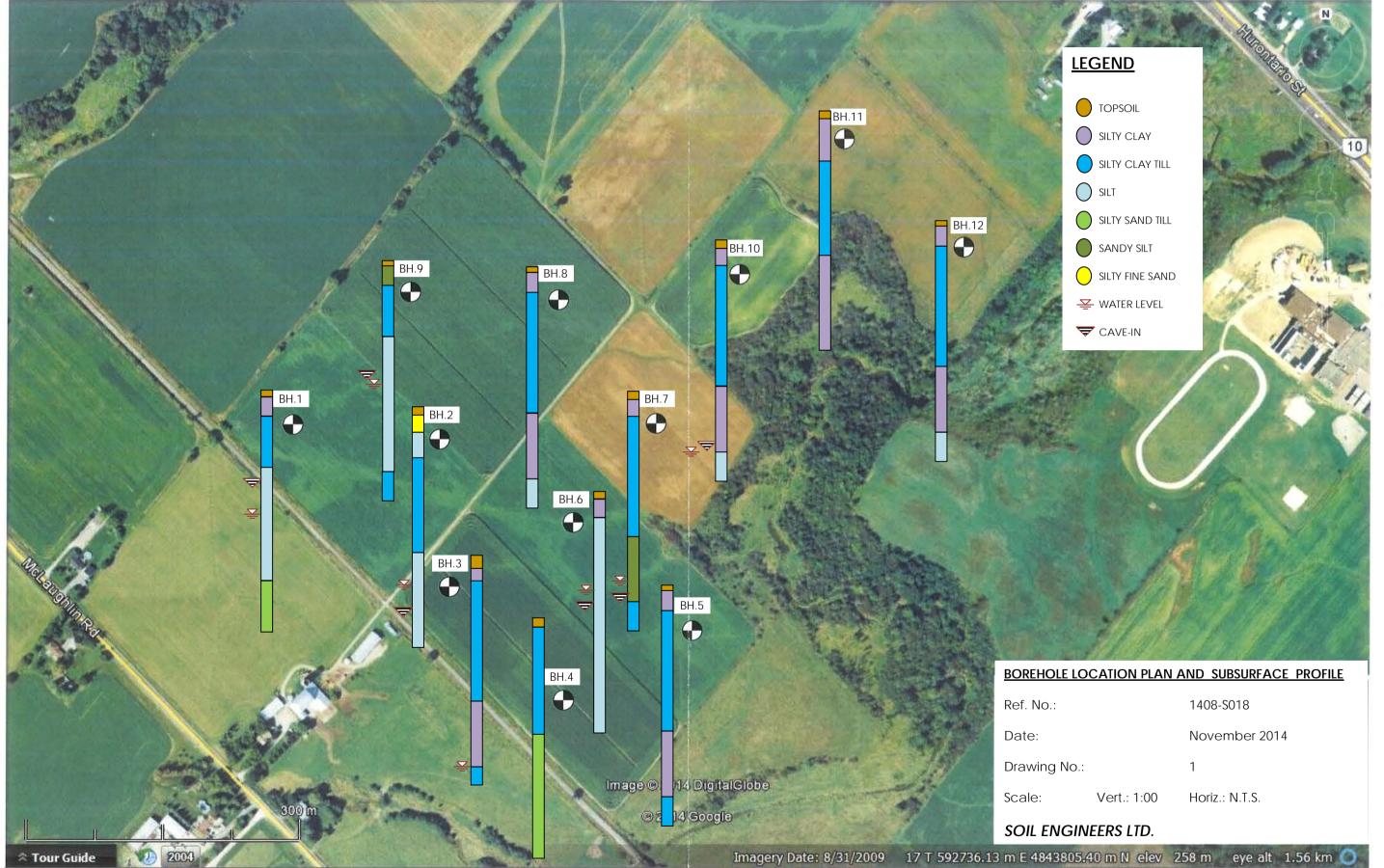


U.S. BUREAU OF SOILS CLASSIFICATION



Reference No: 1408-S018




U.S. BUREAU OF SOILS CLASSIFICATION

Reference No: 1408-S018

18
ber 2014
J.T.S.

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREEK ROAD, SUITE 100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL: (416) 754-8515 · FAX: (905) 881-8335

BARRIE				
TEL: (705) 721-7863				
FAX: (705) 721-7864				

MISSISSAUGA OSHAWA TEL: (905) 542-7605 FAX: (905) 542-2769

NEWMARKET TEL: (905) 440-2040 TEL: (905) 853-0647 FAX: (905) 725-1315

MUSKOKA TEL: (705) 684-4242 FAX: (905) 881-8335 FAX: (705) 684-8522

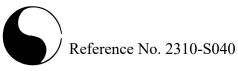
HAMILTON TEL: (905) 777-7956 FAX: (905) 542-2769

A REPORT TO SCHOOL VALLEY SOUTH LTD.

A SUPPLEMENTARY GEOTECHNICAL INVESTIGATION FOR

PROPOSED PUMPING STATION AND STORMWATER MANAGEMENT FACILITIES

SOUTHEAST OF OLD SCHOOL ROAD AND MCLAUGHLIN ROAD


TOWN OF CALEDON

REFERENCE NO. 2310-S040

JANUARY 2024

DISTRIBUTION

Digital Copy - School Valley South Ltd.

TABLE OF CONTENTS

1.0	INTR	RODUCTION	1
2.0	SITE	DESCRIPTION	1
3.0	FIEL	D WORK	1
4.0	SUBS	SURFACE CONDITIONS	2
	4.1	Pumping Station	3
	4.2	SWM 7	4
	4.3	SWM 8	4
	4.4	SWM 9	5
5.0	GRO	UNDWATER CONDITION	6
6.0	DISC	USSION AND RECOMMENDATIONS	6
	6.1	Pumping Station	7
	6.2	Pipe Bedding	9
	6.3	Backfilling Trenches and Excavated Areas	
	6.4	Stormwater Management Ponds	
	6.5	Excavation	12
	6.6	Soil Parameters	
7.0	LIMI	TATIONS OF REPORT	14

TABLES

Table 1 - Monitored Groundwater Level	6
Table 2 - Classification of Soils for Excavation	2
Table 3 - Soil Parameters	3

ENCLOSURES

Logs of Borehole	Figures 1 to 4
Grain Size Distribution Graphs	Figures 5 to 8
Borehole and Monitoring Well Location Plan	Drawing No. 1
Subsurface Profile	Drawing No. 2
Borehole Logs from 2014 Geotechnical Investigations	
(1408-S018 and 1408-S019)	Appendix

1.0 INTRODUCTION

In accordance with the email authorization received October 2, 2023, from Mr. Frank Filippo of School Valley South Ltd., a supplementary geotechnical investigation was carried out at the property located southeast of Old School Road and McLaughlin Road in the Town of Caledon.

In 2014, two geotechnical investigations were completed for the captioned property to support the design and construction of a residential subdivision. The findings and recommendations were presented under separate covers, Reference Nos. 1408-S018 and 1408-S019, dated November 2014.

The purpose of the supplementary investigation was to reveal the subsurface conditions and to determine the engineering properties of the disclosed soils for the design and construction of a pumping station and 3 stormwater management (SWM) ponds within the subdivision. The geotechnical findings and resulting recommendations are presented in this Report.

2.0 SITE DESCRIPTION

The subject site is located approximately 600 m south of Old School Road, between McLaughlin Road and Hurontario Street, in the southern region of Town of Caledon. It is located within a physiographic region known as the South Slope, situated in between the Oak Ridges Moraine and the Peel Plain. The soil stratigraphy in the area is characterized by sand and silt deposits layered in between an upper Halton Till unit and a lower Newmarket Till formation. The sand and silt deposits were identified as an Oak Ridges Moraine (ORM) or equivalent unit in the Hydrogeological Assessment for Mayfield West, Phase 2 Stage 3 Lands, prepared by Palmer Environmental Consulting Group Inc. (PECG) in 2018.

The investigation was carried out in either open grass field or cultivated farm fields. Based on the conceptual site plan, the pumping station will potentially be located close to the McLaughlin Road frontage, and the SWM ponds (SWM 7, 8 and 9) will be constructed at various locations adjacent to the existing natural systems across the southern limit of the property. At the time of report preparation, details of the pumping station and SWM ponds are not available for review.

3.0 FIELD WORK

The field work, consisting of 4 boreholes extending to depths of 6.6 m and 15.3 m, was performed on October 16 to 19, 2023, at the locations shown on the Borehole Location Plan

(Drawing No. 1). The boreholes are labelled in the 100-series in order to differentiate them from the previous borehole investigations carried out for the subdivision.

The boreholes were advanced at intervals to the sampling depths by a track-mounted machine equipped with solid- and hollow-stem augers and split spoon sampler for soil sampling. Split-spoon samples were recovered for soil classification and laboratory testing. Standard Penetration Tests using the procedures described on the enclosed "List of Abbreviations and Terms" were performed at the sampling depths. The relative density of the non-cohesive strata and the consistency of the cohesive strata are inferred from the 'N' values. The field work was supervised and the findings were recorded by a geotechnical technician.

To facilitate the hydrogeological study by PECG, 50-mm diameter monitoring wells were installed at the borehole locations. The depths and details of the monitoring wells are shown on the corresponding borehole logs.

The ground elevation at each borehole location was determined using a handheld equipment of the Global Navigation Satellite System.

4.0 SUBSURFACE CONDITIONS

The investigation has revealed that beneath the surficial topsoil layer, the investigated areas are underlain by silty clay and silty clay till overlying silty fine sand/sandy silt/silt deposits, which in turn bed onto a sandy silt till deposit in places. Clay-shale reversion and weathered shale bedrock was encountered at the bottom of Borehole 101, at depths below El. 248.0 m.

The tills consist of a random mixture of particle sizes ranging from clay to gravel, with silt and clay being the dominant fractions. The fine-grained silty fine sand, sandy silt and silt samples contain a trace of clay, and are often found to be wet or water-bearing. Sample examination revealed that the soils within the surficial zone, extending to a depth of $1.0\pm$ m below grade, is generally weathered. Intermittent hard resistance to augering was encountered in places, indicating the presence of cobbles and boulders in the till mantles.

Detailed descriptions of the encountered subsurface conditions are presented on the borehole logs, comprising of Figures 1 to 4, inclusive. The stratigraphy is illustrated on the Subsurface Profile, Drawing No. 2. Relevant borehole data from previous investigations for each of the SWM ponds is also included in this report, and the associated borehole logs are enclosed in the Appendix for reference. A prefix of 18- and 19- is used to distinguish between the respective 1408-S018 and 1408-S019 investigations.

Grain size analyses were performed on representative samples of the silty clay till, sandy silt till, sandy silt and silty clay; the results are plotted on Figures 5 to 8. In addition, Atterberg limits tests were performed on 3 samples of the clay till and clay and the results are plotted on the respective sample depths on the Borehole Logs. The results show that the clay till is low in plasticity and the clay is medium in plasticity.

The subsurface condition is summarized based on each infrastructure feature in the following sections.

4.1 Pumping Station

The pumping station is proposed on the east side of McLaughlin Road, approximately 1 km south of Old School Road. Borehole 101 was completed within the proposed pumping station, which revealed that beneath a 30-cm thick topsoil layer, the native soil makeup consists of silty clay till and sandy silt till, interstratified with sandy silt and silty clay deposits. Clay-shale reversion was encountered at an approximate depth of 13.7 m or El. 247.9 m and the borehole was terminated in the grey weathered shale bedrock at El. 246.3 m.

The encountered sandy silt deposit is approximately 3 m in thickness at this location. Sample examination revealed that the silt samples are moist to wet, generally becoming wet at depths below 4.5 m. The remaining soils are generally moist.

The obtained 'N' values measured in number of blows per 30 cm of penetration, the resulting relative density/consistency of the soils and water content values are summarized in the table below:

Soil Type	'N' Values	Relative Density/ Consistency	Water Content Values (%)
Silty Clay Till	7 to 78 (median 35)	Firm to hard, generally hard	11 to 18 (median 16)
Silty Clay	20 and over 100 (shale reversion)	Very stiff; reverted clay is hard	15 and 22
Sandy Silt	25	Compact	19 and 20
Shale Bedrock	Over 100	-	14

4.2 <u>SWM 7</u>

SWM 7 is proposed on the opposite side of a natural corridor from the pumping station, adjacent to and west of the Orangeville Brampton railway trail.

Two boreholes, Boreholes 102 and 19-6, were completed within SWM 7. Beneath a topsoil layer measuring 23 and 36 cm thick, the area is generally underlain by silty clay till and silty clay, a silty fine sand/sandy silt deposit at approximate depths of 4.0 to 5.6 m (between El. 256.6 to 255.0 m), which in turn beds onto silty clay or sandy silt till. In Borehole 19-6, a layer of weathered sandy silt is found beneath the topsoil, extending to a depth of 0.7 m below grade. Sample examination revealed that the subsoils are generally moist while the silty fine sand/sandy silt deposit is very moist to wet.

The obtained 'N' values measured in number of blows per 30 cm of penetration, the resulting relative density/consistency of the soils and water content values are summarized in the table below:

Soil Type	'N' Values	Relative Density/ Consistency	Water Content Values (%)
Silty Clay Till	7 to 26 (median 24)	Firm to very stiff, generally very stiff	11 and 13
Silty Clay	22, 35 and 41	Very stiff to hard	16, 18 and 19
Silty Fine Sand/ Sandy Silt	12 and 30	Compact	14, 16 and 20
Sandy Silt Till	20	Compact	12

4.3 **<u>SWM 8</u>**

SWM 8 is proposed adjacent to and on the west side of the Etobicoke Creek natural valley system located in the southeast corner of the site.

Two boreholes, Boreholes 103 and 18-5, were completed within SWM 8, which revealed that beneath a 15 and 20 cm thick topsoil layer, the area is generally underlain by silty clay till and silty clay deposits. A wet sandy silt deposit was also encountered below a depth of 4.0 m from grade, or below El. 255.0 m, in Borehole 103; this borehole was terminated in the sandy silt deposit.

The obtained 'N' values measured in number of blows per 30 cm of penetration, the resulting relative density/consistency of the soils and water content values are summarized in the table below:

Soil Type	'N' Values	Relative Density/ Consistency	Water Content Values (%)
Silty Clay Till	12 to 47 (median 31)	Stiff to hard, generally hard	8 to 17 (median 11)
Silty Clay	13, 17 and 20	Stiff to very stiff	15, 16 and 28
Sandy Silt	8 and 20	Loose to compact	17 and 20

4.4 <u>SWM 9</u>

SWM 9 is proposed in the southeast corner of the property, adjacent to and on the east side of the Etobicoke Creek natural valley system.

Two boreholes, Boreholes 104 and 18-12, were completed within SWM 9. Beneath the topsoil layer, 10 and 15 cm thick, the area is underlain by silty clay till and silty clay, overlying a silt deposit at approximate depths below 5.6 m, or below El. 252.4 m. Both boreholes were terminated in the silt deposit. Sample examination revealed that the till and clay are generally moist, and the silt is very moist.

The obtained 'N' values measured in number of blows per 30 cm of penetration, the resulting relative density/consistency of the soils and water content values are summarized in the table below:

Soil Type	'N' Values	Relative Density/ Consistency	Water Content Values (%)
Silty Clay Till	22 to 52 (median 25)	Compact to very dense, generally compact	10 to 13 (median 12)
Silty Clay	9 to 46 (median 17)	Stiff to hard, generally very stiff	17 to 33 (median 20)
Silt	25 and 37	Compact to dense	18 and 19

5.0 GROUNDWATER CONDITION

Groundwater levels were recorded in Boreholes 101, 103 and 19-6 at depths ranging from 5.3 to 14.9 m, or from El. 246.7 to 253.7 m while other boreholes remained dry upon completion of drilling. Artesian uplift was not evident from the wet silt and sand units during drilling.

Groundwater readings recorded by PECG from the installed monitoring wells in December 2023 range from depths of 3.57 to 4.40 m, or from El. 258.03 to 254.60 m. The records on completion are plotted on the borehole logs and the December 2023 monitoring well measurements are summarized in Table 1.

			Measured Groundwater Level			
Monitoring Well	Ground Elevation	Well Depth	Decembe	er 6, 2023	December	12-13, 2023
No.	(m)	(m)	Depth (m)	El. (m)	Depth (m)	El. (m)
Pumping Station - 101	261.60	15.2	3.59	258.01	3.57	258.03
SWM 7 - 102	260.56	6.1	4.27	256.29	4.20	256.36
SWM 8 - 103	259.00	6.1	4.40	254.60	N/A	-
SWM 9 - 104	258.98	6.1	Dry	-	N/A	-

 Table 1 - Monitored Groundwater Level

The groundwater records are generally consistent with or near the observed wet silty fine sand/silts at the boreholes, and suggest a drainage pattern towards the Etobicoke Creek. The groundwater regime is subject to seasonal fluctuations. Detailed groundwater profile and monitoring records can be referred to the hydrogeological study by PECG.

6.0 **DISCUSSION AND RECOMMENDATIONS**

The investigation has revealed that beneath the surficial topsoil veneer, the pumping station and SWM pond sites are predominantly underlain by an upper silty clay/silty clay till deposit, overlying a silty fine sand/sandy silt or silt unit and a lower sandy silt till deposit. Clay-shale reversion and weathered shale bedrock was encountered at the bottom of Borehole 101, at depths below El. 248.0 m. The thickness of the overburden above the more pervious sand/silt unit appears to increase towards the east, with Boreholes 103, 18-12 and 104 terminated within the silt deposit.

Sample examination revealed that the sand/silt unit is moist to wet; artesian uplift was not evident from this unit during drilling. Groundwater readings recorded by PECG from the

installed monitoring wells (Boreholes 101 to 103) in December 2023 range from depths of 3.57 to 4.40 m below grade, or from El. 258.03 to 254.60 m. Borehole 104 was dry during the recording event.

At the time of investigation, detailed design of the proposed sanitary pumping station and SWM ponds are not available for review. It is understood that in lieu of a traditional pumping station with wet well, an inverted syphon system is also being explored. The geotechnical findings which warrant special consideration are presented below:

- Open excavation must be carried out in accordance with Ontario Regulation 213/91. Where vertical cut is necessary, such as in the case of a wet well, the excavation must be properly shored. In addition, any excavation extending into the saturated sand/silt will require construction dewatering.
- 2. For any proposed structures, they can be supported using conventional spread and strip footings founded onto the native soils.
- 3. A Class 'B' bedding, consisting of compacted 19-mm Crusher-Run Limestone (CRL), is recommended for the construction of underground services. Where the pipes are founded within the water-bearing sand/silt unit, a Class 'A' (concrete) bedding should be used instead.

6.1 **Pumping Station**

Foundations

Where in-ground structures (such as wet well) or buildings are proposed in the construction of the pumping station, the proposed structures can be supported on conventional footings founded on sound native soils below the weathered soil. The recommended design bearing pressures are presented below:

- Soil Bearing Pressure at Serviceability Limit State (SLS): 150 kPa
- Factored Ultimate Soil Bearing Pressure at Ultimate Limit State (ULS): 250 kPa

Should the structures extend into the very dense sandy silt till below El. 254.0 m, the design bearing pressures at SLS and ULS can be increased to 500 kPa and 800 kPa, respectively.

The total and differential settlements of footings designed for the recommended bearing pressures at SLS are estimated at 25 mm and 20 mm, respectively.

Footings exposed to weathering, or in unheated areas, should have at least 1.2 m of earth cover for protection against frost action.

The foundation should meet the requirements specified by the latest Ontario Building Code, and the structures should be designed to resist a minimum earthquake force using Site Classification 'C' (very dense soil and soft rock).

The underground structures should be designed to sustain a lateral earth pressure calculated using the soil parameters presented in Table 3, with consideration of applicable surcharge loads, hydrostatic pressure and potential uplift forces. Where the in-ground structures are located within the zone of influence of nearby shallow building foundation, the design of the in-ground structures must also incorporate the added foundation loads.

Hydrostatic uplift pressure is not anticipated for foundations founded into the clay and sandy silt till beneath the wet sand/silt unit below El. 255.0 m. Should the foundation be constructed above El. 255.0 m, this should be further assessed once the detailed design and updated groundwater monitoring levels are available for review.

The foundation subgrade must be inspected by a geotechnical engineer, or a geotechnical technician under the supervision of a geotechnical engineer, to ensure that the subgrade conditions are compatible with the design of the foundations.

Where the footing excavation consists of wet sand/silt, or the footing subgrade is wet, a concrete mud-slab of lean mix concrete, 8 to 10 cm in thickness, should be poured immediately after subgrade preparation and inspection to protect the approved subgrade against disturbance by the construction traffic.

Slab-On-Grade Construction

For slab-on-grade construction, the subgrade must consist of sound native soils, or properly compacted inorganic soils. The subgrade should be inspected by a geotechnical technician and assessed by proof-rolling prior to placement of granular bedding. Badly weathered and any soft areas detected should be subexcavated and replaced with inorganic material compacted to at least 98% Standard Proctor Dry Density (SPDD).

The concrete slab should be constructed on a granular base, not less than 20 cm thick, consisting of 19-mm CRL, or equivalent, compacted to 100% SPDD. A Modulus of Subgrade Reaction of 25 MPa/m can be used for the design of slab-on-grade.

6.2 Pipe Bedding

The subgrade for underground services should consist of sound native soils, or properly compacted earth fill. Where soft or loose soil is encountered at the invert level, it should be subexcavated and replaced with bedding material, compacted to at least 98% SPDD.

A Class 'B' bedding is recommended for construction of the underground services across the subdivision as well as within the pump station and SWM pond blocks. The bedding material should consist of compacted 19-mm CRL, or equivalent. In water-bearing sand/silt deposits, a Class 'A' bedding should be used instead to prevent fines from migrating into a gravel bedding.

The pipe joints connected into manholes, catch basins and into the pumping station must be connected by leak-proof joints to prevent fines migration through the joints. Opening to subdrains and catch basins should be shielded with a fabric filter to prevent blockage by silting.

In order to prevent pipe floatation when the service trench is deluged with water derived from precipitation, a soil cover, having a thickness at least equal to the diameter of the pipe, should be in place at all times after completion of the pipe installation.

6.3 Backfilling Trenches and Excavated Areas

The on-site inorganic soils are generally suitable for trench backfill. Any saturated soils should be properly stockpiled to drain the excess water or aerated prior to being used for structural backfill. Any boulder larger than 15 cm in size are not suitable for structural backfill.

The backfill should be compacted to 95% SPDD in lifts of not more than 20 cm thick. In the zone within 1.0 m below the slab-on-grade, the backfill should be compacted to at least 98% SPDD, with the moisture content at 2% to 3% drier than the optimum. This is to provide the required stiffness for floor construction.

In confined areas which are inaccessible to a heavy compactor, such as around manholes, catch basins and service crossings, sand backfill should be used and compacted using a smaller vibratory compactor. Otherwise in (lower) zones where proper compaction cannot be achieved, the backfill should consist of lean-mix concrete or unshrinkable fill.

One must be aware of the possible consequences during trench backfilling and exercise caution as described below:

- To backfill a deep trench, one must be aware that future settlement is to be expected, unless the side of the cut is flattened to at least 1V:1.5+H, and the lifts of the fill and its moisture content are stringently controlled; i.e., lifts should be no more than 20 cm (or less if the backfilling conditions dictate) and uniformly compacted to achieve at least 95% SPDD, with the moisture content on the wet side of the optimum.
- It is often difficult to achieve uniform compaction of the backfill in the lower vertical section of a trench which is an open cut or is stabilized by a trench box, particularly in the sector close to the trench walls or the sides of the box. These sectors must be backfilled with sand and the compaction must be carried out diligently, prior to the placement of the backfill above this sector, i.e., in the upper sloped trench section. This measure is necessary in order to prevent consolidation of inadvertent voids and loose backfill which will compromise the compaction of the backfill in the upper section.
- In areas where the underground services construction is carried out during the winter months, prolonged exposure of the trench walls will result in frost heave within the soil mantle of the walls. This may result in some settlement as the frost recedes, and repair costs will be incurred prior to the final surfacing of the new pavement construction.
- When construction is carried out in the winter, frozen soil layers may inadvertently be mixed with the structural trench backfill. Should the in-situ soil have a water content on the dry side of the optimum, it would be impossible to wet the soil due to the freezing condition, rendering difficulties in obtaining uniform and proper compaction.
- In areas where groundwater movement is expected in the sand fill mantle, anti-seepage collars should be provided.

6.4 Stormwater Management Ponds

Three SWM ponds (SWM 7, 8 and 9) are proposed in the southern region of the subdivision, adjacent to natural corridors. Detailed designs of the ponds were not available for review at the time of report preparation.

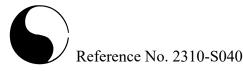
Based on the borehole findings, the SWM areas are generally underlain by very stiff to hard silty clay till and silty clay, interstratified with or overlying a moist to wet, loose to very dense silty fine sand/sandy silt/silt deposit in the lower stratigraphy. Compact sandy silt till was also encountered at the bottom of Borehole 102 (SWM7) beneath the sandy silt.

A review of the subsoil profile and water level records suggests that the groundwater regime generally lies within the wet sand/silt units, at depths of 4.0+ m below grade. The water levels will fluctuate with seasons.

The need of a clay liner is not anticipated should the pond design remain within the silty clay till and silty clay deposits, with sufficient thickness of the low-permeable overburden above the underlying sand/silt units. However, should the ponds extend close to or into the sandy/silty deposits, an earthen clay liner (with an estimated permeability of 10⁻⁷ cm/sec or less) or a geosynthetic clay liner (GCL) with soil ballast will be required. The appropriate thickness of the clay liner or ballast to counteract hydrostatic uplift concerns, if any, and the extent of the liner can be established once the pond elevations are available for review.

The side slopes of the ponds should be graded at 1V:3H or flatter for stability above the wet perimeter, and 1V:4H or flatter below the wet perimeter. All exposed side slopes must be vegetated and/or sodded to prevent surface erosion.

Any proposed earth embankments should be constructed using selected on-site inorganic clay or clay till material, compacted to at least 98% SPDD in lifts of no more than 20 cm in thickness. The subgrade must be inspected and proof-rolled prior to any fill placement. The construction of the berms must be supervised and certified by the site geotechnical engineer. The pond side slopes should be surface compacted.


The following bearing pressures can be used for the design of control structures supported on conventional footings founded on sound native soils or on engineered fill:

- Soil Bearing Pressure at SLS: 150 kPa
- Factored Ultimate Soil Bearing Pressure at ULS: 250 kPa

The footings must be placed below the scouring depth and be provided with a minimum earth cover of 1.2 m to protect them from frost damage.

The foundation for the control structures should meet the requirements specified by the latest Ontario Building Code, and the structures should be designed to resist a minimum earthquake force using Site Classification 'D' (stiff soil).

One should be aware that minor maintenance may be required after rapid drawdown as the water recedes from a flood level to normal level. Routine visual inspection and maintenance will be required to rectify any observed deficiency.

6.5 Excavation

Excavation should be carried out in accordance with Ontario Regulation 213/91. The types of soils are classified in Table 2.

Material	Туре
Sound Tills and Clay	2
Drained Silt	3
Saturated Soils	4

Table 2 - Classification of Soils for Excavation	Table 2 -	Classification	of Soils	for	Excavation
--	-----------	----------------	----------	-----	------------

The yield of groundwater from the clay and tills will likely be limited in quantity and can be controllable by pumping from sumps. Continuous groundwater yield can be expected from the wet sand/silt deposit. Detailed groundwater profile and dewatering needs can be referred to the hydrogeological study by PECG.

In open excavation, the tills and clay will be stable in relatively steep excavation; however, prolonged exposure of the excavated face may lead to localized sloughing. The wet silty fine sand/sandy silt and silt, on the other hand, will slump readily, leading to sloughing and migrate/run with seepage and boil under an approximate piezometric head of 0.4 m.

Where safe sloped excavation is not feasible or where vertical cut is necessary, temporary shoring will be required. For excavation of deep in-ground structures at the pumping station, watertight shoring structures such as caisson wall or secant wall, or sheet piling can be used, extending into the lower till stratum. Where construction dewatering is carried out, a pile and lagging system can also be employed. The shoring structure must be properly designed by a structural engineer experienced in this type of construction or shoring specialist.

The overburden and the surcharge from any adjacent structures, if any, should be considered in the design of the shoring. In calculating the lateral earth pressure for the shoring structure, the soil parameters provided in Table 3.

The depth of pile support can be calculated from the following expressions:

In Cohesionless Soils: $R=1.5 D K_p L^2 \gamma$

where	R =	Ultimate Load to be restrained	(kN)			
	D =	Diameter of concrete filled hole	(m)			
	K _p = Passive resistance in subsoil for pile support					
	L =	Embedment depth of the pile	(m)			
	$\gamma =$	Unit weight of subsoil below bottom of excavation	(kN/m^3)			
In Coh	esive S	oils: $R=9 c_u D (L-1.5 D)$				

where R =	Ultimate Load to be restrained	(kN)						
D =	Diameter of concrete filled hole	(m)						
L =	Embedment depth of the pile	(m)						
$c_u =$	Undrained shear strength of subsoil for pile support = 150 kPa							

The shoring system should be designed for a factor of safety of 2. Close monitoring of the vertical and lateral movement of the shoring system, by inclinometers or by survey on targets, should be carried out at the site. Extra bracing or support may be required if any movement is found excessive. The contractor should maintain the shoring to ensure any movement is within the design limit.

6.6 Soil Parameters

The recommended soil parameters for the project design are given in Table 3.

Unit Weight and Bulk Factor	Unit We	ight (kN/m³)	Estimated	Bulk Factor
	<u>Bulk</u>	<u>Submerged</u>	Loose	Compacted
Silty Clay Till	22.0	12.0	1.33	1.03
Sandy Silt Till	22.5	12.5	1.33	1.05
Silty Clay	20.5	10.5	1.30	1.00
Silty Fine Sand/Sandy Silt/Silt	20.5	10.5	1.20	1.00
Lateral Earth Pressure Coefficie	<u>nts</u>	Active	At Rest	Passive
		Ka	Ko	Kp
Silty Clay Till		0.33	0.50	3.00
Sandy Silt Till		0.32	0.48	3.12
Silty Clay		0.39	0.56	2.56
Silty Fine Sand/Sandy Silt/Silt		0.33	0.50	3.00

Table 3 - So	oil Parameters
--------------	----------------

Table 5 - Son Falameters (Cont d)		
Estimated Coefficient of Permeability (K) and Percolation Time (T)	K (cm/sec)	T (min/cm)
Silty Clay and Silty Clay till	10-7	80+
Sandy Silt Till	10-6	50
Silty Fine Sand/Sandy Silt/Silt	10-4	12
Coefficients of Friction		
Between Concrete and Granular Base		0.50
Between Concrete and Native Soils or Compacted E	0.35	

Table 3 - Soil Parameters (Cont'd)

7.0 **LIMITATIONS OF REPORT**

This report was prepared by Soil Engineers Ltd. for the account of School Valley South Ltd., and for review by its designated consultants, contractors and government agencies. Use of the report is subject to the conditions and limitations of the contractual agreement.

The material in the report reflects the judgement of Hui Wing Yang, P.Eng. and Kin Fung Li, P.Eng., in light of the information available to it at the time of preparation. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

SOIL ENGINEERS LTD.

Kin Fung Li, P.Eng.

LIST OF ABBREVIATIONS AND DESCRIPTION OF TERMS

The abbreviations and terms commonly employed on the borehole logs and figures, and in the text of the report, are as follows:

SAMPLE TYPES

- AS Auger sample
- CS Chunk sample
- DO Drive open (split spoon)
- DS Denison type sample
- FS Foil sample
- RC Rock core (with size and percentage recovery)
- ST Slotted tube
- TO Thin-walled, open
- TP Thin-walled, piston
- WS Wash sample

PENETRATION RESISTANCE

Dynamic Cone Penetration Resistance:

A continuous profile showing the number of blows per each 30 cm of penetration of a 51 mm diameter, 90° point cone driven by a 63.5 kg hammer falling from a height of 76 cm.

Plotted as '---'

Standard Penetration Resistance or 'N' Value:

The number of blows of a 63.5 kg hammer falling from a height of 76 cm required to advance a 51 mm outer diameter drive open sampler 30 cm into undisturbed soil, after an initial penetration of 15 cm.

Plotted as 'O'

- WH Sampler advanced by static weight
- PH Sampler advanced by hydraulic pressure
- PM Sampler advanced by manual pressure
- NP No penetration

Soil Engineers Ltd.

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

SOIL DESCRIPTION

Cohesionless Soils:

<u>'N' (b</u>	olow	<u>s/30 cm)</u>	Relative Density
0	to	4	very loose
4	to	10	loose
10	to	30	compact
30	to	50	dense
over		50	very dense

Cohesive Soils:

Undrained <u>Strength (k</u>		'N' <u>(blows/3(</u>	<u>Consistency</u>					
less than	12	less than	2	very soft				
12 to	25	2 to	4	soft				
25 to	50	4 to	8	firm				
50 to	100	8 to	15	stiff				
100 to	200	15 to	30	very stiff				
over	200	over	30	hard				

Method of Determination of Undrained Shear Strength of Cohesive Soils:

x 0.0 Field vane test in borehole; the number denotes the sensitivity to remoulding

 \triangle Laboratory vane test

METRIC CONVERSION FACTORS

- 1 ft = 0.3048 m
- 1 inch = 25.4 mm
- 1 lb = 0.454 kg
- 1 ksf = 47.88 kPa

LOG OF BOREHOLE: SVS-101

FIGURE NO.: 1

PROJECT DESCRIPTION: Proposed Pumping Station and

Stormwater Management Facilities

METHOD OF BORING: Hollow Stem Augers

PROJECT LOCATION:

Southeast of Old School Road and McLaughlin Road Town of Caledon

DRILLING DATE: October 18, 2023

	EI. (m) SOIL		SAMP	PLES	ES		 Dynamic Cone (blows/30 cm) 10 30 50 70 90 								Atterberg Limits							
					Depth Scale (m)	X Shear Strength (kN/m ²)													WATER LEVEL	VEL		
. ,	DESCRIPTION	L		0	scale		50	10	00 I I	150 I	200)						•				S LE
Depth (m)		Number	e	N-Value	pth S		D Per	netra (blo	tion I ows/3	Resisi 30 cm	ance)		•	Moi	stur	re C	Cont	ent (LTEF	
		Nul	Type	N-N	Del	10	;	30	50		70	90 I		10	20		30		40			M M
261.6	Ground Surface																					
0.0	30 cm TOPSOIL	1	DO	7	0 -	0								1	6	_				_		
	Brown, firm to hard			/	-	М		\square												-		
	SUTY CLAY THE weathered				-										17					_		
	SILTY CLAY TILL <u>weather</u> ed	2	DO	26	1 -		-c								•	┥				-		
	some sand to sandy				-																	
	a trace of gravel occ. sand and silt seams and layers,	3	DO	35	-			0						11			_			-		
	cobbles and boulders				2 -																	
					-							_		12						-		
		4	DO	55	-					0				•								
					3 -							_								-		
258.3		5	DO	78							0				18 ●							
3.3	Compact, moist to wetmoist							\square												-		
	SANDY SILT brown				-																	
	SANDY SILT brown grey				4 -															-		
	a trace of clay				-												_			_		
	occ. silt layers	6	DO	25	-										19	,				_		
		0		25	5 -		0													_		
					-															_		
					-											_				_		
					6 -																	
255.3		7A	DO	20			0					_			-20	22				_		
6.3	Grey, very stiff	7B		20	-		Ý									•						
	SILTY CLAY				-			$\left \right $												-		
254.4	a trace of sand				7 -																	
7.2	Reddish-brown, very dense				-			$\left \right $				_		9		-	_			-		
	SANDY SILT TILL	8	DO	50/13	-							0		•								
					8 -			$\left \right $		_	+	+				-	+	+	+	-		
	some clay, a trace of gravel				-																	
	occ. sand and silt seams and layers, cobbles and boulders				-			$\left \right $		_		_					_	-	$\left \right $	-		
					9 -									10								
		9	DO	55/15				$\left \right $		_	+	+	\vdash	•			+	+	+	-		
					-			Ц														
251.6					10 -			$\left - \right $										-		-		
		_		_	•				_	-											_	
		Sc	Dil	En	gin	<i>Ie</i>	er	S	L	.to	d .							_				
					-													P	age	: '	10	# 2

LOG OF BOREHOLE: SVS-101

FIGURE NO.: 1

PROJECT DESCRIPTION: Proposed Pumping Station and

Stormwater Management Facilities

METHOD OF BORING: Hollow Stem Augers

DRILLING DATE: October 18, 2023

PROJECT LOCATION:

Southeast of Old School Road and McLaughlin Road Town of Caledon

Dynamic Cone (blows/30 cm) • SAMPLES 10 30 50 70 90 Atterberg Limits 1 Depth Scale (m) ΡL LL EI. WATER LEVEL X Shear Strength (kN/m²) -(m) SOIL 100 150 50 200 DESCRIPTION Depth N-Value Number Penetration Resistance 0 (m) Type (blows/30 cm) Moisture Content (%) 10 30 50 70 90 10 20 10.0 Reddish-brown, very dense 10 8 SANDY SILT TILL 10 DO 50/10 • ሙ 11 some clay, a trace of gravel occ. sand and silt seams and layers, cobbles and boulders 12 11 DO 50/13 13 15 247.9 12 DO 50/8 13.7 Reddish-brown, hard, very moist 14 SILTY CLAY clay shale reversion; with shale fragments 247.0 14.6 Grey, weathered Ā SHALE BEDROCK 15 with reddish-brown clay El. 246.7 m on completion 13 DO 50/3 246.3 15.3 • END OF BOREHOLE Installed 50-mm Ø PVC monitoring well to 15.2 m, completed with 1.5 m screen 16 Sand backfill from 13.1 to 15.2 m Bentonite seal from 0.0 to 13.1 m Provided with a steel monument casing 17 B V.L 18 19 20 Soil Engineers Ltd.

Page: 2 of 2

LOG OF BOREHOLE: SVS-102

FIGURE NO.: 2

PROJECT DESCRIPTION: Proposed Pumping Station and

Stormwater Management Facilities

METHOD OF BORING: Solid Stem Augers

PROJECT LOCATION:

Southeast of Old School Road and McLaughlin Road Town of Caledon

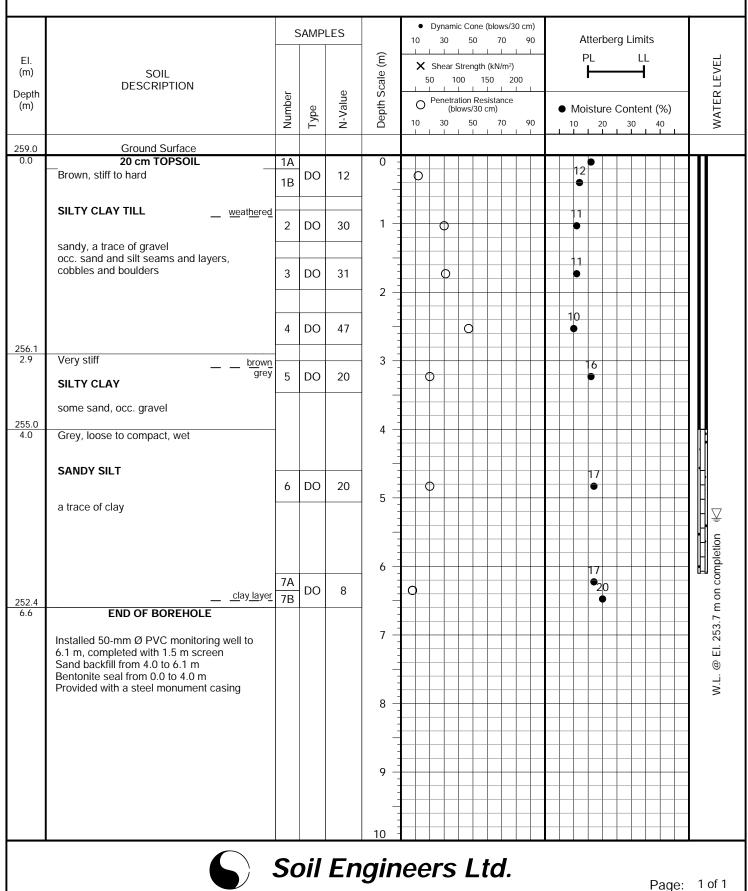
DRILLING DATE: October 19, 2023

			SAMD	IFS		•	Dynamic (Cone (blow			Τ						
				AMPLES		10		50 7		Atterberg Limits PL LL							
El. (m)	SOIL				Depth Scale (m)		Shear Stre 50 100	ength (kN/ 150							WATER LEVEL		
Depth	DESCRIPTION	ber		ne	l Sca									-	ERL		
(m)		Number	Type	N-Value	Dept	10	(word)	s/30 cm) 50 7				e Conte			NAT		
260.6	Image: Second Surface Image: Second Surface											+					
0.0	36 cm TOPSOIL	<u> </u>			0						14			$\pm \mathbf{n}$			
	Brown, firm to very stiff	1	DO	7	-	0					•			_			
	SILTY CLAY TILL weathered	2	DO	24	1 -		0				13 ●			-			
	sandy a trace of gravel occ. sand and silt seams and layers, cobbles and boulders	3	DO	26			0			1	1			_			
	coddles and doulders				2 -									- 11			
258.1 2.5	Grey, hard	4	DO	41			0				19			╡║			
	SILTY CLAY				3 -						10			╧║			
	a trace to some sand occ. gravel	5	DO	35			0				18			_			
256.6					4 -									┤║			
4.0	Grey, compact, wet				4									┛╢┝	tion		
	SANDY SILT										20	,			nple		
	a trace of clay	6	DO	30	5 -		0				•	<u></u>			Dry on completion		
															uy o		
255.0 5.6	Grey, compact, very moist	-			-							_	+	┤╟			
	SANDY SILT TILL				6 -								+++				
	traces of clay and gravel	7	DO	20			5				12 ●						
254.0 6.6	END OF BOREHOLE	─										_	+	_			
	Installed 50-mm Ø PVC monitoring well to				7 -								+++	_			
	6.1 m, completed with 1.5 m screen Sand backfill from 4.0 to 6.1 m													_			
	Bentonite seal from 0.0 to 4.0 m Provided with a steel monument casing											_	+++	_			
	Provided with a steel monument casing				8 -								+++	_			
														_			
														_			
					9 -								+++	_			
														_			
														_			
┝───┘					10												
		Sc	oil	En	ngin	ee	ers	Lta	.				5		- 6 1		

Page: 1 of 1

LOG OF BOREHOLE: SVS-103

FIGURE NO.: 3


PROJECT DESCRIPTION: Proposed Pumping Station and

Stormwater Management Facilities

METHOD OF BORING: Solid Stem Augers

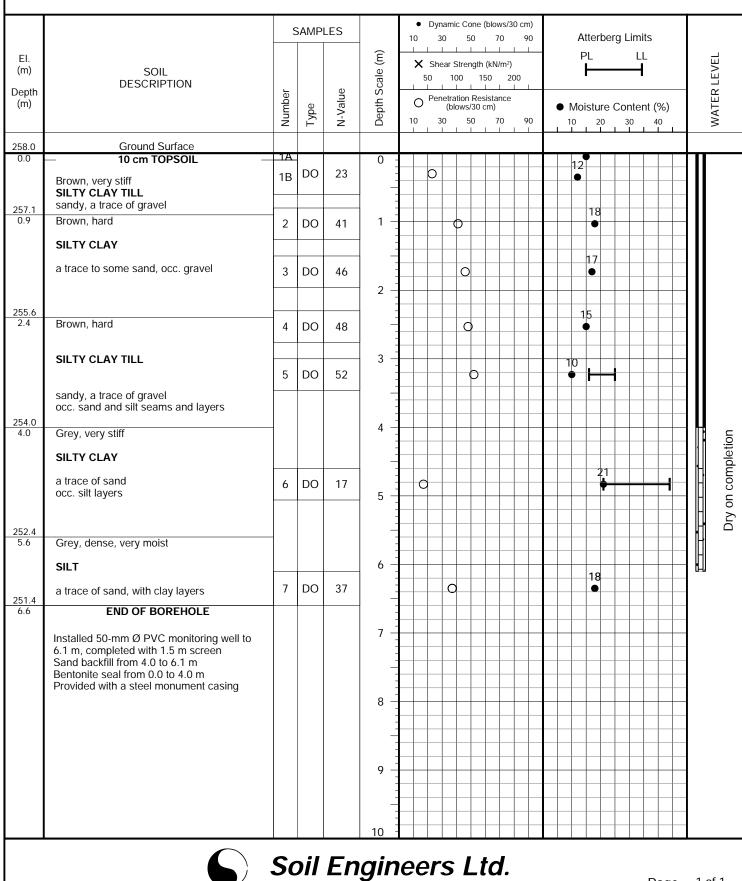
PROJECT LOCATION:

Southeast of Old School Road and McLaughlin Road Town of Caledon DRILLING DATE: October 18, 2023

LOG OF BOREHOLE: SVS-104

FIGURE NO.: 4

PROJECT DESCRIPTION: Proposed Pumping Station and


Stormwater Management Facilities

METHOD OF BORING: Solid Stem Augers

PROJECT LOCATION:

Southeast of Old School Road and McLaughlin Road Town of Caledon

DRILLING DATE: October 16, 2023

Reference No: 2310-S040

U.S. BUREAU OF SOILS CLASSIFICATION GRAVEL SAND SILT CLAY COARSE FINE MEDIUM FINE V. FINE COARSE UNIFIED SOIL CLASSIFICATION GRAVEL SAND SILT & CLAY COARSE FINE COARSE MEDIUM FINE 8 10 20 30 100 140 200 270 325 16 40 50 60 3" 2-1/2" 2" 1-1/2" 1" 3/4" 1/2" 3/8" 100 BH.SVS-101/Sa.2 90 BH.SVS-104/Sa.5 BH. SVS-101/Sa.2 80 BH. SVS-104/Sa.5, 70 60 50 40 30 Percent Passing 0 0 100 10 1 0.1 0.01 Grain Size in millimeters Project: Proposed Pumping Station and Stormwater Management Facilities Location: Southeast of Old School Road and McLaughlin Road, Town of Caledon BH./Sa. 101/2 104/5 Liquid Limit (%) = 23Borehole No: SVS-101 SVS-104 Plastic Limit (%) = 155 Plasticity Index (%) = 8Sample No: 2 Depth (m): Moisture Content (%) = 171.0 3.2 Estimated Permeability (cm./sec.) = 10^{-7} 260.6 254.8 Elevation (m): Classification of Sample [& Group Symbol]: SILTY CLAY TILL sandy, a trace of gravel

Figure: S

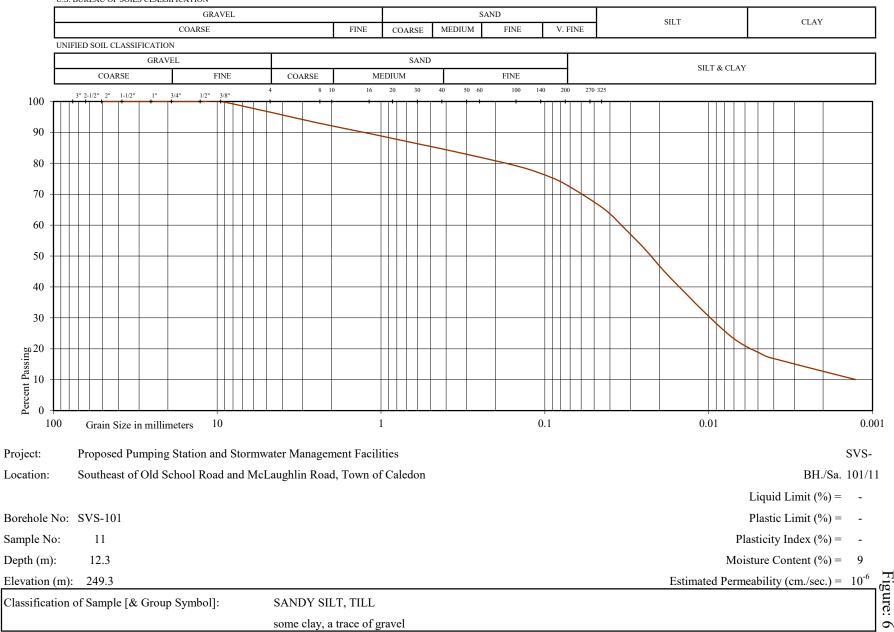
0.001

SVS- SVS-

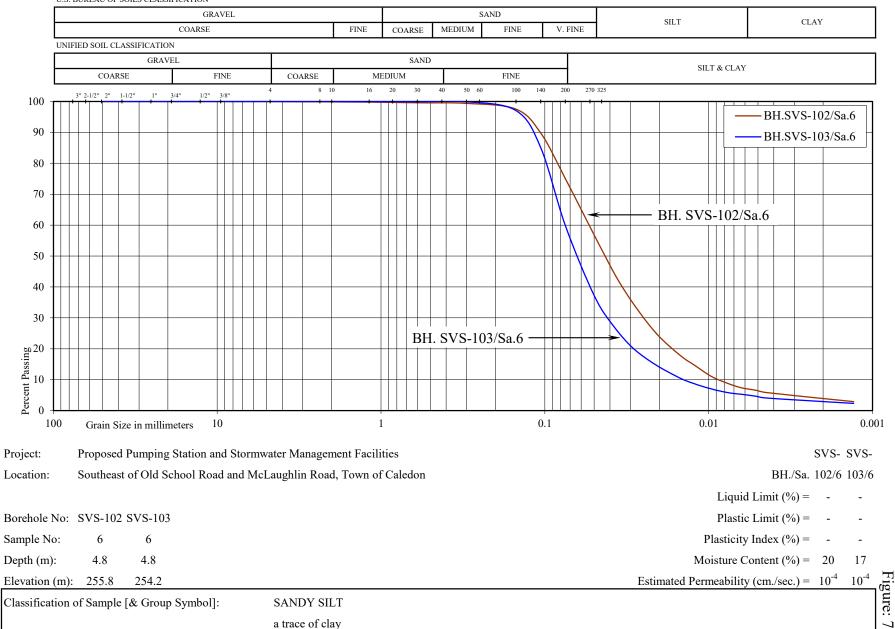
25

16

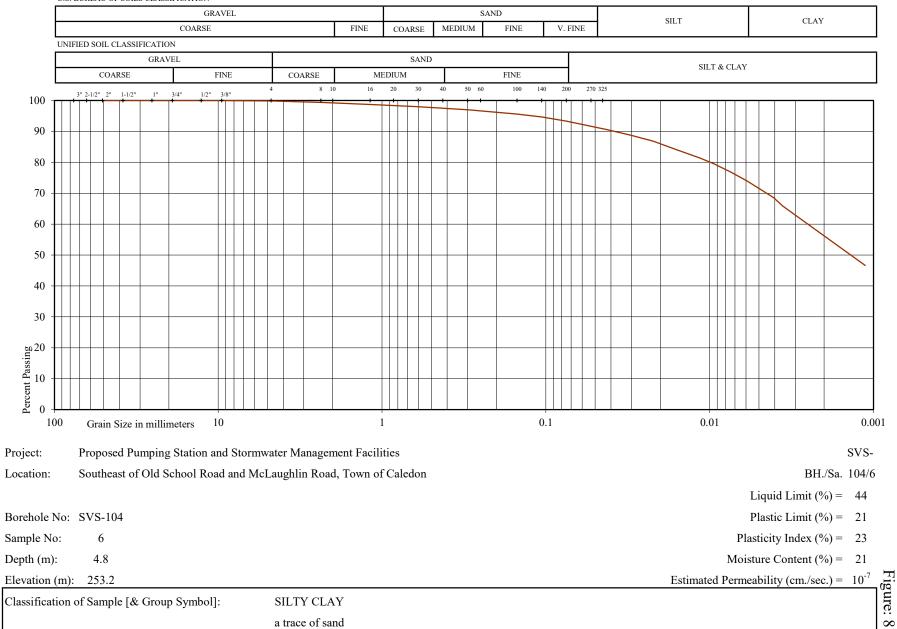
9

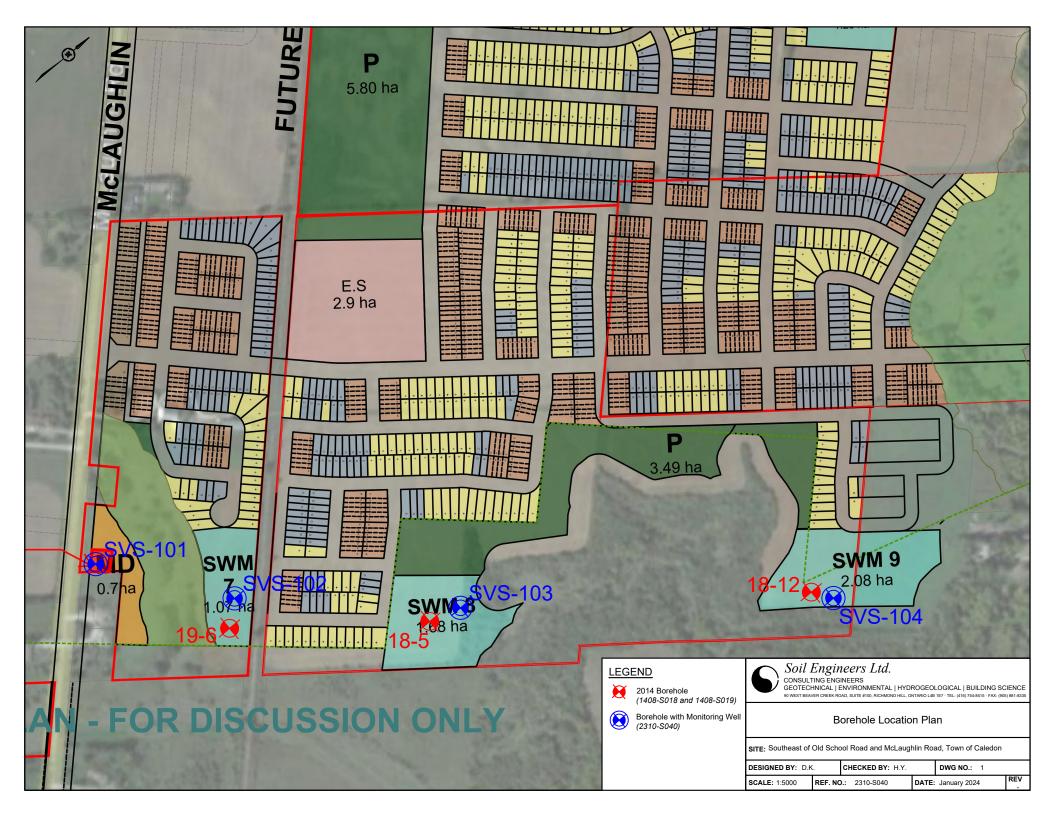

10

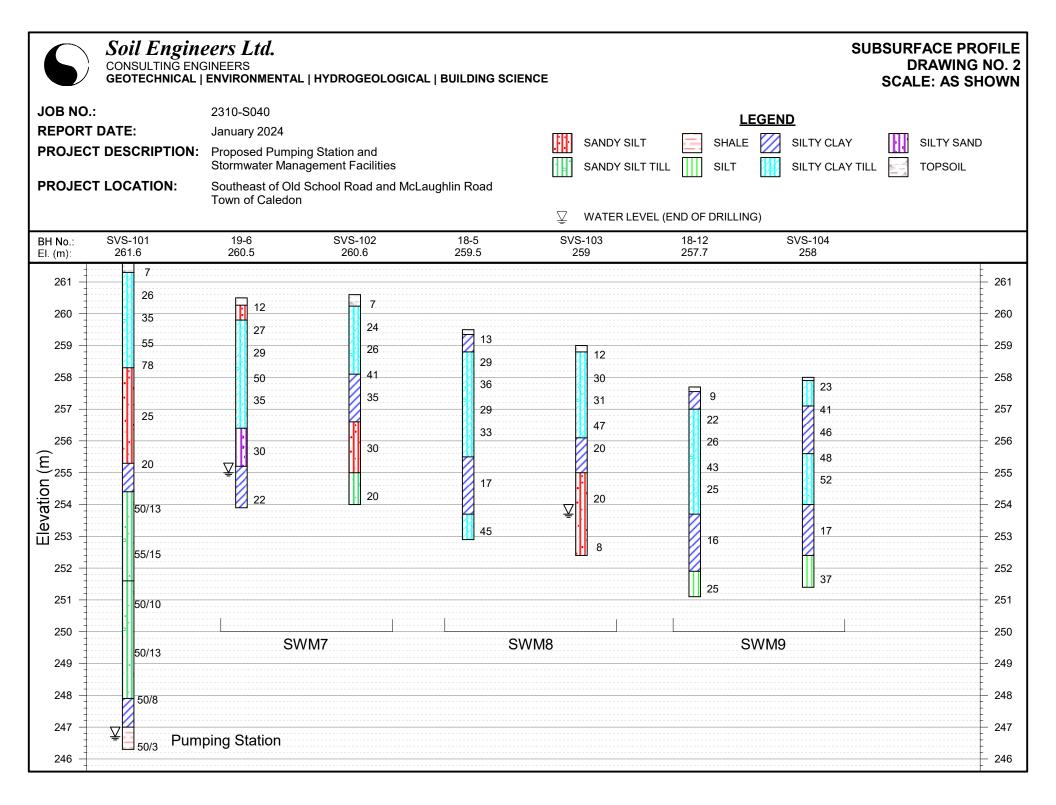
 10^{-7}


Reference No: 2310-S040

U.S. BUREAU OF SOILS CLASSIFICATION


U.S. BUREAU OF SOILS CLASSIFICATION





GRAIN SIZE DISTRIBUTION

U.S. BUREAU OF SOILS CLASSIFICATION

Soil Engineers Ltd.

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREEK ROAD, SUITE 100, RICHMOND HILL, ONTARIO L4B 1E7 • TEL: (416) 754-8515 • FAX: (905) 881-8335

BARRIE	MISSISSAUGA	OSHAWA	NEWMARKET	MUSKOKA	HAMILTON
TEL: (705) 721-7863	TEL: (905) 542-7605	TEL: (905) 440-2040	TEL: (905) 853-0647	TEL: (705) 684-4242	TEL: (905) 777-7956
FAX: (705) 721-7864	FAX: (905) 542-2769	FAX: (905) 725-1315	FAX: (905) 881-8335	FAX: (705) 684-8522	FAX: (905) 542-2769

APPENDIX

BOREHOLE LOGS FROM 2014 GEOTECHNICAL INVESTIGATIONS (1408-S018 AND 1408-S019)

REFERENCE NO. 2310-S040

JOB DESCRIPTION: Proposed Residential Development JOB LOCATION: Old School Road and Hurontario Street METHOD OF BORING: Flight-Auger Town of Caledon DATE: August 26, 2014 SAMPLES X Shear Strength Atterberg Limits Ê WATER LEVEL (kN/m2) Scale Depth SOIL PL Ц 100 150 200 50 N-Value DESCRIPTION Number Elev. Penetration Resistance Depth : Moisture Content (%) Type (m) Ο (blows/30cm) 10 10 30 50 70 90 20 30 40 0.0 Ground Surface 0 15 cm TOPSOIL 259.5 Brown, stiff, weathered 15 DO 1 13 Ο SILTY CLAY occ. wet sand and silt 0.7 seams and layers 258.8 Brown, very stiff to hard 1 DO 2 29 12 • 3 DO 36 Ο SILTY CLAY, TIII 2 occ. wet sand and silt q seams and layers, cobbles Dry on completion 4 DO 29 and boulders 3 17 5 DO 33 • 4.0 4 255.5 Grey, very stiff 28 SILTY CLAY 6 DO 17 C occ. wet sand and silt 5 seams and layers 5.8 253.7 Grey, hard 6 8 SILTY CLAY, TIII Ó 7 DO \cap 45 6.6 occ. wet sand and silt 252.9 seams and layers, cobbles and boulders 7 END OF BOREHOLE 8 9

LOG OF BOREHOLE NO: 5

JOB NO: 1408-S018

FIGURE NO: 5

Soil Engineers Ltd.

10

JOB DESCRIPTION: Proposed Residential Development JOB LOCATION: Old School Road and Hurontario Street METHOD OF BORING: Flight-Auger Town of Caledon DATE: August 26, 2014 SAMPLES Atterberg Limits imes Shear Strength (E WATER LEVEL (kN/m2) Scale (Depth SOIL PL ιĻ 100 150 200 50 DESCRIPTION Number N-Value Elev. Penetration Resistance Depth Moisture Content (%) Type (m) Ο (blows/30cm) 30 50 7 10 50 10 90 20 40 70 30 0.0 Ground Surface 0 257.7 15 cm TOPSOIL Brown, stiff, weathered 20 DO 9 1 Q SILTY CLAY occ. wet sand and silt 0.7 seams and layers 257.0 Brown, very stiff to hard 12 1 2 DO 22 • 13 . 3 DO 26 0 SILTY CLAY, Till 2 occ. wet sand and silt 10 seams and layers, cobbles 4 DO 43 0 and boulders Dry on completion 3 5 DO 25 σ . 4.0 4 253.7 Grey, stiff 23 SILTY CLAY . 6 DO 16 0 occ. wet sand and silt 5 seams and layers 5.8 251.9 Grey, compact 6 19 SILT 7 DO 0 25 6.6 251.1 END OF BOREHOLE 7 8 9 10

LOG OF BOREHOLE NO: 12

JOB NO: 1408-S018

FIGURE NO: 12

Soil Engineers Ltd.

JOB NO: 1408-S019

LOG OF BOREHOLE NO: 6

FIGURE NO: 6

JOB DESCRIPTION: Due Diligence for Proposed Land Acquisition

JOB LOCATION: Southeast of Old School Road and McLaughlin Road

Town of Caledon

METHOD OF BORING: Flight-Auger *DATE:* August 21, 2014

		SA	MPI	ĻES	Ê		imes She	ar Str	rengtl	n (kN	/m2)	Τ		Atter	berç	g Lim	nits			
Depth	SOIL				Depth Scale (m)		50	100	15	50	200		PI	L			LL			WATER LEVEL
Elev.	DESCRIPTION	Number	0	N-Value	th Sc	Penetration Resistance				• •	/loistu	re (Conte				LER			
(m)		Num	Type	N-V	Dep	10	0 3	(blow: 0	s/30c	rm) 70	9	D	10	20		30		40		MA
0.0	Ground Surface				0_			_						 	-		-			
260.5	23 cm TOPSOIL	1	DO	12				_			+	+			+		+		-	
	Brown, compact SANDY SILT			12		\vdash	,				+	+			+		+		-	
0.7 259.8	weathered, a trace of rootlets a trace of clay											\top					1			
200.0	Very stiff to hard	2	DO	27	1								11							
	weathered SILTY CLAY, TIII					⊢						+		+	\rightarrow		+		_	
						\vdash		+	+		+	+		+	+	_	+	+	-	
	some sand to sandy a trace of gravel occ. rock fragments	3	DO	29								+	12	2	+		+			
	occ. rock fragments contains sand seams				2															
												+			_		_		_	
		4		50		\vdash					+	+			+		-		_	
		4	DO	50					0			+			+		+		-	
	<u>brown</u> grey	-			3															
								_						19						
		5	DO	35		\vdash		0	+		+	+			\dashv		_		_	
						\vdash					+	+			+		+		-	
					4							+			+		+			
4.1 256.4	Grey, compact	-																		
	choy, compact														$ \rightarrow$				_	
	SILTY FINE SAND					\vdash		_	+		+	+		16	+		+		-	
	a trace of clay	6	DO	30	5	\vdash						+			+		+		-	rtion
															\neg		1			letior mple
5.3 255.2	Grey, very stiff	-																		omp n co
						_		_	+		+	+		+	_	_	+		_	yon c ∑
	SILTY CLAY					\vdash		+	+		+	+		+	+		+		-	m ≜ m m
					6_			+	+		+	+		+	+					55.0 I 254
		7	DO	22			О							16 ●						三.25 回 [5
6.6 253.9	END OF BOREHOLE																		_	·
200.0	END OF BOREHOLE							_				_			_		_		_	W.L. Cavi
					7	+		-				+			+		+		-	
												+			+		+			
											+	+		+	\downarrow		_			
					8															
	Soil Engineers Ltd.																			

Soil Engineers Ltd.

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CRE	EK ROAD, SUITE 100, RICI	HMOND HILL, ONTA	RIO L4B 1E7 · TEL: (416) 754-8515 · FAX:	(905) 881-8335
BARRIE	MISSISSAUGA	OSHAWA	NEWMARKET	MUSKOKA	HAMILTON

TEL: (705) 721-7863

TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647 TEL: (705) 684-4242 TEL: (905) 777-7956 FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (905) 881-8335 FAX: (705) 684-8522 FAX: (905) 542-2769

A REPORT TO SCHOOL VALLEY DEVELOPMENTS LTD.

A GEOTECHNICAL INVESTIGATION FOR PROPOSED RESIDENTIAL DEVELOPMENT

SOUTHWEST OF OLD SCHOOL ROAD AND HURONTARIO STREET

TOWN OF CALEDON

REFERENCE NO. 2310-S041

JANUARY 2024

DISTRIBUTION

Digital Copy - School Valley Developments Ltd.

TABLE OF CONTENTS

1.0	INTR	RODUCTION	. 1
2.0		AND PROJECT DESCRIPTION	
3.0	FIEL	D WORK	. 1
4.0	SUB	SURFACE CONDITIONS	. 2
	4.1	Topsoil	. 2
	4.2	Silty Clay/Clayey Silt Till and Silty Clay/Clay	. 2
	4.3	Silty Fine Sand/Sandy Silt/Silt/Sand and Silt	. 3
	4.4	Sand	. 4
	4.5	Sandy Silt Till	
	4.6	Compaction Characteristics of the Revealed Soils	. 5
5.0	GRO	UNDWATER CONDITION	. 6
6.0	DISC	USSION AND RECOMMENDATIONS	. 7
	6.1	Site Preparation	. 9
	6.2	Foundation	.10
	6.3	Basement Structure	.11
	6.4	Underground Services	
	6.5	Backfilling Trenches and Excavated Areas	
	6.6	Pavement Design	.14
	6.7	Bridge Crossing	
	6.8	Stormwater Management Ponds	
	6.9	Soil Parameters	.21
	6.10	Excavation	.22
7.0	LIMI	TATIONS OF REPORT	.23

TABLES

Table 1 - Estimated Water Content for Compaction	6
Table 2 - Groundwater Levels	
Table 3 - Pavement Design	.14
Table 4 - Soil Parameters for Lateral Resistance of Pile	
Table 5 - Soil Parameters	.21
Table 6 - Classification of Soils for Excavation	.23

ENCLOSURES

Logs of Borehole	Figures 1 to 12
Grain Size Distribution Graphs	Figures 13 to 19
Borehole Location Plan	Drawing No. 1
Subsurface Profile	Drawing No. 2
Permanent Perimeter Drainage System	Drawing No. 3
Details of Underfloor Weepers	Drawing No. 4
Borehole Logs by Terraprobe Inc. and PECG	Appendix

1.0 INTRODUCTION

In accordance with the email authorization dated October 2, 2023, from Mr. Frank Filippo of School Valley Developments Ltd., a geotechnical investigation was carried out for a property located southwest of Old School Road and Hurontario Street in the Town of Caledon.

The purpose of the investigation was to reveal the subsurface conditions and to determine the engineering properties of the disclosed soils for the design and construction of a proposed residential development.

2.0 SITE AND PROJECT DESCRIPTION

The subject site is located on the south side of Old School Road, approximately 325 m west of Hurontario Street in the southern region of Town of Caledon. It is located within a physiographic region known as the South Slope, situated in between the Oak Ridges Moraine and the Peel Plain. The soil stratigraphy in the area is characterized by sand and silt deposits layered in between an upper Halton Till and a lower Newmarket Till. The sand and silt deposits in the area were identified as part of the Oak Ridges Moraine (ORM) or equivalent unit in the Hydrogeological Assessment for Mayfield West, Phase 2 Stage 3 Lands, prepared by Palmer Environmental Consulting Group Inc. (PECG) in 2018.

At the time of investigation, the property consists of mainly farm fields. The northern and southern portions of site is separated by a forested natural system of the tributaries to the Etobicoke Creek.

Based on the conceptual site plan, the site will be developed as a low- to medium-density residential subdivision, with park and stormwater management (SWM) pond blocks.

3.0 FIELD WORK

The field work, consisting of 12 boreholes extending to a depth ranging from 6.6 to 12.3 m, was carried out between October 10 and 16, 2023. To facilitate the hydrogeological study by PECG, 50-mm diameter monitoring wells were installed at 7 selected borehole locations. The depth and details of the monitoring wells are shown on the corresponding Borehole Logs. The locations of the boreholes and monitoring wells are shown on Drawing No. 1.

The boreholes were advanced at intervals to the sampling depths by a track-mounted machine equipped with solid and hollow stem augers for soil sampling. Split-spoon samples were recovered for soil classification and laboratory testing. Standard Penetration Tests using the

procedures described on the enclosed "List of Abbreviations and Terms" were performed at the sampling depths. The relative density of the non-cohesive strata and the consistency of the cohesive strata are inferred from the 'N' values. The field work was supervised and the findings were recorded by a geotechnical technician.

The ground elevation at each borehole location was determined using a handheld equipment of the Global Navigation Satellite System.

4.0 SUBSURFACE CONDITIONS

Beneath the topsoil veneer, the subsoil profile consists of silty clay till in the upper stratigraphy, overlying a sand and silt unit and interstratified with silty clay layers at various depths and locations. At Boreholes SV-105 and 106, a sandy silt till stratum was observed beneath the sands and silts in the lower stratigraphy. Fine/fine to coarse sand deposits were observed in the northeast quadrant of the site.

Detailed descriptions of the encountered subsurface conditions are presented on the Logs of Borehole, comprising of Figures 1 to 12, inclusive. The soil stratigraphy is illustrated on the Subsurface Profile, Drawing No. 2.

Previous borehole investigations and monitoring well installations were carried out by Terraprobe Inc. and PECG in 2009 and 2017. Relevant borehole data from these investigations have been incorporated in this report, and the associated borehole logs are enclosed in the Appendix for reference. A prefix of T- and MW- refers to the boreholes and monitoring wells installed by Terraprobe and PECG, respectively.

The engineering properties of the disclosed soils are discussed herein.

4.1 **Topsoil**

The revealed topsoil thickness ranges from 15 to 41 cm. Thicker topsoil may be encountered in areas beyond the borehole locations, especially in local low-lying areas. In MW-4, a surficial topsoil layer has a thickness of 1.07 m.

4.2 Silty Clay/Clayey Silt Till and Silty Clay/Clay

The silty clay till/clayey silt till was generally encountered in the upper stratigraphy across the site except in MW-4, where the borehole was terminated in the clay till mantle at a depth of 10.9 m below grade. The till consists of a mixture of particle sizes ranging from clay to

gravel, with silt and clay being the dominant fraction. The silty clay, containing a trace of fine sand, was encountered at various depths and locations. Grain size analyses were performed on 2 representative samples of the silty clay till and on a sample of the silty clay, and the results are plotted on Figures 13 and 14, respectively.

The Atterberg Limits of 2 clay till and 1 clay samples and the natural water content values of all the samples were determined; the results are plotted on the Borehole Logs and summarized below:

	Silty Clay Till	Silty Clay
Liquid Limit	30% and 37%	42%
Plastic Limit	17% and 20%	21%
Natural Water Content	10% to 24%	18% to 26%
	(median 15%)	(median 20%)

The results indicate that the clay till is low to medium in plasticity and clay is medium in plasticity. Both the clay and clay till are in moist conditions with natural water content values generally below their plastic limits.

The recorded 'N' values of the clay till range from 3 to 70 (blows per 25 cm of penetration), with a median of 23 blows per 30 cm of penetration. This indicates that the clay till is soft to hard, generally being very stiff in consistency. The obtained 'N' values of the clay range from 15 to 38, with a median of 20 blows per 30 cm of penetration, showing that the clay is very stiff to hard, generally being very stiff in consistency. The low 'N' values are generally encountered near the ground surface where the soil was likely disturbed by farming activities and/or weakened by the weathering process. Intermittent hard resistance to augering was encountered in places, indicating the presence of cobbles in the till mantle.

The engineering properties of the silty clay till and clay are listed below:

- High frost susceptibility and low water erodibility.
- In excavation, the clays will be stable in relatively steep cuts; however, prolonged exposure may lead to localized sloughing.

4.3 Silty Fine Sand/Sandy Silt/Silt/Sand and Silt

Beneath the surficial topsoil, a sandy silt/silt deposit was contacted in Boreholes SV-102, SV-103, SV-104, SV-105, SV-106, SV-110 and SV-111. Furthermore, a silty fine sand/sandy silt/silt/sand and silt deposit was encountered in the lower stratigraphy across the site beneath the silty clay till and silty clay, except in MW-4 where sand and silt deposits dominate the

soil stratigraphy. Grain size analyses were performed on representative samples of the silty fine sand, sandy silt and silt, and the results are plotted on Figures 15 to 17, respectively.

The obtained natural water content values range from 3% to 25%, with a median of 20%, indicating that the sands and silts are dry to wet, generally in every moist to wet condition. Sample examination revealed that the lower zone of the unit, below depths of 4.0 to 6.0 m, is generally water bearing.

The recorded 'N' values range from 5 to 70, with a median of 23 blows per 30 cm penetration, indicating relative densities of loose to very dense, generally being compact. The loose soils encountered near the ground surface were likely disturbed or weakened by weathering.

The engineering properties of the silty fine sand/sandy silt/sand and silt are listed below:

- High capillarity and water retention capability.
- Highly frost susceptible, with high soil-adfreezing potential.
- High water erodibility, the fine particles will migrate through small openings under seepage pressure.
- The shear strength is mainly derived from internal friction. The wet silts and sands are susceptible to dynamic disturbance, which will induce a build-up of pore water pressure, resulting in soil dilation and a reduction in shear strength.
- In excavation, the silts and sands will remain stable for a short period of time and may slough readily. The wet silts and sands will run with seepage, and boil under an approximate piezometric head of 0.4 m.

4.4 <u>Sand</u>

Fine and fine to coarse grained sand layers were found in Boreholes SV-107, SV-108 and MW-8, generally in the northeast quadrant of the site. Both Boreholes SV-107 and MW-8 were terminated in the sand stratum. Occasional fine sand layers were also observed embedded in the silty sand/sandy silt deposit in other boreholes. The sand contains a trace to some silt and a trace of clay. Grain size analyses were performed on 3 sand samples; the gradations are plotted on Figure 18.

Sample examination revealed that the sand is moist in the upper stratigraphy, becoming wet in the lower zone, with natural water content values varying from 6% to 22% and a median of 7%. The sand at the bottom of Boreholes SV-107 and MW-8 is wet.

The sand is loose to dense, generally being compact in relative density, with obtained 'N' values ranging from 9 to 37, and a median of 25 blows per 30 cm of penetration.

The engineering properties of the sand are listed below:

- Water erodible material.
- In excavation, the sand will slough to its angle of repose, run with water seepage and boil with a piezometric head of about 0.3 to 0.4 m.

4.5 Sandy Silt Till

Sandy silt till was encountered beneath the clay till in Borehole SV-109 overlying the silty fine sand/sandy silt stratum. In Boreholes SV-105 and SV-106, the silt till stratum was encountered beneath the sand/silt and clay deposits; both boreholes were terminated in the till stratum. The till is cemented with a trace to some clay, and is laminated with sand and silt seams and layers. Hard resistance to augering was encountered in the lower zone of the boreholes, indicating the presence of cobbles in the till mantle. A grain size analysis was performed on a representative sample of the till; the result is plotted on Figure 19.

The natural water content values of the till range from 7% to 14%, with a median of 8%, indicating that the till is generally in a moist condition.

The obtained 'N' values range from 47 to over 50, with a median of over 50 blows per 30 cm penetration, indicating that the relative density of the till is dense to very dense, being generally very dense.

The engineering properties of the sandy silt till are listed below:

- Highly frost susceptible and moderately low water erodibility.
- The till will be relatively stable in relatively steep excavation; however, if remained open for an extended period of time, localized sloughing may occur.

4.6 Compaction Characteristics of the Revealed Soils

The obtainable degree of compaction is primarily dependent on the soil moisture and, to a lesser extent, on the type of compactor used and the effort applied. As a general guide, the typical water content values of the revealed soils for Standard Proctor compaction are presented in Table 1.

	Determined Natural		ntent (%) for ctor Compaction
Soil Type	Water Content (%)	100% (optimum)	Range for 95% or +
Silty Clay Till	10 to 24 (median 15)	18	15 to 22
Silty Clay	18 to 26 (median 20)	20	16 to 24
Sandy Silt Till	7 to 14 (median 8)	10	6 to 15
Silty Fine Sand/Sandy Silt/ Silt/Sand and Silt	3 to 58 (median 20)	12	8 to 16
Fine/Fine to Coarse Sand	6 to 22 (median 7)	8 to 9	6 to 11

Table 1 - Estimated Water Content for Compac	tion
--	------

The above values show that the tills and clay are generally suitable for structural backfill, and the addition of water may be required prior to structural compaction in the dry and warm seasons and in areas where compaction is best performed on the wet side of the optimum. Wet silts and sands can be stockpiled to drain the excess water prior to structural compaction.

The lifts for compaction should be limited to 20 cm, or to a suitable thickness assessed by test strips performed by the compaction equipment. Boulders larger than 15cm in size must be sorted and removed from the backfill.

5.0 **GROUNDWATER CONDITION**

Groundwater levels were detected in 5 of the 12 boreholes upon completion of drilling in October 2023. In December 2023, stabilized groundwater levels were recorded from the installed monitoring wells in by PECG; these levels are tabulated in Table 2.

Stabilized water levels were recorded at depths ranging from 3.54 to 8.83 metres below ground surface (mbgs), or from El. 262.08 to 255.44 m. The groundwater records are generally consistent with or near the observed wet sands and silts at the boreholes. The groundwater regime is subject to seasonal fluctuations. Detailed groundwater profile and monitoring records should be referred to the hydrogeological study by PECG.

			Measured Groundwater Levels					
			On Con	npletion	Dec. 6	5, 2023	Dec. 12-	13, 2023
Borehole/ Monitoring Well No.	Ground El. (m)	Well Depth (m)	Depth (m)	El. (m)	Depth (m)	El. (m)	Depth (m)	El. (m)
SV-101	266.1	-	3.7	262.4	No Well			
SV-102	264.6	5.8	N/A ^a	-	4.02	262.08	-	-
SV-103	264.1	6.1	N/A ^a	-	3.54	260.56	-	-
SV-104	264.1	-	5.5	258.6	No Well			
SV-105	264.7	-	Dry	-	No Well			
SV-106	264.9	9.1	N/A ^a	-	6.13	258.77	6.11	258.79
SV-107	265.1	10.7	10.1	255.0	8.65	256.45	-	-
SV-108	264.3	10.7	9.1	255.2	7.00	257.30	7.96	256.34
SV-109	263.6	6.1	5.9	257.7	4.61	258.99	4.64	258.96
SV-110	263.6	-	Dry	-		No	Well	
SV-111	263.7	-	Dry	-		No	Well	
SV-112	262.9	6.1	Dry	-	Dry - I		Dry	-
T-1	263.0	9.6	6.4 ^b	256.6	6.59	256.65	-	-
T-2	264.3	9.6	8.8 ^b	255.5	8.70	255.44	-	-
MW-4	266.0	7.92	4.59 ^c	261.41	4.48	261.52	-	-
MW-8	265.0	11.28	9.00 ^c	256.00	8.83	256.17	-	-

^a Water was used during the drilling operation; measurement of groundwater level was not feasible upon completion of drilling.

^b Water level measured on completion on February 12, 2009.

^c Water level measured on completion on November 15, 2017.

6.0 DISCUSSION AND RECOMMENDATIONS

Beneath the topsoil veneer, the subsoil profile consists of generally very stiff silty clay till in the upper stratigraphy, overlying a generally compact sand and silt unit and interstratified with very stiff silty clay at various depths and locations. At Boreholes SV-105 and 106, a very dense sandy silt till stratum was observed beneath the sands and silts in the lower

stratigraphy. Generally compact sand deposits were observed in the northeast quadrant of the site. The surficial weathered zone extends to depths of 0.6 to 1.2 m below grade.

Stabilized water levels were recorded at depths ranging from 3.54 to 8.83 mbgs, or from El. 262.08 to 255.44 m. The groundwater records are generally consistent with or near the observed wet sands and silts at the boreholes. The groundwater regime is subject to seasonal fluctuations.

It is understood that the site will be developed as a low- to medium-density residential subdivision with park and SWM pond blocks. A bridge crossing will also be constructed in the vicinity of Boreholes SV-105 and SV-106 to connect the development north and south of the natural tributaries system. The development will be provided with municipal services and paved roadways meeting municipal standards. The following geotechnical considerations warrant special attention:

- 1. The topsoil must be stripped for development; it can be reused for general landscaping purposes only.
- 2. The weathered soil should be inspected prior to any placement of earth fill for site grading purpose. Where required, the weathered soil should be subexcavated, sorted free of any organic, topsoil, and/or other deleterious material, before reusing for structural backfill.
- 3. Where additional fill is required for site grading, the earth fill can be placed in an engineered manner for conventional footing construction, site services support and road construction.
- 4. The engineered fill and the sound native soils are suitable for supporting structures founded on conventional spread and strip footings.
- 5. In view of the underlying wet sands and silts, it is recommended that the basement floor be founded at least 1.0 m above the seasonal high groundwater level. Otherwise, underfloor subdrain systems and/or waterproofing of basements should be implemented to relieve any groundwater upfiltration due to seasonal fluctuation of the groundwater.
- 6. A Class 'B' bedding, consisting of compacted 19-mm Crusher-Run Limestone (CRL), is recommended for the construction of underground services. Where services installation extends into the saturated sands and silts, or where dewatering is required, a Class 'A' concrete bedding should be considered for pipe support.
- 7. Groundwater seepage from the tills and clay will likely be removable by conventional pumping from sumps during construction. Excavation extending into the saturated soils will require construction dewatering.

The recommendations appropriate for the project described in Section 2.0 are presented herein. One must be aware that the subsurface conditions may vary between boreholes, and the assessment given herein is general in nature based on the borehole findings. Should this become apparent during construction, a geotechnical engineer must be consulted to determine whether the following recommendations require revision.

6.1 Site Preparation

The topsoil and vegetation at the ground surface must be removed for development. Where additional fill is required for site grading, the earth fill can be placed in an engineered manner for conventional footing construction, site services support and road construction. The engineering requirements for a certifiable fill are presented below:

- 1. The subgrade must be inspected and proof-rolled prior to any fill placement. Badly weathered soils should also be subexcavated, sorted free of topsoil inclusions and deleterious materials, if any, aerated and properly compacted in layers.
- 2. Inorganic soils must be used for the fill, and they must be uniformly compacted in lifts of 20 cm thick to at least 98% Standard Proctor Dry Density (SPDD) up to the proposed finished grade. The soil moisture must be properly controlled near the optimum. If the foundations are to be built soon after the fill placement, the densification process for the engineered fill must be increased to 100% SPDD.
- 3. If the engineered fill is compacted with the moisture content on the wet side of the optimum, the underground services and pavement construction should not begin until the pore pressure within the fill mantle has completely dissipated. This must be further assessed at the time of the engineered fill construction.
- 4. If imported fill is to be used, it should be inorganic soils, free of deleterious or any material with environmental issue or contamination. Any potential imported earth fill from off-site must be reviewed for geotechnical and environmental quality by the appropriate personnel as authorized by the developer or agency, before being hauled to the site.
- 5. The fill operation must be inspected on a full-time basis by a technician under direction of a geotechnical engineer.
- 6. The engineered fill should not be placed during period when freezing ambient temperatures occur either persistently or intermittently. This is to ensure that the fill is free of frozen soils, ice and snow. If the engineered fill is to be left over the winter months, adequate earth cover, or equivalent, must be provided for protection against frost action.

- 7. The engineered fill must extend over the entire graded area; the engineered fill envelope and finished elevations must be clearly and accurately defined in the field, and they must be precisely documented by qualified surveyors.
- 8. The foundations and underground services subgrade must be inspected by the geotechnical consulting firm that inspected the engineered fill placement. This is to ensure that the foundations are placed within the engineered fill envelope, and the integrity of the fill has not been compromised by interim construction, environmental degradation and/or disturbance by the footing excavation.
- 9. Despite stringent control in the placement of the engineered fill, variations in soil type and density may occur in the engineered fill. Therefore, the foundations must be properly reinforced, or be designed by the structural engineer for the project. The total and differential settlements of 25 mm and 20 mm, respectively, should be considered in the design of the foundation founded on engineered fill.
- 10. Any excavation carried out in certified engineered fill must be reported to the geotechnical consultant who supervised the fill placement in order to document the locations of the excavation and/or to supervise reinstatement of the excavated areas to engineered fill status. If construction on the engineered fill does not commence within a period of 2 years from the date of certification, the condition of the engineered fill must be assessed for re-certification.

6.2 **Foundation**

Based on the borehole information, the following bearing pressures are recommended for house structures supported on conventional strip and spread footings founded onto engineered fill or sound native soils below the disturbed or weathered soils.

- Maximum Bearing Pressure at Serviceability Limit State (SLS) = 100 kPa
- Factored Ultimate Bearing Pressure at Ultimate Limit State (ULS) = 150 kPa

The total and differential settlements of footing designed for the recommended bearing pressure at SLS are estimated at 25 mm and 20 mm, respectively.

The footing subgrade must be inspected by a geotechnical engineer, or a senior geotechnical technician, under the supervision of a geotechnical engineer, to ensure that the revealed conditions are compatible with the design of the foundation.

Footings exposed to weathering, or in unheated areas, should have at least 1.2 m of earth cover for protection against frost action.

Where the footing excavation consists of wet sands and/or silts, or the footing subgrade is saturated, a concrete mud-slab of lean mix concrete, 8 to 10 cm in thickness, should be poured immediately after subgrade preparation and inspection to protect the approved subgrade against disturbance by the construction traffic.

The foundation should meet the requirements specified by the latest Ontario Building Code, and the structures can be designed to resist a minimum earthquake force using Site Classification 'D' (stiff soil).

Higher bearing pressures may be provided depending on location and foundation design depth. This can be confirmed once the design and grading specifications are available for review.

6.3 Basement Structure

Where house basements are proposed, they should be designed for the lateral earth pressure using the soil parameters provided in Table 5.

Wet sand and silt deposits were observed throughout the site at various depths. It is therefore recommended that the basement floor be founded at least 1.0 m above the seasonal high groundwater level. In conventional basement design, perimeter walls of the basement structure should be damp-proofed and provided with perimeter subdrains at the wall base. Backfill of the open excavation should consist of free-draining granular material (Drawing No. 3) unless prefabricated drainage board is installed over the entire wall below grade.

Should the basement floor be founded less than 1.0 m above the groundwater table, underfloor subdrains (Drawing No. 4) should be provided to supplement the perimeter subdrain system to relieve any groundwater upfiltration due to seasonal fluctuation. If the basement floor is to be founded less than 0.5 m above the groundwater table, the basement structure should be waterproofed and designed for hydrostatic uplift pressure. The subdrains, connected to a positive outlet, should be encased in a fabric filter to protect them against blockage by silting.

The subgrade of the basement slab must consist of sound native soil or well compacted inorganic earth fill or engineered fill. The subgrade should be inspected and assessed by proof-rolling prior to slab-on-grade construction. Where loose or soft subgrade is detected, it should be subexcavated and replaced with inorganic material, compacted to at least 98% SPDD.

The concrete slab should be constructed on a minimum 15 cm thick granular base, consisting of 19-mm CRL, or equivalent, compacted to its maximum SPDD. Where underfloor weepers are required, the bedding should be increased to 30 cm in thickness. In addition, a vapor barrier should be placed between the granular bedding and the concrete slab to prevent upfiltration of water vapour.

The external grading must be designed to drain surface runoff away from the structures to minimize the frost heave phenomenon generally associated with the disclosed soils.

6.4 Underground Services

A Class 'B' bedding is recommended for construction of the underground services. The bedding material should consist of compacted 19-mm CRL, or equivalent, compacted to at least 98% SPDD. In the saturated sand and silt deposits, a Class 'A' bedding should be considered for proper pipe support.

The subgrade for underground services should consist of sound native soils or properly compacted earth fill. Where soft or loose soil is encountered at the invert level, it must be subexcavated and replaced with properly compacted bedding material.

The pipe joints connecting into manholes and catch basins should be leak-proof or wrapped with an appropriate waterproof membrane to prevent migration of fines due to leakage, leading to a loss of subgrade support and subsequent pipe collapse.

Openings to subdrains and catch basins should be shielded by a fabric filter to prevent silting. In order to prevent pipe floatation when the service trench is deluged with water derived from precipitation, a soil cover with a thickness of at least the diameter of the pipe should be in place at all times after completion of the pipe installation.

The service pipes and metal fittings should be protected against corrosion. For estimation of anode weight requirements, the electrical resistivities of the disclosed soils presented in Table 5 can be used. The proposed anode weight must meet the minimum requirements as specified by the Town of Caledon or Region of Peel.

6.5 Backfilling Trenches and Excavated Areas

The on-site inorganic soils are suitable for trench backfill. The addition of water may be required for the tills and clay prior to structural compaction during dry and warm weather and in areas where compaction is best performed on the wet side of the optimum. Wet sands and

silts will require aeration prior to their use as structural backfill. The tills should be sorted free of large cobbles and boulders (over 15 cm in size).

The backfill material should be compacted to at least 95% SPDD. In areas below the slab-ongrade and in the zone within 1.0 m below the pavement subgrade, the backfill should be compacted to at least 98% SPDD with a moisture content 2% to 3% drier than the optimum. This is to provide the required stiffness for floor or pavement construction. The lift of each backfill layer should be limited to a thickness of 20 cm, or the thickness should be determined by test strips at the time of compaction.

In normal construction practice, the problem areas of pavement settlement largely occur adjacent to foundation walls, columns, manholes, catch basins and services crossings. In areas which are inaccessible to a heavy compactor, sand backfill which can be appropriately compacted using a smaller vibratory compactor should be used.

One must be aware of possible consequences during trench backfilling and exercise caution as described below:

- To backfill a deep trench, one must be aware that the future settlement is to be expected, unless the sides is flattened to 1V:2H, and the lifts of the fill and its moisture content are stringently controlled; i.e. lifts should be no more than 20 cm (or less if the backfilling conditions dictate) and uniformly compacted to achieve at least 98% SPDD, with the moisture content on the wet side of the optimum.
- It is often difficult to achieve uniform compaction of the backfill in the lower vertical section of a trench which is an open cut or is stabilized by a trench box, particularly in the sector close to the trench walls or the sides of the box. These sectors must be backfilled with sand and the compaction must be carried out diligently, prior to the placement of the backfill above this sector, i.e., in the upper sloped trench section. This measure is necessary in order to prevent consolidation of inadvertent voids and loose backfill which will compromise the compaction of the backfill in the upper section.
- In areas where the underground services construction is carried out during the winter months, prolonged exposure of the trench walls will result in frost heave within the soil mantle of the walls. This may result in some settlement as the frost recedes, and repair costs will be incurred prior to the final surfacing of the new pavement and slab-on-grade construction.
- When construction is carried out in the winter, frozen soil layers may inadvertently be mixed with the structural trench backfill. Should the in-situ soil have a water content on the dry side of the optimum, it would be impossible to wet the soil due to the freezing condition, rendering difficulties in obtaining uniform and proper compaction.

Furthermore, the freezing condition will prevent flooding of the backfill when it is required, such as when the trench box is removed. The above will invariably cause backfill settlement that may become evident within several years after construction.

• In areas where groundwater movement is expected in the sand fill mantle, anti-seepage collars should be provided.

6.6 Pavement Design

The recommended pavement design for residential local and neighbourhood collector/through roads, satisfying the minimum requirement from the Town of Caledon, is provided in Table 3.

Course	Thickness (mm)	OPS Specifications
Asphalt Surface Local Residential Collector/Through Road	40 40	HL3 HL3
Asphalt Binder Local Residential Collector/Through Road	65 90	HL8 HL8
Granular Base	150	Granular 'A' or equivalent
Granular Sub-base Local Residential Collector/Through Road	300 450	Granular 'B' or equivalent

Table 3 - Pavement Design

In preparation of the pavement subgrade, all topsoil and compressible material should be removed. The subgrade should be proof-rolled and inspected. Any soft spots identified must be subexcavated and replaced with inorganic earth fill. The subgrade within 1.0 m below the underside of the granular sub-base must be compacted to at least 98% SPDD, with a water content at 2% to 3% drier than the optimum. All the granular bases should be compacted to 100% SPDD.

The pavement subgrade will suffer a strength regression if water is allowed to infiltrate the mantle. The following measures should be incorporated in the construction procedures and pavement design:

• The pavement subgrade should be properly crowned and smooth-rolled to allow interim precipitation to be properly drained.

- Lots areas adjacent to the road should be properly graded to prevent ponding of large amounts of water. Otherwise, the water will seep into the subgrade mantle and induce a regression of the subgrade strength, with costly consequences for the pavement construction.
- In extreme cases during the wet seasons, if soft or weak subgrade is identified, it can be replaced by compacted granular material to compensate for the inadequate strength of the soft or weak subgrade. This can be assessed during construction.
- Fabric filter-encased curb subdrains are required to meet the Town of Caledon requirements.

6.7 Bridge Crossing

A new bridge crossing will be constructed across the natural system in the vicinity of Boreholes SV-105 and SV-106. Detail design of the bridge crossing is not available for review at the time of report preparation.

Shallow Foundation

The bridge abutments may be supported on conventional spread footings with restricted bearing capacities, founded onto the stiff to very stiff silty clay and silty clay till while remaining above the sandy/silty deposit. The recommended bearing pressures at or above an approximate founding depth of El. 261.0 m are as follows:

- Maximum Bearing Pressure at Serviceability Limit State (SLS) = 200 kPa
- Factored Bearing Pressure at Ultimate Limit State (ULS) = 300 kPa

The total and differential settlements of footing designing for SLS are estimated at 25 mm and 20 mm, respectively.

Deep Foundation for the Abutments and Piers

Due to the proximity of the tributary and wet subsoils with limited bearing capacity, construction of shallow foundations may be difficult. Deep foundation, such as driven H-piles, can be considered for bridge abutments and piers extending past the wet silty sand/silty sand unit and into the very dense sandy silt till below El. 254.0 m. The piles must not rest in the silty sand/sandy silt unit which is subject to dilation under vibratory driving forces. It is recommended that the piles be extended at least 3 m into the hard or very dense till with 'N' values greater than 50 blows. In view that there is insufficient subsoil data to

support this design, deeper boreholes should be carried out once the bridge crossing location and details are confirmed.

For preliminary design with typical driven pile sizes of HP310x110 and HP360x174, the recommended geotechnical resistances are 625 kN (SLS) and 750 kN (ULS), and 875 kN (SLS) and 1000 kN (ULS), respectively. Other specific sizes and associated resistance capacities can be provided upon request. The actual refusal criteria of pile driving should be established once the chosen pile size and the design loads are known. Cast steel drive shoes, as per OPSD 3000.100, will be required in order to protect the driven pile toe into the till deposit. Full time monitoring of the pile driving operation by a geotechnical technician is necessary in order to assess the pile capacity at refusal. In order to verify the design pile capacity, static load test or Pile Driving Analyser (PDA) must be performed on selected piles at each abutment and pier. Integral abutments can also be supported on H-piles, with a minimum pile embedment of 0.6 m into the concrete cap.

The settlement of piles designed for the load resistance at SLS are estimated to be less than 25 mm.

Lateral Resistance

Lateral loading can be resisted fully or partially by the use of battered steel H-piles. For vertical piles, the resistance to lateral loading will have to be derived from the soil in front of the pile support. The geotechnical lateral resistance may be calculated using the coefficient of horizontal subgrade reaction (k_s) and the ultimate lateral resistance (pult):

Cohesive Soil:	$k_s = 67 \ S_u / D$	and	$p_{ult} = 9 S_u$
Cohesionless Soil:	$k_s = n_h z/D$	and	$p_{ulkt} = 3 \ \gamma z \ K_p$

where

S_u = undrained shear strength (kPa) z = depth of pile embedment (m)

- n_h = coefficient related to soil relative density (MN/m³)
- D = pile width/diameter (m)
- γ = bulk unit weight of soil in overburden [or γ ' in submerged condition] (kN/m³)
- K_p = coefficient of passive earth pressure

The soil parameters for the calculation of ks are summarized in Table 4.

Soil Type	γ (kN/m ³)	n _h (MN/m ³)	Su (kPa)	Kp
Silty Clay	20.5	-	100	-
Silty Clay Till	22.0	-	150	-
Silty Sand/Sandy Silt	10.5 (submerged)	4.4	-	3.12
Sandy Silt Till	22.5	18	-	3.39

The computed resistance should be multiplied by a geotechnical resistance factor of 0.5. The design of piles and load capacities should be reviewed by the geotechnical engineer before finalization.

Group Pile Efficiency

Where multiple piles are required to support the structure, it is recommended that the spacing between piles must be at least 3 times the diameter or width of the pile. Pile group action for axial resistance should be considered, and can be evaluated by applying a reduction factor as listed below:

Pile Spacing:	8B	6B	4B	3B
Reduction Factor:	1.0	0.9	0.75	0.7

Pile group action for lateral resistance can also be evaluated as listed below:

Pile Spacing:	8B	6B	4 B	3B
Reduction Factor:	1.0	0.7	0.4	0.25

Wing Wall Foundation

Wing walls, constructed with cast-in-place concrete, can be supported on strip footings founded below the frost penetration depth of at least 1.2 m below the proposed grade, onto the sound native soil or engineered fill with the following recommended soil bearing pressures:

- Maximum Bearing Pressure at Serviceability Limit State (SLS) = 150 kPa
- Factored Bearing Pressure at Ultimate Limit State (ULS) = 250 kPa

The total and differential settlements of wall footings, designing for the bearing pressure at SLS, are estimated to be 25 mm and 20 mm, respectively.

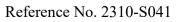
Alternatively, Reinforced Soil Slope (RSS) wall can be used for the wing wall. The RSS wall should be designed in accordance with the MTO Guideline. A 300 mm thick granular bedding, consisting of Granular 'A' compacted to 100% SPDD, will be required beneath the wall facing units after the subgrade is inspected.

The footing subgrade must be inspected prior to the construction of the wing walls. Stepped down footings may be specified with a maximum step height of 0.6 m and a minimum step length of 1.2 m, founded on the sound native soil or engineered fill.

Frost and Scour Protection

All pile caps and footings should be founded below the frost penetration depth, with a soil cover not less than 1.2 m. Where the abutments are constructed in close proximity of the watercourse/tributary, the foundation should extend either below the scouring depth or the frost depth, whichever is greater.

Scouring protection scheme, such as using R10 Rip-Rap, at least 300 mm in thickness, should be provided along the watercourse.


Seismic Consideration

Based on the Canadian Highway Bridge Design Code, the bridge abutments on piles driven into the very dense tills should be designed to resist an earthquake force using Site Classification 'C'. Conventional shallow bridge foundation and wing wall foundations can be designed using Site Classification 'D' (stiff soil).

General Construction

A construction platform and access driveway will be required for the access of machinery and construction equipment near the crossing. Temporary erosion and sediment control plan must be implemented during construction to prevent unnecessary disturbance to the natural system and the tributary. The erosion and sediment control plan should be reviewed and approved by the Toronto and Regional Conservation Authority (TRCA).

For construction of the bridge abutments and piers, the tributary may be temporarily diverted, where necessary. Where excavation extends into the wet silty sand/sandy silt unit, dewatering

will be required to draw down the groundwater to approximately 1 m below the intended bottom of excavation. Dewatering details such as the method, rate and volumes should be verified with the hydrogeologist and the dewatering contractor. Sheeting enclosures may also be required to limit the extent of excavation and disturbance into the natural system.

Embankment and Wing Wall Backfill

Should embankment heights be raised significantly higher than the original grade, consolidation settlement of the subsoils will occur. Primary consolidation settlement in the fine-grained subsoil can be expected. This should be further assessed once detailed embankment design is available for review.

Prior to the construction of embankment, the ground must be free of compressible topsoil and deleterious material. The subgrade must be proof-rolled and inspected before earth filling. Any soft/weak material as identified must be subexcavated and replaced with properly compacted inorganic earth fill.

The wing walls should be backfilled with free draining, non-frost susceptible granular fill to at least 1.2 m behind the wall structure. This is to prevent the build up of hydrostatic pressure and the development of any frost action against the wall structure. Weep holes and/or subdrains should be specified to dissipate any water collected behind the walls.

The road embankment towards the bridge crossing should be graded with a slope gradient of 1V:3H or gentler. Where applicable, flood protection should be considered for any portions of the embankment that will extend to below the flood line.

The sloping ground of embankment should be covered with 300-mm thick topsoil layer, sodded or vegetated to prevent surficial erosion. Prior to sodding and growth of vegetation, an erosion control blanket may be utilized.

6.8 Stormwater Management Ponds

Three SWM ponds (SWM 10, 11 and 12) are proposed in different regions of the subdivision, adjacent to the natural system. Detailed designs of the ponds were not available for review at the time of report preparation.

Pond Liner

SWM 10

Based on the findings of Borehole SV-112, the area of SWM 10 is underlain by firm to hard silty clay till, overlying moist, dense silty fine sand/sandy silt at or below an approximate depth of 5.6 m below grade. The borehole remained dry upon completion of drilling and the monitoring well remained dry during water level measurement in December 2023. The need of a clay liner is not anticipated should the pond design remain within the silty clay till deposit, with sufficient thickness of the low-permeable overburden above the underlying sand/silt unit. However, should the pond extend close to or into the sandy/silty deposit, an earthen clay liner (with an estimated permeability of 10⁻⁷ cm/sec or less) or a geosynthetic clay liner (GCL) with soil ballast will be required.

SWM 11 and 12

The subsoil profile at both SWM 11 (Borehole SV-104) and 12 (SV-108) consists of a clay or clay till cap within the surficial 2 m below grade, beyond which the ponds will likely extend into the silty fine sand/sandy silt deposit. The water level records from the nearby MW-4 and SV-108 suggests that the shallow groundwater regime lies within the sand/silt deposit at depths of 4.48 to 7.0 m, or at El. 261.52 m and El. 257.3 m, respectively, and may be higher during wet seasons. An earthen clay liner or GCL with a soil ballast will be required for SWM 11 and 12 construction.

The appropriate thickness of the clay liner or ballast to counteract hydrostatic uplift concerns, if any, and the extent of the liner can be established once the pond elevations are available for review.

Pond Berm Construction

The side slopes of the ponds should be graded at 1V:3H or flatter for stability above the wet perimeter, and 1V:4H or flatter below the wet perimeter. All exposed side slopes must be vegetated and/or sodded to prevent surface erosion.

Any proposed earth embankments should be constructed using selected on-site inorganic clay or clay till material, compacted to at least 98% SPDD in lifts of no more than 20 cm in thickness. The subgrade must be inspected and proof-rolled prior to any fill placement. The construction of the berms must be supervised and certified by the site geotechnical engineer. The pond side slopes should be surface compacted.

Control Structures

The following bearing pressures can be used for the design of control structures supported on conventional footings founded on sound native soils or on engineered fill:

- Soil Bearing Pressure at SLS: 120 kPa
- Factored Ultimate Soil Bearing Pressure at ULS: 600 kPa

The footings must be placed below the scouring depth and be provided with a minimum earth cover of 1.2 m to protect them from frost damage. The inlets and outlets of the ponds must be lined with gabion mats, rip rap or equivalent measures for protection against scouring.

The foundation for the control structures should meet the requirements specified by the latest Ontario Building Code, and the structures should be designed to resist a minimum earthquake force using Site Classification 'D' (stiff soil).

General Considerations

The excavation for the liner construction may extend below the groundwater table. During construction of the SWM ponds, the groundwater should be depressed, or any seepage must be removed by pumping from sumps to provide a stable subgrade for installation.

One should be aware that minor maintenance may be required after rapid drawdown as the water recedes from a flood level to normal level. Routine visual inspection and maintenance will be required to rectify any observed deficiency.

6.9 Soil Parameters

The recommended soil parameters for the project design are given in Table 5.

Unit Weight and Bulk Factor	Unit Weight (kN/m ³)		nt (kN/m ³) Estimated Bulk Fac	
	<u>Bulk</u>	Submerged	Loose	Compacted
Silty Clay Till	22.0	12.0	1.33	1.03
Sandy Silt Till	22.5	12.5	1.33	1.05
Silty Sand/Sandy Silt/Silt	20.5	10.5	1.20	1.00
Sand	20.0	10.0	1.25	1.00

Table 5 - Soil Parameters (Cont'd)	Table 5 -	Soil Parameters	(Cont'd)
------------------------------------	-----------	-----------------	----------

Lateral Earth Pressure Coefficients	Active Ka	At Rest Ko	Passive K _p
Compacted Earth Fill and Silty Clay	0.40	0.55	2.50
Silty Clay Till	0.33	0.50	3.00
Sandy Silt Till	0.29	0.46	3.39
Silty Sand/Sandy Silt/Silt	0.32	0.48	3.12
Sand	0.29	0.46	3.39
Estimated Coefficients of Permeability (F Percolation Time (T)	<u>() and</u>	K (cm/sec)	T (min/cm)
Silty Clay Till and Silty Clay		10-7	80+
Sandy Silt Till		10^{-5} to 10^{-6}	20 to 50
Silty Sand/Sandy Silt		10^{-3} to 10^{-4}	8 to 12
Silt		10-5	20
Sand		10^{-2} to 10^{-3}	4 to 8
Estimated Electrical Resistivities			(ohm·cm)
Silty Clay Till			4000
Silty Clay			3500
Sandy Silt Till			4500
Silty Sand/Sandy Silt/Silt			5500
Sand			5500
Coefficients of Friction			
Between Concrete and Granular Base			0.50
Between Concrete and Native Soils or Co	ompacted Earth	Fill	0.35

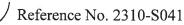
6.10 Excavation

Excavation should be carried out in accordance with Ontario Regulation 213/91. The types of soils to be excavated are classified in Table 6.

Material	Туре
Sound Tills and Silty Clay	2
Weathered Soils, Silt and Sand (above groundwater)	3
Saturated Soils	4

Table 6 - Classification of Soils for Excavation

In excavation, the groundwater seepage from the tills and clay will likely be limited in quantity and can be removed by conventional pumping from sumps. However, excavation extending into the saturated soils will require more extensive construction dewatering. The wet silty fine sand/sandy silt and silt, will slump readily, leading to sloughing and migrate/run with seepage and boil under an approximate piezometric head of 0.4 m.


In order to provide a stable subgrade for the services or foundation construction, the groundwater should be depressed to at least 1.0 m below the intended bottom of excavation. Detailed groundwater profile and dewatering needs should be referred to the hydrogeological report by PEGG.

Excavation into the very stiff to hard and dense to very dense tills containing cobbles and boulders will require extra effort and the use of a heavy-duty, properly equipped backhoe.

Prospective contractors should assess the in situ subsurface conditions for soil cuts by digging test pits to at least 0.5 m below the intended bottom of excavation prior to excavating. These test pits should be allowed to remain open for a period of at least 4 hours to assess the trenching conditions.

7.0 LIMITATIONS OF REPORT

This report was prepared by Soil Engineers Ltd. for the account of School Valley Developments Ltd. and for review by its designated consultants, contractors and government agencies. The material in the report reflects the judgement of Hui Wing Yang, P.Eng. and Kin Fung Li, P.Eng., in light of the information available to it at the time of preparation.

Use of the report is subject to the conditions and limitations of the contractual agreement. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

PROFESSIONAL Gun 18 SOIL ENGINEERS LTD. FINGINEER San 18 100126690 Hui Wing Yang, P.Eng. BOUNCE OF ONTAHO 100169280 SUNCE OF ONTAN Kin Fung Li, P.Eng. HWY/KFL

LIST OF ABBREVIATIONS AND DESCRIPTION OF TERMS

The abbreviations and terms commonly employed on the borehole logs and figures, and in the text of the report, are as follows:

SAMPLE TYPES

- AS Auger sample
- CS Chunk sample
- DO Drive open (split spoon)
- DS Denison type sample
- FS Foil sample
- RC Rock core (with size and percentage recovery)
- ST Slotted tube
- TO Thin-walled, open
- TP Thin-walled, piston
- WS Wash sample

PENETRATION RESISTANCE

Standard Penetration Resistance or 'N' Value:

The number of blows of a 63.5 kg hammer falling from a height of 76 cm required to advance a 51 mm outer diameter drive open sampler 30 cm into undisturbed soil, after an initial penetration of 15 cm. Plotted as ' \bigcirc '

Dynamic Cone Penetration Resistance:

A continuous profile showing the number of blows per each 30 cm of penetration of a 51 mm diameter, 90° point cone driven by a 63.5 kg hammer falling from a height of 76 cm.

Plotted as '---'

- WH Sampler advanced by static weight
- PH Sampler advanced by hydraulic pressure
- PM Sampler advanced by manual pressure
- NP No penetration

Soil Engineers Ltd. CONSULTING ENGINEERS

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

SOIL DESCRIPTION

Cohesionless Soils:

<u>'N' (b</u>	lows	/ <u>30 cm</u>)	Relative Density
0	to	4	very loose
4	to	10	loose
10	to	30	compact
30	to	50	dense
	2	>50	very dense

Cohesive Soils:

Undrained Shear <u>Strength (kPa)</u>	'N' (blows/30 cm)	<u>Consistency</u>
<12 12 to <25 25 to <50 50 to <100 100 to 200 >200	<pre><2 2 to <4 4 to <8 8 to <15 15 to 30 >30</pre>	very soft soft firm stiff very stiff hard

Method of Determination of Undrained Shear Strength of Cohesive Soils:

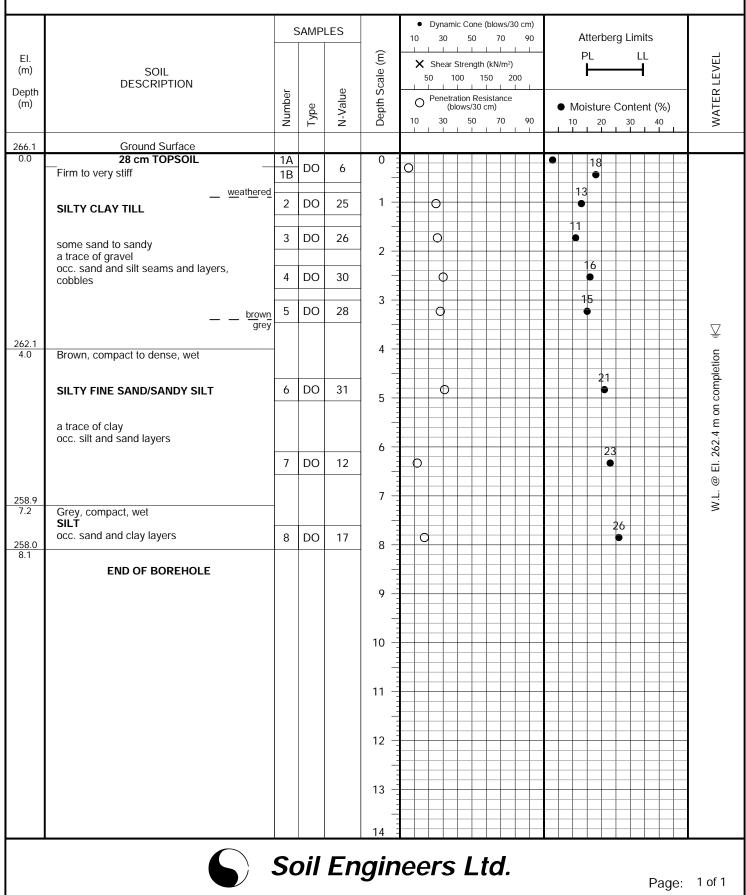
- x 0.0 Field vane test in borehole; the number denotes the sensitivity to remoulding
- \triangle Laboratory vane test

METRIC CONVERSION FACTORS

- 1 ft = 0.3048 m
- 1 inch = 25.4 mm
- 1 lb = 0.454 kg
- 1 ksf = 47.88 kPa

JOB NO.: 2310-S041

LOG OF BOREHOLE: SV-101


FIGURE NO.: 1

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Solid Stem Augers

PROJECT LOCATION:

I: Southwest of Old School Road and Hurontario Street Town of Caledon DRILLING DATE: October 10, 2023

JOB NO.: 2310-S041

LOG OF BOREHOLE: SV-102

FIGURE NO.: 2

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Hollow Stem Augers

DRILLING DATE: October 11, 2023

PROJECT LOCATION:

I: Southwest of Old School Road and Hurontario Street Town of Caledon

	SOIL DESCRIPTION	SAMPLES				 Dynamic Con 10 30 50 		Atterberg Limits	
EI. m) epth m)		Number	Type	N-Value	Depth Scale (m)	X Shear Strength (kN/m²) 50 100 150 200 O Penetration Resistance (blows/30 cm) 0 90 10 30 50 70 90		 PL LL Moisture Content (%) 10 20 30 40 10 40 	WATER LEVEL
4.6	Ground Surface								
0.0 03.8	Brown, compact, weathered	1A 1B	DO	11	0	0		13 • •	П
<u>3.8</u> .8	with roots inclusions weathered Brown, very stiff	2	DO	23		0		14 •	
2.5	SILTY CLAY TILL some sand, a trace of gravel occ. sand and silt seams and layers	3	DO	28	2	0		20 •	
1	Brown, compact, moist	4	DO	22		0		21 • •	
	SILTY FINE SAND/SANDY SILT	5	DO	26	3	0		20	
	a trace of clay grey below 5.0 m possibly transitioning to till below 6.1 m								
	wet, o <u>cc. gravel</u> <u>grey clay layer</u>		DO	21	5	0		23	
2.0	wet silt and <u>clay</u> l <u>ay</u> ers_	7	DO	19	6	0		25	H
<u>258.0</u> 6.6	END OF BOREHOLE				7 -				
	Installed 50-mm Ø PVC monitoring well to 5.8 m, completed with 1.5 m screen Sand backfill from 3.7 to 5.8 m Bentonite seal from 0.0 to 3.7 m Provided with a steel monument casing				8				
					9				
					10				
					11				
					12				
					13				
					14				

Page: 1 of 1

LOG OF BOREHOLE: SV-103

FIGURE NO.: 3

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Hollow Stem Augers

DRILLING DATE: October 11, 2023

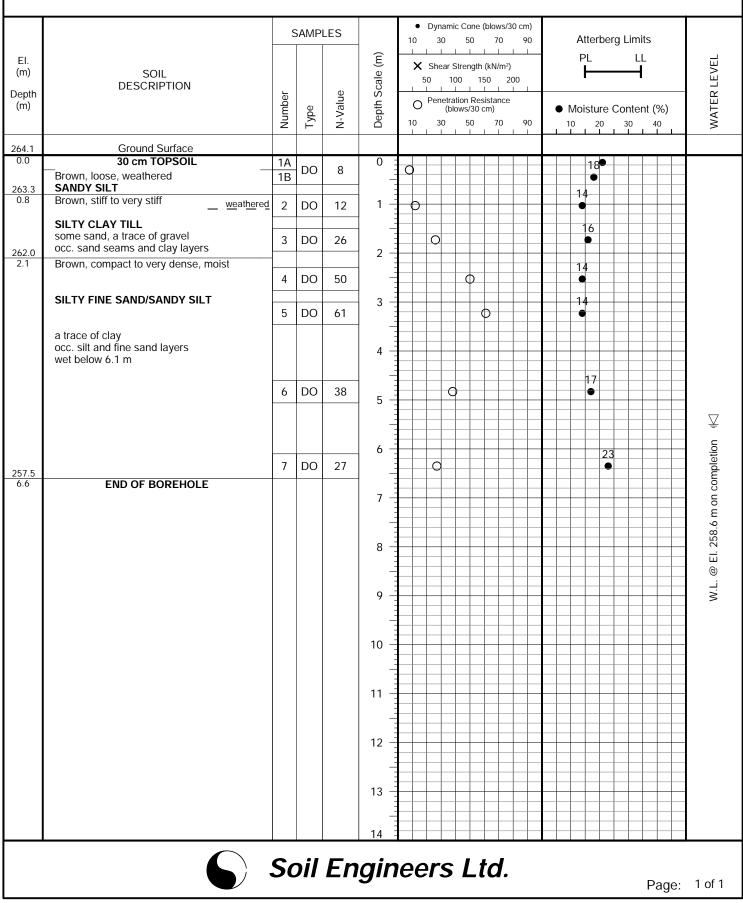
PROJECT LOCATION:

I: Southwest of Old School Road and Hurontario Street Town of Caledon

Depth (m) DESC 264.1 Groun 0.0 25 cm Brown, loose, weat 263.3 SANDY SILT 0.8 Brown, stiff to very SILTY CLAY TILL some sand, a trace	SOIL CRIPTION Ind Surface TOPSOIL	Number	Type		Depth Scale (m)	1() 3	30 I I	50 I	70				Atter PL	berg	Limits LL	5		
(m) Depth (m) 264.1 Groun 263.3 Brown, loose, weat SANDY SILT 0.8 Brown, stiff to very SILTY CLAY TILL some sand, a trace	CRIPTION nd Surface	Number	ype	Iue	cale (m)		X Sh				~	1		PL		LL			
(m) 264.1 Groun 0.0 25 cm Brown, loose, weat 263.3 SANDY SILT 0.8 Brown, stiff to very SILTY CLAY TILL some sand, a trace	TOPSOIL	Numbe	ype	<u> </u>	S		50	100	0 .	150	200								WATER LEVEL
0.0 25 cm Brown, loose, weat 263.3 SANDY SILT 0.8 Brown, stiff to very SILTY CLAY TILL some sand, a trace	TOPSOIL			N-Value	Depth	1(netrati (blov 30	ion Re ws/30 50	esistan cm) 70			• M			ontent	(%) 40		WATE
Brown, loose, weat 263.3 0.8 Brown, stiff to very SILTY CLAY TILL some sand, a trace																-			
0.8 Brown, stiff to very SILTY CLAY TILL some sand, a trace		1A 1B	DO	8		0								3 ● 17					
some sand, a trace	stiff <u>weathered</u>	2	DO	18	1-		0							•					
262.0 occ. sand seams a	of gravel nd clay layers	3	DO	12	2 -		>								24 ●				
2.1 Loose to compact,	wet	4	DO	8		0									22 ●			_	5
SILTY FINE SAND	/SANDY SILT	5	DO	20	3 -		0								21 ●			_	g drillin
a trace of clay occ. fine sand laye	rs				4														Water was used during drilling
	fine sand, <u>some</u> sil <u>t</u>	6	DO	22	5		0								21 ●				er was u
	<u>brown</u> grey																		Wate
257.5	-	7	DO	19	6 -		0								21 ●				Ľ
	BOREHOLE				7 -				_										
Installed 50-mm Ø I 6.1 m, completed w Sand backfill from 4 Bentonite seal from	.0 to 6.1 m				8 -														
	el monument casing																		
					9 -														
					10 -														
					11														
					12 -														
					13 -														
					14														

Page: 1 of 1

LOG OF BOREHOLE: SV-104


FIGURE NO.: 4

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Solid Stem Augers

PROJECT LOCATION:

I: Southwest of Old School Road and Hurontario Street Town of Caledon DRILLING DATE: October 10, 2023

LOG OF BOREHOLE: SV-105

FIGURE NO.: 5

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Solid Stem Augers

DRILLING DATE: October 10, 2023

PROJECT LOCATION:

Southwest of Old School Road and Hurontario Street Town of Caledon

		5	SAMP	LES		1	-	ınami 30	ic Con 50		ws/30 (70	cm) 90		A	tterb	berg	Limits	6	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Type	N-Value	Depth Scale (m)		× sr 50 0 Pe	near S 1(00	th (kN 150 L esista 0 cm) 7	200	90		Moi		e Co		t (%) 40	MATER LEVEL
264.7	Ground Surface											_		-					
0.0	41 cm TOPSOIL	1A	DO	10	0 :									12	•				_
<u>263.9</u> 0.8	Brown, loose, weathered SANDY SILT with clay and roots inclusions	1B 2	DO	10	1 -		0							12 12					
	Brown, very stiff to hard SILTY CLAY TILL some sand, a trace of gravel	3	DO	23	2 -		0							12 ●					-
261.8	occ. sand and silt seams and layers	4	DO	37	-			С						12 ●					_
2.9	Grey, very stiff SILTY CLAY	5	DO	17	3 -		0								-20 •)			
260.7 4.0	a trace of sand Compact to dense, wet				4 –					-		-							_
4.0	SILTY FINE SAND/SANDY SILT	6	DO	43	5 -				0						20 ●)			
	a trace of clay																		-
		7	DO	20	6 -		0									23 ●			-
	— — brown grey	8	DO	13	8		0							12	-20)			
255.5 9.2	Brown, very dense	<u>9А</u> 9В	DO	80/23	9 -						0		8						
	SANDY SILT TILL				10 -														
	traces of clay and gravel occ. sand seams and cobbles	10	DO	50/13	11 -							•							
<u>252.4</u> 12.3	END OF BOREHOLE	11	DO	50/10	12							0	7						
					13 -														

Page: 1 of 1

LOG OF BOREHOLE: SV-106

FIGURE NO.: 6

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Hollow Stem Augers and Tricone

DRILLING DATE: October 12, 2023

PROJECT LOCATION: Southwest of Old School Road and Hurontario Street Town of Caledon

		5	SAMP	LES		• 10	Dyr 3		e (blows/30 cm) 70 90		Atterberg	y Limits		
El. n) :pth n)	SOIL DESCRIPTION	Number	Type	N-Value	Depth Scale (m)		She	ar Strengt 100 Letration Re (blows/30 0 50	h (kN/m²) 150 200 1 1 1 esistance cm)		PL	LL Content (%)	_	WATER LEVEL
4.9	Ground Surface													
.0	23 cm TOPSOIL Brown, loose, weathered	1A 1B	DO	6	0	0					18 •			
4.1	SANDY SILT	IB			-					1	2		-	
8	occ. gravel <u>weathered</u> Brown, very stiff to hard	2	DO	22	1 –		0							
	SILTY CLAY TILL				_					-	3			
		3	DO	25	2 -		0			,	●			
	some sand to sandy, a trace of gravel occ. sand and silt seams and layers				-					10				
		4	DO	32	-			D						
1.9 0	Brown, hard	5	DO	38	3 –			0			18			
	SILTY CLAY	-			-									
).9 0	a trace of sand, occ. sand seams Compact to dense, moist to wet				4 –									
0	Compact to dense, moist to wet				_									
	SILTY FINE SAND/SANDY SILT	6	DO	42	_			0			14 ●		_	
					5 -		-							
	a trace of clay <u>brown</u> grey						-						┨┞	
	occ. fine sand layers grey occ. clay and silt lenses				6 -						19			
		7	DO	28	_		C				•			
					7 -									
													1	-
		8	DO	45	-			0			19		┨╟	1
		0	00	40	8 -								┨┠]
6.2					-								┨╟	4
.7	Grey, very stiff				9 -		_						╧╽┟	1
	SILTY CLAY	9	DO	21	-		þ				22			•
	a trace of sand, with silt layers												_	
4.7 .2	Brown, very dense				10 -								_	
	-									9			_	
	SANDY SILT TILL	10	DO	50/13	11 -		_		(-	
	a trace to some clay a trace of gravel				_		-						-	
	occ. sand and silt seams and layers,				12 -					0			-	
2.6		11	DO	50/13	12					> 8 > ●				
ə	END OF BOREHOLE Installed 50-mm Ø PVC monitoring well to												-	
	9.1 m, completed with 3.0 m screen. Backfill from 9.1 to 12.3 m. Sand backfill				13 –		-						1	
	from 5.5 to 9.1 m. Bentonite seal from 0.0				_								_	
	to 5.5 m. Provided with a monument casing.				14		_		+ $+$ $+$ $+$				-	

Page: 1 of 1

LOG OF BOREHOLE: SV-107

FIGURE NO.: 7

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Hollow Stem Augers

DRILLING DATE: October 16, 2023

PROJECT LOCATION:

Southwest of Old School Road and Hurontario Street Town of Caledon

			SAMP	LES		10		Dynam 30		one (50	blows 70	/30 cm 90		Atte	erberg	g Limi	its		
1	SOIL DESCRIPTION	Number	Type	N-Value	Depth Scale (m)		50 L D F	Shear	Strei	ngth 15	istanc m)	²) 200 		PL 			L)	
	Ground Surface		-						1		I						ĹĹ	-	
┫	25 cm TOPSOIL	1	DO	10	0 :	C								16					٦
	Brown, stiff to very stiff			10	-	ĬĬ	,												
	SILTY CLAY TILL <u>weathered</u> some sand to sandy, a trace of gravel occ. sand and silt seams and layers	2	DO	19	1 -		0							14					
	Brown, very stiff SILTY CLAY	3	DO	24			(o l							20 ●				
┦	_ occ. gravel				2 -								-						
I	Brown, loose to compact, moist	4	DO	9	-	0							 7 ●						
I	FINE SAND				3 -								6						
	some silt, a trace of clay	5	DO	28				0					•						
									-						+				
	Brown, dense to very dense, moist to very moist				4 -										21				
I	SILTY FINE SAND/SANDY SILT	6	DO	37	5 -			C							•				
I	a occ. silt layers																		
I																			
I		7	DO	52	6 -				-	0					19		\vdash		
		-		52					-	M							\square	_	
					7 -														
	Grey, compact, very moist to wet														23				
I	SILT	8	DO	14	8 -		С								•				
I	traces of clay and fine sand																		
I	occ. sand and clay layers																\vdash		
I		9A	DO	29	9 -			0	_										
		9B						T											
ļ	0				10 -												Ħ		
	Grey, dense, wet FINE SAND														22			\pm	
	a trace of silt	10	DO	33	11 -			0	-						•		\vdash		-
	END OF BOREHOLE								-						+		Ħ	+	
	Installed 50-mm Ø PVC monitoring well to 10.7 m, completed with 1.5 m screen Sand backfill from 8.5 to 10.7 m				12 -														
	Bentonite seal from 0.0 to 8.5 m Provided with a steel monument casing				13 -														
					14														

LOG OF BOREHOLE: SV-108

B FIGURE NO.: 8

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Hollow Stem Augers

DRILLING DATE: October 16, 2023

PROJECT LOCATION:

Southwest of Old School Road and Hurontario Street Town of Caledon

			SAMP	LES		• 10	30	nic Cone 50	70	90		Atterb	erg Lin	nits		
l. າ) ວth າ)	SOIL DESCRIPTION	Number	Type	N-Value	Depth Scale (m)	5	Shear)	Strengt 100 ration Re blows/30 50	h (kN/m 150 L esistanco cm)	200			e Conte	L ent (%)		WATED LEVEL
.3	Ground Surface															
0	30 cm TOPSOIL	- 1	DO	12	0	0			_			15			$\exists \Pi$	
	Brown, stiff to very stiff SILTY CLAY TILLweathered sandy, a trace of gravel	2	DO	27			0				1	2				
2.9	occ. sand and silt seams and layers	<u> </u>	00	21												
4 2.2	Brown, very stiff SILTY CLAY occ. gravel	3	DO	17	2	0						2'				
1	Brown, compact to dense, moist				-						6					
	FINE SAND	4	DO	25			0				•					
	a trace to some silt	5	DO	34	3 -		С	,				16 ●				
0.3																
0	Brown, loose to very dense, very moist to wet				4 -							2	1			
	SILTY FINE SAND/SANDY SILT	6	DO	35	5 -		0									
	a trace of clay occ. silt layers															
		7	DO	42	6 -			0					25			
					7 -											
		8A	DO	28			0					20 •				
	qrey_clay				8 -											
5.0		9A 9B	DO	9	9 -	0						2	·			∥-≚
3	Grey, compact, wet	<u>9</u> B		7					+				'] []	tion
	SILT				10 -											nnle
	some sand and clay				_							+			╡╟	LOC
	occ. clay lenses	10	DO	18		C			+			2			╡╙	J C
3.2 .1	END OF BOREHOLE			10	11 -											El. 255.2 m on completion
	Installed 50-mm Ø PVC monitoring well to 10.7 m, completed with 1.5 m screen Sand backfill from 8.5 to 10.7 m Bentonite seal from 0.0 to 8.5 m Provided with a steel monument casing				12											W.L. @ El. 2
	r romueu with a steel monument casing				13											
					14											

Page: 1 of 1

LOG OF BOREHOLE: SV-109

FIGURE NO.: 9

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Hollow Stem Augers

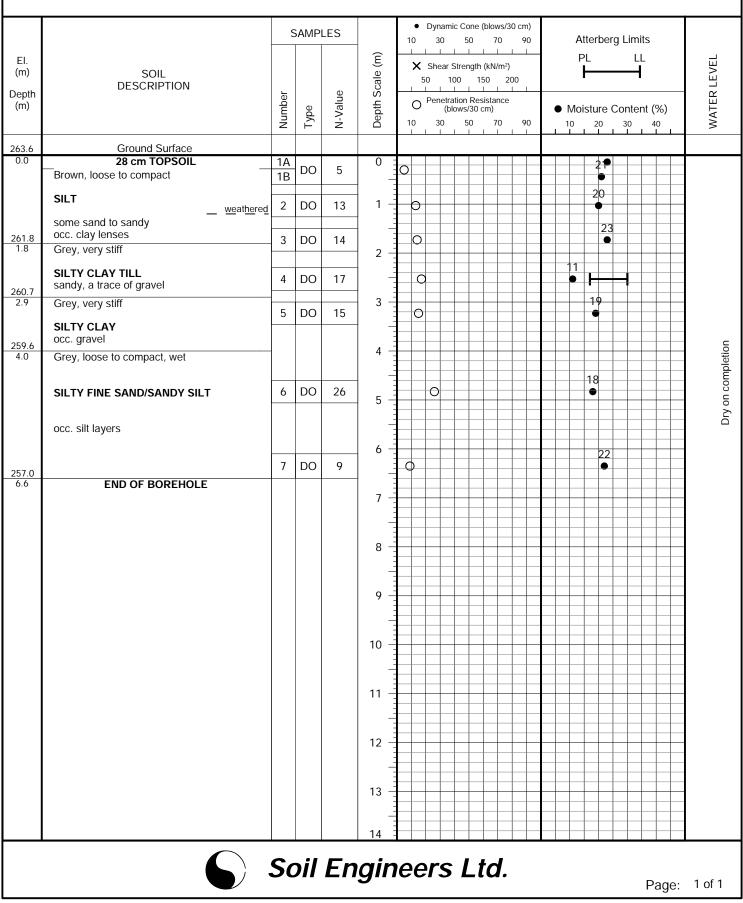
DRILLING DATE: October 13, 2023

PROJECT LOCATION:

Southwest of Old School Road and Hurontario Street Town of Caledon

		,	SAMP	LES		• 10	Dyn 3		Cone 50	(blows) 70	(30 cm) 90			Atterb	erg Li	imits	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Type	N-Value	Depth Scale (m)	- X - X - C 10 - 10	50 Pen	100 etratio (blow	ength 1!	(kN/m	200		• Mo	PL 		LL 	WATER LEVEL
263.6	Ground Surface																
0.0	38 cm TOPSOIL	1	DO	3	0	þ								17			
	SILTY CLAY TILL <u>weathered</u>	2	DO	19	1 –		0							•			
	some sand to sandy, a trace of gravel												11				
<u>261.5</u> 2.1	occ. sand and silt seams and layers Brown, dense to very dense	3	DO	30	2 -												
2.1	SANDY SILT TILL $ \frac{\sin t}{2}$	4	DO	47	-				2					•			
	a trace of clay	5	DO	50/13	3 –							0	12				
259.6	occ. sand and silt seams and layers								\square			╞					
4.0	Dense to very dense, very moist to wet				4 –									11			
	SILTY FINE SAND/SANDY SILT a trace of clay	6	DO	70	5 -					φ				16 •			F
	<u>brown</u>				-												
	grey				6 -										2		ĨĮ₽
257.0 6.6	END OF BOREHOLE	7	DO	42	_			0							●		pletior
	Installed 50-mm Ø PVC monitoring well to				7 -												n com
	6.1 m, completed with 1.5 m screen Sand backfill from 4.0 to 6.1 m Bentonite seal from 0.0 to 4.0 m				8 -												El. 257.7 m on completion
	Provided with a steel monument casing				_												El. 257
					9 -												Ø
																	W.L.
					10 -												
					 11												
					12 -												
					13 –												
									-		+ $+$	+		$+ \top$			

LOG OF BOREHOLE: SV-110


FIGURE NO.: 10

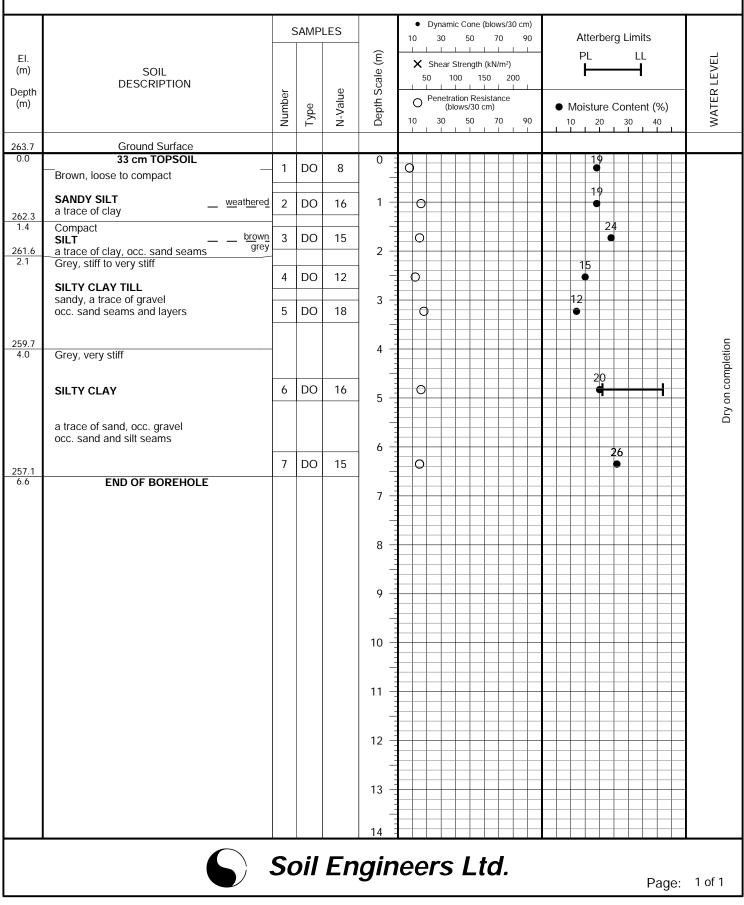
PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Solid Stem Augers

PROJECT LOCATION:

V: Southwest of Old School Road and Hurontario Street Town of Caledon DRILLING DATE: October 12, 2023

LOG OF BOREHOLE: SV-111


FIGURE NO.: 11

PROJECT DESCRIPTION: Proposed Residential Development

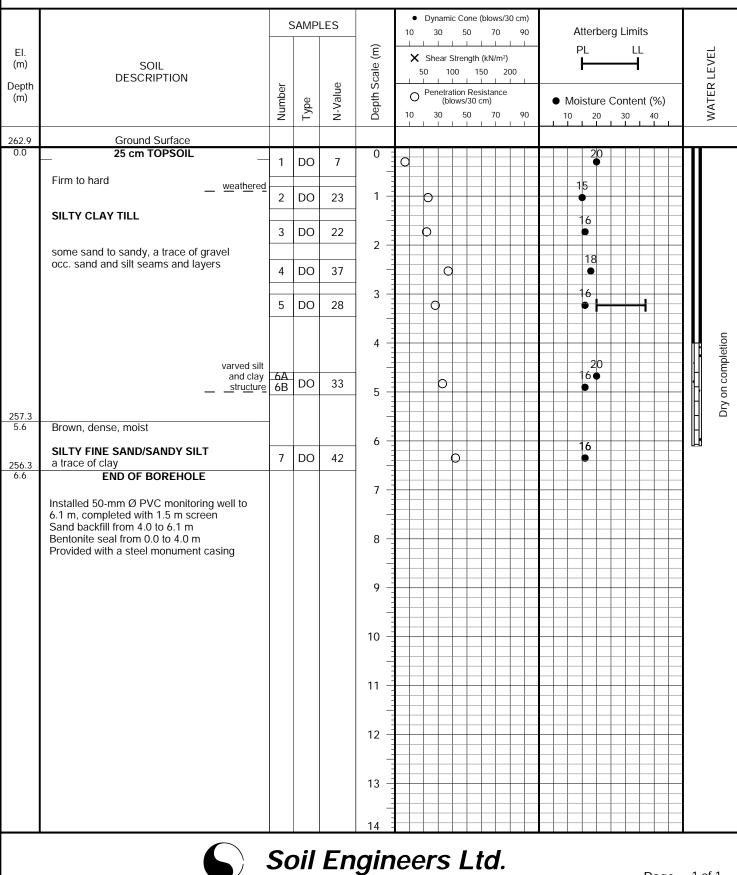
METHOD OF BORING: Solid Stem Augers

PROJECT LOCATION:

Southwest of Old School Road and Hurontario Street Town of Caledon DRILLING DATE: October 13, 2023

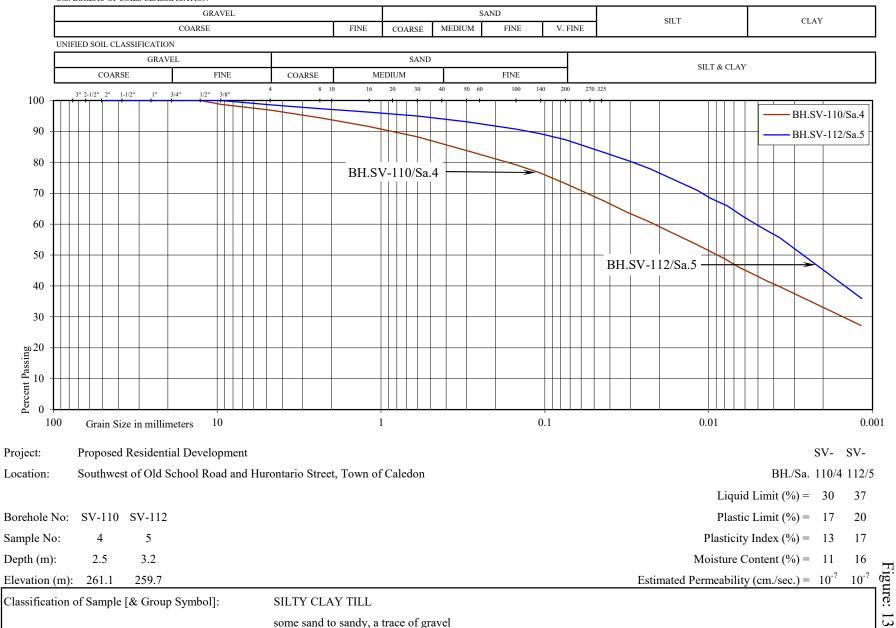
LOG OF BOREHOLE: SV-112

FIGURE NO.: 12

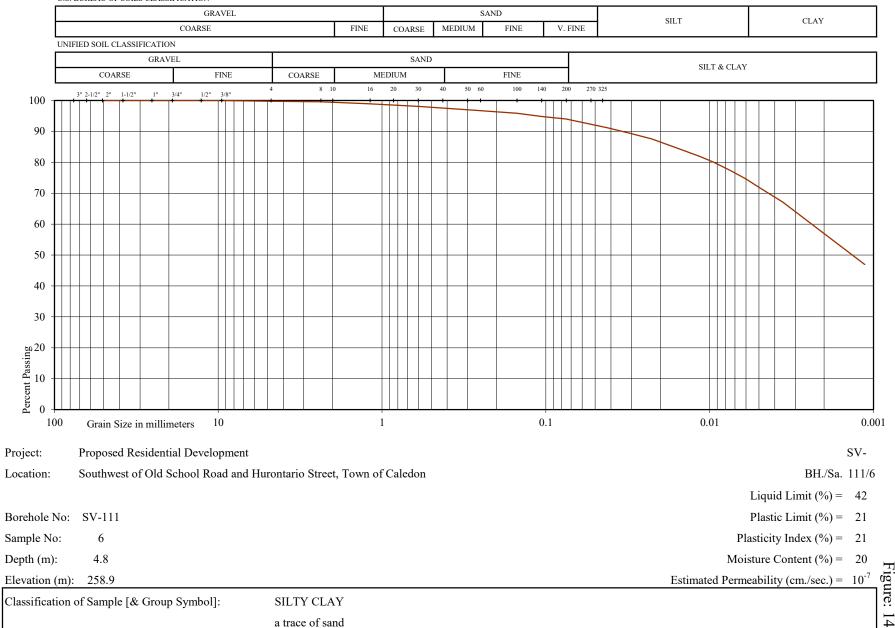

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Solid Stem Augers

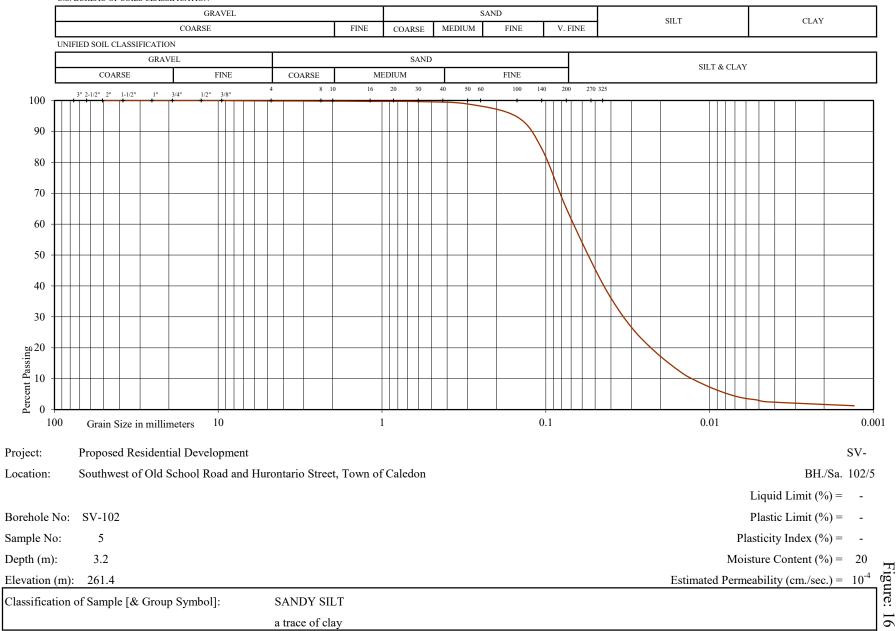
DRILLING DATE: October 13, 2023

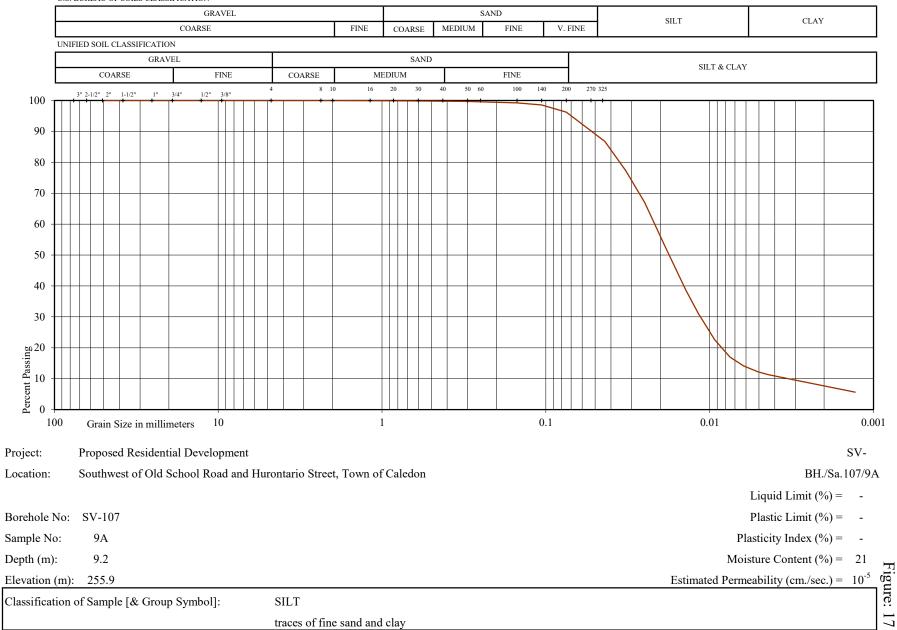

PROJECT LOCATION:

Southwest of Old School Road and Hurontario Street Town of Caledon

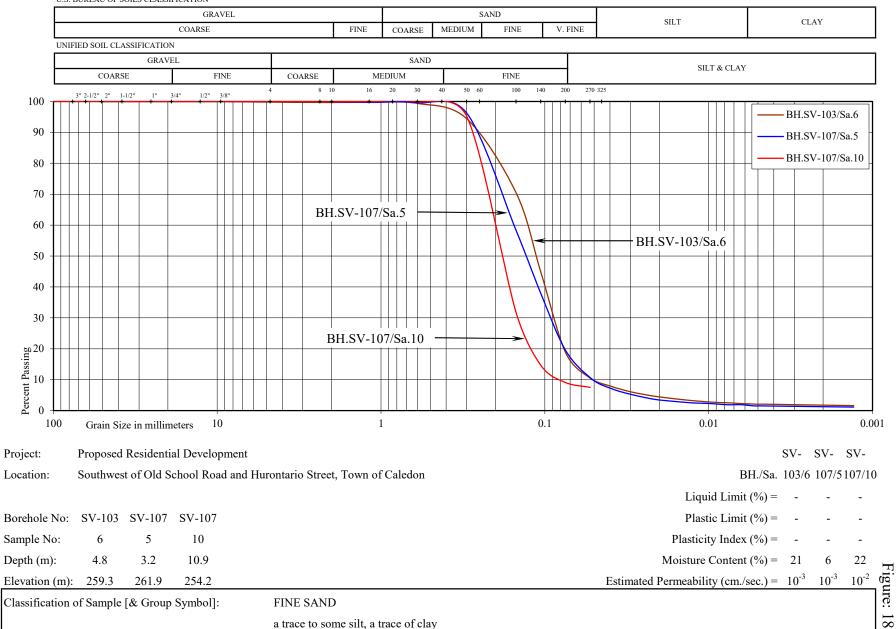


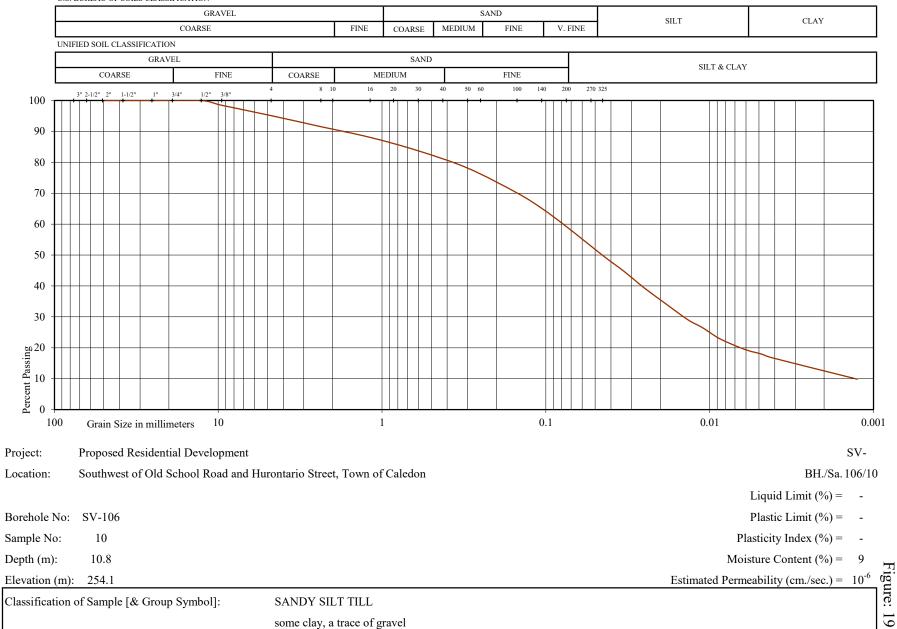
Page: 1 of 1

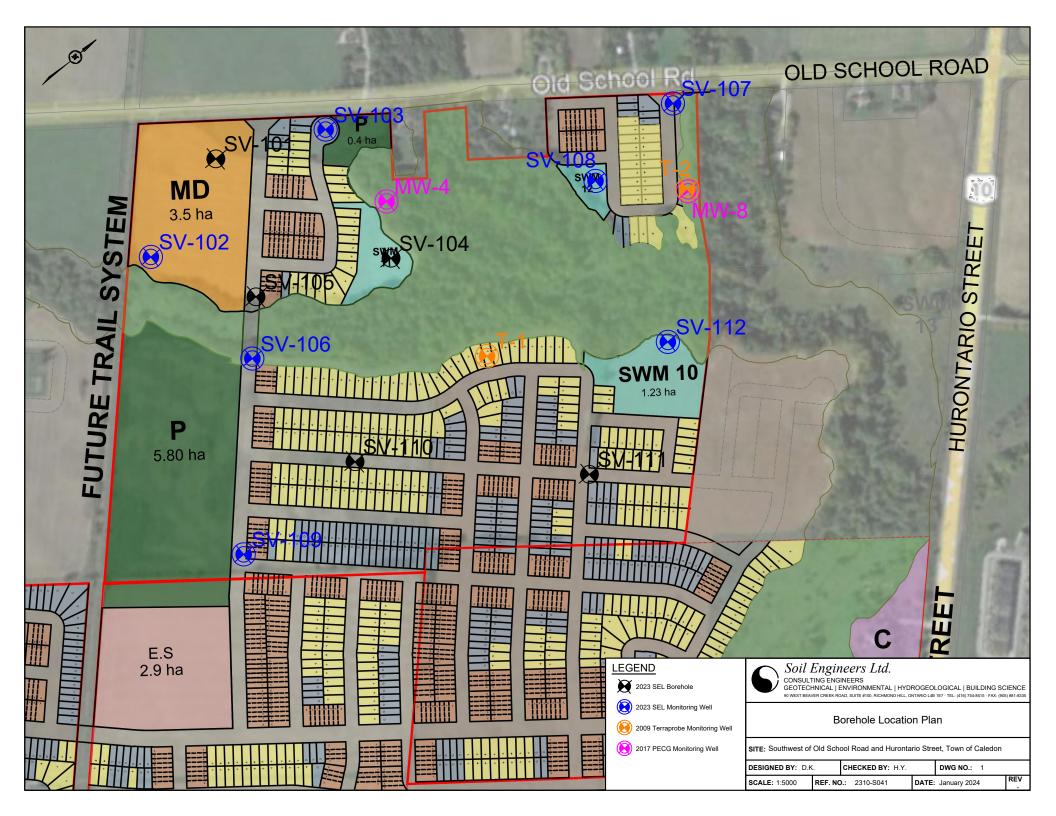


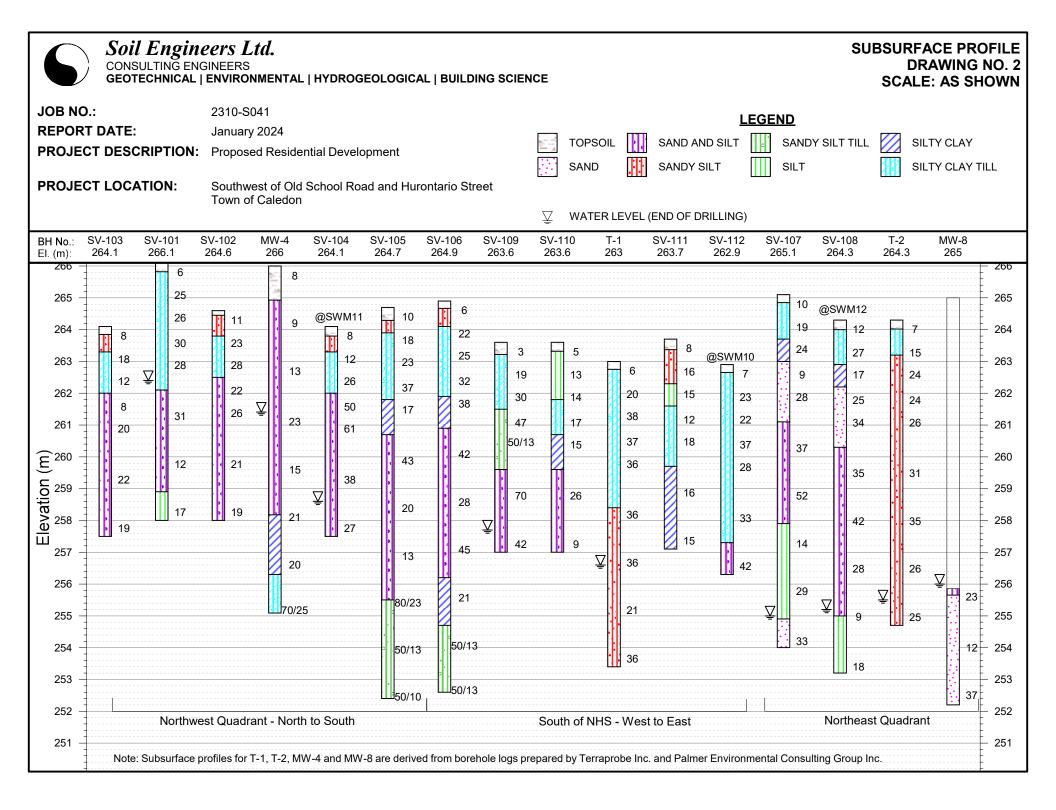

Reference No: 2310-S041

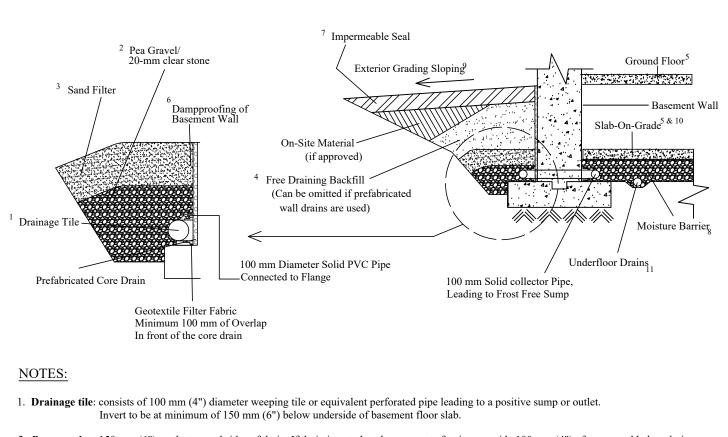
U.S. BUREAU OF SOILS CLASSIFICATION GRAVEL SAND SILT CLAY COARSE FINE MEDIUM FINE V. FINE COARSE UNIFIED SOIL CLASSIFICATION GRAVEL SAND SILT & CLAY COARSE FINE MEDIUM FINE COARSE 8 10 16 20 30 100 140 200 270 325 40 50 60 3" 2-1/2" 2" 1-1/2" 1" 3/4" 1/2" 3/8" 100 BH.SV-104/Sa.5 BH.SV-109/Sa.6 90 BH.SV-106/Sa.7 BH.SV-108/Sa.7 BH.SV-108/Sa.7 80 BH.SV-109/Sa.6 BH.SV-106/Sa.7 70 60 50 40 BH.SV-104/Sa.5 30 Percent Passing 0 0 0 100 10 1 0.1 0.01 0.001 Grain Size in millimeters SV- SV- SV- SV-Project: Proposed Residential Development Location: Southwest of Old School Road and Hurontario Street, Town of Caledon BH./Sa. 104/5 106/7 108/7 109/6 Liquid Limit (%) = -Borehole No: SV-104 SV-106 SV-108 SV-109 Plastic Limit (%) = ---Plasticity Index (%) = -Sample No: 5 7 7 6 ---Depth (m): Moisture Content (%) = 143.2 6.3 6.3 4.8 19 25 16 Figure: Estimated Permeability (cm./sec.) = 10^{-3} 10^{-3} 10^{-3} 10^{-3} Elevation (m): 260.9 258.6 258.0 258.8 Classification of Sample [& Group Symbol]: SILTY FINE SAND 15 a trace of clay

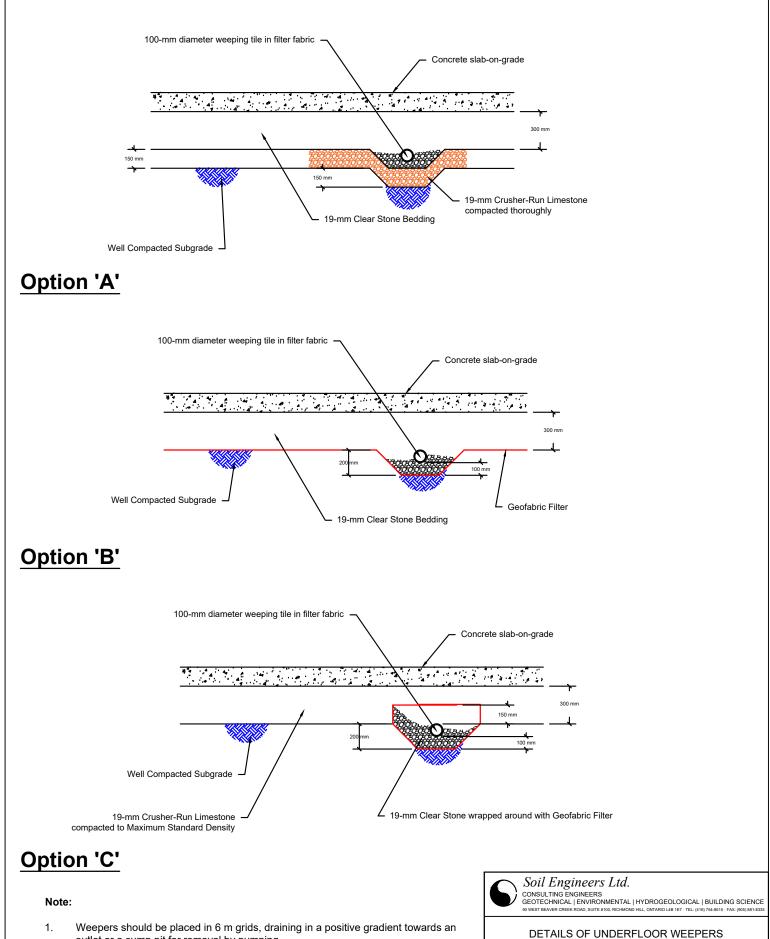











- Pea gravel: at 150 mm (6") on the top and sides of drain. If drain is not placed on concrete footing, provide 100 mm (4") of pea gravel below drain. The pea gravel may be replaced by 19-mm clear stone provided that the drain is covered by a porous geotextile membrane of Terrafix 270R or equivalent.
- 3. Filter material: consists of C.S.A. fine concrete aggregate. A minimum of 300 mm (12") on the top and sides of gravel. This may be replaced by an approved porous geotextile membrane of Terrafix 270R or equivalent.
- 4. Free-draining backfill: OPSS Granular 'B' or equivalent, compacted to 95% to 98% (maximum) Standard Proctor dry density. Do not compact closer than 1.8 m (6') from wall with heavy equipment. This may be replaced by on-site material if prefabricated wall drains (Miradrain) extending from the finished grade to the bottom of the basement wall are used.
- 5. Do not backfill until the wall is supported by the basement floor slab and ground floor framing, or adequate bracing.
- 6. Dampproofing of the basement wall is required before backfilling
- 7. Impermeable backfill seal of compacted clay, clayey silt or equivalent. If the original soil in the vicinity is a free-draining sand, the seal may be omitted.
- 8. Moisture barrier: 19-mm CRL or compacted OPSS Granular 'A', or equivalent. The thickness of this layer should be 150 mm (6") minimum.
- 9. Exterior Grade: slope away from basement wall on all the sides of the building.
- 10. Slab-On-Grade should not be structurally connected to walls or foundations.
- 11. **Underfloor drains*** should be placed in parallel rows at 6 to 8 m (20'-25') centre, on 100 mm (4") of pea gravel with 150 mm (6") of pea gravel on top and sides. The spacing should be at least 300 mm (12") between the underside of the floor slab and the top of the pipe. The drains should be connected to positive sumps or outlets. Do not connect the underfloor drains to the perimeter drains.

^{*}Underfloor drains can be deleted where not required.

PERMANENT PERIMETER DRAINAGE SYSTEM (FOR OPEN EXCAVATION)

SITE: SOUTHWEST TOWN OF CA	OF OLD LEDON	SCHOOL ROAD AND H	IURON"	TARIO STREET	
DESIGNED BY: K.L		CHECKED BY: B.S.		DWG NO.: 3	
SCALE: N.T.S.	REF. NO	D.: 2310-S041	DATE:	JANUARY 2024	REV

- outlet or a sump pit for removal by pumping.
- 2. A 10-mil polyethylene sheet should be specified between the gravel bedding and concrete slab.

SITE: SOUTHWEST OF OLD SCHOOL ROAD AND HURONTARIO STREET TOWN OF CALEDON DESIGNED BY: K.L CHECKED BY: B.S. DWG NO.: 4 REV SCALE: N.T.S. REF. NO.: 2310-S041 DATE: JANUARY 2024

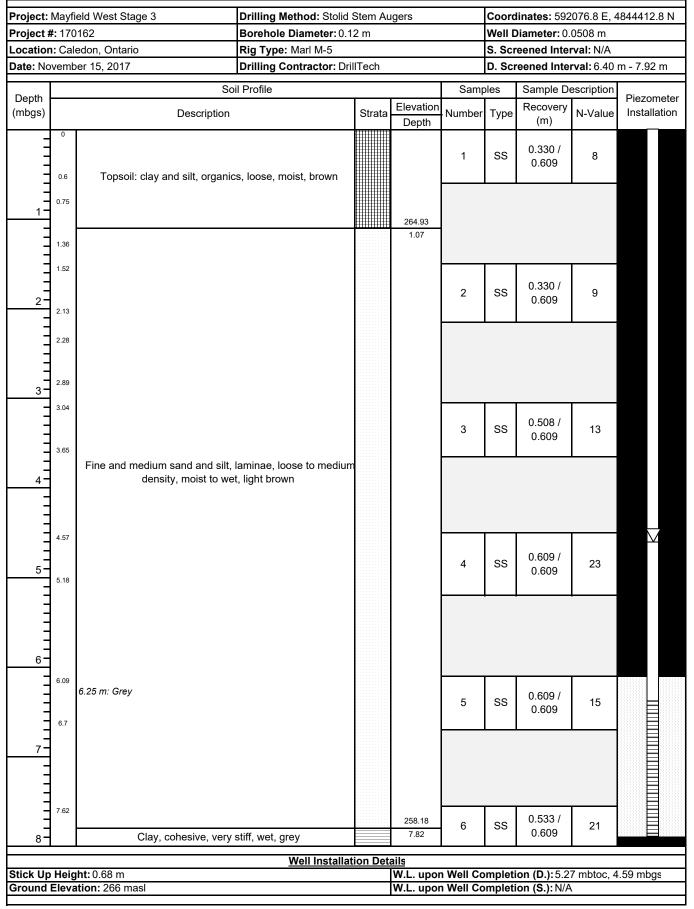
GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREEK ROAD, SUITE 100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL: (416) 754-8515 · FAX: (905) 881-8335

BARRIE	MISSISSAUGA	OSHAWA	NEWMARKET	MUSKOKA	HAMILTON
TEL: (705) 721-7863	TEL: (905) 542-7605	TEL: (905) 440-2040	TEL: (905) 853-0647	TEL: (705) 684-4242	TEL: (905) 777-7956
FAX: (705) 721-7864	FAX: (905) 542-2769	FAX: (905) 725-1315	FAX: (905) 881-8335	FAX: (705) 684-8522	FAX: (905) 542-2769

APPENDIX

BOREHOLE LOGS BY TERRAPROBE INC. AND PECG


REFERENCE NO. 2310-S041

	PROJECT: Mayfield West						D	ATE:		F	ebruary 12	2, 200	9			
$\mathbf{\nabla}$	LOCATION: Caledon, Ontario										ombardier			m Augers		
	CLIENT: Philips Engineering	ng Ltd.					E	LEV	ATION	DATI	JM: G	eodeti	C		FILE:	: _1-0
	SOIL PROFILE			SAMF	LES	ALE	PENET RESIS	'RATIC TANCE	DN E PLOT	$^{\sim}$		PLAST	IC NATL	JRAL LIQUI		ST
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	SHEA O UN O PO	R STI	RENGT	TH kPa + F × L	IELD VANE AB VANE	WP WAT		v v →	ORGAN VAPOL	INST RI
263.0 262.8	250mm TOPSOIL	<u>71 1</u> X	· <u>×</u>			263	20	9 4	0 60	08 0	100		0 2	0 30		
0.3	Weathered, firm		1	SS	6		$ \chi $				150 kPa		0			
							$ \setminus $				100 14 4	I				
	CLAYEY SILT		2	SS	20	262	$ \rightarrow$				>225 kPa	•	•		_	
	embedded sand and gravel,		1		-			\backslash								
	very stiff to hard, brown, moist		3	SS	38			\backslash		SA.SI.CI		ļ	∘⊦	I		
	(GLACIAL TILL)		Ĭ			261		-+	9.1	8. 39.34	·				_	1
			[]—		-											1
			4	SS	37						>225 kPa	†	0			1
					1	260									_	1
	sandy		5	ss	36						>225 kPa	ł	0			1
					-											
						259									_	
258.4 4.6			11		-											
4.0	SANDY SILT		6	SS	36	258						0				
	trace gravel, trace clay, compact to dense, brown, moist															
	compact to dense, brown, moist															
						257										
	 wet		7	ss	36	20.								0		
					- 50											≚
						256										
						256		Τ							1	1
					-			/								1
	grey		8	ss	21	055		(0			1
					-	255		$\left \right $							7	1
								\								1
																1
					-	254							_		1	1
253.4			9	SS	36			'					0			
9.6	End of Borehole									T						1
																1
																1
																1
																1
																1
																1

LOG OF BOREHOLE 2

	PROJECT: Mayfield West						_ I	DATE	:		Febru	iary 12	2, 200	9			
	LOCATION: Caledon, Onta														n Augers		
-	CLIENT: Philips Engine	eering Ltd.								N DAT	UM:	_G	eodeti	С		_ FILE:	
	SOIL PROFILE			SAMF	PLES	CALE	RESIS		E PLOT				PLAST	IC NATU MOIST CONT	RAL LIQUID	UR U	STAND
ELEV DEPTH 264.3	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	"N" VALUES	ELEVATION SCALE	SHE/ OU	AR ST NCONI	40 6 RENG FINED FPEN. 40 6	TH kP + ×	a FIELD LAB V	VANE ANE	WP WA		NTENT (%)	d) ORGANIC (m vapour	INSTALL OF REMA
0.0 264.0	280mm TOPSOIL	<u>xi iz</u>	1 1	ss	7	264											
0.3 <u>263.2</u> 1.1	CLAYEY SILT embedded sand and gravel, stiff to very stiff, brown, moist _(GLACIAL_TILL)		2	SS	15		$ \setminus$			10	00 kPa 1	• 50 kPa	•	0			
	SANDY SILT trace gravel, trace clay, compact to dense, brown, moist		3	SS	24	263							0				
			4	SS	24	262							0			_	
			5	SS	26	261							0			_	
						260										_	
			6	SS	31	259								0		_	
			7	ss	35	258	GF	LSA.S	I.CL					0			
							1.	34. 63	. 2								
	 wet		8	ss	26	257									0		
						256										-	∑
254.7			9	SS	25	255									0		
9.6	End of Borehole																

Project #: 170162 Borehole Diameter: 0.12 m Well Diameter: 0.0508 m Location: Caledon, Ontario Rig Type: Marl M-5 S. Screened Interval: N/A Date: November 15, 2017 Drilling Contractor: DrillTech D. Screened Interval: 6.40 m - 7.92 Depth (mbgs) Soil Profile Samples Sample Description Description Strata Elevation Depth Number Type 8.22 Continued Image: Continued Image: Continued Image: Continued Image: Continued	neter
Date: November 15, 2017 Drilling Contractor: DrillTech D. Screened Interval: 6.40 m - 7.92 Depth (mbgs) Soil Profile Samples Samples Sample Description Depth (mbgs) Description Strata Elevation Depth Type Recovery (m) N-Value	neter
Soil Profile Samples Sample Description Depth (mbgs) Description Strata Elevation Depth Type Recovery (m) N-Value Install	neter
Depth (mbgs) Description Strata Elevation Number Type Recovery (m) N-Value Piezor	
Depth (mbgs) Description Strata Elevation Number Type Recovery (m) N-Value Piezor	
8.22 Continued	
Clay, cohesive, very stiff, wet, grey	
9.14 9.75 9.75 9.77 SS 0.533 / 0.609 20	
7 SS 0.533 / 20	
9.75	
9.7	
Silty clay till, some gravel and cobbles, very dense, moist red/brown	
red/brown	
11 END OF BOREHOLE AT 10.91 m 10.91 8 SS 0.254 / 70 / 0.25	
12.19	
13.71	
14-	
15-	
15.24	
Well Installation Details Stick Up Height: 0.68 m W.L. upon Well Completion (D.): 5.27 mbtoc, 4.59 mbg	S
Ground Elevation: 266 masl W.L. upon Well Completion (S.): N/A	

Project: Mayfi	eld West Stage 3	Drilling Method: Stolid	Stem A	ugers		Coord	linates: 592	2322.7 E,	4844726.5 N
Project #: 170	-	Borehole Diameter: 0.1					Diameter: 0		
Location: Cal	edon, Ontario	Rig Type: Marl M-5				S. Sci	reened Inte	rval: N/A	
Date: Novemb	per 15, 2017	Drilling Contractor: Dri	llTech			D. Sc	reened Inte	rval: 9.75	m - 11.28 m
		Soil Profile			Samp	oles	Sample De	escription	
Depth (mbgs)	Descriptio		Strata	Elevation Depth	Number		Recovery (m)	N-Value	Piezometer Installation
0 0.6 0.75 1 1.36 1.52 2 2.13 2.28 3 2.89 3.04 4.57 5 5.18 6 6.09 6.7	Note: Straight drill to 9.14 m, no samples for stratigrap	collected. See TerraProbe BH2	Strata	Depth	Number	Туре		N-Value	Installation
7.62									
		Well Installati	on Deta	ails					
Stick Up Heig	ht: 0.73 m	<u></u>			n Well Co	omplet	tion (D.): 9.	73 mbtoc.	9.00 mbgs
Ground Eleva	ation: 265 masl			W.L. upo	n Well Co	omplet	tion (S.): N/	'A	

٦

Project: Mayfield West Stage 3 Drilling Method: Stolid Stem Augers Coordinates: 592322.7 E, 4844726.5 N									
Project #: 170)162	Borehole Diameter: 0.12 m			Well Diameter: 0.0508 m				
Location: Cal		Rig Type: Marl M-5			S. Screened Interval: N/A				
Date: Novemb	Date: November 15, 2017 Drilling Contractor: DrillTech D. Screened Interval: 9.75 m - 11.2								
		Soil Profile	oil Profile			Samples		Sample Description	
Depth (mbgs)	Descriptio	n	Strata	Elevation Depth	Number	Туре	Recovery (m)	N-Value	Piezometer Installation
9				255.86					$\overline{\mathbf{M}}$
9.14	Fine sand and silt, medium			9.14	1	SS	0.609 / 0.609	23	
10	Fine to coarse sand, some silt, n wet, grey								
11 - 11.27	10.66 m: clay and silt, cohesive, medium sof	t, wet, grey			2	SS	0.609 / 0.609	12	
12-									
12.19	12.34 m: gravel			252.2	3	SS	0.609 / 0.609	37	
13 13 13 13.71 14 14.32 15 15.24 15.84	END OF BOREHOLE AT 12.80 m			12.8					
		Well Installati	on Det						
Stick Up Heig	ht: 0.73 m ation: 265 masl								9.00 mbgs
	auvii. 200 IIIasi			w.∟. upo		unpier	ion (S.): N/	л	

Soil Engineers Ltd.

CONSULTING ENGINEERS

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREEK ROAD, SUITE 100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL: (416) 754-8515 · FAX: (905) 881-8335

BARRIE					
TEL: (705) 721-7863					
FAX: (705) 721-7864					

MISSISSAUGA TEL: (905) 542-7605 FAX: (905) 542-2769

OSHAWA TEL: (905) 440-2040 FAX: (905) 725-1315

NEWMARKET TEL: (905) 853-0647 FAX: (905) 881-8335

MUSKOKA TEL: (705) 721-7863 FAX: (705) 721-7864

HAMILTON TEL: (905) 777-7956 FAX: (905) 542-2769

A REPORT TO BROOKVALLEY DEVELOPMENTS (HWY 10) LTD.

A GEOTECHNICAL INVESTIGATION FOR PROPOSED RESIDENTIAL DEVELOPMENT

12760 HURONTARIO STREET

TOWN OF CALEDON

REFERENCE NO. 2310-S042

JANUARY 2024

DISTRIBUTION

Digital Copy - Brookvalley Developments (Hwy 10) Ltd.

TABLE OF CONTENTS

1.0	INTF	RODUCTION	. 1
2.0		AND PROJECT DESCRIPTION	
3.0	FIEL	D WORK	. 1
4.0	SUB	SURFACE CONDITIONS	. 2
	4.1	Topsoil	. 2
	4.2	Silty Clay Till and Silty Clay	. 2
	4.3	Sandy Silt/Silt	. 3
	4.4	Sandy Silt Till/Silty Sand Till	. 4
	4.5	Compaction Characteristics of the Revealed Soils	. 5
5.0	GRO	UNDWATER CONDITION	. 5
6.0	DISC	CUSSION AND RECOMMENDATIONS	
	6.1	Site Preparation	. 8
	6.2	Foundation	. 9
	6.3	Basement Structure	.10
	6.4	Underground Services	
	6.5	Backfilling Trenches and Excavated Areas	
	6.6	Pavement Design	.13
	6.7	Bridge Crossing	.14
	6.8	Soil Parameters	. 19
	6.9	Excavation	
7.0	LIM	TATIONS OF REPORT	.20

TABLES

Table 1 - Estimated Water Content for Compaction	5
Table 2 - Groundwater Levels	6
Table 3 - Pavement Design	13
Table 4 - Pile Capacities for H-Piles	15
Table 5 - Soil Parameters for Lateral Resistance of Pile	16
Table 6 - Soil Parameters	19
Table 7 - Classification of Soils for Excavation	20

ENCLOSURES

Logs of Borehole	Figures 1 to 8
Grain Size Distribution Graphs	Figures 9 to 12
Borehole Location Plan	Drawing No. 1
Subsurface Profile	Drawing No. 2
Permanent Perimeter Drainage System	Drawing No. 3
Details of Underfloor Weepers	Drawing No. 4

Reference No. 2310-S042

1.0 **INTRODUCTION**

In accordance with the email authorization dated October 2, 2023, from Mr. Frank Filippo of Brookvalley Developments (Hwy 10) Ltd., a geotechnical investigation was carried out for a property located at 12760 Hurontario Street in the Town of Caledon.

The purpose of the investigation was to reveal the subsurface conditions and to determine the engineering properties of the disclosed soils for the design and construction of a proposed residential development.

2.0 SITE AND PROJECT DESCRIPTION

The subject site is located on the west side of Hurontario Street, approximately 600 m south of Old School Road, in the Town of Caledon. It is located within a physiographic region known as the South Slope, situated in between the Oak Ridges Moraine and the Peel Plain. The soil stratigraphy in the area is characterized by sand and silt deposits layered in between an upper Halton Till unit and a lower Newmarket Till formation. The sand and silt deposits in the area were identified as part of the Oak Ridges Moraine (ORM) or equivalent unit in the Hydrogeological Assessment for Mayfield West, Phase 2 Stage 3 Lands, prepared by Palmer Environmental Consulting Group Inc. (PECG) in 2018.

The Etobicoke Creek traverses through the eastern half of the site. The land west of the natural system is used for agricultural purposes while the land east of the creek is vacant and open. Historical photos show that previous residential establishments and farm structures fronting Hurontario Street on the property have been demolished, with the exception of an abandoned storage building. Based on the conceptual site plan, the proposed low-density residential development, with a commercial block fronting Hurontario Street, will adjoin with neighbouring developments to form a larger residential community. A bridge crossing will be constructed in the vicinity of Boreholes BC-105 and 106.

3.0 FIELD WORK

The field work, consisting of 7 boreholes extending to a depth ranging from 6.6 to 15.5 m, was carried out between October 13 and 17, 2023. To facilitate the hydrogeological study by PECG, single and nested 50-mm diameter monitoring wells were installed at 2 selected borehole locations. The monitoring wells with a suffix of 'S' or 'D' represent the shallow and deep well in a well cluster. The depth and details of the monitoring wells are shown on the corresponding Borehole Logs. The locations of the boreholes and monitoring wells are shown on Drawing No. 1.

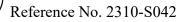
Reference No. 2310-S042

The boreholes were advanced at intervals to the sampling depths by a track-mounted machine equipped with solid and hollow stem augers for soil sampling. Split-spoon samples were recovered for soil classification and laboratory testing. Standard Penetration Tests using the procedures described on the enclosed "List of Abbreviations and Terms" were performed at the sampling depths. The relative density of the non-cohesive strata and the consistency of the cohesive strata are inferred from the 'N' values. The field work was supervised and the findings were recorded by a geotechnical technician.

The ground elevation at each borehole location was determined using a handheld equipment of the Global Navigation Satellite System.

4.0 SUBSURFACE CONDITIONS

Beneath the topsoil veneer and a surficial layer of weathered sandy silt within the farm field, the site is underlain by strata of silty clay till, silty clay and sandy silt till/silty sand till, interstratified with silt deposits in the lower stratigraphy.


Detailed descriptions of the encountered subsurface conditions are presented on the Logs of Borehole, comprising of Figures 1 to 8, inclusive. The stratigraphy is illustrated on the Subsurface Profile, Drawing No. 2. The engineering properties of the disclosed soils are discussed herein.

4.1 **Topsoil**

The revealed topsoil thickness ranges from 18 to 61 cm. Thicker topsoil may be encountered in areas beyond the borehole locations, especially in local low-lying areas.

4.2 Silty Clay Till and Silty Clay

The silty clay till and silty clay were generally encountered in the upper stratigraphy across the site. In deeper boreholes, such as Boreholes BC-104 and BC-105, lower silty clay/silty clay till layers were also contacted. The till consists of a mixture of particle sizes ranging from clay to gravel, with silt and clay being the dominant fraction. The silty clay contains a trace of fine sand and embedded silt layers. Grain size analyses were performed on 2 representative samples of the silty clay till and on a sample of the silty clay, and the results are plotted on Figures 9 and 10, respectively.

The Atterberg Limits of the tested till and clay samples and the natural water content values of all the samples were determined; the results are plotted on the Borehole Logs and summarized below:

	Silty Clay Till	Silty Clay
Liquid Limit	24% and 25%	45%
Plastic Limit	15% and 16%	22%
Natural Water Content	10% to 23%	19% to 29%
	(median 12%)	(median 25%)

The results indicate that the clay till is low in plasticity and the clay is medium in plasticity. Sample examination revealed that the till and clay are in moist conditions.

The recorded 'N' values of the clay till range from 6 to over 50 blows, with a median of 30 blows per 30 cm of penetration. This indicates that the clay till is firm to hard, generally being very stiff in consistency. The firm material is restricted to the surficial weathered zone, which extends to depths of 0.8 to 1.4 m below grade. Intermittent hard resistance to augering was encountered in places in the till, indicating the presence of cobbles.

The obtained 'N' values of the clay range from 12 to 32, with a median of 17 blows per 30 cm of penetration. The consistency of the clay is stiff to hard, generally being very stiff.

The engineering properties of the silty clay till and clay are listed below:

- Moderate to high frost susceptibility and moderate soil adfreezing potential.
- Low water erodibility.
- In excavation, the clays will be stable in relatively steep cuts; however, prolonged exposure may lead to localized sloughing.

4.3 Sandy Silt/Silt

A surficial layer of weathered sandy silt was found at Boreholes BC-101 to 104 drilled at the farm field. A silt deposit, with some sand to being sandy, was found interstratified with the clay and tills in Boreholes BC-104 to BC-107 in the lower stratigraphy. Grain size analyses were performed on 3 representative samples of the silt; the results are plotted on Figure 11.

The obtained natural water content values range from 11% to 24%, with a median of 19%, indicating that the silt is moist to wet, generally in a wet condition.

Reference No. 2310-S042

The recorded 'N' values range from 5 to over 50, with a median of 11 blows per 30 cm penetration, indicating that the silt is loose to very dense, generally being compact in relative density.

The engineering properties of the silt are listed below:

- High capillarity and water retention capability.
- Highly frost susceptible, with high soil-adfreezing potential.
- High water erodibility, it will migrate through small openings under seepage pressure.
- The shear strength is mainly derived from internal friction. The wet silt is susceptible to dynamic disturbance, which will induce a build-up of pore water pressure, resulting in soil dilation and a reduction in shear strength.
- In excavation, the silt will remain stable for a short period of time, and will slough and run with seepage. The wet silt will boil under an approximate piezometric head of 0.4 m.

4.4 Sandy Silt Till/Silty Sand Till

Sandy silt till/silty sand till was encountered beneath the clay till or silt deposits in Boreholes BC-105D and 106. The till is cemented with a trace of clay, and is laminated with sand and silt seams and layers. Hard resistance to augering was encountered in the till, indicating the presence of cobbles. Grain size analyses were performed on representative samples of the till; the results are plotted on Figure 12.

The natural water content values of the till range from 10% to 16%, with a median of 11%, indicating that the till is in a moist to wet, generally moist condition.

The obtained 'N' values range from 44 to over 50, with a median of 89 blows per 30 cm penetration, indicating that the relative density of the till is dense to very dense, being generally very dense.

The engineering properties of the sandy silt till/silty sand till are listed below:

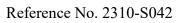
- Highly frost susceptible and moderately low water erodibility.
- The till will be relatively stable in relatively steep excavation; however, if remained open for an extended period of time, localized sloughing may occur.

4.5 Compaction Characteristics of the Revealed Soils

The obtainable degree of compaction is primarily dependent on the soil moisture and, to a lesser extent, on the type of compactor used and the effort applied. As a general guide, the typical water content values of the revealed soils for Standard Proctor compaction are presented in Table 1.

	Determined Natural	Water Content (%) for Standard Proctor Compaction			
Soil Type	Water Content (%)	100% (optimum)	Range for 95% or +		
Silty Clay Till	10 to 23 (median 12)	17	13 to 22		
Silty Clay	19 to 29 (median 25)	21 to 22	17 to 25		
Sandy Silt Till/ Silty Sand Till	10 to 16 (median 11)	10	6 to 15		
Silt	11 to 24 (median 19)	12	8 to 16		

 Table 1 - Estimated Water Content for Compaction


The above values show that the tills and clay are generally suitable for structural backfill, and the addition of water may be required prior to structural compaction in the dry and warm seasons and in areas where compaction is best performed on the wet side of the optimum. Portions of the silty clay and sandy silt till/silty sand till may require aeration and the wet silt can be stockpiled to drain the excess water prior to structural compaction.

The weathered soil must be screened and sorted free of topsoil inclusions and deleterious materials, if any, prior to reuse for structural backfill.

The lifts for compaction should be limited to 20 cm, or to a suitable thickness assessed by test strips performed by the compaction equipment. Boulders larger than 15cm in size must be sorted and removed from the backfill.

5.0 **GROUNDWATER CONDITION**

Groundwater levels were measured in the wet silt deposit, found in Boreholes BC-104 and 106 in the vicinity of the creek. In December 2023, stabilized groundwater levels were recorded from the installed monitoring wells in by PECG; these levels are tabulated in Table 2.

Stabilized water levels were recorded at a depth of 5.27 metres below ground surface (mbgs), or at El. 257.13 m at Borehole BC-101, and at depths of 6.91 to 7.40 mbgs, or El. 253.19 to 252.70 m at the well cluster at Borehole BC-105, suggesting a drainage trend towards the Etobicoke Creek. The groundwater regime is subject to seasonal fluctuations. Detailed groundwater profile and monitoring records should be referred to the hydrogeological study by PECG.

			Measured Groundwater Levels						
Borehole/	Ground	Well	On Completion		Dec. 6	5, 2023	Dec. 12-13, 2023		
Monitoring Well No.		Depth (m)	Depth (m)	El. (m)	Depth (m)	El. (m)	Depth (m)	El. (m)	
BC-101	262.4	6.1	Dry	-	5.27	257.13	-	-	
BC-102	261.3	-	Dry	-	No Well				
BC-103	261.3	-	Dry	-	No Well				
BC-104	259.5	-	5.9	253.6	No Well				
BC-105D	260.1	15.2	N/A ^a	-	7.35	252.75	7.40	252.70	
BC-105S	260.1	7.6	Dry	-	6.91	253.19	6.91	253.19	
BC-106	256.6	-	6.7	249.9	No Well				
BC-107	260.6	_	Dry	-	No Well				

Table 2 - Groundwater Levels

^a Water was used during the drilling operation; measurement of groundwater level was not feasible upon completion of drilling.

6.0 DISCUSSION AND RECOMMENDATIONS

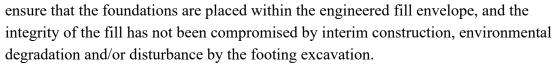
Beneath the topsoil veneer and a surficial layer of weathered sandy silt within the farm field, the site is underlain by strata of generally very stiff silty clay till and silty clay, and very dense sandy silt till/silty sand till, interstratified with generally compact silt deposits in the lower stratigraphy. The surficial weathered zone extends to depths of 0.8 to 1.4 m below grade.

Stabilized water levels were recorded at the monitoring wells at depths ranging from 5.27 to 7.40 mbgs, or from El. 257.13 m at Borehole BC-101 to El. 252.70 m at Borehole BC-105D, suggesting a drainage trend that follows the topography towards the Etobicoke Creek. The groundwater regime is subject to seasonal fluctuations.

Based on the conceptual site plan, the subject site will be developed to a low-density residential subdivision with a commercial block fronting Hurontario Street, and will be provided with municipal services and paved roadways meeting municipal standards. The development will adjoin with neighbouring developments to form a larger residential community. A bridge crossing will be constructed in the area of Boreholes BC-105 and 106.

The following geotechnical considerations warrant special attention:

- 1. The topsoil must be stripped for development; it can be reused for general landscaping purposes only.
- 2. The weathered soil should be inspected prior to any placement of earth fill for site grading purpose. Where required, the weathered soil should be subexcavated, sorted free of any organic, topsoil, and/or other deleterious material, before reusing for structural backfill.
- 3. After removal of the existing building and associated foundation, the debris should be disposed off-site. All loose and disturbed soils should also be removed and the cavities should be backfilled with engineered fill.
- 4. Where additional fill is required for site grading, the earth fill can be placed in an engineered manner for conventional footing construction, site services support and road construction.
- 5. The engineered fill and the sound native soils are suitable for supporting structures founded on conventional spread and strip footings.
- 6. It is recommended that the basement floor be founded at least 1.0 m above the seasonal high groundwater level, particularly in the vicinity of Boreholes BC-104, 105D and 106. Otherwise, underfloor subdrain systems and/or waterproofing of basements should be implemented to relieve any groundwater upfiltration due to seasonal fluctuation of the groundwater.
- 7. A Class 'B' bedding, consisting of compacted 19-mm Crusher-Run Limestone (CRL), is recommended for the construction of underground services. Where services installation extends into the wet silt, or where dewatering is required, a Class 'A' concrete bedding should be considered for pipe support.
- 8. Groundwater seepage from the tills and clay will likely be removable by conventional pumping from sumps during construction. Excavation extending into the saturated soils will require construction dewatering.


The recommendations appropriate for the project described in Section 2.0 are presented herein. One must be aware that the subsurface conditions may vary between boreholes, and the assessment given herein is general in nature based on the borehole findings. Should this

become apparent during construction, a geotechnical engineer must be consulted to determine whether the following recommendations require revision.

6.1 Site Preparation

The topsoil and vegetation at the ground surface must be removed for development. Where additional fill is required for site grading, the earth fill can be placed in an engineered manner for conventional footing construction, site services support and road construction. The engineering requirements for a certifiable fill are presented below:

- 1. The subgrade must be inspected and proof-rolled prior to any fill placement. Badly weathered soils should also be subexcavated, sorted free of topsoil inclusions and deleterious materials, if any, aerated and properly compacted in layers.
- 2. Inorganic soils must be used for the fill, and they must be uniformly compacted in lifts of 20 cm thick to at least 98% Standard Proctor Dry Density (SPDD) up to the proposed finished grade. The soil moisture must be properly controlled near the optimum. If the foundations are to be built soon after the fill placement, the densification process for the engineered fill must be increased to 100% SPDD.
- 3. If the engineered fill is compacted with the moisture content on the wet side of the optimum, the underground services and pavement construction should not begin until the pore pressure within the fill mantle has completely dissipated. This must be further assessed at the time of the engineered fill construction.
- 4. If imported fill is to be used, it should be inorganic soils, free of deleterious or any material with environmental issue or contamination. Any potential imported earth fill from off-site must be reviewed for geotechnical and environmental quality by the appropriate personnel as authorized by the developer or agency, before being hauled to the site.
- 5. The fill operation must be inspected on a full-time basis by a technician under direction of a geotechnical engineer.
- 6. The engineered fill should not be placed during period when freezing ambient temperatures occur either persistently or intermittently. This is to ensure that the fill is free of frozen soils, ice and snow. If the engineered fill is to be left over the winter months, adequate earth cover, or equivalent, must be provided for protection against frost action.
- 7. The engineered fill must extend over the entire graded area; the engineered fill envelope and finished elevations must be clearly and accurately defined in the field, and they must be precisely documented by qualified surveyors.
- 8. The foundations and underground services subgrade must be inspected by the geotechnical consulting firm that inspected the engineered fill placement. This is to

- 9. Despite stringent control in the placement of the engineered fill, variations in soil type and density may occur in the engineered fill. Therefore, the foundations must be properly reinforced, or be designed by the structural engineer for the project. The total and differential settlements of 25 mm and 20 mm, respectively, should be considered in the design of the foundation founded on engineered fill.
- 10. Any excavation carried out in certified engineered fill must be reported to the geotechnical consultant who supervised the fill placement in order to document the locations of the excavation and/or to supervise reinstatement of the excavated areas to engineered fill status. If construction on the engineered fill does not commence within a period of 2 years from the date of certification, the condition of the engineered fill must be assessed for re-certification.

6.2 **Foundation**

Based on the borehole information, the following bearing pressures are recommended for house structures supported on conventional strip and spread footings founded onto engineered fill or sound native soils below the surficial disturbed or weathered soils.

- Maximum Bearing Pressure at Serviceability Limit State (SLS) = 150 kPa
- Factored Ultimate Bearing Pressure at Ultimate Limit State (ULS) = 250 kPa

The total and differential settlements of footing designed for the recommended bearing pressure at SLS are estimated at 25 mm and 20 mm, respectively.

Higher bearing pressures may be provided depending on location and foundation design depth. This can be confirmed once the design and grading specifications are available for review.

The footing subgrade must be inspected by a geotechnical engineer, or a senior geotechnical technician, under the supervision of a geotechnical engineer, to ensure that the revealed conditions are compatible with the design of the foundation.

Footings exposed to weathering, or in unheated areas, should have at least 1.2 m of earth cover for protection against frost action.

Where the footing excavation consists of wet sands and/or silts, or the footing subgrade is saturated, a concrete mud-slab of lean mix concrete, 8 to 10 cm in thickness, should be poured immediately after subgrade preparation and inspection to protect the approved subgrade against disturbance by the construction traffic.

The foundation should meet the requirements specified by the latest Ontario Building Code, and the structures can be designed to resist a minimum earthquake force using Site Classification 'D' (stiff soil).

The external grading must be designed to drain surface runoff away from the structures to minimize the frost heave phenomenon generally associated with the disclosed soils.

6.3 Basement Structure

Where house basements are proposed, they should be designed for the lateral earth pressure using the soil parameters provided in Table 6.

In conventional basement design, perimeter walls of the basement structure should be dampproofed and provided with perimeter subdrains at the wall base. Backfill of the open excavation should consist of free-draining granular material (Drawing No. 3) unless prefabricated drainage board is installed over the entire wall below grade.

As previously noted, wet silt deposits were observed in the eastern half of the site It is recommended that the basement floor be founded at least 1.0 m above the seasonal high groundwater level in the vicinity. Should the basement floor be founded less than 1.0 m above the groundwater table, underfloor subdrains (Drawing No. 4) should be provided to supplement the perimeter subdrain system to relieve any groundwater upfiltration due to seasonal fluctuation. The subdrains, connected to a positive outlet, should be encased in a fabric filter to protect them against blockage by silting. If the basement floor is to be founded less than 0.5 m above the groundwater table, the basement structure should be waterproofed and designed for hydrostatic uplift pressure. Where necessary, additional boreholes can be performed to further delineate the horizontal extent of the wet silt layer during the detail design stage once the site grading plan is available for review.

The subgrade of the basement slab must consist of sound native soil or well compacted inorganic earth fill or engineered fill. The subgrade should be inspected and assessed by proof-rolling prior to slab-on-grade construction. Where loose or soft subgrade is detected, it should be subexcavated and replaced with inorganic material, compacted to at least 98% SPDD.

The concrete slab should be constructed on a minimum 15 cm thick granular base, consisting of 19-mm CRL, or equivalent, compacted to its maximum SPDD. Where underfloor weepers are required, the bedding should be increased to 30 cm in thickness. In addition, a vapor barrier should be placed between the granular bedding and the concrete slab to prevent upfiltration of water vapour.

6.4 Underground Services

A Class 'B' bedding is recommended for construction of the underground services. The bedding material should consist of compacted 19-mm CRL, or equivalent, compacted to at least 98% SPDD. In the saturated silt deposits, a Class 'A' bedding should be considered for proper pipe support.

The subgrade for underground services should consist of sound native soils or properly compacted earth fill. Where soft or loose soil is encountered at the invert level, it must be subexcavated and replaced with properly compacted bedding material.

The pipe joints connecting into manholes and catch basins should be leak-proof or wrapped with an appropriate waterproof membrane to prevent migration of fines due to leakage, leading to a loss of subgrade support and subsequent pipe collapse.

Openings to subdrains and catch basins should be shielded by a fabric filter to prevent silting. In order to prevent pipe floatation when the service trench is deluged with water derived from precipitation, a soil cover with a thickness of at least the diameter of the pipe should be in place at all times after completion of the pipe installation.

The service pipes and metal fittings should be protected against corrosion. For estimation of anode weight requirements, the electrical resistivities of the disclosed soils presented in Table 6 can be used. The proposed anode weight must meet the minimum requirements as specified by the Town of Caledon or Region of Peel.

6.5 Backfilling Trenches and Excavated Areas

The on-site inorganic soils are suitable for trench backfill. The addition of water may be required for the clay till prior to structural compaction during dry and warm weather and in areas where compaction is best performed on the wet side of the optimum. The wet silt and portions of the silty clay and sandy silt till/silty sand till will require aeration prior to their use as structural backfill. The tills should be sorted free of large cobbles and boulders (over

12

15 cm in size). The weathered soil must be sorted free of topsoil inclusions and deleterious materials prior to reuse for structural backfill.

The backfill material should be compacted to at least 95% SPDD. In areas below the slab-ongrade and in the zone within 1.0 m below the pavement subgrade, the backfill should be compacted to at least 98% SPDD with a moisture content 2% to 3% drier than the optimum. This is to provide the required stiffness for floor or pavement construction. The lift of each backfill layer should be limited to a thickness of 20 cm, or the thickness should be determined by test strips at the time of compaction.

In normal construction practice, the problem areas of pavement settlement largely occur adjacent to foundation walls, columns, manholes, catch basins and services crossings. In areas which are inaccessible to a heavy compactor, sand backfill which can be appropriately compacted using a smaller vibratory compactor should be used.

One must be aware of possible consequences during trench backfilling and exercise caution as described below:

- To backfill a deep trench, one must be aware that the future settlement is to be expected, unless the sides is flattened to 1V:2H, and the lifts of the fill and its moisture content are stringently controlled; i.e. lifts should be no more than 20 cm (or less if the backfilling conditions dictate) and uniformly compacted to achieve at least 98% SPDD, with the moisture content on the wet side of the optimum.
- It is often difficult to achieve uniform compaction of the backfill in the lower vertical section of a trench which is an open cut or is stabilized by a trench box, particularly in the sector close to the trench walls or the sides of the box. These sectors must be backfilled with sand and the compaction must be carried out diligently, prior to the placement of the backfill above this sector, i.e., in the upper sloped trench section. This measure is necessary in order to prevent consolidation of inadvertent voids and loose backfill which will compromise the compaction of the backfill in the upper section.
- In areas where the underground services construction is carried out during the winter months, prolonged exposure of the trench walls will result in frost heave within the soil mantle of the walls. This may result in some settlement as the frost recedes, and repair costs will be incurred prior to the final surfacing of the new pavement and slab-on-grade construction.
- When construction is carried out in the winter, frozen soil layers may inadvertently be mixed with the structural trench backfill. Should the in-situ soil have a water content on the dry side of the optimum, it would be impossible to wet the soil due to the freezing condition, rendering difficulties in obtaining uniform and proper compaction.

Furthermore, the freezing condition will prevent flooding of the backfill when it is required, such as when the trench box is removed. The above will invariably cause backfill settlement that may become evident within several years after construction.

• In areas where groundwater movement is expected in the sand fill mantle, anti-seepage collars should be provided.

6.6 Pavement Design

The recommended pavement design for residential local and neighbourhood collector/through roads, satisfying the minimum requirement from the Town of Caledon, is provided in Table 3.

Course	Thickness (mm)	OPS Specifications
Asphalt Surface	40	HL3
Asphalt Binder Local Residential Collector/Through Road	65 90	HL8 HL8
Granular Base	150	Granular 'A' or equivalent
Granular Sub-base Local Residential Collector/Through Road	300 450	Granular 'B' or equivalent

Table 3 - Pavement Design

In preparation of the pavement subgrade, all topsoil and compressible material should be removed. The subgrade should be proof-rolled and inspected. Any soft spots identified must be subexcavated and replaced with inorganic earth fill. The subgrade within 1.0 m below the underside of the granular sub-base must be compacted to at least 98% SPDD, with a water content at 2% to 3% drier than the optimum. All the granular bases should be compacted to 100% SPDD.

The pavement subgrade will suffer a strength regression if water is allowed to infiltrate the mantle. The following measures should be incorporated in the construction procedures and pavement design:

- The pavement subgrade should be properly crowned and smooth-rolled to allow interim precipitation to be properly drained.
- Lots areas adjacent to the road should be properly graded to prevent ponding of large amounts of water. Otherwise, the water will seep into the subgrade mantle and induce a

regression of the subgrade strength, with costly consequences for the pavement construction.

- In extreme cases during the wet seasons, if soft or weak subgrade is identified, it can be replaced by compacted granular material to compensate for the inadequate strength of the soft or weak subgrade. This can be assessed during construction.
- Fabric filter-encased curb subdrains are required to meet the Town of Caledon requirements.

6.7 Bridge Crossing

A new bridge crossing will be constructed across the natural system in the vicinity of Boreholes BC-105 and 106. At the time of report preparation, design of the bridge crossing is not available for review.

Shallow Foundation

The bridge abutments may be supported on conventional spread footings with restricted bearing capacities, founded onto the stiff to hard silty clay and silty clay till above the wet, loose to compact silt deposit. The recommended bearing pressures at or above an approximate founding depth of El. 255.0 m are restricted as follows:

- Maximum Bearing Pressure at Serviceability Limit State (SLS) = 150 kPa
- Factored Bearing Pressure at Ultimate Limit State (ULS) = 250 kPa

The total and differential settlements of footing designing for SLS are estimated at 25 mm and 20 mm, respectively.

Deep Foundation for the Abutments and Piers

Due to the proximity of the Etobicoke Creek and the underlying wet subsoils with limited bearing capacity, construction of shallow foundations may be difficult. Deep foundation, such as driven H-piles, can be considered for bridge abutments and piers extending past the wet silt deposit and into the very dense sandy silt till or hard silty clay till below El. 246.0 m. The piles must not rest in the loose to dense silt unit which is subject to dilation under vibratory driving forces. It is recommended that the piles be extended at least 3 m into the hard or very dense till with 'N' values greater than 50 blows. In view that there is insufficient subsoil data to support this design on the west side of the creek valley (BC-105D), deeper borehole(s) should be carried out in the vicinity of the west abutment once the bridge crossing location and details are confirmed to further elaborate on the subsoil condition below El. 245.0 m.

For preliminary design with typical driven pile sizes of HP310x110 and HP360x174, the recommended geotechnical resistances at SLS and ULS are provided in Table 4.

			Pile Capa	city (kN)				
Borehole	Abutment	Pile Size	SLS	ULS	Depth (m)	El. (m)		
DC 105D		HP310x110	600	720	D 1 141	D 1 246.0		
BC-105D	West	HP360x174	790	950	Below 14.1	Below 246.0		
DC 100	E (HP310x110	780			D 1 0460		
BC-106	East	HP360x174	1100	1300	Below 10.6	Below 246.0		

 Table 4 - Pile Capacities for H-Piles

Other specific sizes and associated resistance capacities can be provided upon request. The actual refusal criteria of pile driving should be established once the chosen pile size and the design loads are known. Cast steel drive shoes, as per OPSD 3000.100, will be required in order to protect the driven pile toe into the till deposit. Full time monitoring of the pile driving operation by a geotechnical technician is necessary in order to assess the pile capacity at refusal. In order to verify the design pile capacity, static load test or Pile Driving Analyzer (PDA) must be performed on selected piles at each abutment and pier. Integral abutments can also be supported on H-piles, with a minimum pile embedment of 0.6 m into the concrete cap.

The settlement of piles designed for the load resistance at SLS are estimated to be less than 25 mm.

Lateral Resistance

Lateral loading can be resisted fully or partially by the use of battered steel H-piles. For vertical piles, the resistance to lateral loading will have to be derived from the soil in front of the pile support. The geotechnical lateral resistance may be calculated using the coefficient of horizontal subgrade reaction (k_s) and the ultimate lateral resistance (p_{ult}):

	Cohesive Soil:	$k_s = 67 \ S_u / D$	and	$p_{ult} = 9 S_u$			
	Cohesionless Soil:	$k_s = n_h z/D$	and	$p_{ulkt} = 3 \ \gamma z \ K_p$			
where	$S_u =$ undrain z = depth or						
	n_h = coefficient related to soil relative density (MN/m ³)						
	D = pile width/diameter (m)						

- γ = bulk unit weight of soil in overburden [or γ ' in submerged condition] (kN/m³)
- K_p = coefficient of passive earth pressure

The soil parameters for the calculation of ks are summarized in Table 5.

Soil Type	γ (kN/m ³)	n _h (MN/m ³)	Su (kPa)	Kp
Silty Clay	20.5	-	85	-
Silty Clay Till	22.0	-	175	-
Silt	11.0 (submerged)	1.3	-	2.77
Sandy Silt Till	22.5	11	-	3.39

 Table 5 - Soil Parameters for Lateral Resistance of Pile

The computed lateral resistance should be multiplied by a geotechnical resistance factor of 0.5. The design of piles and load capacities should be reviewed by the geotechnical engineer before finalization.

Group Pile Efficiency

Where multiple piles are required to support the structure, it is recommended that the spacing between piles must be at least 3 times the diameter or width of the pile. Pile group action for axial resistance should be considered, and can be evaluated by applying a reduction factor as listed below:

Pile Spacing:	8B	6B	4B	3B
Reduction Factor:	1.0	0.9	0.75	0.7

Pile group action for lateral resistance can also be evaluated as listed below:

Pile Spacing:	8B	6B	4B	3B
Reduction Factor:	1.0	0.7	0.4	0.25

Wing Wall Foundation

Wing walls, constructed with cast-in-place concrete, can be supported on strip footings founded below the frost penetration depth of at least 1.2 m below the proposed grade, onto

the sound native soil or engineered fill with the following recommended soil bearing pressures:

- Maximum Bearing Pressure at Serviceability Limit State (SLS) = 150 kPa
- Factored Bearing Pressure at Ultimate Limit State (ULS) = 250 kPa

The total and differential settlements of wall footings, designing for the bearing pressure at SLS, are estimated to be 25 mm and 20 mm, respectively.

Alternatively, Reinforced Soil Slope (RSS) wall can be used for the wing wall. The RSS wall should be designed in accordance with the MTO Guideline. A 300 mm thick granular bedding, consisting of Granular 'A' compacted to 100% SPDD, will be required beneath the wall facing units after the subgrade is inspected.

The footing subgrade must be inspected prior to the construction of the wing walls. Stepped down footings may be specified with a maximum step height of 0.6 m and a minimum step length of 1.2 m, founded on the sound native soil or engineered fill.

Frost and Scour Protection

All pile caps and/or conventional spread and strip footings should be founded below the frost penetration depth, with a soil cover not less than 1.2 m. Where the abutments are constructed in close proximity of the watercourse/tributary, the foundation should extend either below the scouring depth or the frost depth, whichever is greater.

Scouring protection schemes, such as using R10 Rip-Rap, at least 300 mm in thickness, should be provided along the watercourse.

Seismic Consideration

Based on the Canadian Highway Bridge Design Code, the bridge abutments on piles driven into the very dense tills can be designed to resist an earthquake force using Site Classification 'C'. Conventional shallow bridge foundation and wing wall foundations can be designed using Site Classification 'D' (stiff soil).

General Construction

A construction platform and access driveway will be required for the access of machinery and construction equipment near the crossing. Temporary erosion and sediment control plan must

be implemented during construction to prevent unnecessary disturbance to the valley system of the Etobicoke Creek. The erosion and sediment control plan should be reviewed and approved by the Toronto and Regional Conservation Authority (TRCA). Where necessary and/or upon request by the conservation, temporary bank protection may also be required to prevent erosion along the creek bank.

For construction of the bridge abutments and piers, the tributary may be temporarily diverted, where necessary. Where excavation extends into the wet silt unit, dewatering will be required to draw down the groundwater to approximately 1 m below the intended bottom of excavation. Dewatering details such as the method, rate and volumes should be verified with the hydrogeologist and the dewatering contractor. Sheeting enclosures may also be required to limit the extent of excavation and disturbance into the natural system. One should be noted that sheeting installed using vibratory method into the wet silt may result in soil dilation and the shear strength of the wet silt will be reduced. It is recommended that the sheeting enclosures be completed using a non-vibratory method unless such disturbance is accounted for when designing the sheeting enclosure, and also in the design of the abutments and footings for the crossing.

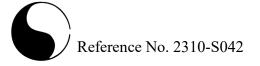
Embankment and Wing Wall Backfill

Should embankment heights be raised significantly higher than the original grade, consolidation settlement of the subsoils will occur. Primary consolidation settlement in the fine-grained subsoil can be expected. This should be further assessed once detailed embankment design is available for review.

Prior to the construction of embankment, the ground must be free of compressible topsoil and deleterious material. The subgrade must be proof-rolled and inspected before earth filling. Any soft/weak material as identified must be subexcavated and replaced with properly compacted inorganic earth fill.

The wing walls should be backfilled with free draining, non-frost susceptible granular fill to at least 1.2 m behind the wall structure. This is to prevent the build up of hydrostatic pressure and the development of any frost action against the wall structure. Weep holes and/or subdrains should be specified to dissipate any water collected behind the walls.

The road embankment towards the bridge crossing should be graded with a slope gradient of 1V:3H or gentler. Where steeper gradient is considered, the stability of the embankment slope should be reviewed. Where applicable, flood protection should be considered for any portions of the embankment that will extend below the flood line.


The sloping ground of embankment should be covered with 300-mm thick topsoil layer, sodded or vegetated to prevent surficial erosion. Prior to sodding and growth of vegetation, an erosion control blanket may be utilized.

6.8 Soil Parameters

The recommended soil parameters for the project design are given in Table 6.

Unit Weight and Bulk Factor	Unit We	ight (kN/m ³)	Estimated	Bulk Factor			
	<u>Bulk</u>	Submerged	Loose	Compacted			
Silty Clay Till	22.0	12.0	1.33	1.03			
Silty Clay	20.5	10.5	1.30	1.00			
Sandy Silt Till/Silty Sand Till	22.5	12.5	1.33	1.05			
Silt	21.0	11.0	1.20	1.00			
Lateral Earth Pressure Coefficie	ents	Active K _a	At Rest Ko	Passive K _p			
Compacted Earth Fill and Silty	Clay	0.40	0.55	2.50			
Silty Clay Till		0.33	0.50	3.00			
Sandy Silt Till/Silty Sand Till		0.29	0.46	3.39			
Silt		0.36	0.53	2.77			
Estimated Coefficient of Permea	bility (K)	and	K	Т			
Percolation Time (T)			(cm/sec)	(min/cm)			
Silty Clay Till and Silty Clay			10-7	80+			
Sandy Silt Till/Silty Sand Till			10-4	12			
Silt			10 ⁻⁴ to 10 ⁻⁵	12 to 20			
Estimated Electrical Resistivity				(ohm·cm)			
Silty Clay Till				4000			
Silty Clay				3500			
Sandy Silt Till/Silty Sand Till				5000			
Silt				5500			
Coefficients of Friction							
Between Concrete and Granula	r Base			0.50			
Between Concrete and Native S	oils or Co	mpacted Earth F	ill	0.35			

Table 6 - Soil Parameters

6.9 Excavation

Excavation should be carried out in accordance with Ontario Regulation 213/91. The types of soils to be excavated are classified in Table 7.

Material	Туре
Sound Tills and Silty Clay	2
Weathered Soils and Silt (above groundwater)	3
Saturated Soils	4

In excavation, the groundwater seepage from the tills and clay will likely be limited in quantity and can be removed by conventional pumping from sumps. However, excavation extending into the wet silt in around the Etobicoke Creek valley may require more extensive construction dewatering. In order to provide a stable subgrade for the services or foundation construction, the groundwater should be depressed to at least 1.0 m below the intended bottom of excavation. Detailed groundwater profile and dewatering needs should be referred to the hydrogeological report by PEGG.

Excavation into the very stiff to hard and dense to very dense tills containing cobbles and boulders will require extra effort and the use of a heavy-duty, properly equipped backhoe.

Prospective contractors should assess the in situ subsurface conditions for soil cuts by digging test pits to at least 0.5 m below the intended bottom of excavation prior to excavating. These test pits should be allowed to remain open for a period of at least 4 hours to assess the trenching conditions.

7.0 **LIMITATIONS OF REPORT**

This report was prepared by Soil Engineers Ltd. for the account of Brookvalley Developments (Hwy 10) Ltd. and for review by its designated consultants, contractors and government agencies. The material in the report reflects the judgement of Hui Wing Yang, P.Eng. and Kin Fung Li, P.Eng., in light of the information available to it at the time of preparation.

Use of the report is subject to the conditions and limitations of the contractual agreement. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. Soil Engineers Ltd. accepts no

responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

LIST OF ABBREVIATIONS AND DESCRIPTION OF TERMS

The abbreviations and terms commonly employed on the borehole logs and figures, and in the text of the report, are as follows:

SAMPLE TYPES

- AS Auger sample
- CS Chunk sample
- DO Drive open (split spoon)
- DS Denison type sample
- FS Foil sample
- RC Rock core (with size and percentage recovery)
- ST Slotted tube
- TO Thin-walled, open
- TP Thin-walled, piston
- WS Wash sample

PENETRATION RESISTANCE

Standard Penetration Resistance or 'N' Value:

The number of blows of a 63.5 kg hammer falling from a height of 76 cm required to advance a 51 mm outer diameter drive open sampler 30 cm into undisturbed soil, after an initial penetration of 15 cm. Plotted as ' \bigcirc '

Dynamic Cone Penetration Resistance:

A continuous profile showing the number of blows per each 30 cm of penetration of a 51 mm diameter, 90° point cone driven by a 63.5 kg hammer falling from a height of 76 cm.

Plotted as '---'

- WH Sampler advanced by static weight
- PH Sampler advanced by hydraulic pressure
- PM Sampler advanced by manual pressure
- NP No penetration

Soil Engineers Ltd. CONSULTING ENGINEERS

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

SOIL DESCRIPTION

Cohesionless Soils:

<u>'N' (b</u>	lows	/ <u>30 cm</u>)	Relative Density
0	to	4	very loose
4	to	10	loose
10	to	30	compact
30	to	50	dense
	2	>50	very dense

Cohesive Soils:

Undrained Shear <u>Strength (kPa)</u>	'N' (blows/30 cm)	<u>Consistency</u>				
<12 12 to <25 25 to <50 50 to <100 100 to 200 >200	<pre><2 2 to <4 4 to <8 8 to <15 15 to 30 >30</pre>	very soft soft firm stiff very stiff hard				

Method of Determination of Undrained Shear Strength of Cohesive Soils:

- x 0.0 Field vane test in borehole; the number denotes the sensitivity to remoulding
- \triangle Laboratory vane test

METRIC CONVERSION FACTORS

- 1 ft = 0.3048 m
- 1 inch = 25.4 mm
- 1 lb = 0.454 kg
- 1 ksf = 47.88 kPa

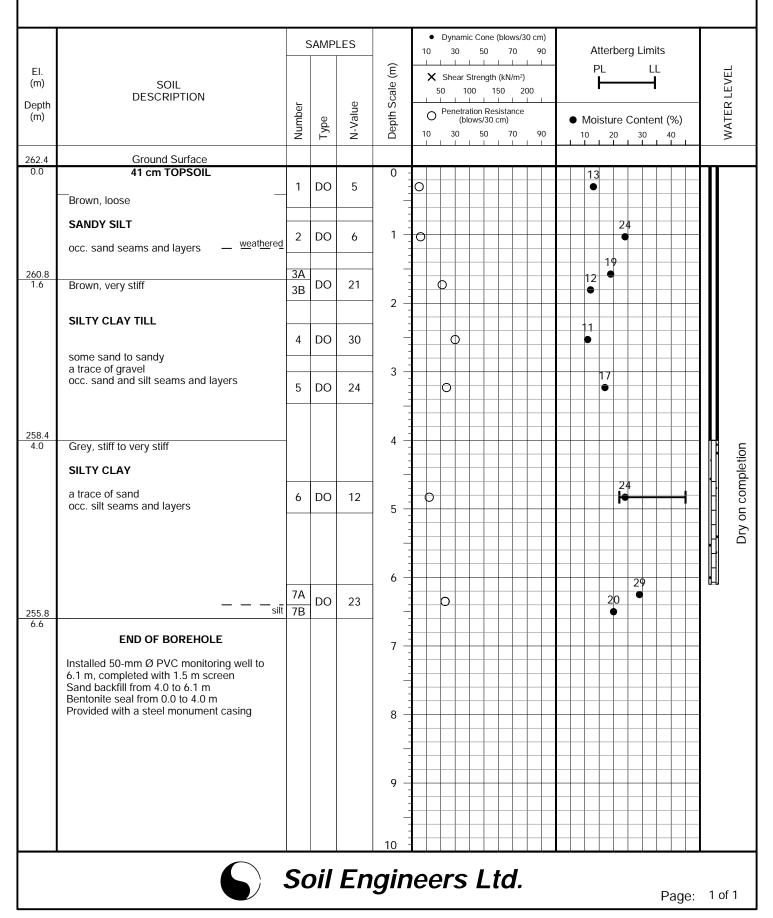

LOG OF BOREHOLE: BC-101

FIGURE NO.: 1

PROJECT DESCRIPTION: Proposed Residential Development

PROJECT LOCATION: 12760 Hurontario Street, Town of Caledon

METHOD OF BORING: Solid Stem Augers

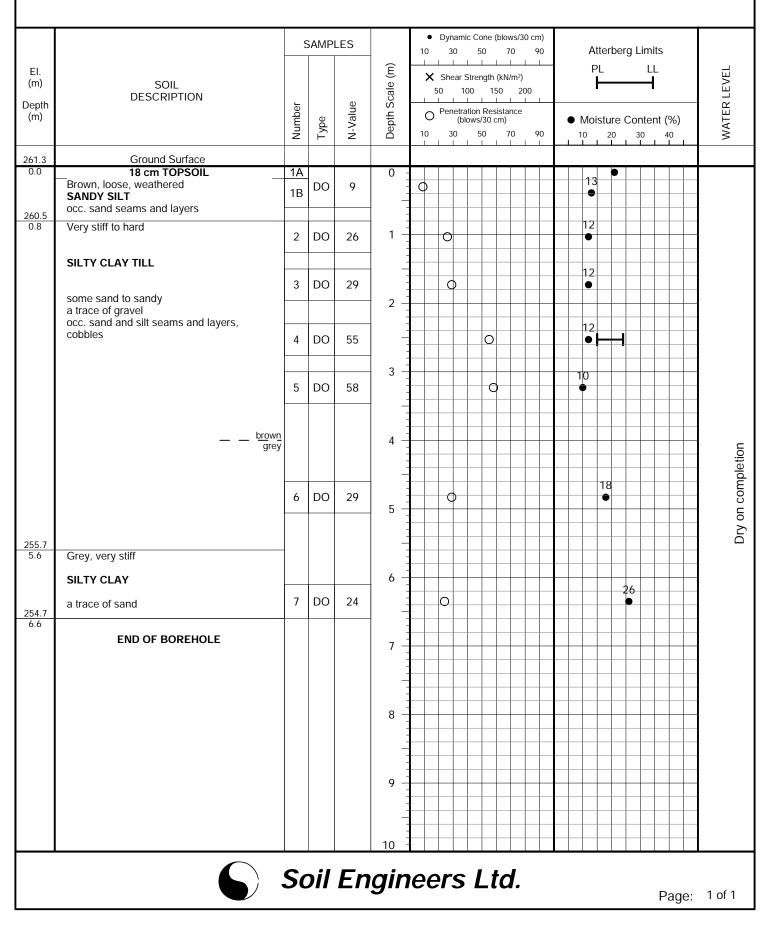

LOG OF BOREHOLE: BC-102

FIGURE NO.: 2

PROJECT DESCRIPTION: Proposed Residential Development

PROJECT LOCATION: 12760 Hurontario Street, Town of Caledon

METHOD OF BORING: Solid Stem Augers

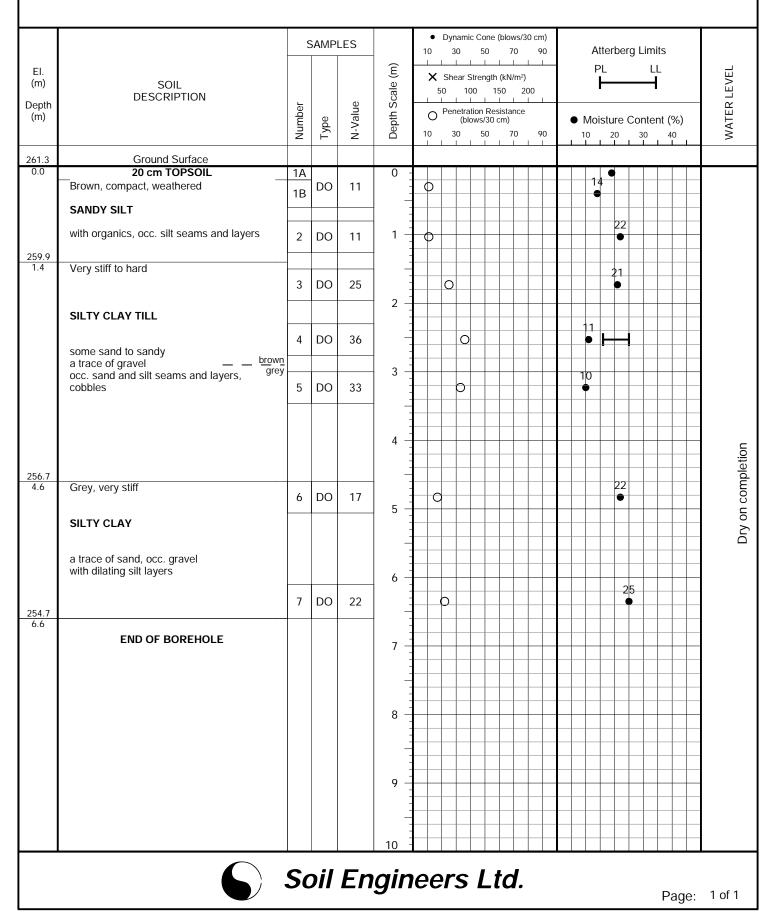

LOG OF BOREHOLE: BC-103

FIGURE NO .: 3

PROJECT DESCRIPTION: Proposed Residential Development

PROJECT LOCATION: 12760 Hurontario Street, Town of Caledon

METHOD OF BORING: Solid Stem Augers

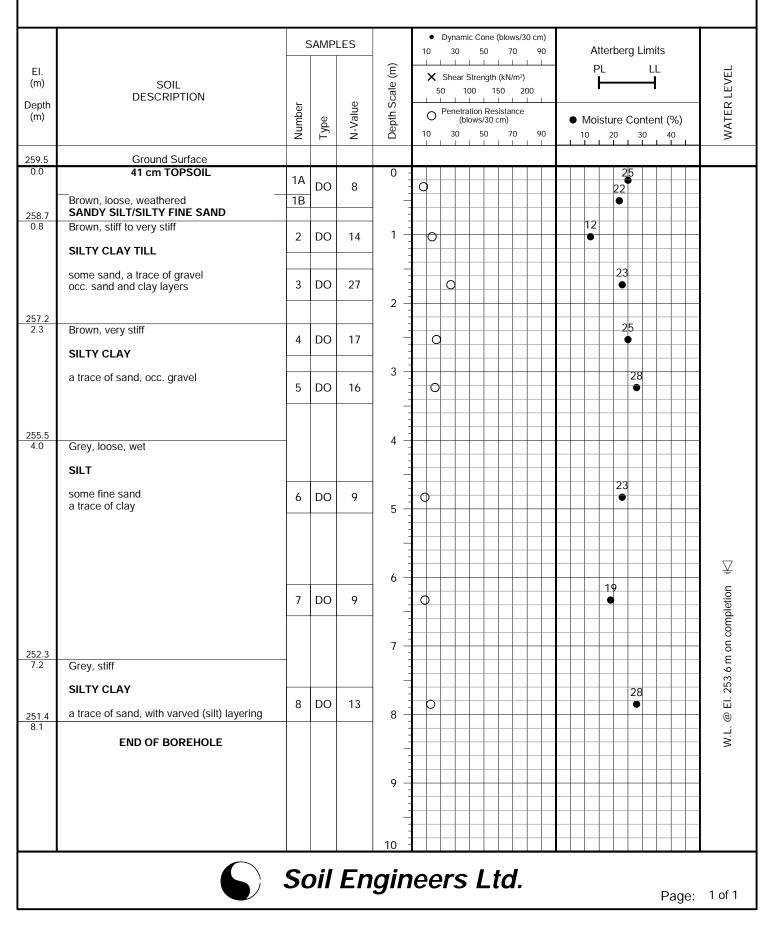

LOG OF BOREHOLE: BC-104

FIGURE NO.: 4

PROJECT DESCRIPTION: Proposed Residential Development

PROJECT LOCATION: 12760 Hurontario Street, Town of Caledon

METHOD OF BORING: Solid Stem Augers

LOG OF BOREHOLE: BC-105D

FIGURE NO.: 5

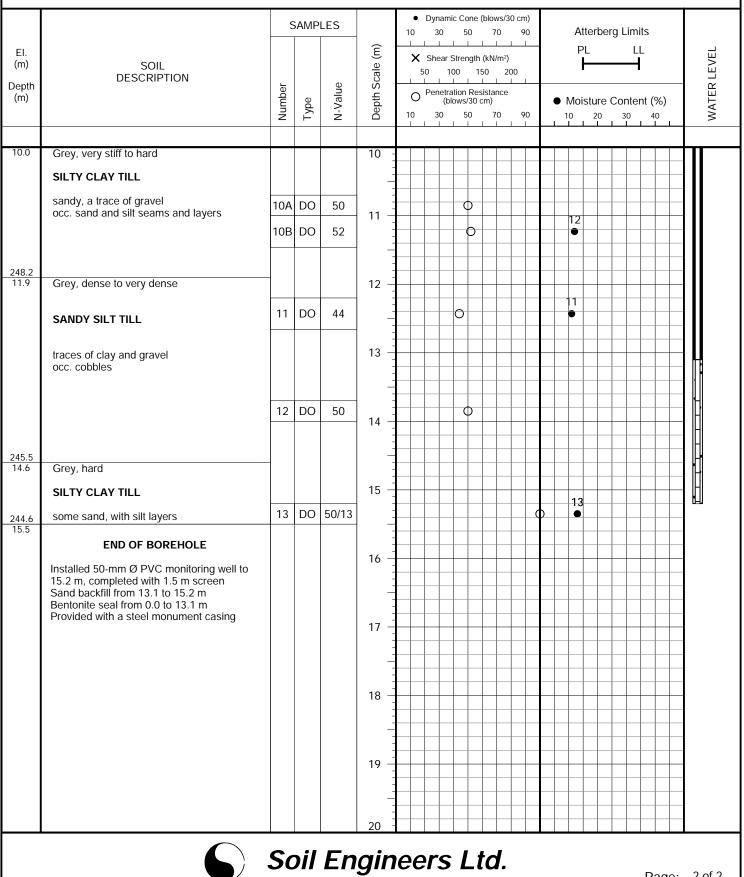
PROJECT DESCRIPTION: Proposed Residential Development

PROJECT LOCATION: 12760 Hurontario Street, Town of Caledon

METHOD OF BORING: Hollow Stem Augers and Tricone

		S	SAMPI	LES	6	• 10	Dyn 31		Cone (l 50	blows/3 70	0 cm) 90	Atterberg Limits PL LL							
EI. (m) Depth (m)	SOIL DESCRIPTION	her	0	N-Value	Depth Scale (m)		50	100 I	15		00		-		-H	()		WATER LEVEL	
. ,		Number	Type	2-N	Dep	10	31		50 50	70	90	10	20 1					WA ⁻	
260.1	Ground Surface																		
0.0	25 cm TOPSOIL	1A		10	0 -							•	19				Π		
	Brown, stiff to hard	1B	DO	10	-	0							•				Π		
	SILTY CLAY TILL <u>weathered</u>	2	DO	26	1 -		0					1	3				Ι		
	some sand to sandy				-												Π		
	a trace of gravel occ. sand and silt seams and layers, cobbles	3	DO	26			0						19				Ι		
					2							1:					Ι		
		4	DO	37				0									Ι		
					3 -							10		_		_	Ι	Ď	
		5	DO	38	-			0				•					Ι	drillin	
256.1																	Ι	Iring	
4.0	Stiff				4 -												Π	d dL	
	SILTY CLAY													23			Ι	nse	
	a trace of sand, occ. gravel	6	DO	13	5 -	0								•			Ι	Water was used during drilling	
254.5					-												Π	Wate	
254.5 5.6	Grey, compact to dense, wet				-												Π	-	
	SILT				6 -								18				П		
	some fine sand a trace of clay	7	DO	32	-		4	C					•				Ι		
	a trace of clay																Π		
					7 -												П		
					-												П		
		8	DO	11	8 -	0							18				Ι		
251.4 8.7	Grey, very stiff to hard															_	Ι		
	SILTY CLAY TILL				9 -				+				14	+	+	+			
		9	DO	18	-	(>						•						
	sandy, a trace of gravel occ. sand and silt seams and layers																		
250.1					10 -												Ш		
		Sc	Dil	En	gin	ee	er	S	Lt	d.									

LOG OF BOREHOLE: BC-105D


5 FIGURE NO .:

PROJECT DESCRIPTION: Proposed Residential Development

PROJECT LOCATION: 12760 Hurontario Street, Town of Caledon

METHOD OF BORING: Hollow Stem Augers and Tricone

DRILLING DATE: October 17, 2023

Page: 2 of 2

LOG OF BOREHOLE: BC-105S

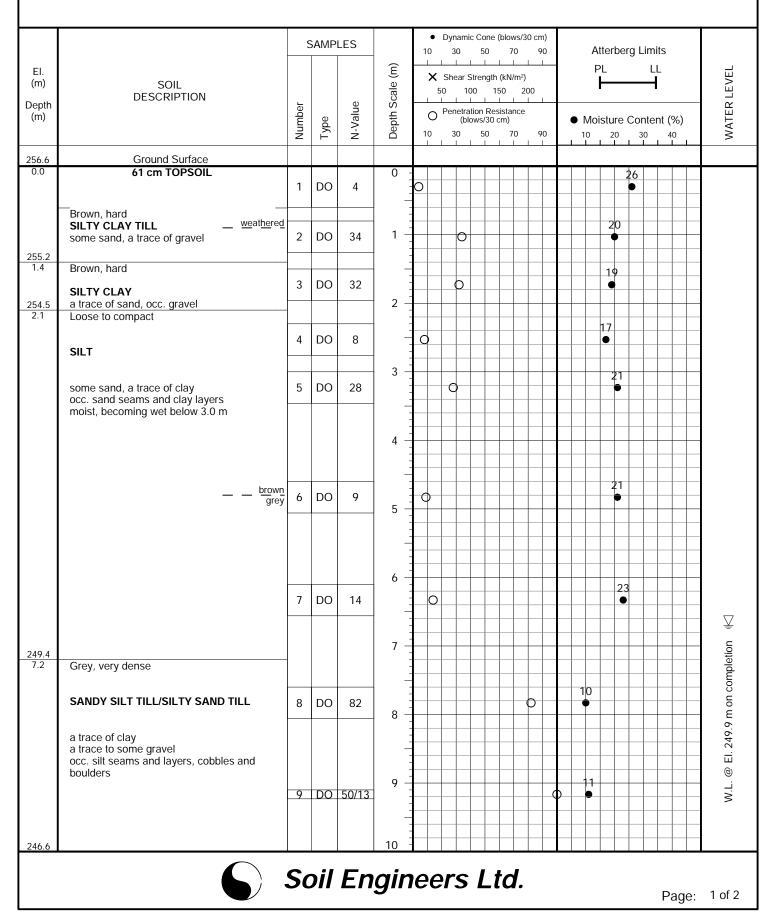
FIGURE NO.: 6

PROJECT DESCRIPTION: Proposed Residential Development

PROJECT LOCATION: 12760 Hurontario Street, Town of Caledon

METHOD OF BORING: Solid Stem Augers

				LES		•	Dyn	namic	: Cone	wold)	/s/30 cm)										
EI.					_ د	10			50 I					At Pl		erg Li	imits LL			-	–i
(m)	SOIL DESCRIPTION				Depth Scale (m)		She		trengt 0					ł			-				WAIEK LEVEL
Depth (m)	DESCRIPTION	Number	e	N-Value	oth Sc	C) ^{Pen}	netrati (blo	ion Re ws/30	esistan	ice		•	Mois	sture	Con	itent	(%)			ц Ц
			Type	>-Z	Dep	10 I	3	0	50	7(90				20	30		40		V / V /	A V A
260.1 0.0	Ground Surface				0															_	
0.0					0																
					-								-		_				-		
					1 -							_									
					-																
	DIRECT AUGER AND INSTALLED NESTED SHALLOW WELL TO 7.6 m																				
					2 -																
					-																
					-																
					3 -																
					-										_						
					-							_									
					4 -																ion
					-																plet
									_			+	-		_	$\left \right $		+	-		соп
					5 -																Dry on completion
					-																D
					6 -																
					-																
					7 -															F	
252.5 7.6	END OF BOREHOLE	-			-							_	_		_						
l Ir	nstalled 50-mm Ø PVC monitoring well to				8 -							-	-		_	+					
7	7.6 m, completed with 1.5 m screen Sand backfill from 5.5 to 7.6 m				-																
E	Bentonite seal from 0.0 to 5.5 m Provided with a steel monument casing																				
	5				9 -				-		_	-	_		_	+			-		
					-																
					10								-								
	$\widehat{}$	_		_				1 1													
		Sc	Dil	En	gin	<i>ee</i>	er	S	L	td							E	Page		1 of	f 1


LOG OF BOREHOLE: BC-106

7 FIGURE NO .:

PROJECT DESCRIPTION: Proposed Residential Development

PROJECT LOCATION: 12760 Hurontario Street, Town of Caledon

METHOD OF BORING: Solid Stem Augers

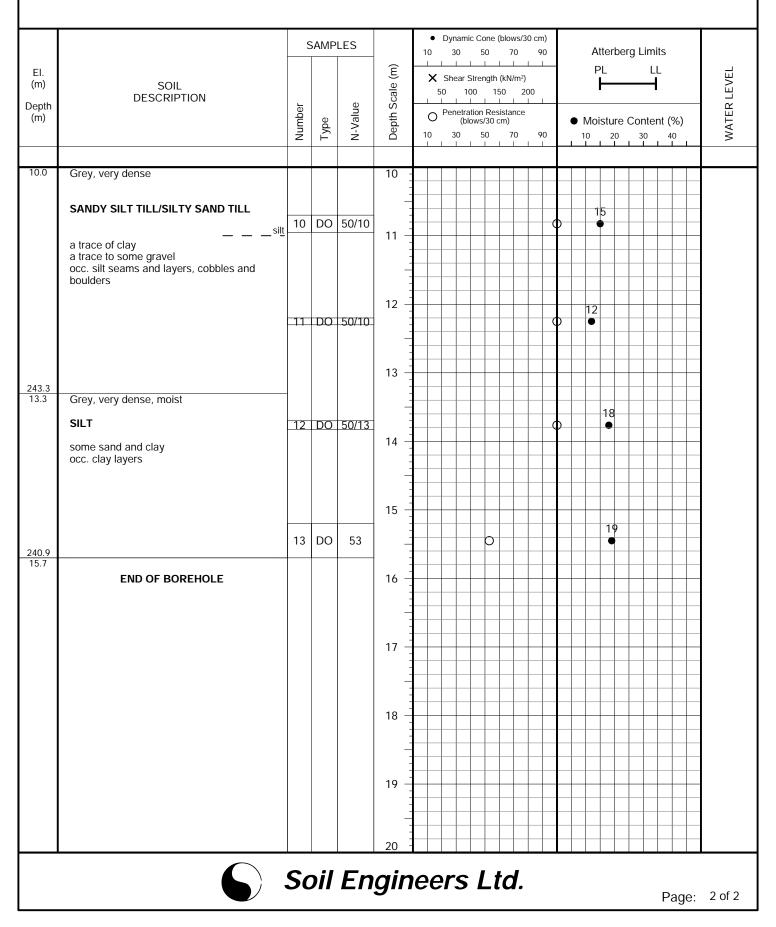

LOG OF BOREHOLE: BC-106

FIGURE NO.: 7

PROJECT DESCRIPTION: Proposed Residential Development

PROJECT LOCATION: 12760 Hurontario Street, Town of Caledon

METHOD OF BORING: Solid Stem Augers

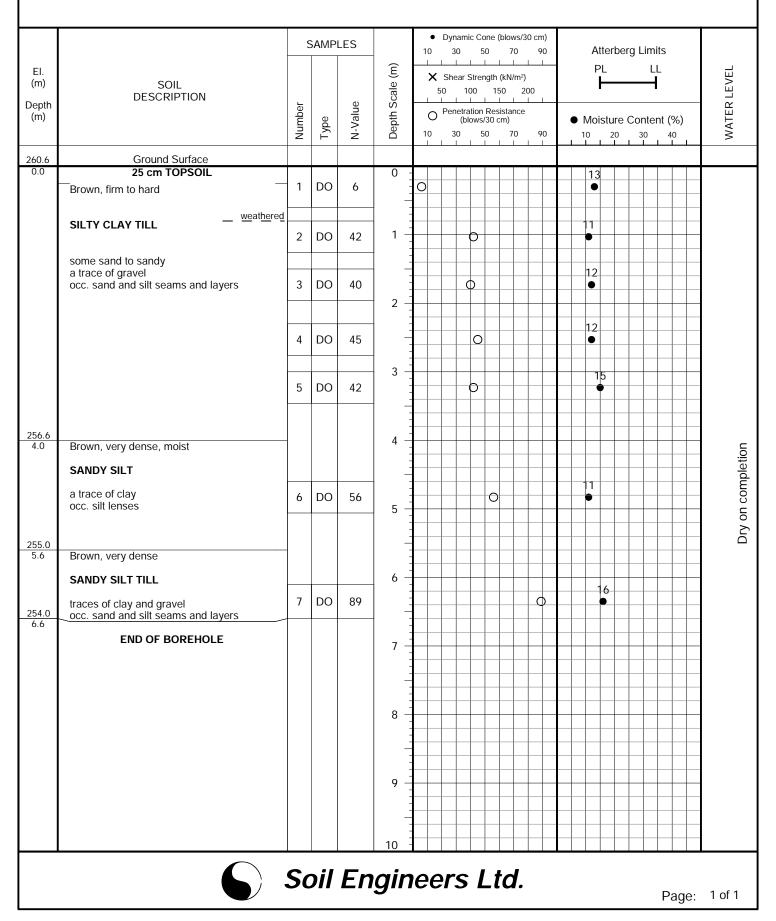
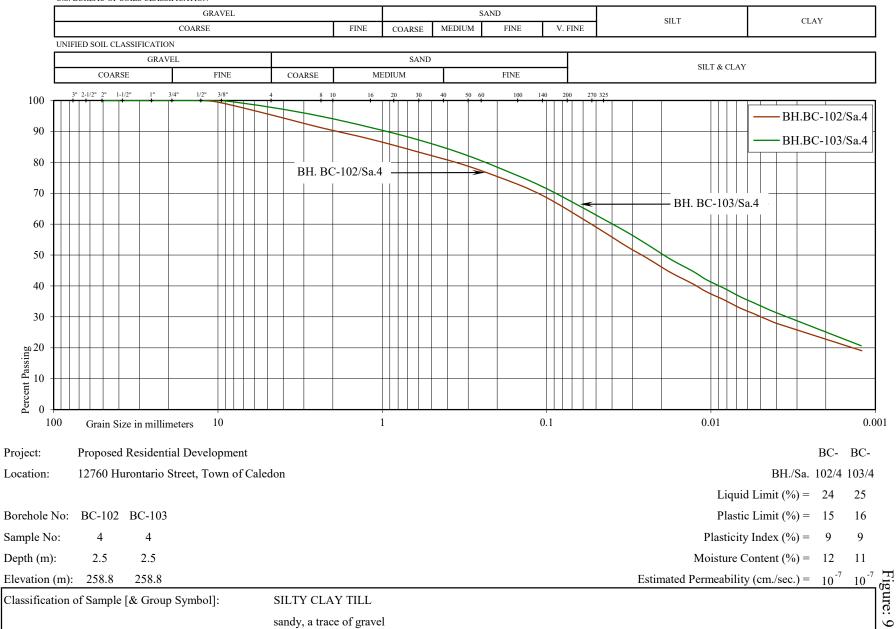
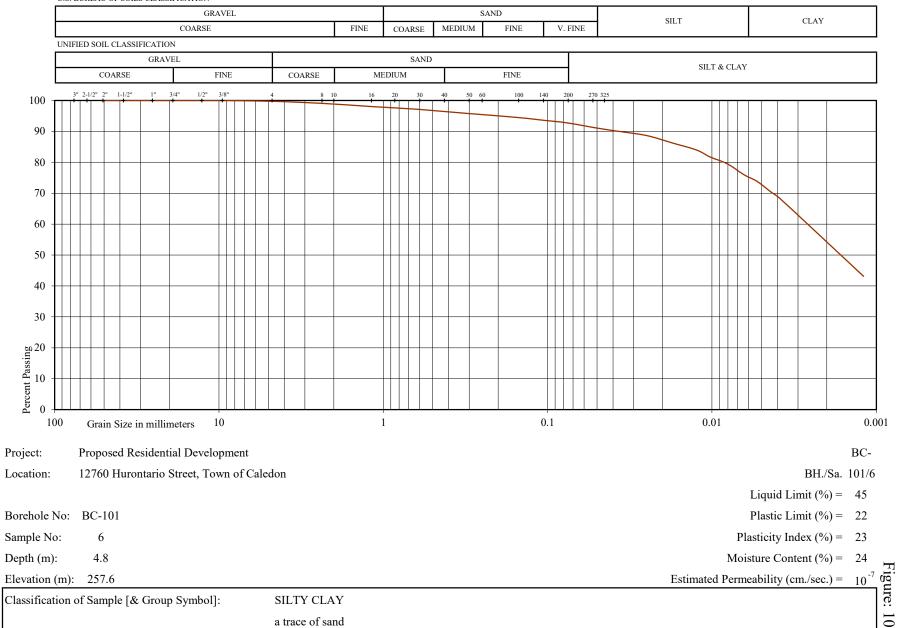

LOG OF BOREHOLE: BC-107

FIGURE NO.: 8

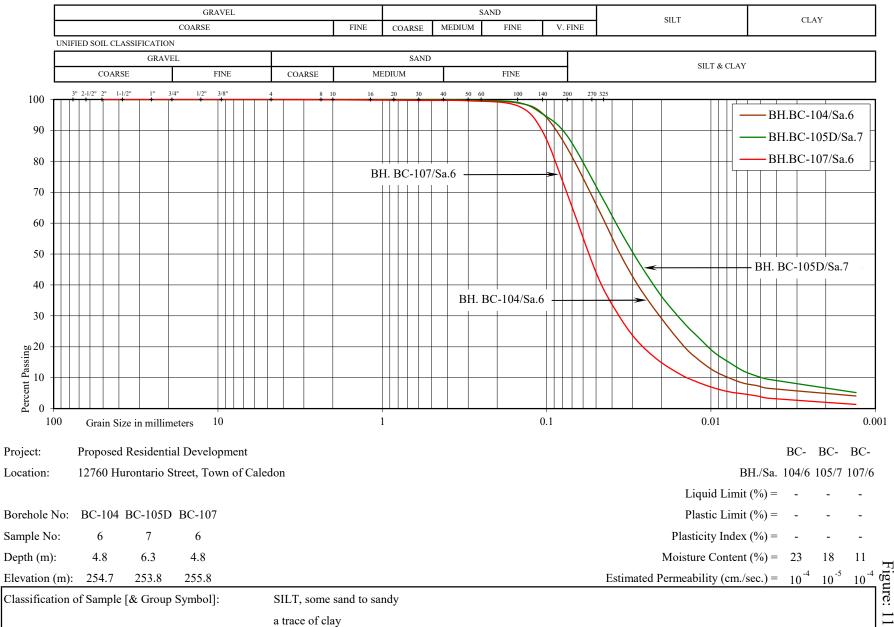
PROJECT DESCRIPTION: Proposed Residential Development

PROJECT LOCATION: 12760 Hurontario Street, Town of Caledon

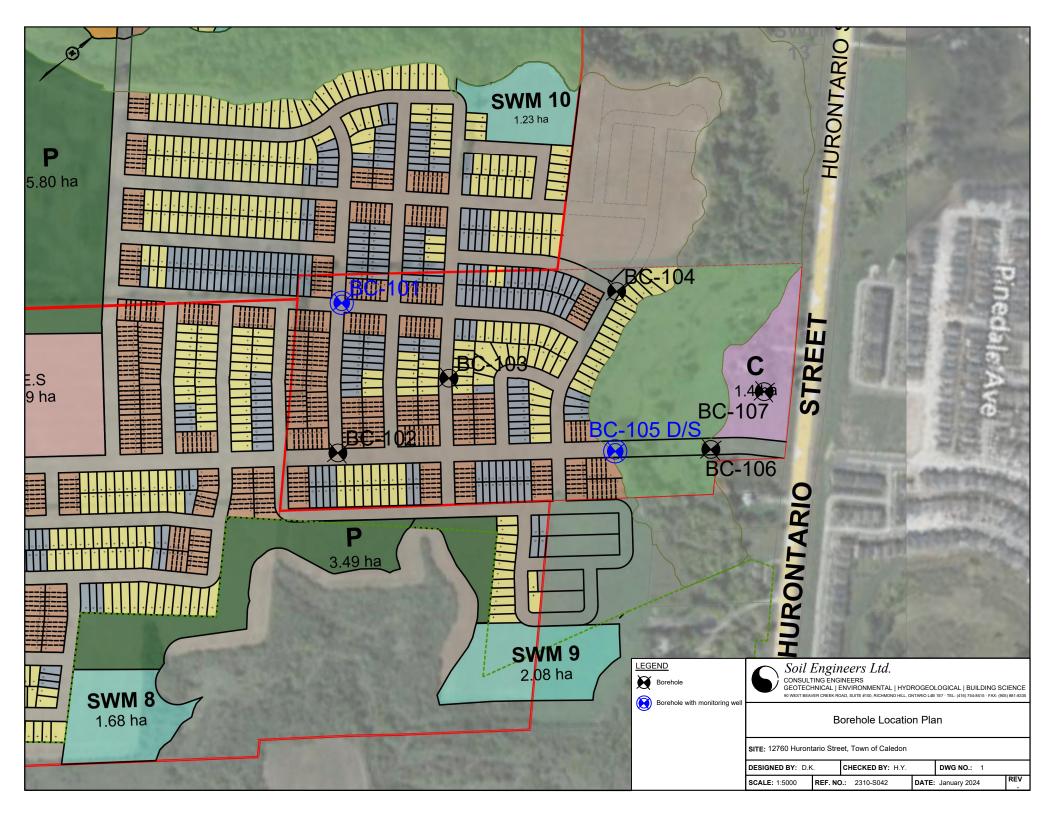

METHOD OF BORING: Solid Stem Augers

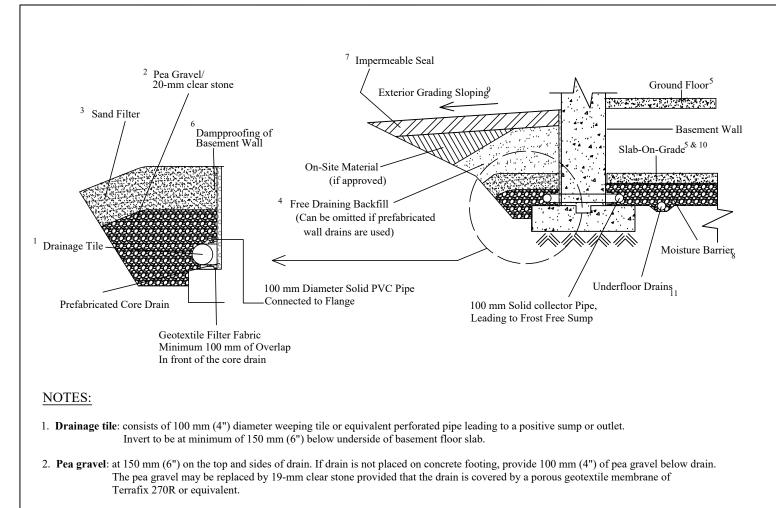

Reference No: 2310-S042

U.S. BUREAU OF SOILS CLASSIFICATION


U.S. BUREAU OF SOILS CLASSIFICATION

Reference No: 2310-S042


U.S. BUREAU OF SOILS CLASSIFICATION

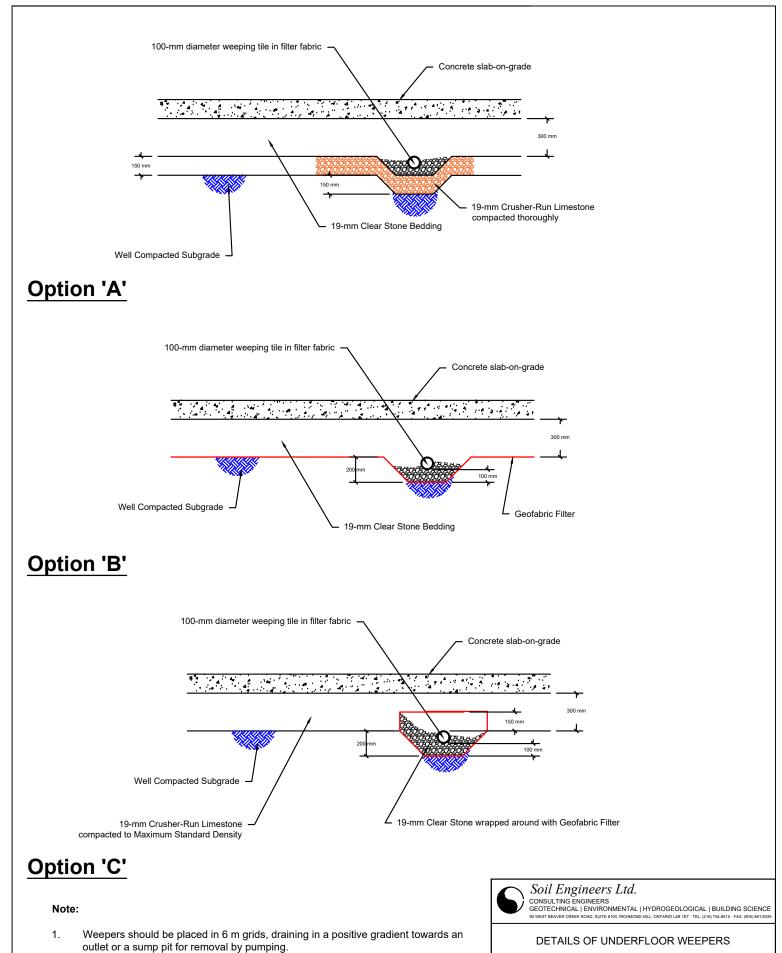


Reference No: 2310-S042

U.S. BUREAU OF SOILS CLASSIFICATION GRAVEL SAND SILT CLAY COARSE FINE MEDIUM FINE V. FINE COARSE UNIFIED SOIL CLASSIFICATION GRAVEL SAND SILT & CLAY COARSE FINE COARSE MEDIUM FINE 1" 3/4" 1/2" 3/8" 270 325 3" 2-1/2" 2" 1-1/2" 8 10 20 30 40 50 60 100 140 200 16 100 BH.BC-105D/Sa.12 90 -BH.BC-106/Sa.8 80 70 BH. BC-106/Sa.8 BH. BC-105D/Sa.12 60 50 40 30 Percent Passing 0 0 0 100 10 1 0.1 0.01 0.001 Grain Size in millimeters Project: Proposed Residential Development BC- BC-Location: 12760 Hurontario Street, Town of Caledon BH./Sa. 105/12 106/8 Liquid Limit (%) = -_ Plastic Limit (%) = -Borehole No: BC-105D BC-106 -Plasticity Index (%) = -Sample No: 12 8 -Depth (m): 13.8 7.8 Moisture Content (%) = -10 Figure: Estimated Permeability (cm./sec.) = 10^{-4} Elevation (m): 246.3 248.8 10 Classification of Sample [& Group Symbol]: BC-105D/Sa 12 : SANDY SILT TILL BC-106/Sa 8: SILTY SAND TILL 12 traces of clay and gravel

Soil Engineers Ltd. CONSULTING ENGINEERS GEOTECHNICAL ENVIRONMENTAL HYDROGEOLOGICAL BUILDING SCI	SUBSURFACE PROFILI DRAWING NO. SCALE: AS SHOWI
JOB NO.:2310-S042REPORT DATE:January 2024PROJECT DESCRIPTION:Proposed Residential DevelopmentPROJECT LOCATION:12760 Hurontario Street, Town of Caledon	LEGEND TOPSOIL Image: Sandy silt till Silty clay Silty clay till Sandy silt Image: Silty clay Silty clay Silty clay till Sandy silt Image: Silty clay Silty clay Silty clay Sandy silt Image: Silty clay Silty clay Silty clay Sandy silt Image: Silty clay Silty clay Silty clay Sandy silt Image: Silty clay Silty clay Silty clay Sandy silt Image: Silty clay Silty clay Silty clay Sandy silt Image: Silty clay Silty clay Silty clay Sandy silt Image: Silty clay Silty clay Silty clay Sandy silt Image: Silty clay Silty clay Silty clay Sandy silt Image: Silty clay Silty clay Silty clay Sandy silt Image: Silty clay Silty clay Silty clay Sandy silt Image: Silty clay Silty clay Silty clay Sandy silty clay Silty clay Silty clay Silty clay Sandy silty clay Silty clay Silty clay Silty clay Sandy silty cl
BH No.: BC-101 BC-102 BC-103 BC-104 BC-105D El. (m): 262.4 261.3 261.3 259.5 260.1	BC-106 BC-107 256.6 260.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

- 3. Filter material: consists of C.S.A. fine concrete aggregate. A minimum of 300 mm (12") on the top and sides of gravel. This may be replaced by an approved porous geotextile membrane of Terrafix 270R or equivalent.
- 4. Free-draining backfill: OPSS Granular 'B' or equivalent, compacted to 95% to 98% (maximum) Standard Proctor dry density. Do not compact closer than 1.8 m (6') from wall with heavy equipment. This may be replaced by on-site material if prefabricated wall drains (Miradrain) extending from the finished grade to the bottom of the basement wall are used.
- 5. Do not backfill until the wall is supported by the basement floor slab and ground floor framing, or adequate bracing.
- 6. Dampproofing of the basement wall is required before backfilling
- 7. Impermeable backfill seal of compacted clay, clayey silt or equivalent. If the original soil in the vicinity is a free-draining sand, the seal may be omitted.
- 8. Moisture barrier: 19-mm CRL or compacted OPSS Granular 'A', or equivalent. The thickness of this layer should be 150 mm (6") minimum.
- 9. Exterior Grade: slope away from basement wall on all the sides of the building.
- 10. Slab-On-Grade should not be structurally connected to walls or foundations.
- 11. **Underfloor drains*** should be placed in parallel rows at 6 to 8 m (20'-25') centre, on 100 mm (4") of pea gravel with 150 mm (6") of pea gravel on top and sides. The spacing should be at least 300 mm (12") between the underside of the floor slab and the top of the pipe. The drains should be connected to positive sumps or outlets. Do not connect the underfloor drains to the perimeter drains.


^{*}Underfloor drains can be deleted where not required.

Soil Engineers Ltd.
CONSULTING ENGINEERS GEOTECHNICAL ENVIRONMENTAL HYDROGEOLOGICAL BUILDING SCIENCE 80 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO LAB 1E7 / TEL: (116) 754-8515 / FAX: (905) 881-8332

PERMANENT PERIMETER DRAINAGE SYSTEM (FOR OPEN EXCAVATION)

SITE: 12760 HURONTARIO STREET, TOWN OF CALEDON

DESIGNED BY: K.L		CHECKED BY: E	3.S.	DWG NO.: 3			
SCALE: N.T.S.	REF. NO	D.: 2310-S042	DATE:	JANUARY 2024	REV		

2. A 10-mil polyethylene sheet should be specified between the gravel bedding and concrete slab.

 SITE: 12760 HURONTARIO STREET, TOWN OF CALEDON

 DESIGNED BY: K.L.
 CHECKED BY: B.S.
 DWG NO.: 4

 SCALE: N.T.S.
 REF. NO.: 2310-S042
 DATE: JANUARY 2024
 REV

Soil Engineers Ltd.

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREEK ROAD, SUITE 100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL: (416) 754-8515 · FAX: (905) 881-8335 BARRIE MISSISSAUGA NEWMARKET

TEL: (705) 721-7863 FAX: (705) 721-7864

TEL: (905) 542-7605 FAX: (905) 542-2769

OSHAWA TEL: (905) 440-2040 TEL: (905) 853-0647 FAX: (905) 725-1315 FAX: (905) 881-8335

MUSKOKA TEL: (705) 721-7863 FAX: (705) 721-7864

HAMILTON TEL: (905) 777-7956 FAX: (905) 542-2769

A REPORT TO SCHOOL WEST INVESTMENT INC.

A GEOTECHNICAL INVESTIGATION FOR PROPOSED RESIDENTIAL DEVELOPMENT

SOUTHEAST OF OLD SCHOOL ROAD AND **CHINGUACOUSY ROAD**

TOWN OF CALEDON

REFERENCE NO. 2310-S043

FEBRUARY 2024

DISTRIBUTION

Digital Copy - School West Investment Inc.

TABLE OF CONTENTS

1.0	INTI	RODUCTION	1
2.0	SITE	E AND PROJECT DESCRIPTION	1
3.0	FIEL	D WORK	1
4.0	SUB	SURFACE CONDITIONS	
	4.1	Topsoil	2
	4.2	Silty Clay Till and Silty Clay	2
	4.3	Silt and Silty Fine Sand	
	4.4	Sandy Silt Till	4
	4.5	Review of Borehole Records by PECG	5
	4.6	Compaction Characteristics of the Revealed Soils	5
5.0	GRC	UNDWATER CONDITION	
6.0	DISC	CUSSION AND RECOMMENDATIONS	7
	6.1	Site Preparation	8
	6.2	Foundation	10
	6.3	Basement Structure	
	6.4	Underground Services	12
	6.5	Backfilling Trenches and Excavated Areas	
	6.6	Pavement Design	13
	6.7	Stormwater Management Ponds	14
	6.8	Soil Parameters	
	6.9	Excavation	17
7.0	LIM	ITATIONS OF REPORT	18

TABLES

Table 1 - Estimated Water Content for Compaction	5
Table 2 - Groundwater Levels	6
Table 3 - Pavement Design	14
Table 4 - Soil Parameters	16
Table 5 - Classification of Soils for Excavation	17

ENCLOSURES

Logs of Borehole	Figures 1 to 10
Grain Size Distribution Graphs	Figures 11 to 15
Borehole Location Plan	Drawing No. 1
Subsurface Profile	Drawing No. 2
Permanent Perimeter Drainage System	Drawing No. 3
Details of Underfloor Weepers	Drawing No. 4
Borehole Logs by PECG	Appendix

1.0 **INTRODUCTION**

In accordance with the email authorization dated October 2, 2023, from Mr. Frank Filippo of School West Investment Inc., a geotechnical investigation was carried out for a property located southeast of Old School Road and Chinguacousy Road in the Town of Caledon.

The purpose of the investigation was to reveal the subsurface conditions and to determine the engineering properties of the disclosed soils for the design and construction of a proposed residential development.

2.0 SITE AND PROJECT DESCRIPTION

The subject site is located in the southeast quadrant of the Old School Road and Chinguacousy Road intersection, in the Town of Caledon. The property is situated within the physiographic region of South Slope with glaciolacustrine-derived silty to clayey till and a modern alluvial deposit along the Etobicoke Creek tributary corridors. The subsoil profile at the site is characterized by sand and silt deposits layered in between the upper Halton Till and the lower Newmarket Till.

At the time of investigation, the property consists of farm fields. The agricultural fields are separated by a Y-shaped Etobicoke Creek tributary system connecting to a wood lot in the southeast corner of the site. The existing site grading generally descends towards the south.

Based on the conceptual site plan, the site will be developed as a low- to medium-density residential subdivision, with park and stormwater management (SWM) pond blocks.

3.0 FIELD WORK

The field work, consisting of 10 boreholes extending to a depth ranging from 6.2 to 6.6 m, was carried out between October 19 and 23, 2023. To facilitate the hydrogeological study by Palmer Environmental Consulting Group (PECG), 50-mm diameter monitoring wells were installed at 4 selected borehole locations. The depth and details of the monitoring wells are shown on the corresponding Borehole Logs. The locations of the boreholes and monitoring wells are shown on Drawing No. 1.

The boreholes were advanced at intervals to the sampling depths by a track-mounted machine equipped with solid stem augers for soil sampling. Split-spoon samples were recovered for soil classification and laboratory testing. Standard Penetration Tests using the procedures described on the enclosed "List of Abbreviations and Terms" were performed at the sampling

depths. The relative density of the non-cohesive strata and the consistency of the cohesive strata are inferred from the 'N' values. The field work was supervised and the findings were recorded by a geotechnical technician.

The ground elevation at each borehole location was determined using a handheld equipment of the Global Navigation Satellite System.

4.0 SUBSURFACE CONDITIONS

Beneath the topsoil veneer, the subsoil profile generally consists of silty clay till overlying a silt and silty fine sand deposit and in places, bedding onto a sandy silt till stratum. Silty clay was also found beneath the tills at various depths and locations.

Detailed descriptions of the encountered subsurface conditions are presented on the Logs of Borehole, comprising of Figures 1 to 10, inclusive. The soil stratigraphy is illustrated on the Subsurface Profile, Drawing No. 2.

Previous borehole investigations and monitoring well installations were carried out in 2017 by PECG as part of their hydrogeological study. Relevant borehole logs are enclosed in the Appendix for reference and the borehole data is summarized in this report.

The engineering properties of the disclosed soils are discussed herein.

4.1 Topsoil

The revealed topsoil thickness ranges from 18 to 33 cm. Thicker topsoil may be encountered in areas beyond the borehole locations, especially in local low-lying areas.

4.2 Silty Clay Till and Silty Clay

Silty clay till was encountered in the upper stratigraphy across the site, except in Boreholes W-109 and W-110. The till consists of a mixture of particle sizes ranging from clay to gravel, with silt and clay being the dominant fraction. Silty clay, containing a trace to some sand and embedded silt layers, was encountered beneath the silty clay till in Borehole W-101 and beneath the sandy silt till/silty sand till in Borehole W-109. Grain size analyses were performed on representative samples of the silty clay till and silty clay, and the results are plotted on Figures 11 and 12, respectively.

The Atterberg Limits of a clay till and clay sample and the natural water content values of all the samples were determined; the results are plotted on the Borehole Logs and summarized below:

	Silty Clay Till	Silty Clay
Liquid Limit	27%	40%
Plastic Limit	17%	20%
Natural Water Content	9% to 19%	12% to 21%
	(median 13%)	(median 15%)

The results indicate that the clay till is low in plasticity and clay is medium in plasticity. Both the clay and clay till are in moist conditions with natural water content values generally below their plastic limits.

The recorded 'N' values of the silty clay till range from 6 to 62, with a median of 25 blows per 30 cm of penetration. This indicates that the clay till is firm to hard, generally being very stiff in consistency. The low 'N' values are generally restricted to the surficial weathered zone, which extends to depths of 0.8 to 1.4 m below grade. Intermittent hard resistance to augering was encountered in places, indicating the presence of cobbles in the till mantle.

The obtained 'N' values of the clay range from 11 to 89, with a median of 50 blows per 30 cm of penetration, showing that the clay is stiff to hard, generally being hard in consistency.

The engineering properties of the silty clay till and clay are listed below:

- High frost susceptibility and low water erodibility.
- In excavation, the clay till and clay will be stable in relatively steep cuts; however, prolonged exposure may lead to localized sloughing.

4.3 Silt and Silty Fine Sand

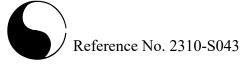
The silt, containing traces of sand and clay, was generally contacted beneath the silty clay till and silty clay. Boreholes W-101, W-103, W-104 and W-105 were terminated in the silt deposit. At Boreholes W-106 and W-108, a silty fine sand layer was encountered beneath the silt, overlying the sandy silt till. Grain size analyses were performed on 2 representative samples each of the silt and silty fine sand, and the results are plotted on Figures 13 and 14, respectively.

The obtained natural water content values of the silt and silty fine sand range from 13% to 23%, with a median of 20%, indicating that the deposit is moist to wet, generally in a wet condition.

The recorded 'N' values range from 5 to 70, with a median of 31 blows per 30 cm penetration, indicating relative densities of loose to very dense, generally being dense. The loose soil was encountered near the ground surface within the weathered zone.

The engineering properties of the silt and silty fine sand are listed below:

- High capillarity and water retention capability.
- Highly frost susceptible, with high soil-adfreezing potential.
- High water erodibility, the fine particles will migrate through small openings under seepage pressure.
- The shear strength is mainly derived from internal friction. The wet silt and silty sand are susceptible to dynamic disturbance, which will induce a build-up of pore water pressure, resulting in soil dilation and a reduction in shear strength.
- In excavation, the silt and silty sand will remain stable for a short period of time but may slough readily. The wet silt/silty sand will run with seepage, and boil under an approximate piezometric head of 0.4 m.


4.4 Sandy Silt Till

Sandy silt till was generally encountered in the northern half of the site, in the lower stratigraphy of Boreholes W-102, W-106 to W-110. In Borehole W-109, sandy silt till/silty sand till was also contacted beneath the topsoil veneer. The till is cemented with a trace of clay, and is laminated with sand and silt seams and layers. Hard resistance to augering was encountered in places, indicating the presence of cobbles. A grain size analysis was performed on a sample of the till; the result is plotted on Figure 15.

The natural water content values of the till range from 7% to 17%, with a median of 10%, indicating that the till is generally in a moist condition.

The obtained 'N' values range from 6 to over 50, with a median of over 50 blows per 30 cm penetration, indicating that the relative density of the till is loose to very dense, generally being very dense.

The engineering properties of the sandy silt till are listed below:

- Highly frost susceptible and moderately low water erodibility.
- The till will be relatively stable in relatively steep excavation; however, if remained open for an extended period of time, localized sloughing may occur, especially under seepage conditions.

4.5 **<u>Review of Borehole Records by PECG</u>**

In 2017, boreholes were carried out and monitoring wells were installed by PECG at 3 select locations within the property as part of the hydrogeological study for the Mayfield West Phase 2 Stage 3 Lands block. The Borehole Records of MW-1, MW-2D/S and MW-3 are enclosed in the Appendix for reference and their locations are shown on Drawing No. 1.

A review of the borehole logs revealed a topsoil layer at the surface, extending to depths of 0.84 and 1.45 m. In MW-1, a medium sand and silt unit is sandwiched between the upper clayey silt till and a lower silty clay till, indicating a makeup similar to the nearby Borehole W-105. In MW-2D/S and MW-3, the fine to medium sand and silt deposit is underlain by a clay layer and silty sand/clayey silt to silty clay till.

The obtained 'N' values indicate that the sand and silt deposit is compact to very dense, and the tills are either very stiff to hard in consistency or dense to very dense in relative density. The sand and silt unit is generally wet.

4.6 Compaction Characteristics of the Revealed Soils

The obtainable degree of compaction is primarily dependent on the soil moisture and, to a lesser extent, on the type of compactor used and the effort applied. As a general guide, the typical water content values of the revealed soils for Standard Proctor compaction are presented in Table 1.

	Determined Natural		ntent (%) for ctor Compaction
Soil Type	Water Content (%)	100% (optimum)	Range for 95% or +
Silty Clay Till	9 to 19 (median 13)	18	15 to 22
Silty Clay	12 to 21 (median 15)	20	16 to 24
Silt/Silty Fine Sand	13 to 23 (median 20)	12	8 to 16
Sandy Silt Till	7 to 17 (median 10)	10	6 to 15

 Table 1 - Estimated Water Content for Compaction

The on-site soils are suitable for structural backfill. The addition of water will be required for the silty clay till and clay prior to structural compaction, especially in the dry and warm seasons and in areas where compaction is best performed on the wet side of the optimum. The silt and silty fine sand are too wet and must be aerated prior to structural backfill. This can be achieved by either stockpiling or spreading the soils thinly on the ground for aeration in the dry warm weather.

The lifts for compaction should be limited to 20 cm, or to a suitable thickness assessed by test strips performed by the compaction equipment. Boulders larger than 15cm in size must be sorted and removed from the backfill.

5.0 **GROUNDWATER CONDITION**

Groundwater levels were detected in 4 of the 10 boreholes upon completion of drilling in October 2023. Seepage was also detected in Boreholes W-106 and W-108 from the wet silt and silty fine sand at depths of 2.4 and 3.0 m below grade, respectively. In December 2023, stabilized groundwater levels were recorded from the installed monitoring wells in by PECG; these levels are tabulated in Table 2.

				Measured Groundwater Levels				
			On Con	npletion	Dec. 6	5, 2023	Dec. 12-	13, 2023
Borehole/ Monitoring Well No.	Ground El. (m)	Well Depth (m)	Depth (m)	El. (m)	Depth (m)	El. (m)	Depth (m)	El. (m)
W-101	266.0	-	Dry	-		No	Well	
W-102	264.7	-	2.7	262.0		No	Well	
W-103	264.9	6.1	Dry	-	1.94	262.96	1.90	263.00
W-104	263.4	-	1.6	261.8		No	Well	
W-105	267.6	-	2.4	265.2		No	Well	
W-106	265.5	6.1	N/A	-	2.04	263.46	2.09	263.41
W-107	268.7	-	Dry	-		No	Well	
W-108	267.5	6.1	N/A	-	2.56	264.94	-	-
W-109	267.7	-	Dry	-		No	Well	

Table 2 - Groundwater Levels

			Measured Groundwater Levels					
			On Con	npletion	Dec. 6	5, 2023	Dec. 12-	13, 2023
Borehole/ Monitoring Well No.	Ground El. (m)	Well Depth (m)	Depth (m)	El. (m)	Depth (m)	El. (m)	Depth (m)	El. (m)
W-110	265.4	-	2.7	262.7		No	Well	
MW-1	268.0	6.09	2.28 ^a	265.72		Well No	ot Found	
MW-2D	268.0	8.84	7.60 ^a	260.40	1.71	266.29	-	-
MW-2S	268.0	4.88	4.48 ^a	263.52	1.46	266.54	-	-
MW-3	263.0	7.62	5.05 ^a	257.95	-	-	-	-

^a Water level measured on completion on November 13, 2017.

Stabilized water levels were recorded at depths ranging from 1.46 to 2.56 metres below ground surface (mbgs), or from El. 266.54 to 262.96 m. The groundwater records are generally consistent with or near the observed wet silt and sand deposit at the boreholes. The groundwater regime is subject to seasonal fluctuations. Detailed groundwater profile and monitoring records should be referred to the hydrogeological study by PECG.

6.0 DISCUSSION AND RECOMMENDATIONS

Beneath the topsoil veneer, the site is underlain by a stratum of generally very stiff silty clay till and/or hard silty clay, overlying a dense silt and sand unit, and in places, bedding onto a very dense sandy silt till deposit. The surficial weathered zone extends to depths of 0.8 to 1.4 m below grade.

Stabilized water levels were recorded at the monitoring wells at depths ranging from 1.46 to 2.56 mbgs, or from El. 266.54 to 262.96 m. The groundwater records are generally consistent with or near the observed wet silt and sand deposit at the boreholes. The groundwater regime is subject to seasonal fluctuations.

Based on the conceptual site plan, the site will be developed as a low- to medium-density residential subdivision, with park and SWM pond blocks. The development will be provided with municipal services and paved roadways meeting municipal standards. The following geotechnical considerations warrant special attention:

- 1. The topsoil must be stripped for development; it can be reused for general landscaping purposes only.
- 2. The weathered soil should be inspected prior to any placement of earth fill for site grading purpose. Where required, the badly weathered soil should be subexcavated, sorted free of any organic, topsoil, and/or other deleterious material, before reusing for structural backfill.
- 3. Where additional fill is required for site grading, the earth fill can be placed in an engineered manner for conventional footing construction, site services support and road construction.
- 4. The sound native soils are suitable for supporting structures founded on conventional spread and strip footings.
- 5. In view of the underlying wet silt and sand deposit and the observed groundwater levels, it is recommended that the basement floor be founded at least 1.0 m above the seasonal high groundwater level. Otherwise, underfloor subdrain systems and/or waterproofing of basements should be implemented to relieve any groundwater upfiltration due to seasonal fluctuation of the groundwater.
- 6. A Class 'B' bedding, consisting of compacted 19-mm Crusher-Run Limestone (CRL), is recommended for the construction of underground services. Where services installation extends into the saturated silt and sand, or where dewatering is required, a Class 'A' concrete bedding should be considered for pipe support.
- 7. Groundwater seepage from the tills and clay will likely be removable by conventional pumping from sumps during construction. Excavation extending into the saturated soils will require construction dewatering.

The recommendations appropriate for the project described in Section 2.0 are presented herein. One must be aware that the subsurface conditions may vary between boreholes, and the assessment given herein is general in nature based on the borehole findings. Should this become apparent during construction, a geotechnical engineer must be consulted to determine whether the following recommendations require revision.

6.1 Site Preparation

The topsoil and vegetation at the ground surface must be removed for development. The topsoil can only be reused for landscaping purposes.

Where additional fill is required for site grading, the earth fill can be placed in an engineered manner for conventional footing construction, site services support and road construction. The engineering requirements for a certifiable fill are presented below:

- 1. The subgrade must be inspected and proof-rolled prior to any fill placement. Badly weathered soils should also be subexcavated, sorted free of topsoil inclusions and deleterious materials, if any, aerated and properly compacted in layers.
- 2. Inorganic soils must be used for the fill, and they must be uniformly compacted in lifts of 20 cm thick to at least 98% Standard Proctor Dry Density (SPDD) up to the proposed finished grade. The soil moisture must be properly controlled near the optimum. If the foundations are to be built soon after the fill placement, the densification process for the engineered fill must be increased to 100% SPDD.
- 3. If the engineered fill is compacted with the moisture content on the wet side of the optimum, the underground services and pavement construction should not begin until the pore pressure within the fill mantle has completely dissipated. This must be further assessed at the time of the engineered fill construction.
- 4. If imported fill is to be used, it should be inorganic soils, free of deleterious or any material with environmental issue or contamination. Any potential imported earth fill from off-site must be reviewed for geotechnical and environmental quality by the appropriate personnel as authorized by the developer or agency, before being hauled to the site.
- 5. The fill operation must be inspected on a full-time basis by a technician under direction of a geotechnical engineer.
- 6. The engineered fill should not be placed during period when freezing ambient temperatures occur either persistently or intermittently. This is to ensure that the fill is free of frozen soils, ice and snow. If the engineered fill is to be left over the winter months, adequate earth cover, or equivalent, must be provided for protection against frost action.
- 7. The engineered fill must extend over the entire graded area; the engineered fill envelope and finished elevations must be clearly and accurately defined in the field, and they must be precisely documented by qualified surveyors.
- 8. The foundations and underground services subgrade must be inspected by the geotechnical consulting firm that inspected the engineered fill placement. This is to ensure that the foundations are placed within the engineered fill envelope, and the integrity of the fill has not been compromised by interim construction, environmental degradation and/or disturbance by the footing excavation.
- 9. Despite stringent control in the placement of the engineered fill, variations in soil type and density may occur in the engineered fill. Therefore, the foundations must be properly reinforced, or be designed by the structural engineer for the project. The total and differential settlements of 25 mm and 20 mm, respectively, should be considered in the design of the foundation founded on engineered fill.
- 10. Any excavation carried out in certified engineered fill must be reported to the geotechnical consultant who supervised the fill placement in order to document the

locations of the excavation and/or to supervise reinstatement of the excavated areas to engineered fill status. If construction on the engineered fill does not commence within a period of 2 years from the date of certification, the condition of the engineered fill must be assessed for re-certification.

6.2 **Foundation**

Based on the conceptual site plan, the development consists of low- to medium-density residential blocks. The following bearing pressures are recommended for houses supported on conventional strip and spread footings founded onto engineered fill or sound native soils below the topsoil and weathered soils:

- Maximum Bearing Pressure at Serviceability Limit State (SLS) = 150 kPa
- Factored Ultimate Bearing Pressure at Ultimate Limit State (ULS) = 250 kPa

The total and differential settlements of footing designed for the recommended bearing pressure at SLS are estimated at 25 mm and 20 mm, respectively.

The footing subgrade must be inspected by a geotechnical engineer, or a senior geotechnical technician, under the supervision of a geotechnical engineer, to ensure that the revealed conditions are compatible with the design of the foundation.

Footings exposed to weathering, or in unheated areas, should have at least 1.2 m of earth cover for protection against frost action.

Where the footing excavation consists of wet silt and/or sand, or the footing subgrade is saturated, a concrete mud-slab of lean mix concrete, 8 to 10 cm in thickness, should be poured immediately after subgrade preparation and inspection to protect the approved subgrade against disturbance by the construction traffic.

The foundation should meet the requirements specified by the latest Ontario Building Code, and the structures can be designed to resist a minimum earthquake force using Site Classification 'D' (stiff soil).

Higher bearing pressures may be provided depending on location and foundation design depth. This can be confirmed once the design and grading specifications are available for review.

6.3 Basement Structure

Where house basements are proposed, they should be designed for the lateral earth pressure using the soil parameters provided in Table 4.

With the recorded groundwater levels and a wet silt and sand unit observed throughout the site at various depths, It is recommended that the basement floor be founded at least 1.0 m above the seasonal high groundwater level.

In conventional basement design, perimeter walls of the basement structure should be dampproofed and provided with perimeter subdrains at the wall base. Backfill of the open excavation should consist of free-draining granular material (Drawing No. 3) unless prefabricated drainage board is installed over the entire wall below grade.

Should the basement floor be founded less than 1.0 m above the groundwater table, underfloor subdrains (Drawing No. 4) should be provided to supplement the perimeter subdrain system to relieve any groundwater upfiltration due to seasonal fluctuation. If the basement floor is to be founded less than 0.5 m above the groundwater table, the basement structure should be waterproofed and designed for hydrostatic uplift pressure. The subdrains, connected to a positive outlet, should be encased in a fabric filter to protect them against blockage by silting.

The subgrade of the basement slab must consist of sound native soil or well compacted inorganic earth fill or engineered fill. The subgrade should be inspected prior to slab-on-grade construction. Where loose or soft subgrade is detected, it should be subexcavated and replaced with inorganic material, compacted to at least 98% SPDD.

The concrete slab should be constructed on a minimum 15 cm thick granular base, consisting of 19-mm CRL, or equivalent, compacted to its maximum SPDD. Where underfloor weepers are required, the bedding should be increased to 30 cm in thickness. In addition, a vapor barrier should be placed between the granular bedding and the concrete slab to prevent upfiltration of water vapour.

The external grading must be designed to drain surface runoff away from the structures to minimize the frost heave phenomenon generally associated with the disclosed soils.

6.4 Underground Services

A Class 'B' bedding is recommended for construction of the underground services. The bedding material should consist of compacted 19-mm CRL, or equivalent, compacted to at least 98% SPDD. In the saturated silt and sand, a Class 'A' bedding should be considered for proper pipe support.

The subgrade for underground services should consist of sound native soils or properly compacted earth fill. Where soft or loose soil is encountered at the invert level, it must be subexcavated and replaced with properly compacted bedding material.

The pipe joints connecting into manholes and catch basins should be leak-proof or wrapped with an appropriate waterproof membrane to prevent migration of fines due to leakage, leading to a loss of subgrade support and subsequent pipe collapse.

Openings to subdrains and catch basins should be shielded by a fabric filter to prevent silting. In order to prevent pipe floatation when the service trench is deluged with water derived from precipitation, a soil cover with a thickness of at least the diameter of the pipe should be in place at all times after completion of the pipe installation.

The service pipes and metal fittings should be protected against corrosion. For estimation of anode weight requirements, the electrical resistivities of the disclosed soils presented in Table 4 can be used. The proposed anode weight must meet the minimum requirements as specified by the Town of Caledon.

6.5 Backfilling Trenches and Excavated Areas

The on-site inorganic soils are suitable for trench backfill. The addition of water will be required for the clay till and clay prior to structural compaction during dry and warm weather and in areas where compaction is best performed on the wet side of the optimum. Wet silt and sand will require aeration prior to their use as structural backfill. The tills should be sorted free of large cobbles and boulders (over 15 cm in size).

The backfill material should be compacted to at least 95% SPDD. In areas below the slab-ongrade and in the zone within 1.0 m below the pavement subgrade, the backfill should be compacted to at least 98% SPDD with a moisture content 2% to 3% drier than the optimum. This is to provide the required stiffness for floor or pavement construction. The lift of each backfill layer should be limited to a thickness of 20 cm, or the thickness should be determined by test strips at the time of compaction.

In normal construction practice, the problem areas of pavement settlement largely occur adjacent to foundation walls, columns, manholes, catch basins and services crossings. In areas which are inaccessible to a heavy compactor, sand backfill which can be appropriately compacted using a smaller vibratory compactor should be used.

One must be aware of possible consequences during trench backfilling and exercise caution as described below:

- To backfill a deep trench, one must be aware that the future settlement is to be expected, unless the sides is flattened to 1V:2H, and the lifts of the fill and its moisture content are stringently controlled; i.e. lifts should be no more than 20 cm (or less if the backfilling conditions dictate) and uniformly compacted to achieve at least 98% SPDD, with the moisture content on the wet side of the optimum.
- It is often difficult to achieve uniform compaction of the backfill in the lower vertical section of a trench which is an open cut or is stabilized by a trench box, particularly in the sector close to the trench walls or the sides of the box. These sectors must be backfilled with sand and the compaction must be carried out diligently, prior to the placement of the backfill above this sector, i.e., in the upper sloped trench section. This measure is necessary in order to prevent consolidation of inadvertent voids and loose backfill which will compromise the compaction of the backfill in the upper section.
- In areas where the underground services construction is carried out during the winter months, prolonged exposure of the trench walls will result in frost heave within the soil mantle of the walls. This may result in some settlement as the frost recedes, and repair costs will be incurred prior to the final surfacing of the new pavement and slab-on-grade construction.
- When construction is carried out in the winter, frozen soil layers may inadvertently be mixed with the structural trench backfill. Should the in-situ soil have a water content on the dry side of the optimum, it would be impossible to wet the soil due to the freezing condition, rendering difficulties in obtaining uniform and proper compaction. Furthermore, the freezing condition will prevent flooding of the backfill when it is required, such as when the trench box is removed. The above will invariably cause backfill settlement that may become evident within several years after construction.
- In areas where groundwater movement is expected in the sand fill mantle, anti-seepage collars should be provided.

6.6 Pavement Design

The recommended pavement design for residential local roads, satisfying the minimum requirement from the Town of Caledon, is provided in Table 3.

Course	Thickness (mm)	OPS Specifications
Asphalt Surface	40	HL3
Asphalt Binder	65	HL8
Granular Base	150	Granular 'A' or equivalent
Granular Sub-base	300	Granular 'B' or equivalent

Table 3 - Pavement Design

In preparation of the pavement subgrade, all topsoil and compressible material should be removed. The subgrade should be proof-rolled and inspected. Any soft spots identified must be subexcavated and replaced with inorganic earth fill. The subgrade within 1.0 m below the underside of the granular sub-base must be compacted to at least 98% SPDD, with a water content at 2% to 3% drier than the optimum. All the granular bases should be compacted to 100% SPDD.

The pavement subgrade will suffer a strength regression if water is allowed to infiltrate the mantle. The following measures should be incorporated in the construction procedures and pavement design:

- The pavement subgrade should be properly crowned and smooth-rolled to allow interim precipitation to be properly drained.
- Lots areas adjacent to the road should be properly graded to prevent ponding of large amounts of water. Otherwise, the water will seep into the subgrade mantle and induce a regression of the subgrade strength, with costly consequences for the pavement construction.
- In extreme cases during the wet seasons, if soft or weak subgrade is identified, it can be replaced by compacted granular material to compensate for the inadequate strength of the soft or weak subgrade. This can be assessed during construction.
- Fabric filter-encased curb subdrains are required to meet the Town of Caledon requirements.

6.7 Stormwater Management Ponds

Two SWM ponds (SWM 3 and 4) are proposed in the northern half of the subdivision, adjacent to the creek tributary system. Detailed designs of the ponds were not available for review at the time of report preparation.

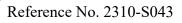
Pond Liner

Based on the borehole information from Boreholes W-106 and W-110, the pond areas are underlain by a silt/silty fine sand deposit overlying sandy silt till at approximate depths of 3 to 4 m below grade. It is anticipated that pond excavation will extend into the permeable deposits. An earthen clay liner (with an estimated permeability of 10⁻⁷ cm/sec or less) or a geosynthetic clay liner (GCL) with soil ballast will therefore be required to minimize water infiltration through the native soils which will affect the designed capacity of the ponds.

Water levels were recorded at depths ranging from 1.46 to 2.09 mbgs at the nearby monitoring wells, or at approximately El. 263.4 m and El. 266.5 m at SWM 3 and 4, respectively, and may be higher during wet seasons. The appropriate thickness of the clay liner or ballast to counteract the hydrostatic uplift pressures and the extent of the liner can be established once the pond elevations are available for review.

Pond Berm Construction

The side slopes of the ponds should be graded at 1V:3H or flatter for stability above the wet perimeter, and 1V:4H or flatter below the wet perimeter. All exposed side slopes must be vegetated and/or sodded to prevent surface erosion.


Any proposed earth embankments should be constructed using inorganic clay or clay till material, compacted to at least 98% SPDD in lifts of no more than 20 cm in thickness. The subgrade must be inspected and proof-rolled prior to any fill placement. The construction of the berms must be supervised and certified by the site geotechnical engineer. The pond side slopes should be surface compacted.

Control Structures

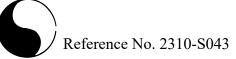
The following bearing pressures can be used for the design of control structures supported on conventional footings founded on engineered fill or on sound native soils below the topsoil and weathered soils:

- Soil Bearing Pressure at SLS: 100 kPa
- Factored Ultimate Soil Bearing Pressure at ULS: 120 kPa

The footings must be placed below the scouring depth and be provided with a minimum earth cover of 1.2 m to protect them from frost damage. The inlets and outlets of the ponds must be lined with gabion mats, rip rap or equivalent measures for protection against scouring.

The foundation for the control structures should meet the requirements specified by the latest Ontario Building Code, and the structures should be designed to resist a minimum earthquake force using Site Classification 'D' (stiff soil).

General Considerations


One should be aware that minor maintenance may be required after rapid drawdown as the water recedes from a flood level to normal level. Routine visual inspection and maintenance will be required to rectify any observed deficiency.

6.8 Soil Parameters

The recommended soil parameters for the project design are given in Table 4.

Unit Weight and Bulk Factor	Unit We	ight (kN/m³)	Estimated	Bulk Factor
	<u>Bulk</u>	<u>Submerged</u>	Loose	Compacted
Silty Clay Till	22.0	12.0	1.33	1.03
Silty Clay	20.5	10.5	1.30	1.00
Sandy Silt Till	22.5	12.5	1.33	1.05
Silt/Silty Sand	20.5	10.5	1.25	1.00
Lateral Earth Pressure Coeffici	ents	Active K _a	At Rest Ko	Passive K _p
Compacted Earth Fill and Silty	' Clay	0.40	0.55	2.50
Silty Clay Till/Silt/Silty Sand		0.33	0.50	3.00
Sandy Silt Till		0.29	0.46	3.39
Estimated Coefficients of Permo Percolation Time (T)	eability (K	<u>) and</u>	K (cm/sec)	T (min/cm)
Silty Clay Till and Silty Clay			10-7	80+
Sandy Silt Till/Silt			10-5	20
Silty Sand			10-3	8

|--|

Estimated Electrical Resistivities	(ohm·cm)
Silty Clay Till	4000
Silty Clay	3500
Sandy Silt Till	4500
Silt/Silty Sand	5500
Coefficients of Friction	
Between Concrete and Granular Base	0.50
Between Concrete and Native Soils or Compacted Earth Fill	0.35

6.9 Excavation

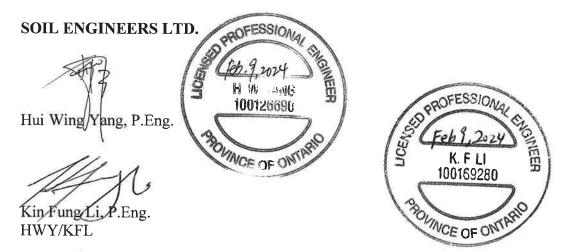
Excavation should be carried out in accordance with Ontario Regulation 213/91. The types of soils to be excavated are classified in Table 5.

Material	Туре
Sound Tills and Silty Clay	2
Weathered Soils, Silt and Sand (above groundwater)	3
Saturated Soils	4

In excavation, the groundwater seepage from the tills and clay will likely be limited in quantity and can be removed by conventional pumping from sumps. However, excavation extending into the saturated soils will require more extensive construction dewatering. The wet silt/silty sand will slump readily, leading to sloughing and migrate/run with seepage and boil under an approximate piezometric head of 0.4 m.

In order to provide a stable subgrade for the SWM ponds, underground services and foundation construction, the groundwater should be depressed to at least 1.0 m below the intended bottom of excavation. Detailed groundwater profile and dewatering needs should be referred to the hydrogeological report by PEGG.

Excavation into the very stiff to hard and dense to very dense tills containing cobbles and boulders will require extra effort and the use of a heavy-duty, properly equipped backhoe.



Prospective contractors should assess the in situ subsurface conditions for soil cuts by digging test pits to at least 0.5 m below the intended bottom of excavation prior to excavating. These test pits should be allowed to remain open for a period of at least 4 hours to assess the trenching conditions.

7.0 **LIMITATIONS OF REPORT**

This report was prepared by Soil Engineers Ltd. for the account of School West Investment Inc. and for review by its designated consultants, contractors and government agencies. The material in the report reflects the judgement of Hui Wing Yang, P.Eng. and Kin Fung Li, P.Eng., in light of the information available to it at the time of preparation.

Use of the report is subject to the conditions and limitations of the contractual agreement. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

LIST OF ABBREVIATIONS AND DESCRIPTION OF TERMS

The abbreviations and terms commonly employed on the borehole logs and figures, and in the text of the report, are as follows:

SAMPLE TYPES

- AS Auger sample
- CS Chunk sample
- DO Drive open (split spoon)
- DS Denison type sample
- FS Foil sample
- RC Rock core (with size and percentage recovery)
- ST Slotted tube
- TO Thin-walled, open
- TP Thin-walled, piston
- WS Wash sample

PENETRATION RESISTANCE

Standard Penetration Resistance or 'N' Value:

The number of blows of a 63.5 kg hammer falling from a height of 76 cm required to advance a 51 mm outer diameter drive open sampler 30 cm into undisturbed soil, after an initial penetration of 15 cm. Plotted as ' \bigcirc '

Dynamic Cone Penetration Resistance:

A continuous profile showing the number of blows per each 30 cm of penetration of a 51 mm diameter, 90° point cone driven by a 63.5 kg hammer falling from a height of 76 cm.

Plotted as '---'

- WH Sampler advanced by static weight
- PH Sampler advanced by hydraulic pressure
- PM Sampler advanced by manual pressure
- NP No penetration

Soil Engineers Ltd. CONSULTING ENGINEERS

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

SOIL DESCRIPTION

Cohesionless Soils:

<u>'N' (b</u>	lows	/ <u>30 cm</u>)	Relative Density
0	to	4	very loose
4	to	10	loose
10	to	30	compact
30	to	50	dense
	2	>50	very dense

Cohesive Soils:

Undrained Shear <u>Strength (kPa)</u>	'N' (blows/30 cm)	<u>Consistency</u>
<12 12 to <25 25 to <50 50 to <100 100 to 200 >200	<pre><2 2 to <4 4 to <8 8 to <15 15 to 30 >30</pre>	very soft soft firm stiff very stiff hard

Method of Determination of Undrained Shear Strength of Cohesive Soils:

- x 0.0 Field vane test in borehole; the number denotes the sensitivity to remoulding
- \triangle Laboratory vane test

METRIC CONVERSION FACTORS

- 1 ft = 0.3048 m
- 1 inch = 25.4 mm
- 1 lb = 0.454 kg
- 1 ksf = 47.88 kPa

LOG OF BOREHOLE: W-101 JOB NO.: 2310-S043 PROJECT DESCRIPTION: Proposed Residential Development METHOD OF BORING: Solid Stem Augers **PROJECT LOCATION:** DRILLING DATE: October 23, 2023 Southeast of Old School Road and Chinguacousy Road, Town of Caledon Dynamic Cone (blows/30 cm) • SAMPLES 10 30 50 70 90 Atterberg Limits 1 Depth Scale (m) ΡL LL WATER LEVEL EI. X Shear Strength (kN/m²) -(m) SOIL 100 150 50 200 DESCRIPTION N-Value Depth Number Penetration Resistance Ο (m) Type (blows/30 cm) Moisture Content (%) 70 10 30 50 90 10 20 30 40 Ground Surface 266.0 0.0 25 cm TOPSOIL 0 15 DO 12 1 b Stiff to hard weathered SILTY CLAY TILL 13 1 2 DO 25 Ο sandy, a trace of gravel occ. sand and silt seams and layers 3 DO 37 0 2 13 4 DO 32 b • <u>brown</u> grey 3 12 5 DO 20 0 . 262.0 4 Grey, stiff Dry on completion 4.0 SILTY CLAY 21 a trace of sand DO 6 11 occ. silt seams and layers 5 260.4 5.6 Grey, compact, very moist to wet 6 SILT 19 7 DO 30 Φ traces of fine sand and clay 259.4 6.6 END OF BOREHOLE 7 8 9 10 Soil Engineers Ltd.

1

FIGURE NO .:

LOG OF BOREHOLE: W-102

FIGURE NO .:

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Solid Stem Augers

DRILLING DATE: October 23, 2023

PROJECT LOCATION:

Southeast of Old School Road and Chinguacousy Road, Town of Caledon

Dynamic Cone (blows/30 cm) • SAMPLES 10 30 50 70 90 Atterberg Limits 1 Depth Scale (m) ΡL LL EI. WATER LEVEL X Shear Strength (kN/m²) -(m) SOIL 50 100 150 200 DESCRIPTION Depth N-Value Number Penetration Resistance Ο (m) Type (blows/30 cm) Moisture Content (%) 10 30 50 70 90 10 20 30 40 264.7 Ground Surface 0.0 33 cm TOPSOIL 0 15 DO 9 1 Φ Brown, stiff to hard weathered 10 SILTY CLAY TILL 1 2 DO 34 0 sandy, a trace of gravel 12 occ. sand and silt seams and layers 3 DO 39 Φ • 2 262.6 2.1 Grey, compact to dense, very moist to wet 17 Φ 4 DO 21 • Ā SILT @ El. 262.0 m on completion 3 21 5 DO 36 0 a trace to some sand occ. sand seams and clay layers 4 23 DO 6 31 Ф • 5 N.L 6 22 258.4 • 7A 10 6.3 Reddish-brown, very dense, moist DO 71 h 7B SANDY SILT TILL 258.1 6.6 traces of clay and gravel END OF BOREHOLE 7 8 9 10 Soil Engineers Ltd. Page: 1 of 1

LOG OF BOREHOLE: W-103 PROJECT DESCRIPTION: Proposed Residential Development METHOD OF BORING: Solid Stem Augers **PROJECT LOCATION:** Southeast of Old School Road and Chinguacousy Road, DRILLING DATE: October 19, 2023 Town of Caledon Dynamic Cone (blows/30 cm) • SAMPLES 10 30 50 70 90 Atterberg Limits Depth Scale (m) ΡL LL EI. WATER LEVEL X Shear Strength (kN/m²) -(m) SOIL 50 100 150 200 DESCRIPTION Depth N-Value Number Penetration Resistance Ο (m) Type (blows/30 cm) Moisture Content (%) 10 70 30 50 90 10 20 30 40 264.9 Ground Surface 0.0 20 cm TOPSOIL 0 13 Stiff to hard DO 10 1 Φ • weathered SILTY CLAY TILL 13 1 2 DO 24 Ο some sand to sandy a trace of gravel 12 occ. sand and silt seams and layers, 3 DO 0 36 . cobbles 2 13 4 DO 37 0 \bullet 3 12 DO 5 35 0 . brown grey 4 Dry on completion 13 DO 6 15 0 ô 5 259.3 5.6 Grey, compact, wet 6 SILT 20 7 DO 28 d traces of fine sand and clay 258.3 6.6 END OF BOREHOLE 7 Installed 50-mm Ø PVC monitoring well to 6.1 m, completed with 1.5 m screen Sand backfill from 4.0 to 6.1 m Bentonite seal from 0.0 to 4.0 m Provided with a steel monument casing 8 9 10 Soil Engineers Ltd.

FIGURE NO .: 3

JOB NO.: 2310-S043

LOG OF BOREHOLE: W-104

FIGURE NO.: 4

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Solid Stem Augers

DRILLING DATE: October 23, 2023

PROJECT LOCATION:

N: Southeast of Old School Road and Chinguacousy Road, Town of Caledon

Dynamic Cone (blows/30 cm) • SAMPLES 10 30 50 70 90 Atterberg Limits 1 Depth Scale (m) ΡL LL EI. WATER LEVEL X Shear Strength (kN/m²) -(m) SOIL 50 100 150 200 DESCRIPTION N-Value Depth Number Penetration Resistance Ο (m) Type (blows/30 cm) Moisture Content (%) 70 10 30 50 90 10 20 30 40 263.4 Ground Surface 0.0 33 cm TOPSOIL 0 15 DO 9 1 Φ Ċ Brown, stiff to very stiff weathered 12 SILTY CLAY TILL 1 2 DO 25 0 . sandy, a trace of gravel Ā 19 occ. sand and silt seams and layers 3 DO 23 0 261.8 m on completion 2 261.3 2.1 Grey, compact to dense, very moist to wet 18 4 DO 32 b • SILT 3 17 5 DO 40 some sand to sandy ወ . a trace of clay Ē occ. clay layers Ø N. 4 22 DO 6 41 • ന 5 6 18 •21 7A moist, 0 DO 25 7B varved clay 256.8 6.6 END OF BOREHOLE 7 8 9 10 Soil Engineers Ltd. Page: 1 of 1

LOG OF BOREHOLE: W-105

FIGURE NO .:

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Solid Stem Augers

DRILLING DATE: October 20, 2023

PROJECT LOCATION:

Southeast of Old School Road and Chinguacousy Road, Town of Caledon

Dynamic Cone (blows/30 cm) • SAMPLES 10 30 50 70 90 Atterberg Limits Depth Scale (m) ΡL LL WATER LEVEL EI. X Shear Strength (kN/m²) -(m) SOIL 100 150 50 200 DESCRIPTION N-Value Depth Number Penetration Resistance Ο (m) Type (blows/30 cm) Moisture Content (%) 70 10 30 50 90 10 20 30 40 267.6 Ground Surface 0.0 28 cm TOPSOIL 0 15 DO Ο 1 6 Ċ Brown, firm to hard weathered 1 SILTY CLAY TILL 1 2 DO 32 sandy, a trace of gravel 12 occ. sand and silt seams and layers, 3 DO 0 36 cobbles • 2 Ā 6 4 DO 28 d El. 265.2 m on completion 264.7 2.9 Compact to very dense, wet 3 21 5 DO 70 ሰ SILT <u>brown</u> 4 some sand, a trace of clay grey occ. silty fine sand layers B 22 N.L 6 DO 59 ഫ • 5 6 19 0 7 DO 25 261.0 6.6 END OF BOREHOLE 7 8 9 10 Soil Engineers Ltd. Page: 1 of 1

LOG OF BOREHOLE: W-106

FIGURE NO.: 6

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Solid Stem Augers

DRILLING DATE: October 19, 2023

PROJECT LOCATION:

V: Southeast of Old School Road and Chinguacousy Road, Town of Caledon

EI. (m) Depth (m)	SOIL DESCRIPTION	SAMPLES				 Dynamic Cone (blows/30 cm) 30 50 70 90 						At	terber	g Limits	6	
		Number	Type	N-Value	N-Value Depth Scale (m)	5	X Shear Strength (kN/m²) 50 100 150 200 0 Penetration Resistance (blows/30 cm) 10 30 50 70 90						 PL LL Moisture Content (%) 10 20 30 40 			
5.5	Ground Surface						·									
0	20 cm TOPSOIL Brown, stiff, weathered SILTY CLAY TILL sandy, a trace of gravel	1	DO	9	0	0						14 ●				
8	Brown, loose to compact,weathered very moist to wet	2	DO	19	1 -	-	,						21			
	SILT some sand, a trace of clay	3	DO	10	-	0							20 ●			
3.4	_				2 -											
1	Brown, dense, wetseepage				-								21			
2.6	SILTY FINE SAND a trace of clay	4	DO	31			0						•			
9	Reddish-brown/grey, dense to very dense grey, silt and <u>clay layers</u>	5	DO	31	3 -		0						•			
	SANDY SILT TILL				4 -											
	traces of clay and gravel occ. silt and clay layers, cobbles and boulders	6	DO	50/13	-						7					
					5 -											
					6 -											
9.1 4		7	DO	50	-			0			8					
	END OF BOREHOLE				7 -											-
	Installed 50-mm Ø PVC monitoring well to 6.1 m, completed with 1.5 m screen Sand backfill from 4.0 to 6.1 m Bentonite seal from 0.0 to 4.0 m				-											-
	Provided with a steel monument casing Seepage and cave-in detected at 2.4 m				8 -											-
																-
					-											-
					10											1

LOG OF BOREHOLE: W-107 PROJECT DESCRIPTION: Proposed Residential Development METHOD OF BORING: Solid Stem Augers **PROJECT LOCATION:** Southeast of Old School Road and Chinguacousy Road, DRILLING DATE: October 20, 2023 Town of Caledon Dynamic Cone (blows/30 cm) • SAMPLES 10 30 50 70 90 Atterberg Limits Depth Scale (m) ΡL LL EI. WATER LEVEL X Shear Strength (kN/m²) -(m) SOIL 100 150 50 200 DESCRIPTION N-Value Depth Number Penetration Resistance Ο (m) Type (blows/30 cm) Moisture Content (%) 70 10 30 50 90 10 20 30 40 Ground Surface 268.7 0.0 18 cm TOPSOIL 0 13 Stiff to hard DO 10 1 Φ • weathered 1 SILTY CLAY TILL 1 2 DO 19 13 sandy, a trace of gravel 3 DO 38 d . occ. sand and silt seams and layers, 2 cobbles 6 silt DO 4 60 Φ brown grey 3 1 5 DO 62 Э 264.7 4 4.0 Grey, very dense Dry on completion SILT 13 some clay DO 57 6 С ô occ. clay layers 5 263.1 5.6 Reddish-brown, very dense 6 SANDY SILT TILL 7 7 DO 75 0 traces of clay and gravel, occ. cobbles • 262.1 6.6 END OF BOREHOLE 7 8 9 10 Soil Engineers Ltd.

FIGURE NO .:

7

JOB NO.: 2310-S043

LOG OF BOREHOLE: W-108

FIGURE NO.: 8

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Solid Stem Augers

DRILLING DATE: October 19, 2023

PROJECT LOCATION:

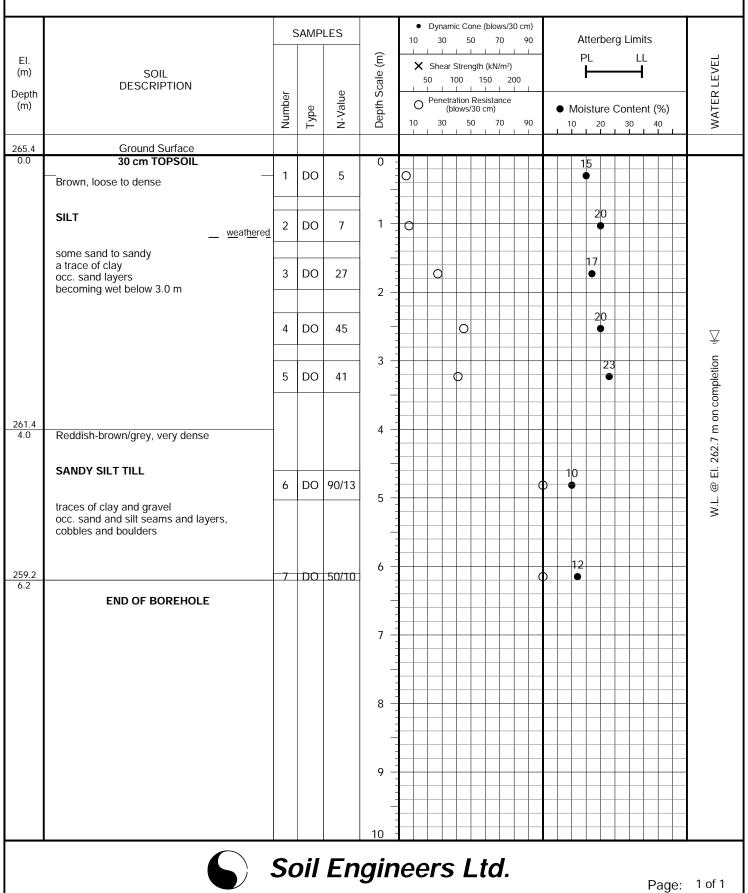
DN: Southeast of Old School Road and Chinguacousy Road, Town of Caledon

			SAMP	LES		• 10	Dyn 30		one (I 50	blows 70	(30 cm) 90		ļ	Atter	berg	Limits	6		
El. (m) Depth (m)	SOIL DESCRIPTION	Number	Type	N-Value Depth Scale (m)		X Shear Strength (kN/m²) 50 100 150 200 O Penetration Resistance (blows/30 cm) 0 90 90							Moisture Content (%) 10 20 30 40						
5	Ground Surface																		
)	Brown, firm to stiff, weathered	1	DO	7	0 -	a			$\left \right $				1 ●				_		
	SILTY CLAY TILL				-									_					
o.1	sandy, a trace of gravel occ. topsoil inclusions	2	DO	8	1 -	0								15 •					l
. <u> </u> 	Brown, compact to dense, wet				-									2	0				I
	SILT	3	DO	23	2 -		0												I
	some sand, a trace of clay occ. sand layers				-							_		_	23			_	
		4	DO	32			4	>							•				
1.6 9	Brown, dense, wet <u>seepage</u>				3 -										22				
	SILTY FINE SAND	5	DO	38	-			0				_			•				I
3.5	a trace of clay occ. silt lenses and layers											_							
.0	Reddish-brown, dense to very dense				4 –													╡┞	1
	SANDY SILT TILL	6	DO	39	-			0					10						-
	traces of clay and gravel occ. silt layers				5 -														
												_							
1.1		7	DO	50/10	6 -							•	11					┛	-11
4	END OF BOREHOLE				-														
	Installed 50-mm Ø PVC monitoring well to 6.1 m, completed with 1.5 m screen				7 -														
	Sand backfill from 4.0 to 6.1 m Bentonite seal from 0.0 to 4.0 m Provided with a steel monument casing																		
	Seepage and cave-in detected at 3.0 m				-														
					- - 9 —														
					- - -														
					10									-	$\left \cdot \right $			_	

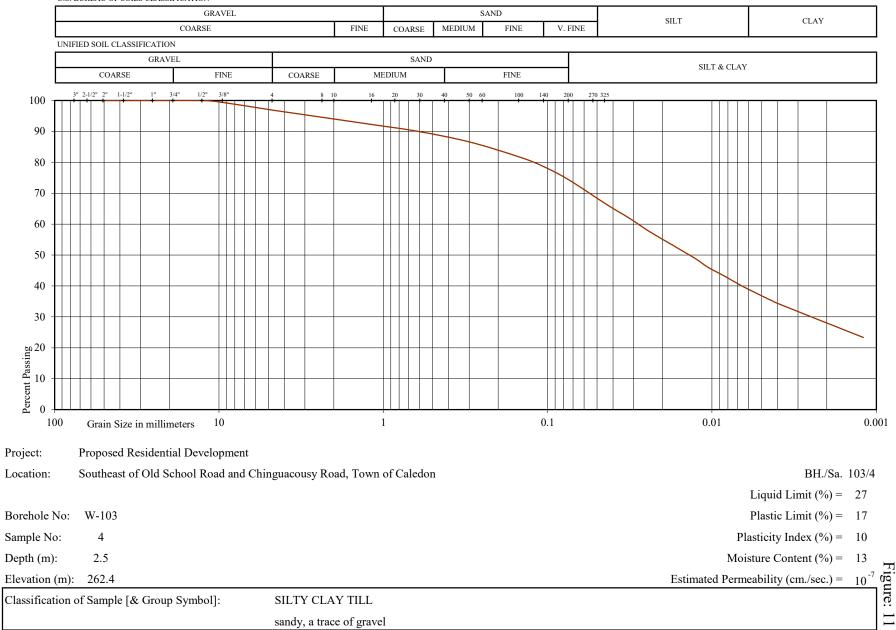
LOG OF BOREHOLE: W-109 9 FIGURE NO .: JOB NO.: 2310-S043 PROJECT DESCRIPTION: Proposed Residential Development METHOD OF BORING: Solid Stem Augers **PROJECT LOCATION:** Southeast of Old School Road and Chinguacousy Road, DRILLING DATE: October 20, 2023 Town of Caledon Dynamic Cone (blows/30 cm) • SAMPLES 10 30 50 70 90 Atterberg Limits 1 Depth Scale (m) ΡL LL EI. WATER LEVEL X Shear Strength (kN/m²) -(m) SOIL 100 150 50 200 DESCRIPTION N-Value Depth Number Penetration Resistance Ο (m) Type (blows/30 cm) Moisture Content (%) 10 30 50 70 90 10 20 30 40 267.7 Ground Surface 0.0 23 cm TOPSOIL 0 14 DO Ο Brown, loose to very dense 1 6 • SANDY SILT TILL/SILTY SAND TILL 13 weathered, 1 2 DO 35 О ___ cobble traces of clay and gravel occ. cobbles and boulders 3 DO Ο 54 2 10 4 DO 78 Q 264.8 2.9 Hard 3 12 5 DO 89 ന . brown SILTY CLAY grey 4 a trace to some sand Dry on completion frequent silt layers occ. gravel and sand seams 15 6 DO 50 Φ 5 6 6 261.5 13 7A 7B DO 50 Reddish-brown, very dense D 287.3 . SANDY SILT TILL 6.4 END OF BOREHOLE 7 8 9 10 Soil Engineers Ltd. Page: 1 of 1

LOG OF BOREHOLE: W-110

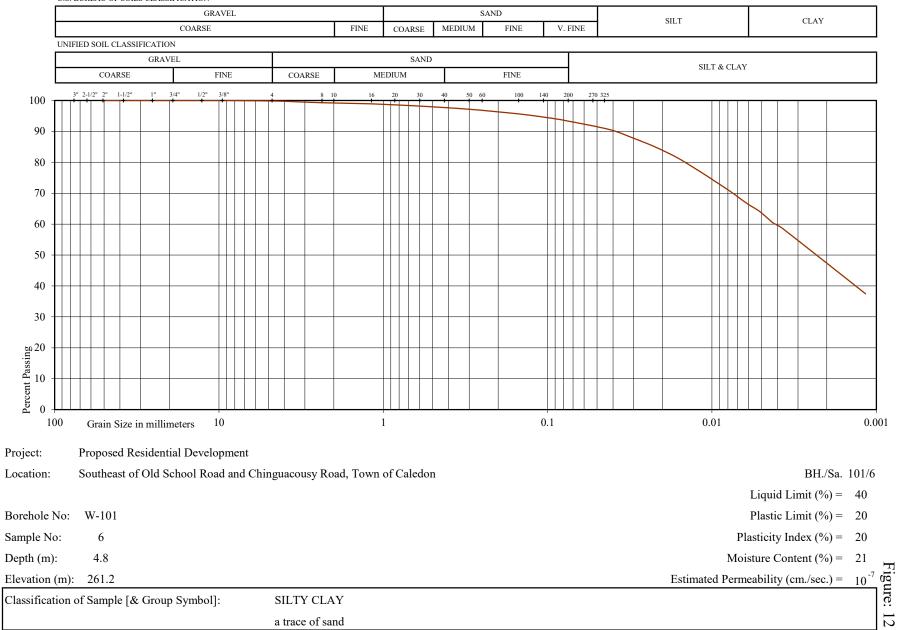
FIGURE NO.: 10

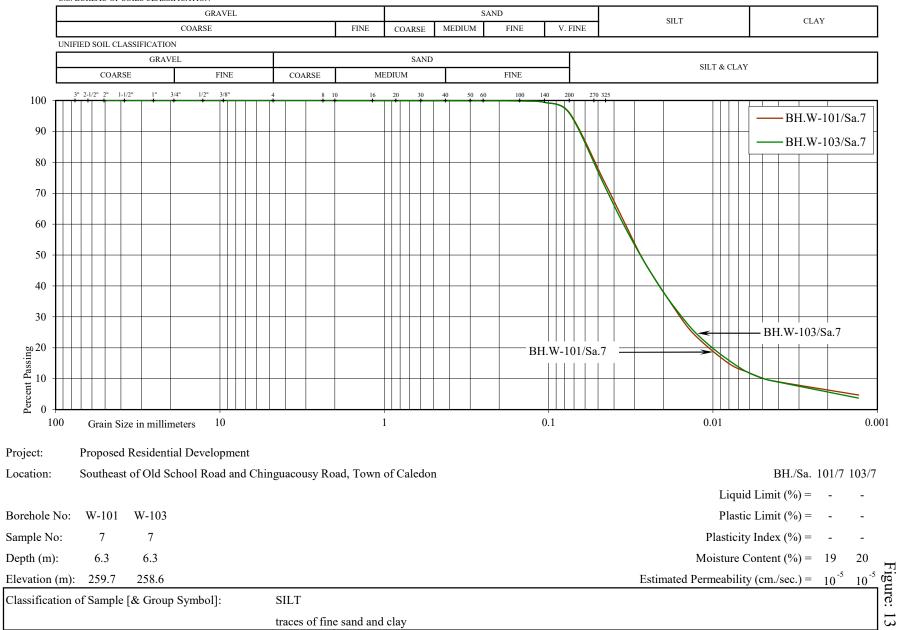

PROJECT DESCRIPTION: Proposed Residential Development

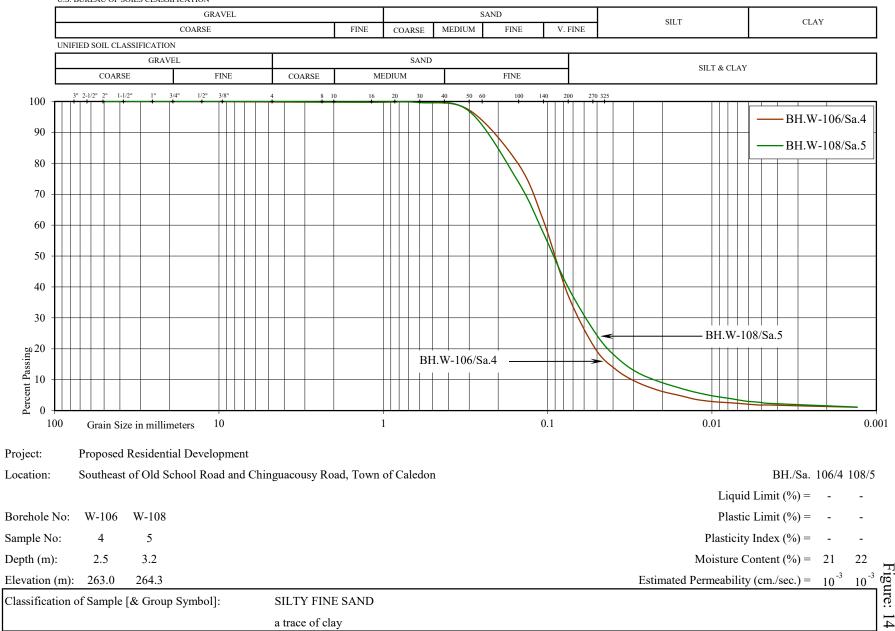
METHOD OF BORING: Solid Stem Augers


DRILLING DATE: October 20, 2023

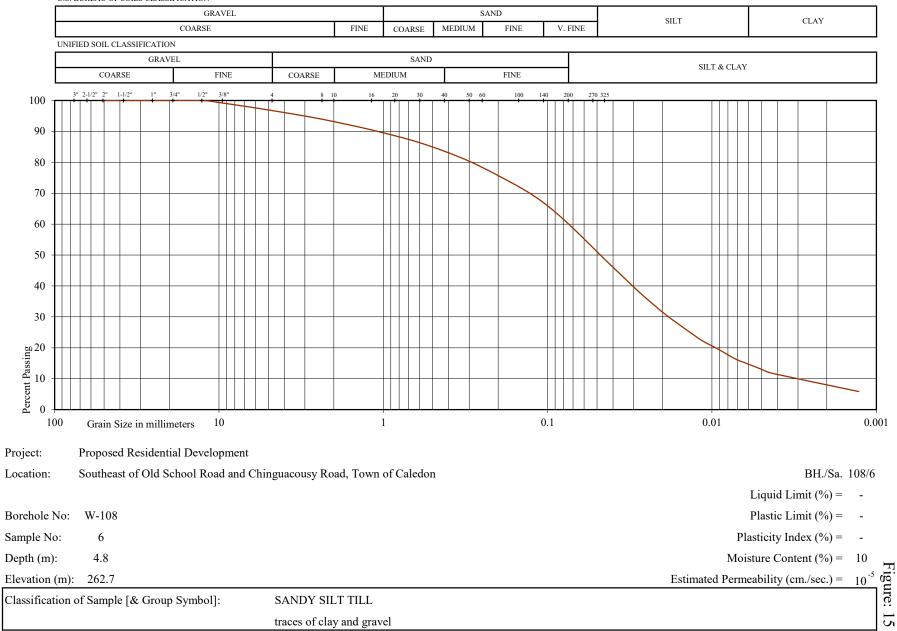
PROJECT LOCATION:

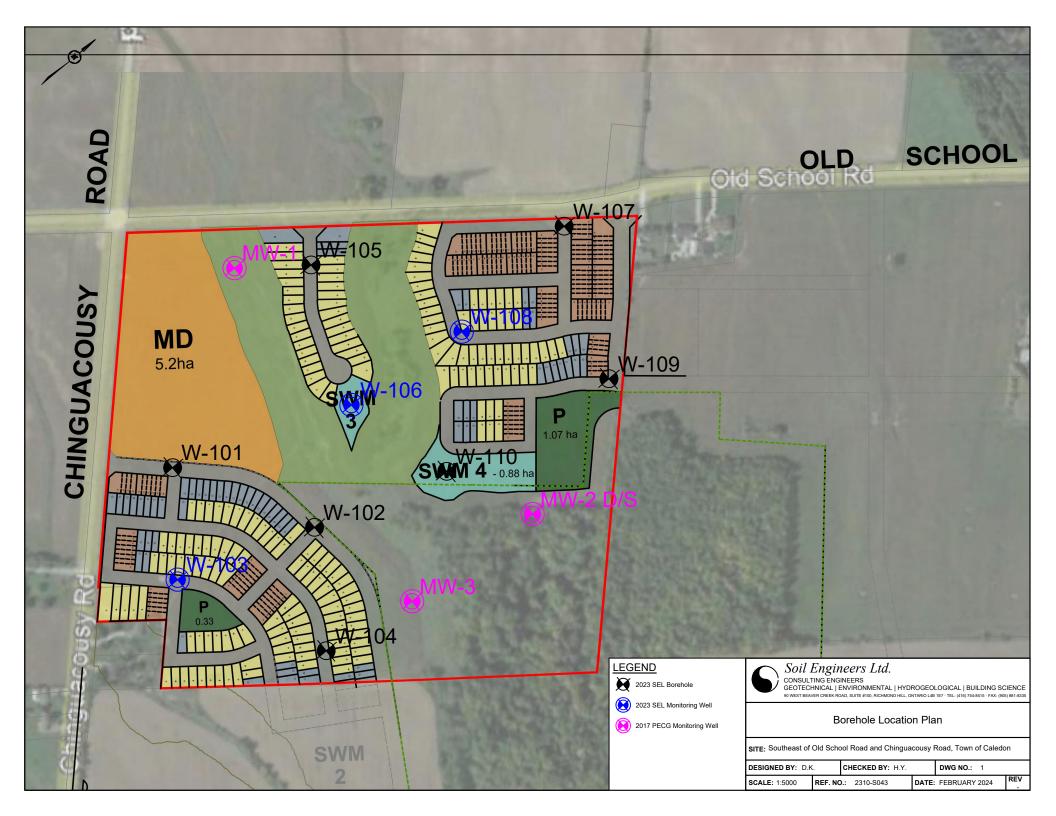

N: Southeast of Old School Road and Chinguacousy Road, Town of Caledon

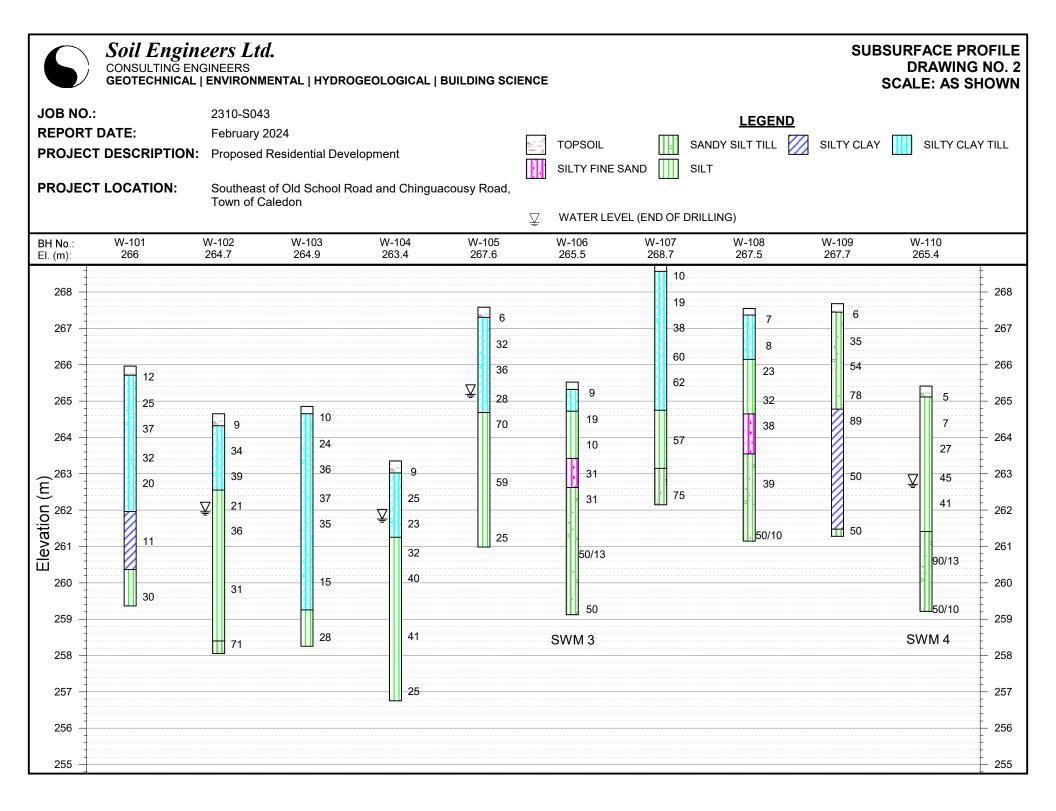


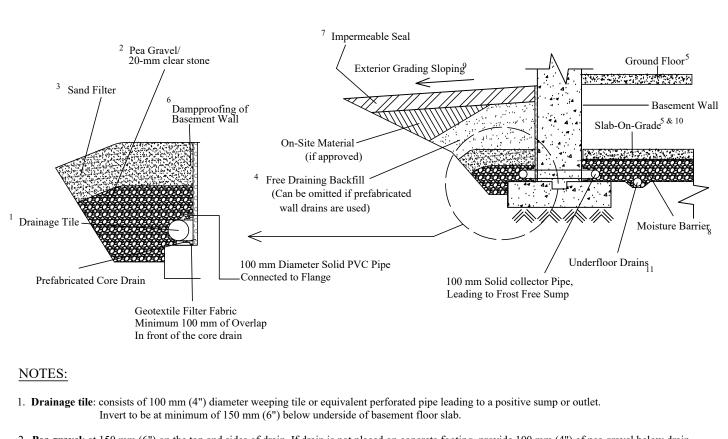


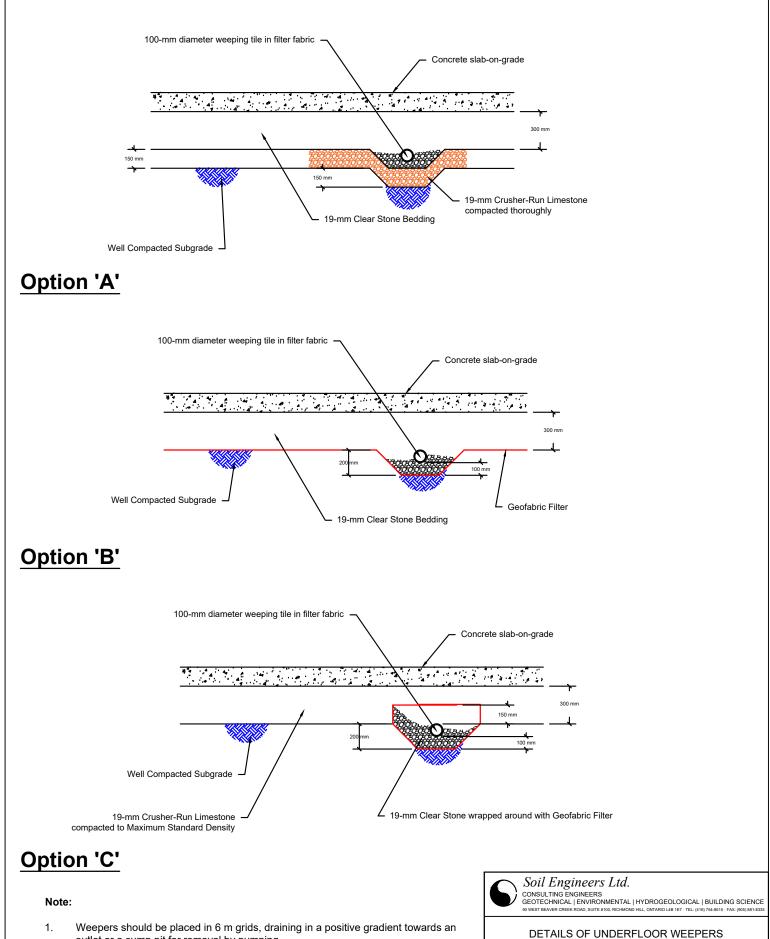
Reference No: 2310-S043






Reference No: 2310-S043




- Pea gravel: at 150 mm (6") on the top and sides of drain. If drain is not placed on concrete footing, provide 100 mm (4") of pea gravel below drain. The pea gravel may be replaced by 19-mm clear stone provided that the drain is covered by a porous geotextile membrane of Terrafix 270R or equivalent.
- 3. Filter material: consists of C.S.A. fine concrete aggregate. A minimum of 300 mm (12") on the top and sides of gravel. This may be replaced by an approved porous geotextile membrane of Terrafix 270R or equivalent.
- 4. Free-draining backfill: OPSS Granular 'B' or equivalent, compacted to 95% to 98% (maximum) Standard Proctor dry density. Do not compact closer than 1.8 m (6') from wall with heavy equipment. This may be replaced by on-site material if prefabricated wall drains (Miradrain) extending from the finished grade to the bottom of the basement wall are used.
- 5. Do not backfill until the wall is supported by the basement floor slab and ground floor framing, or adequate bracing.
- 6. Dampproofing of the basement wall is required before backfilling
- 7. Impermeable backfill seal of compacted clay, clayey silt or equivalent. If the original soil in the vicinity is a free-draining sand, the seal may be omitted.
- 8. Moisture barrier: 19-mm CRL or compacted OPSS Granular 'A', or equivalent. The thickness of this layer should be 150 mm (6") minimum.
- 9. Exterior Grade: slope away from basement wall on all the sides of the building.
- 10. Slab-On-Grade should not be structurally connected to walls or foundations.
- 11. **Underfloor drains*** should be placed in parallel rows at 6 to 8 m (20'-25') centre, on 100 mm (4") of pea gravel with 150 mm (6") of pea gravel on top and sides. The spacing should be at least 300 mm (12") between the underside of the floor slab and the top of the pipe. The drains should be connected to positive sumps or outlets. Do not connect the underfloor drains to the perimeter drains.

^{*} Underfloor drains can be deleted where not required.

PERMANENT PERIMETER DRAINAGE SYSTEM (FOR OPEN EXCAVATION)

SITE: SOUTHEAST TOWN OF CA	SUTHEAST OF OLD SCHOOL ROAD AND CHINGUACOUSY ROAD TOWN OF CALEDON								
DESIGNED BY: K.L. CHECKED BY: B.S. DWG NO.: 3									
SCALE: N.T.S.	REF. NO	D.: 2310-S043	DATE:	FEBRUARY 2024	REV				

- outlet or a sump pit for removal by pumping.
- 2. A 10-mil polyethylene sheet should be specified between the gravel bedding and concrete slab.

SITE: SOUTHEAST OF OLD SCHOOL ROAD AND CHINGUACOUSY ROAD TOWN OF CALEDON DESIGNED BY: K.L CHECKED BY: B.S. DWG NO.: 4 REV DATE: FEBRUARY 2024 SCALE: N.T.S. REF. NO.: 2310-S043

Soil Engineers Ltd.

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREE	K ROAD, SUITE 100, RIG	CHMOND HILL, ONTAR	IO L4B 1E7 · TEL: (41	6) 754-8515 · FAX:	(905) 881-8335
BARRIE TEL: (705) 721-7863	MISSISSAUGA TEL: (905) 542-7605	OSHAWA TEL: (905) 440-2040	NEWMARKET TEL: (905) 853-0647	MUSKOKA TEL: (705) 721-7863	HAMILTON TEL: (905) 777-7956
FAX: (705) 721-7864	FAX: (905) 542-2769	FAX: (905) 725-1315	FAX: (905) 881-8335	FAX: (705) 721-7864	FAX: (905) 542-2769

APPENDIX

BOREHOLE LOGS BY PECG

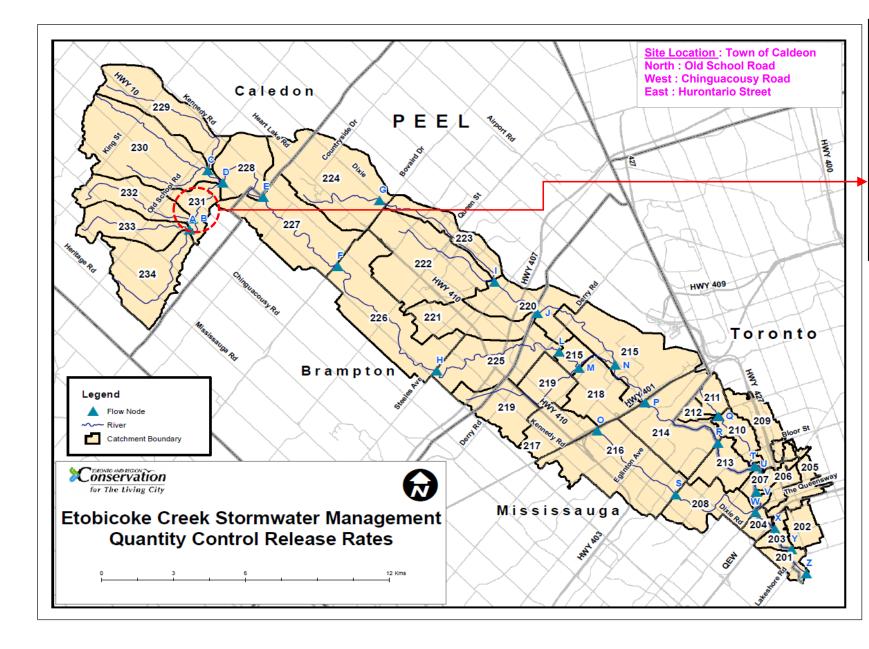
REFERENCE NO. 2310-S043

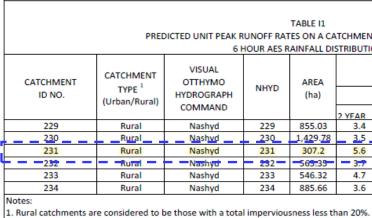
Project: Mavfi	ield West Stage 3	Drilling Method: Stolid S	Stem Au	gers		Coord	linates: 590	926.7 E, 4	843008.5 N
Project #: 170	-	Borehole Diameter: 0.12		-			Diameter: 0.		
Location: Cal	edon, Ontario	Rig Type: Marl M-5				S. Scr	eened Inter	rval: N/A	
Date: Novemb	per 13, 2017	Drilling Contractor: Drill	Tech			D. Scr	eened Inte	rval: 4.57	m - 6.09 m
		Soil Profile			Samp	oles	Sample De	escription	
Depth (mbgs)				Elevation			Recovery		Piezometer
1 (3 /	Descriptio	n	Strata	Depth	Number	Туре	(m)	N-Value	Installation
0	Topsoil: clay and silt, some sand brown	d, organics, loose, moist,			1	SS	0.254 / 0.609	8	
0.75				267.16 0.84	2	SS	0.432 / 0.609	30	
1.36 1.52 2 2.13	Clayey silt till, some sand, some moist, brov			265.79	3	SS	0.432 / 0.609	44	
2.28				2.21	4	SS	0.533 / 0.609	55	M
3.04					5	SS	0.609 / 0.609	26	
4 -	Medium sand and silt, medium o grey	lense to very dense, wet,							
4.57 5 5.18					6	SS	0.609 / 0.609	47	
6									
6.09 6.7 7				261.6 6.4	N/A	N/A	N/A	N/A	
	Silty clay till, some sand, very o	dense, moist, red/brown							
8 7.9	END OF BOREHOLE AT 7.9 m			260.1 7.9	7	SS	0.279 / 0.279	83 / 0.28m	
Well Installation Details									
Stick Up Heig	Jht: 0.65 m ation: 268 masl			W.L. upor	n Well Co	mpleti	on (D.): 2.9 on (S.): N/A	3 mbtoc, 2	.28 mbgs
Ground Eleva	auvii. 200 Illasi			vv.∟. upor		mpieti	UII (3.): N/A	۱ ۱	

Project: Mayfi	eld West Stage 3	Drilling Method: Stolid S	Stem Au	igers		Coord	linates: 591	429.4 <u>E,</u> 4	843101.6 N	
Project #: 170		Borehole Diameter: 0.12	2 m				Well Diameter: 0.0508 m			
Location: Cale		Rig Type: Marl M-5				S. Screened Interval: 3.35 m - 4.88 m				
Date: Novemb	er 13, 2017	Drilling Contractor: Dril	ITech			D. Scr	reened Inter	r val: 5.79 i	n - 8.84 m	
		Soil Profile			Sam	oles	Sample De	escription	Piezometer	
Depth (mbgs)	Descriptio	n	Strata	Elevation Depth	Number	Туре	Recovery (m)	N-Value	Installation	
0	Topsoil: Fine and medium sau organics, loose, moist to	Topsoil: Fine and medium sand and silt, some clay,					0.330 / 0.609	7		
0.75	organics, iouse, moist to	ary, dark brown		266.55	2	SS	0.305 / 0.609	10		
1.36 1.52 2- 2.13	Fine to medium sand and silt, me brown/gre			1.45 265.76	3	SS	0.609 / 0.609	22		
2.28 2.89 3	Clay, very stiff, cohesi	ve, moist, grey		2.24 265.4 2.6	4	SS	0.609 / 0.609	28		
3 = 3.04					5	SS	0.508 / 0.609	49		
4-	4.11 m - 4.65 m: Gravel with silt matrix	, very wet, grey								
5-5.18	Clayey silt to silty clay till, some	sand. gravel and cobbles.			6	SS	0.356 / 0.381	71 / 0.23		
6	very dense, moist,									
6.09 6.7 6.7					7	SS	0.102 / 0.102	50 / 0.10		
7.62 8					8	SS	0.076 / 0.076	50 / 0.08		
Well Installation Details S. Stick Up Height: 0.66 m; D. Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 8.35 mbtoc, 7.60 mbgs										
Ground Eleva	ition: 268 masl	0.73111					ion (D.): 6.3			
					-			, -	J.	

BOREHOLE RECORD OF MW-2 s/d

Project:	Mayfi	eld West Stage 3	Drilling Method: Stolid	Stem Au	igers		Coord	linates: 591	429.4 E, 4	843101.6 N
Project #	#: 170	162	Borehole Diameter: 0.1	2 m			Well D	Diameter: 0.	.0508 m	
Location	ı: Cal	edon, Ontario	Rig Type: Marl M-5				S. Scr	eened Inte	rval: 3.35 i	m - 4.88 m
Date: No	vemb	per 13, 2017	Drilling Contractor: Dri	llTech			D. Scr	eened Inte	rval: 5.79	m - 8.84 m
			- Coil Drofilo			Same		Comple D	opprintign	
Denth (m	haa)		Soil Profile	1		Samp	Jies	Sample Description		Piezometer
Depth (m	ibgs)	Descriptio	n	Strata	Strata Elevation		Туре	Recovery	N-Value	Installation
	8.22	Continued			Depth			(m)		
	0.22	Communed								
										E
_		Clayey silt to silty clay till, some								E
_		very dense, moist,	red/brown							
9										
					258.78					
10	9.14	END OF BOREHOLE AT 9.22 m			9.22	1		0.070 /		
_						9	SS	0.076 / 0.076	50 / 0.08	
	9.75							0.076		
	5.70									
10										
_										
7										
	10.66									
11-										
	11.27									
12										
_										
_	12.19									
13										
	12.8									
13										
15										
_										
7										
	13.71									
14										
15	14.32									
1										
1										
45										
16	15.24									
1	13.24									
1										
	15.84									
16										
			Well Installat	ion Dot	ails					
S. Stick	Up H	eight: 0.66 m; D. Stick Up Height:	0.75 m	Jon Del	W.L. upo	n Well Co	mpleti	on (D.): 8.3	5 mbtoc. 7	.60 mbas
		ition: 268 masl			W.L. upo	n Well Co	mpleti	on (S.): 5.1	4 mbtoc, 4	.48 mbgs


Project #: 170162 Bornhole Diameter: 0.12 m Well Diameter: 0.0508 m Location: Colledon. Ontario Rig Type: Mart M-5 S. Screened Interval: 4.57 m - 7.62 m Depth (mbgs) Soil Profile Sample: Description Strata Depth (mbgs) Soil Profile Sample: Sample: Description Sample: Description 0 Strata Evention Strata Sample: Description 1 Ss 0.609 5 12 Topsol: sill and fine sand, some clay, some organics, loss 1 Ss 0.609 5 1 Ss 0.609 7 2 SS 0.609 5 1 Topsol: sill and fine sand, some clay, some organics, loss 1 1 SS 0.609 22 1 2 SS 0.609 7 2 SS 0.609 22 2 SS 0.609 27 3 SS 0.609 27 1 2 SS 0.609 4 SS 0.609 27 3 SSI	Project: Mavfi	eld West Stage 3	Drilling Method: Stolid S	Stem Au	Project: Mayfield West Stage 3 Drilling Method: Stolid Stem Augers Coordinates: 591415.3 E, 4842905.2 N										
Location: Carecon, Ontanio Priling Contractor: Drilling Contractor: Dril		-			.90.0					0.2000.2.1					
Date: November 13, 2017 Drilling Contractor: DrillTedh D. Screened Interval: 457 m - 7.62 m Depth (mbgs) Soll Profile Sample: Description Sample: Description Piczoneter Installation 1 3 3 3 0.5 0.569/ 7 1 1 SS 0.254/ 0.509/ 5 1 1 SS 0.254/ 0.509/ 5 1 1/2 m: soils tum grey 1 SS 0.509/ 7 1 1/2 m: soils tum grey 1 1.45 3 SS 0.509/ 2 1 1/2 m: soils tum grey 1 1.45 3 SS 0.609/ 2 1 1/2 m: soils tum grey 2 SS 0.609/ 2 2 1 1.45 1.45 SS 0.609/ 2 2 2 SI mode silly clay till, gravel and cobbles, dense to ver 2 SS 0.609/ 4 6 SS 0.309/ 37 1 1 1 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-														
Soil Profile Sample Description Sample Description Perconneter Installation Depth (mbgs) Description Strate Elevation Number Type Recovery N-Value Perconneter Installation 1 0.6 Topsoil: sill and fine samel, some clay, some organics, loos 1 SS 0.254 / 0.600 7 1.2 Topsoil: sill and fine samel, some clay, laminae, medium dense, we grey 145 3 SS 0.600 / 7 2.3 Fine sand and sill, some clay, laminae, medium dense, we grey 2.06 4 SS 0.600 / 277 2.30 Clay, some sill, cohesive, hard, wet, grey 2.09 4 SS 0.600 / 477 3.34 Silly sand to silly clay till, gravel and cobbles, dense to ver dense, moist, red/brown 6 SS 0.301 / 37 1 4.4 SS 0.277 / 73 / 0.28 0.305 / 0.277 / 73 / 0.28 0.305 / 0.277 / 73 / 0.28 0.305 / 0.277 / 73 / 0.28 0.305 / 0.277 / 73 / 0.28 0.305 / 0.277 / 73 / 0.28				Tech					m - 7.62 m						
Depth (mbgs) Description Strata Elevation Depth Number Type Recovery (m) N-Value Piezonneter installation 1 5 0.609 7 1 SS 0.609 7 1 12 m: solit um grey						Som									
Under Ubescription Strate Depth Numer Type (N) (N-Value) Installation 1 0 Topooli. silt and fine sand, some clay, some organics, loos moist to wet, brown 1 SS 0.254./ 5 1 12 SS 0.483./ 7 1 12 SS 0.433./ 7 1 12 SS 0.433./ 7 1 12 SS 0.533./ 22 230 24 24 SS 0.533./ 27 1 435 SS 0.609/ 47 1 435 SS 0.609/ 37 1 536 SS 0.301./ <td>Depth (mbas)</td> <td></td> <td></td> <td></td> <td>Elovation</td> <td></td> <td></td> <td>•</td> <td>escription</td> <td></td>	Depth (mbas)				Elovation			•	escription						
1 SS 0.256/ (0.609) 5 1 SS 0.256/ (0.609) 5 1 SS 0.483/ (0.609) 7 1 SS 0.483/ (0.609) 7 1 SS 0.483/ (0.609) 7 1 SS 0.483/ (0.609) 7 1 SS 0.584/ (0.609) 7 1 SS 0.581/ (0.609) 7 1 SS 0.581/ (0.609) 7 1 SS 0.279/ (0.279) 73/ (0.28) <	Deptil (mbgb)	Descriptio	n	Strata		Number	Туре	-	N-Value	Installation					
1 1.12 m: solis tum grey 1.2 m: solis tum grey 2 SS 0.483 / 0.609 7 1 1.2 m: solis tum grey 281.55 0.584 / 0.609 22 1 1.4 3 SS 0.584 / 0.609 22 1 1.4 3 SS 0.584 / 0.609 22 1 1.4 1.4 SS 0.584 / 0.609 22 1 1.4 SS 0.583 / 0.609 27 1 1.4 SS 0.609 / 0.609 47 1 1.4 SS 0.609 / 0.609 47 1 1.4 SS 0.609 / 0.609 47 1 1.4 SS 0.609 / 0.7 10.609 1 1.4 1.4 SS 0.609 / 0.7 1 1.4 1.5 SS 0.809 / 0.7 1 1.4 1.4 1.4 1.4 1.4 1 1.4 1.5 1.5 1.5 0.609 / 0.7 1 1.4 1.4 1.4 1.4 1.4 1.4 1.4		Topsoil: silt and fine sand, some o	Tonsoil: silt and fine sand, some clay, some organics, loos						5						
213 200.84 200.84 4 SS 0.503 / 0.609 27 33 34 35 0.503 / 0.609 47 4 5 SS 0.609 / 47 36 36 5 SS 0.609 / 47 6 SS 0.609 / 47 44 457 6 SS 0.609 / 47 6 SS 0.609 / 47 457 5 58 0.609 / 47 6 SS 0.609 / 47 457 5 58 0.609 / 47 6 SS 0.609 / 47 457 5 58 0.609 / 47 6 SS 0.609 / 47 457 5 58 0.609 / 37 7	<u>1</u> 1.36		prown		261.55	2	SS		7						
228 Clay, some silt, cohesive, hard, wet, grey 2.38 4 SS 0.533/ 27 3.34 260.38 262 4 SS 0.609 47 3.54 5 SS 0.609/ 47 4.57 Silty sand to silty clay till, gravel and cobbles, dense to ver dense, moist, red/brown 6 SS 0.381/ 37 6 6.6 6.9 7 SS 0.279/ 73 / 0.28 7 7.6 7.8 0.305/ 59	2 - 2.13		ninae, medium dense, we	,	1.45	3	SS		22						
3.44 3.64 4 4 4 4 4 4 4 4 4 5 4 5 4.57 Sitty sand to sitty clay till, gravel and cobbles, dense to veridense, moist, red/brown 6 SS 0.381 / 0.609 6.7 0.609 37 7 SS 0.279 / 73 / 0.28 8 SS 0.305 / 59 7.82 25.08 SS 7.82 0.305 / 59	2.89	Clay, some silt, cohesive	e, hard, wet, grey		2.36 260.38	4	SS		27						
5 5.18 6 SI ly sand to silty clay till, gravel and cobbles, dense to ver dense, moist, red/brown 6 SS 0.381 / 0.609 7 6 SS 0.609 6.09 7 SS 0.279 / 73 / 0.28 7 7 SS 0.279 / 73 / 0.28 8 SS 0.305 / 59	3.04					5	SS		47						
5 5.18 6 SS 6 6 6 60 6.09 7 6.7 7 SS 7 SS 7 SS 0.279 / 0.279 73 / 0.28 8 SS 7.62 8 SS 9.00 F BOREHOLE AT 7.92 m															
6 6.09 6.09 7 SS 0.279 / 0.279 73 / 0.28 6.7 7 SS 0.279 / 0.279 73 / 0.28 7 7 SS 0.305 / 0.305 59 Vell Installation Details	5	dense, moist, re	a/brown			6	SS		37						
6.7 6.7 SS 0.279 / 0.279 73 / 0.28 7 6.7 6.7 0.279 73 / 0.28 7.62 7.62 8 SS 0.305 / 0.305 59 Vell Installation Details															
7.62 8 7.62 8 SS 0.305 / 0.305 59 END OF BOREHOLE AT 7.92 m Yell Installation Details						7	SS		73 / 0.28						
8 7.92 8 SS 0.305 / 0.305 59 END OF BOREHOLE AT 7.92 m Yell Installation Details	7-														
Well Installation Details		END OF BOREHOLE AT 7.92 m			7.92	8	SS		59						
	Well Installation Details														
Stick Up Height: 0.75 m W.L. upon Well Completion (D.): 5.80 mbtoc, 5.05 mbgs	Stick Up Heig	ht: 0.75 m								.05 mbgs					
Ground Elevation: 263 masl W.L. upon Well Completion (S.): N/A	Ground Eleva	111011: 203 masi			vv.∟. upoi	i well CC	mpieti	ບາາ (ວ.): N/A	<i>۱</i>						


APPENDIX D

HYDROGEOLOGICAL REPORT

APPENDIX E

PRELIMINARY STORM WATER MANAGEMENT CALCULATIONS

Table extracted from TRCA SWM Criteria Manual (August Version 2012)

SWM	Pond		Ur	nit Runoff F	Rates (L/s/H	la)	
Pond No.	Area	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
	(Ha)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)
		5.6	10.1	13.6	18.3	22.2	26.1
1	2.30	13	23	31	42	51	60
2	9.34	52	94	127	171	207	244
3	8.79	49	89	120	161	195	229
4	33.72	189	341	459	617	748	880
5	18.01	101	182	245	330	400	470
6	7.94	44	80	108	145	176	207
7	2.99	17	30	41	55	66	78
8	11.66	65	118	159	213	259	304

TABLE I1 PREDICTED UNIT PEAK RUNOFF RATES ON A CATCHMENT BY CATCHMENT BASIS 6 HOUR AES RAINFALL DISTRIBUTION

AREA (ha)	UNIT RUNOFF RATES (I/s/ha) STORM									
	2 YEAR	5 YEAR	10 YEAR	25 YEAR	50 YEAR	100 YEAR				
855.03	3.4	6.1	8.1	11	13.3	15.6				
1,429.78	3.5	6.2	8.4	11.3	13.6	16				
307.2	5.6	10.1	13.6	18.3	22.2	26.1	_			
565.35	3.7	6.7	-9	12.2	14.8	17.4	•			
546.32	4.7	8.4	11.3	15.3	18.4	21.7				
885.66	3.6	6.4	8.6	11.7	14.1	16.7				

Drainage Area vs Landuse Type Breakdown (Pond P1)

Total Site Area draining to Proposed SWM Pond = 2.30 Ha

Catchment Type	Typical Imperviousness	Typical Run- Off "C"	Area (Ha)			
Park/Open Space	10%	0.25	0			
Low/Medium-Density Residential	60%	0.50	2.02			
High-Density Residential	80%	0.75	0			
School	80%	0.75	0			
SWM Pond Area	100%	0.90	0.29			
	2.30	На				
	Composite Imperviousness =					

MOECP Requirements (@ 65% Imp) =

213.33 m³/ha

Extended Detention) 491.33 m³

(Includes 40m³/ha

Permanent Pool Volume Requirement =	
-------------------------------------	--

Elevations	Forebay Area	Main Cell	Total	Average	Depth	Delta	Total	
		Area	Area	Area		Volume	Volume	
(m)	(m ²)	(m ²)	(m ²)	(m ²)	(m)	(m ³)	(m ³)	
262.50	24	22	47					
262.50	24	23	47	110	0.50	55		
263.00	89	84	173		0.00	55	55	
				568	1.00	568		
264.00			963					Permanent Pool
								Storage
264.00			963	10.50	4.00	10.50	0	
265.00			1560	1263	1.00	1263	1000	
265.00			1563	1915	1.00	1915	1263	
266.00			2267	1913	1.00	1913	3178	
							2.10	

TRCA's 25mm Erosion Control Requirement

Contributing Drainage Area (ha) = 2.30 Ha

25mm 4Hr Chicago Post Development Runoff Volume in Depth = 15.289 mm (Refer to VO Results) (R.V x Drainage Area) 352 m³ 25mm Volume Required = 379 **m**³ 25mm Volume Provided = (@ Elv = 264.30m)

Drainage Area vs Landuse Type Breakdown (Pond P2)

Total Site Area draining to Proposed SWM Pond = 9.34 Ha

Catchment Type	Typical Imperviousness					
Park/Open Space	10%	0.25	1.070			
Low/Medium-Density Residential	60%	0.50	5.354			
High-Density Residential	80%	0.75	2.035			
School	80%	0.75	0.000			
SWM Pond Area	100%	0.90	0.880			
	9.34	На				
	Composite Imperviousness =					

MOECP Requirements (@ 62% Imp) =

207.3 m³/ha

167.3 m³/ha

1,562.1 m³

m'/na

(Excludes 40m³/ha

Extended Detention)

Permanent Pool Volume Requirement =

Elevations Forebay Area Main Cell Total Average Depth Delta Total Area Area Area Volume Volume (m²) (m) (m^2) (m²) (m²) (m) (m³) (m³) 262.50 257 103 360 680 1.00 680 565 263.50 436 1000 680 2013 0.50 1007 264.00 3026 1687 Permanent Pool Storage 264.00 3026 0 4003 4003 1.00 265.00 4979 4003 5692 1.00 5692 266.00 6405 9694 6840 0.50 3420 7275 **Total Active** 266.50 13114 Storage

TRCA's 25mm Erosion Control Requirement

Contributing Drainage Area (ha) = 9.34 Ha

25mm 4Hr Chicago Post Development Runoff Volume in Depth = 14.992 mm (Refer to VO Results) (R. V x Drainage Area) 25mm Volume Required = 1,400 m³ 25mm Volume Provided = 1,601 m³ (@ Elv = 264.40m)

Drainage Area vs Landuse Type Breakdown (Pond P3)

Total Site Area draining to Proposed SWM Pond = 8.79 Ha

Catchment Type	Typical Imperviousness	Typical Run- Off "C"	Area (Ha)	
Park/Open Space	10%	0.25	0.000	
Low/Medium-Density Residential	60%	0.50	5.028	
High-Density Residential	80%	0.75	2.694	
School	80%	0.75	0.000	
SWM Pond Area	100%	0.90	1.070	
	8.79	На		
	71%			

MOECP Requirements (@ 71% Imp) =

227.3 m³/ha

1,998 m³

(Includes 40m³/ha Extended Detention)

Permanent Pool Volume Requirement =

Elevations	Forebay Area	Main Cell	Total	Average	Depth	Delta	Total	1
		Area	Area	Area		Volume	Volume	
(m)	(m ²)	(m ²)	(m ²)	(m ²)	(m)	(m ³)	(m ³)	
256.50	931	1155	2086					
				2378	0.50	1189		
257.00	1183	1487	2670				1189	
				3844	1.00	3844		
258.00			5017				5033	Permanent Pool
								Storage
258.00			5017				0	
				5917	1.00	5917		
259.00			6818				5917	
				7591	1.00	7591		
260.00			8364				13508	Total Active
								Storage
								J

TRCA's 25mm Erosion Control Requirement

Contributing Drainage Area (ha) = 8.79 Ha

25mm 4Hr Chicago Post Development Runoff Volume in Depth = 16.772 mm (Refer to VO Results) (R. V x Drainage Area) 25mm Volume Required = 1,474 m³ 25mm Volume Provided = 1,479 m³ (@ Elv = 258.25m)

Drainage Area vs Landuse Type Breakdown (Pond P4)

Total Site Area draining to Proposed SWM Pond = 33.72 Ha

Catchment Type	Typical Imperviousness	5. 5.		
Park/Open Space	10%	0.25	5.800	
Low/Medium-Density Residential	60%	0.50	19.053	
High-Density Residential	80%	0.75	4.292	
Elementary School	80%	0.75	2.890	
SWM Pond Area	100%	100% 0.90		
	33.72	На		
	58%			

MOECP	Req	uirement	ts (@ :	58%	lmp) =	
-			-			

196.2 m³/ha

(Includes 40m³/ha Extended Detention)

Permanent Pool Volume Requirement =

6,615 m³

Elevations	Forebay Area	Main Cell	Total	Average	Depth	Delta	Total	
		Area	Area	Area		Volume	Volume	
(m)	(m ²)	(m²)	(m ²)	(m ²)	(m)	(m ³)	(m ³)	
256.00	1199	2225	3424					
				4251	1.00	4251		
257.00	1780	3298	5078				4251	
				6400	1.00	6400		
258.00			7722					Permanent Pool
								Storage
258.00			7722				0	
				8577	1.00	8577		
259.00			9433				8577	
				10174	1.00	10174		
260.00			10915				18751	Total Active
								Storage

TRCA's 25mm Erosion Control Requirement

Contributing Drainage Area (ha) = 33.72 Ha

25mm 4Hr Chicago Post Development Runoff Volume in Depth = 14.004 mm (Refer to VO Results) (R. V x Drainage Area) 25mm Volume Required = 4,722 m³ 25mm Volume Provided = 4,972 m³ (@ Elv = 258.58m)

Drainage Area vs Landuse Type Breakdown (Pond P5)

Total Site Area draining to Proposed SWM Pond = 18.01 Ha

Catchment Type	Typical Imperviousness			
Park/Open Space	10%	0.25	3.49	
Commercial	95%	0.90	1.40	
Low/Medium-Density Residential	60%	0.50	8.71	
High-Density Residential	80%	0.75	3.31	
Elementary School	80%	0.75	0.00	
SWM Pond Area	100%	100% 0.90		
	18.01	На		
	59%			

MOECP Requirements (@ 59% Imp) =

199.7 m³/ha 3,597 m³ (Includes 40m³/ha

Extended Detention)

Permanent Pool Volume Requirement =

Elevations	Forebay Area	Main Cell	Total	Average	Depth	Delta	Total	
		Area	Area	Area		Volume	Volume	
(m)	(m²)	(m ²)	(m ²)	(m ²)	(m)	(m ³)	(m ³)	
254.00	588	1082	1670					
				2215	1.00	2215		
255.00	1048	1710	2759				2215	
				3793	1.00	3793		
256.00			4827				6007	Permanent Pool
								Storage
256.00			4827				0	
				5618	1.00	5618		
257.00			6409				5618	
				7244	1.00	7244		
258.00			8080				12862	Total Active
								Storage

TRCA's 25mm Erosion Control Requirement

Contributing Drainage Area (ha) = 18.01 Ha

25mm 4Hr Chicago Post Development Runoff Volume in Depth = 14.146 mm (Refer to VO Results) (R. V x Drainage Area) 25mm Volume Required = 2,548 m³ 25mm Volume Provided = 2,809 m³ (@ Elv = 264.50m)

Drainage Area vs Landuse Type Breakdown (Pond P6)

Total Site Area draining to Proposed SWM Pond = 7.94 Ha

Catchment Type	Typical Imperviousness	Typical Run- Off "C"	Area (Ha)			
Park/Open Space	10%	0.25	0.40			
Commercial	95%	0.90	3.51			
Low/Medium-Density Residential	60%	0.50	2.56			
High-Density Residential	80%	0.75	0.82			
Elementary School	80%	0.75	0.00			
SWM Pond Area	100%	100% 0.90				
	7.94	На				
	Composite Imperviousness =					

MOECP Requirements (@ 78% Imp) =

238.8 m³/ha

1,579 m³

198.8 m³/ha (Excludes 40m³/ha Extended Detention)

Permanent Pool Volume Requirement =

Elevations	Forebay Area	Main Cell	Total	Average	Depth	Delta	Total	
		Area	Area	Area		Volume	Volume	
(m)	(m ²)	(m ²)	(m ²)	(m ²)	(m)	(m ³)	(m ³)	
260.50	59	209	267					
				537	0.50	269		
261.00	258	549	807				269	
				1501	1.00	1501		
262.00			2194				1769	Permanent Pool
								Storage
262.00			2194				0	
				2664	1.00	2664		
263.00			3134				2664	
				3631	1.00	3631		
264.00			4129				6295	Total Active
								Storage

TRCA's 25mm Erosion Control Requirement

Contributing Drainage Area (ha) = 7.94 Ha

25mm 4Hr Chicago Post Development Runoff Volume in Depth = 17.101 mm (Refer to VO Results) (R. V x Drainage Area) 25mm Volume Required = 1,358 m³ 25mm Volume Provided = 1,465 m³ (@ Elv = 262.55m)

Drainage Area vs Landuse Type Breakdown (Pond 7)

Total Site Area draining to Proposed SWM Pond = 2.99 Ha

Catchment Type	Typical Imperviousness	Typical Run- Off "C"	Area (Ha)	
Park/Open Space	10%	0.25	0.00	
Low/Medium-Density Residential	60%	0.50	2.70	
High-Density Residential	80%	0.75	0.00	
Elementary School	80%	0.75	0.00	
SWM Pond Area	100%	100% 0.90		
	2.99	На		
	64%			

MOECP Requirements (@ 64% Imp) =

210.8 m³/ha

631 m³

(Includes 40m³/ha Extended Detention)

Permanent Pool Volume Requirement =

Elevations	Forebay Area	Main Cell	Total	Average	Depth	Delta	Total	
		Area	Area	Area		Volume	Volume	
(m)	(m ²)	(m ²)	(m ²)	(m ²)	(m)	(m ³)	(m ³)	
259.00			58					
				169	1.00	169		
260.00			281				169	
			_	659	1.00	659		
261.00			1036				828	Permanent Pool
201.00			1050					Storage
261.00			1036				0	Storage
201.00			1050	1222	1 00	1000	0	
			4.600	1322	1.00	1322	4000	
262.00			1608				1322	
				1800	0.50	900		
262.50			1992				2222	Total Active
								Storage

TRCA's 25mm Erosion Control Requirement

Contributing Drainage Area (ha) = 2.99 Ha

25mm 4Hr Chicago Post Development Runoff Volume in Depth = 15.021 mm (Refer to VO Results) (R. V x Drainage Area)

25mm Volume Required =

. 450 m³

Drainage Area vs Landuse Type Breakdown (Pond P8)

Total Site Area draining to Proposed SWM Pond = 11.66 Ha

Catchment Type	Typical Imperviousness			
Park/Open Space	10%	0.25	0.00	
Low/Medium-Density Residential	60%	0.50	8.82	
High-Density Residential	75%	0.75	1.64	
Elementary School	80%	0.75	0.00	
SWM Pond Area	100%	100% 0.90		
	11.66	На		
	66%			

MOECP Requirements (@ 66% Imp) =

216.2 m³/ha

2,520 m³

(Includes 40m³/ha Extended Detention)

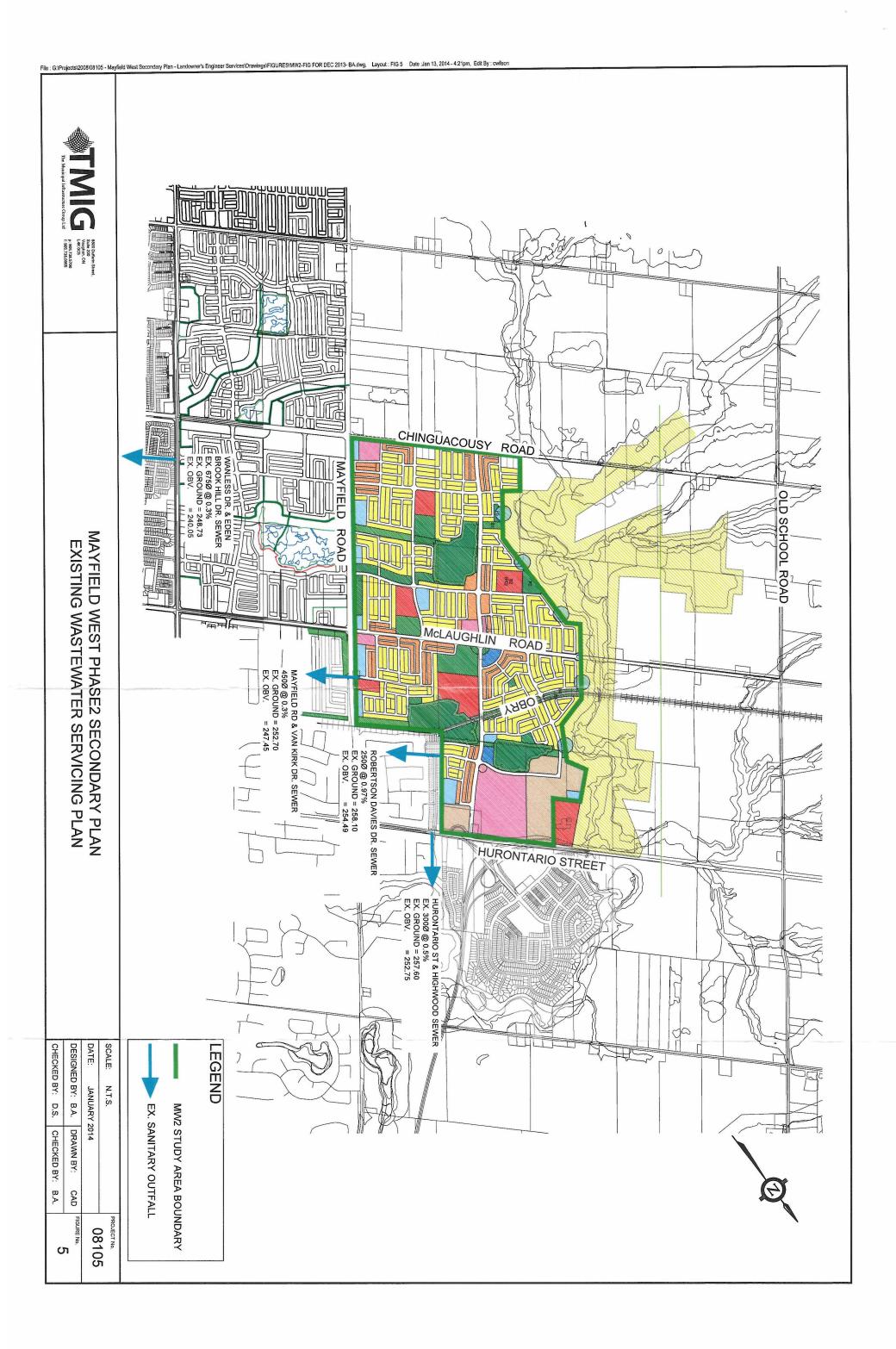
Permanent Pool Volume Requirement =

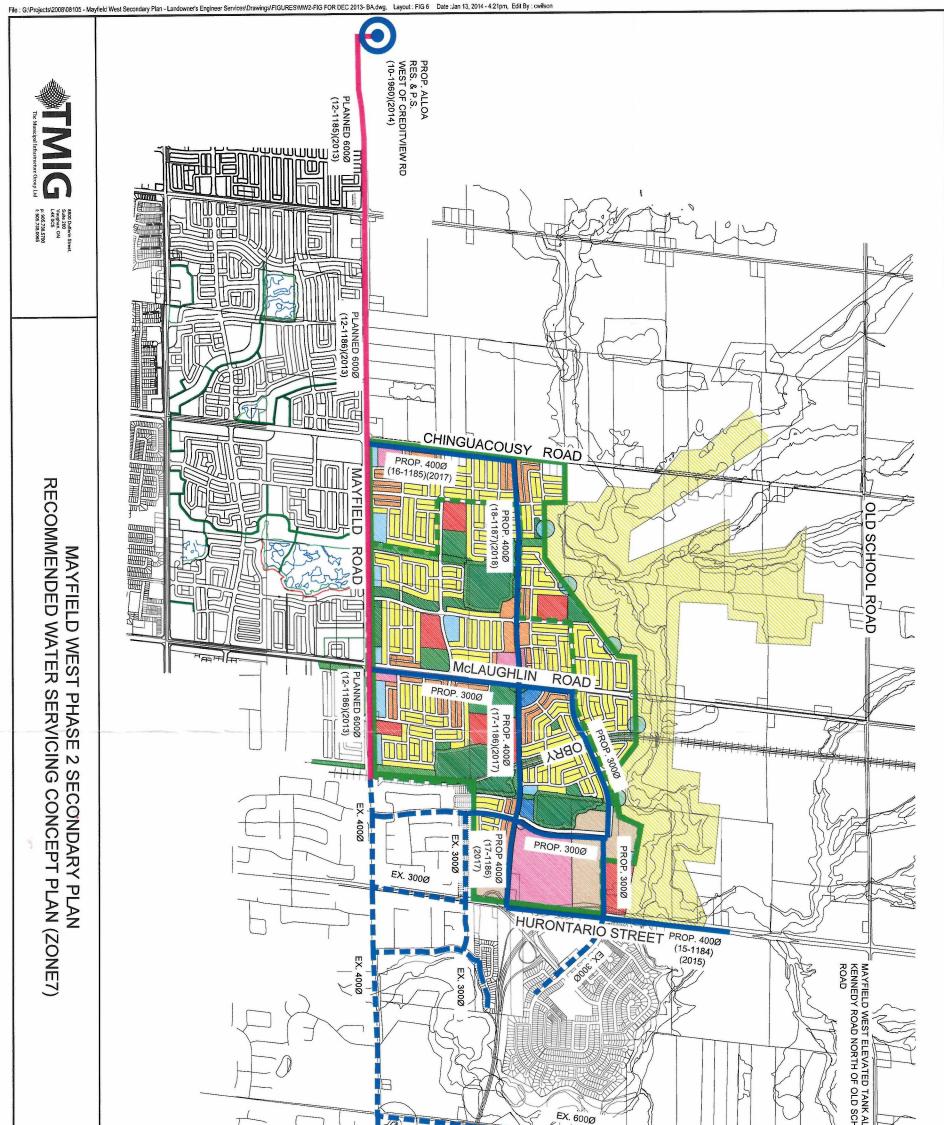
Elevations	Forebay Area	Main Cell	Total	Average	Depth	Delta	Total	
		Area	Area	Area		Volume	Volume	
(m)	(m ²)	(m ²)	(m ²)	(m ²)	(m)	(m ³)	(m ³)	
260.00	553	1040	1593					
				1957	1.00	1957		
261.00	1141	1179	2320				1957	
				3684	1.00	3684		
262.00			5048				5641	Permanent Pool
								Storage
262.00			5048				0	
				5932	1.00	5932		
263.00			6817				5932	
				7721	1.00	7721		
264.00			8625				13653	Total Active
								Storage

TRCA's 25mm Erosion Control Requirement

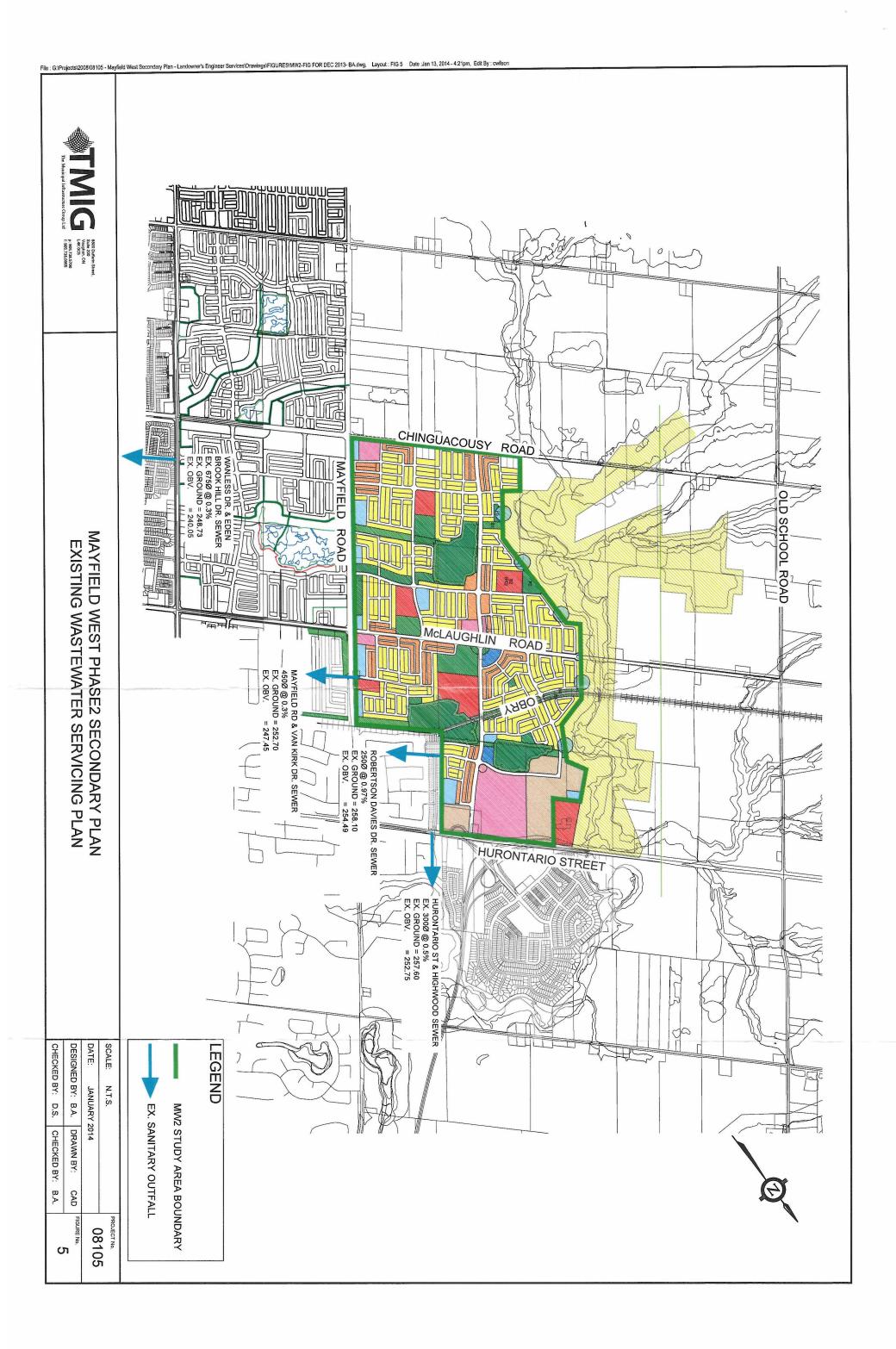
Contributing Drainage Area (ha) = 11.66 Ha

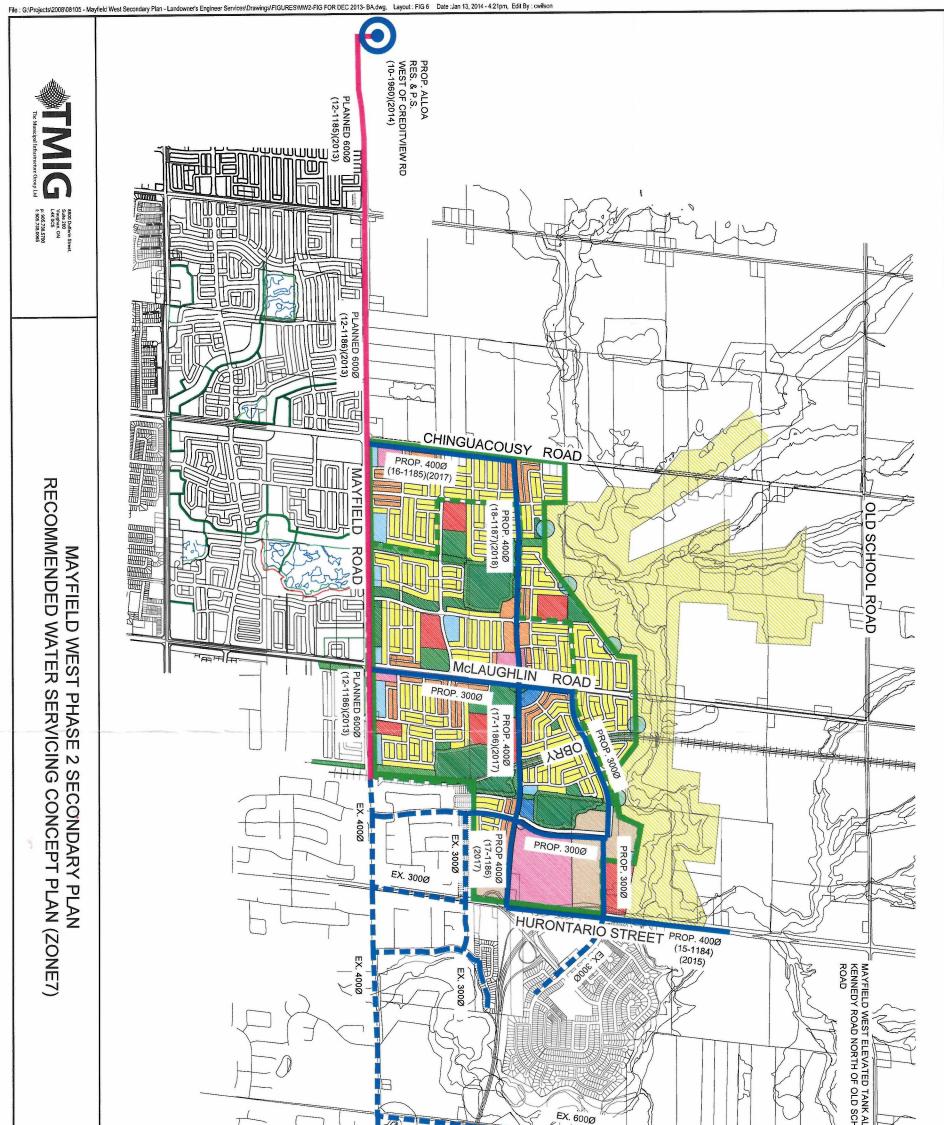
25mm 4Hr Chicago Post Development Runoff Volume in Depth = 15.772 mm (Refer to VO Results) (R. V x Drainage Area)


25mm Volume Required = 1,839 m³ 25mm Volume Provided = 2,076 m³ (@ Elv = 262.35m)

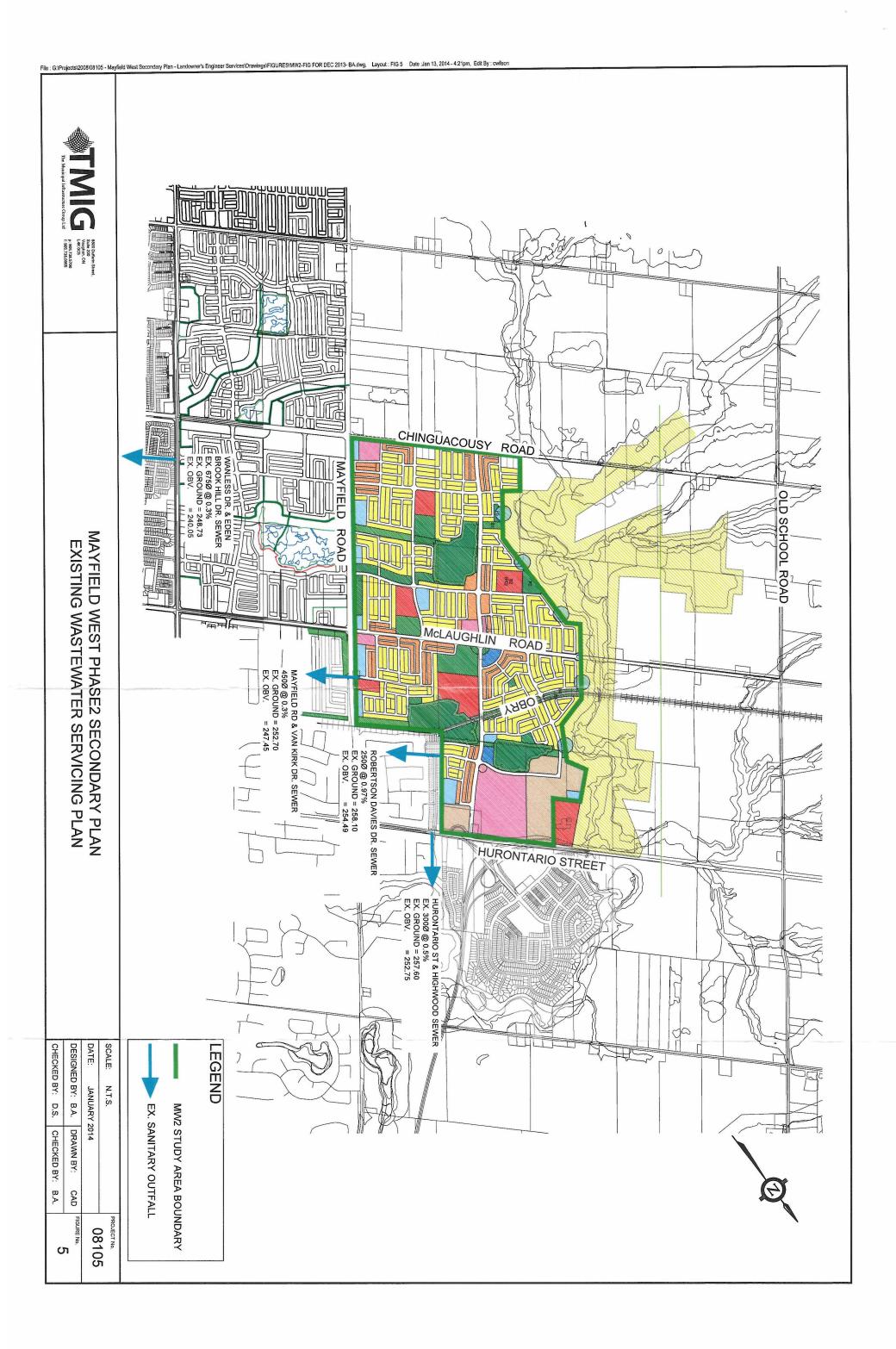

APPENDIX F

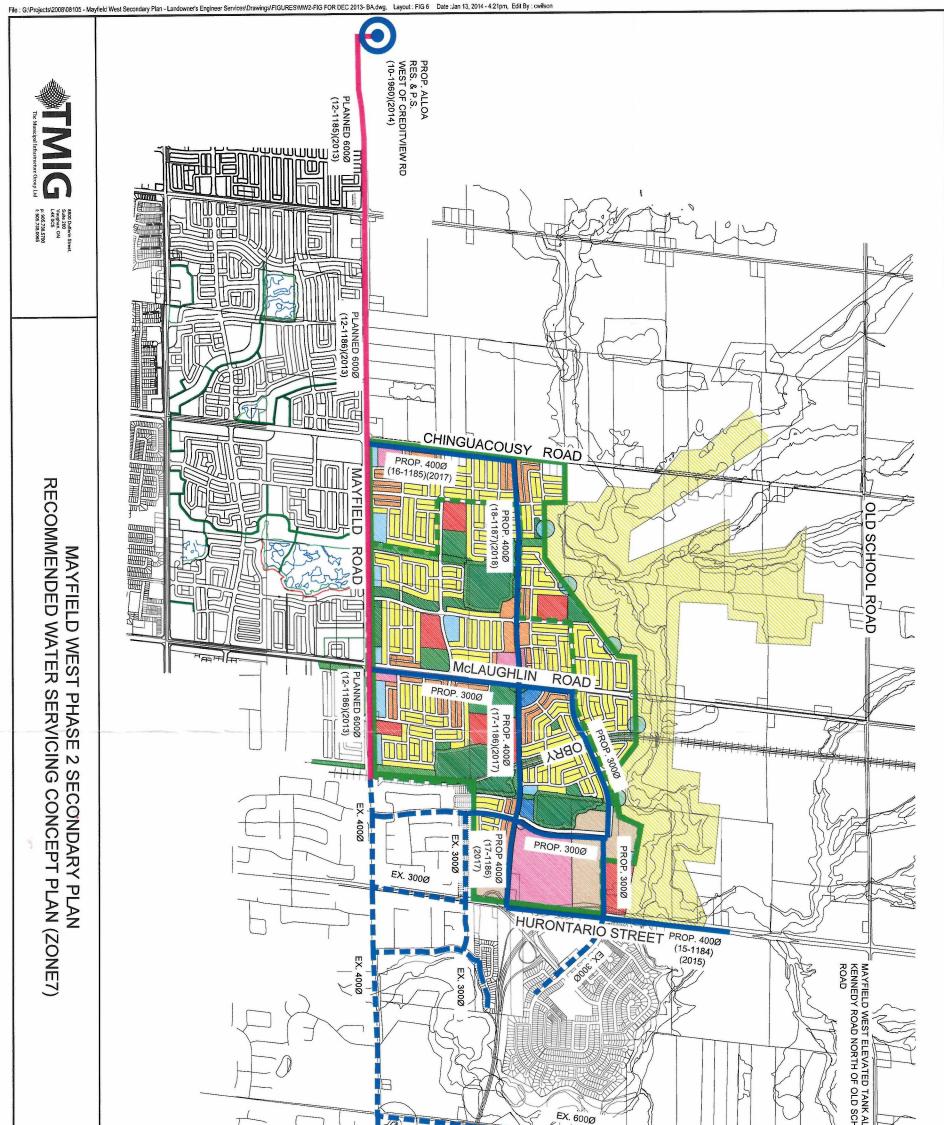
REFERENCE PLANS


SCALE: N.T.S. DATE: JANUARY 2014 DESIGNED BY: B.A. DRAWN BY: CAD CHECKED BY: D.S. CHECKED BY: B.A.	SERVICING AREAS	FEGEND
CAD FIGURE No. B.A. B.A.	SERVICING AREAS	

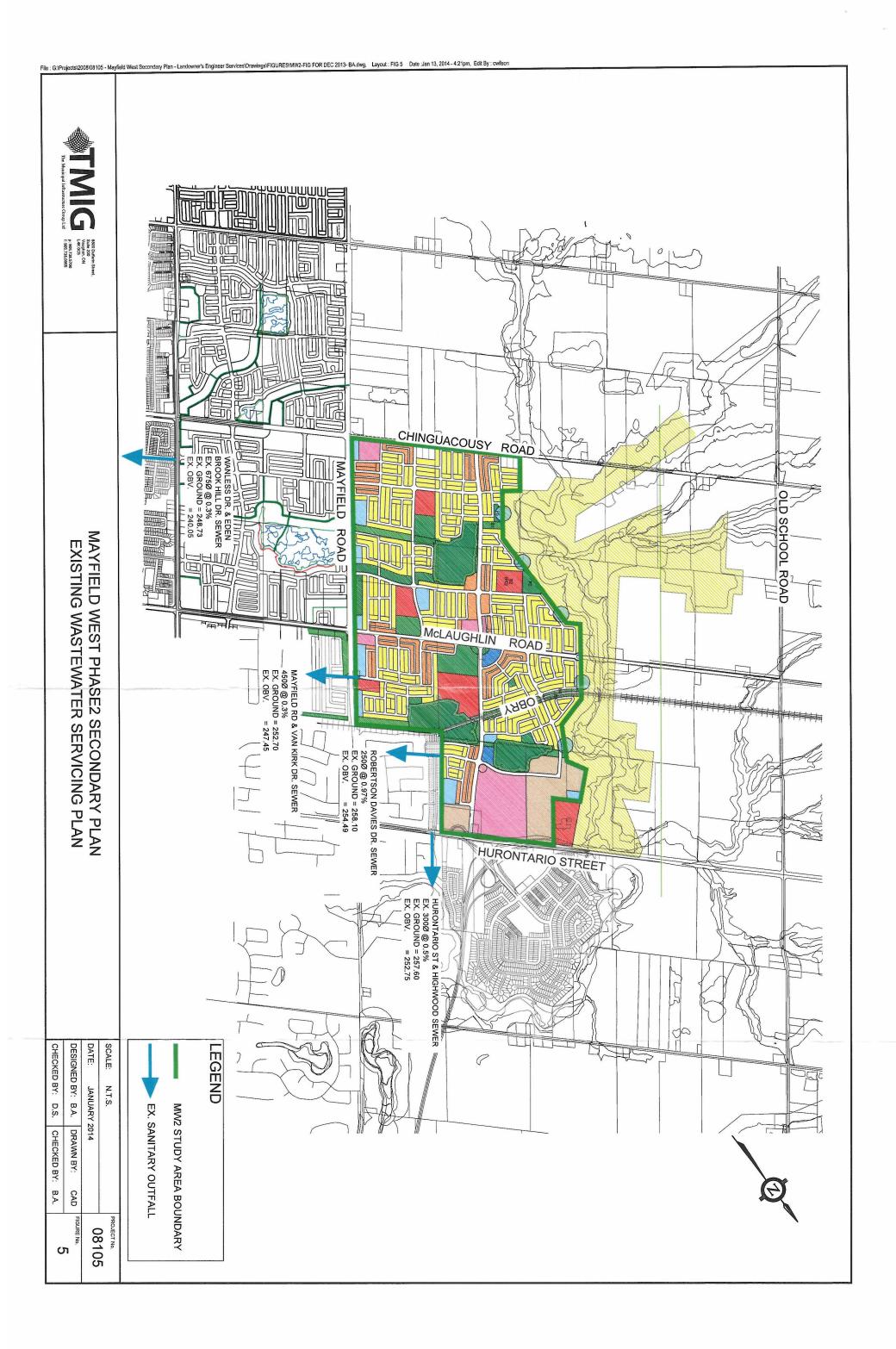


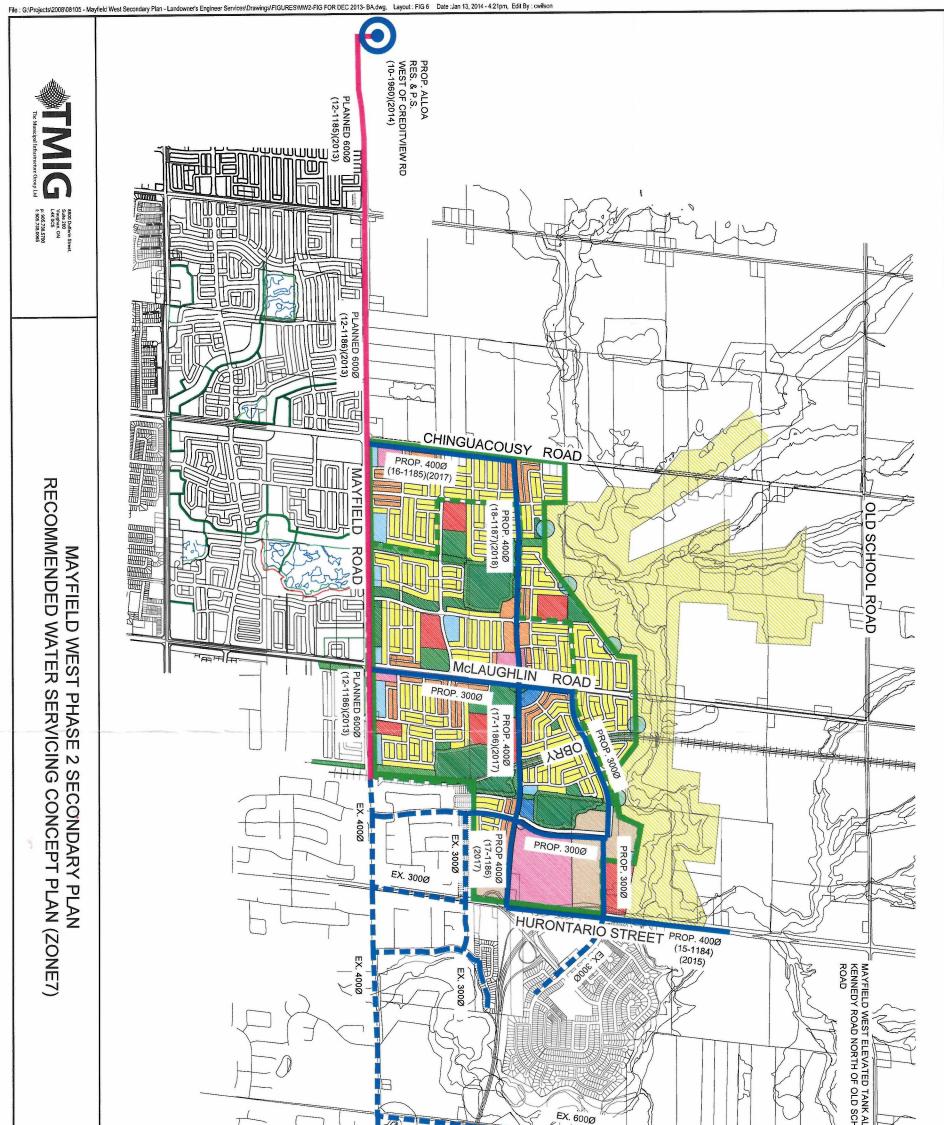
SCALE: N.T.S. DATE: JANUARY 2014 DESIGNED BY: B.A. DRAWN BY: CAD CHECKED BY: D.S. CHECKED BY: B.A.	SERVICING AREAS	FEGEND
CAD FIGURE No. B.A. B.A.	SERVICING AREAS	

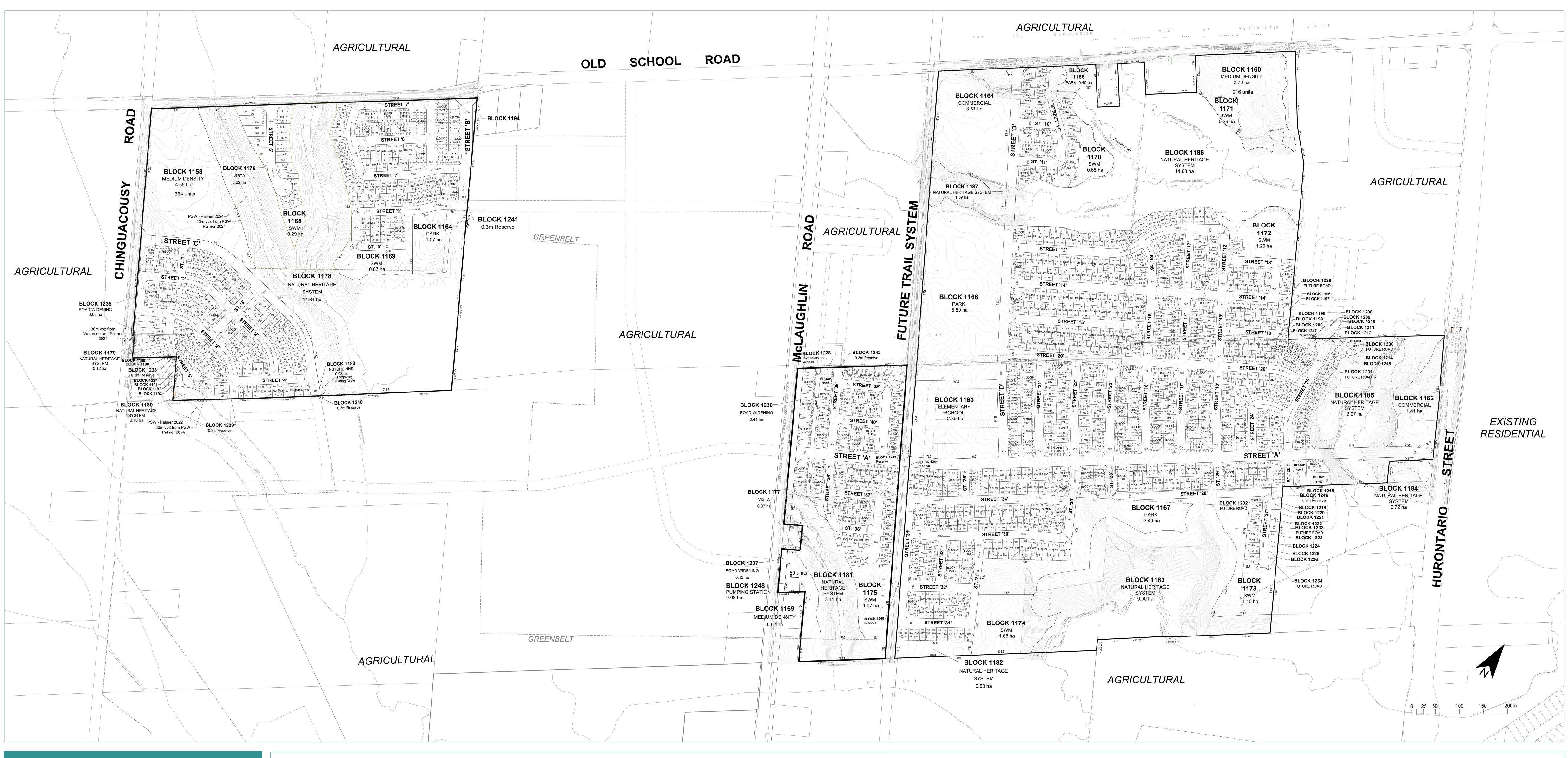



APPENDIX F

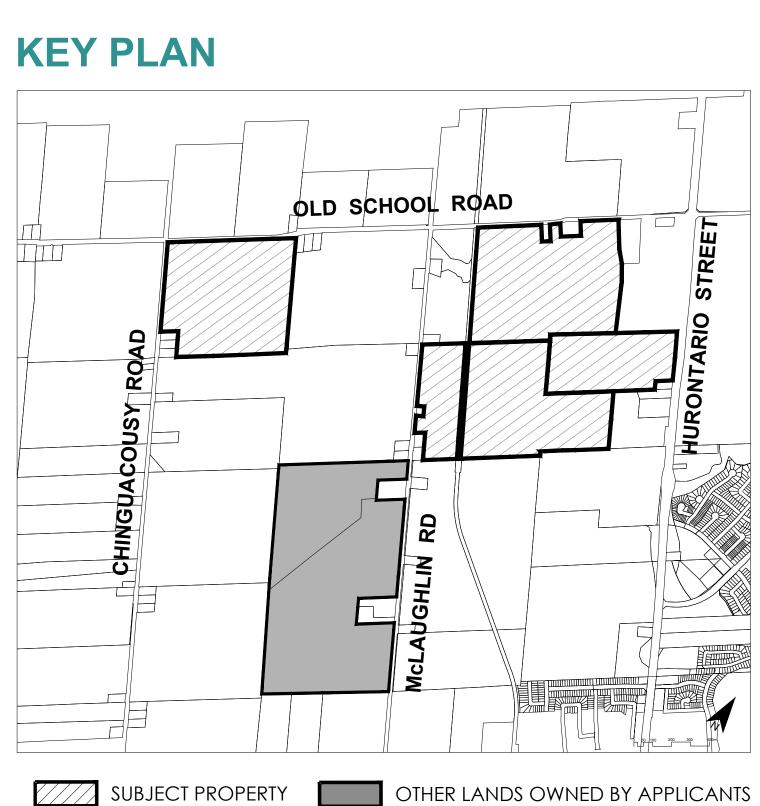
REFERENCE PLANS


SCALE: N.T.S. DATE: JANUARY 2014 DESIGNED BY: B.A. DRAWN BY: CAD CHECKED BY: D.S. CHECKED BY: B.A.	SERVICING AREAS	FEGEND
CAD FIGURE No. B.A. B.A.	SERVICING AREAS	





SCALE: N.T.S. DATE: JANUARY 2014 DESIGNED BY: B.A. DRAWN BY: CAD CHECKED BY: D.S. CHECKED BY: B.A.	SERVICING AREAS	FEGEND
CAD FIGURE No. B.A. B.A.	SERVICING AREAS	



DRAWINGS

DRAFT PLAN OF SUBDIVISION 19T -

Part of Lot 21 and 22, **Concession 1 and Part of Lot 22, Concession 2** West of Hurontario Street, (Geographic Township of Chinguacousy) Town of Caledon, **Regional Municipality of Peel**

SUBJECT PROPERTY

SCHEDULE OF LAND USE

LOT/BLOCK	LAND USE		UNITS	AREA (ha)
1-1031	11.6m x 20.0m Single Detach	ned +	575	20.87
	9.20m x 28.0m Single Detach	ned o	456	12.72
1032-1152	6.1m x 28.0m Townhouse St	reet x	726	14.43
1153-1157	6.1m x 27.0m Townhouse La	ne =	32	0.66
1158-1160	Medium Density Blocks		630	7.87
1161-1162	Commercial			4.92
1163	Elementary School			2.89
1164-1167	Park			10.80
1168-1175	Storm Water Managemen	t Facilty		7.14
1176-1177	Vista / Walkways			0.09
1178-1187	Natural Heritage System			45.17
1188	Future Natural Heritage S	ystem		0.03
1189-1226	Future Development / Par	t Lots	<mark>(49)</mark>	1.27
1227-1234	Future Roadway/Lane	145 m		0.30
1235-1237	Arterial Road Widening			0.60
1238-1247	0.3m Reserves			0.01
1248	Pumping Station			0.09
Streets A-B	22.0m Road length	1,545 m		3.42
Streets C-D	20.0m Road length	1,360 m		2.75
Streets 1-40	18.0m Road length	10,096 m		18.48
Sts. 2,7 & 31	16.0m Road length	687 m		1.09
Lane 1-2	8.0m Lane length	276 m		0.22
TOTAL		13,964 m	2,419	155.82
		(14,109 m)	(2,468)	

SURVEYOR'S CERTIFICATE

I hereby certify that the boundaries of the lands to be subdivided as shown on this Plan and their relationship to the adjacent lands are accurately and correctly shown.

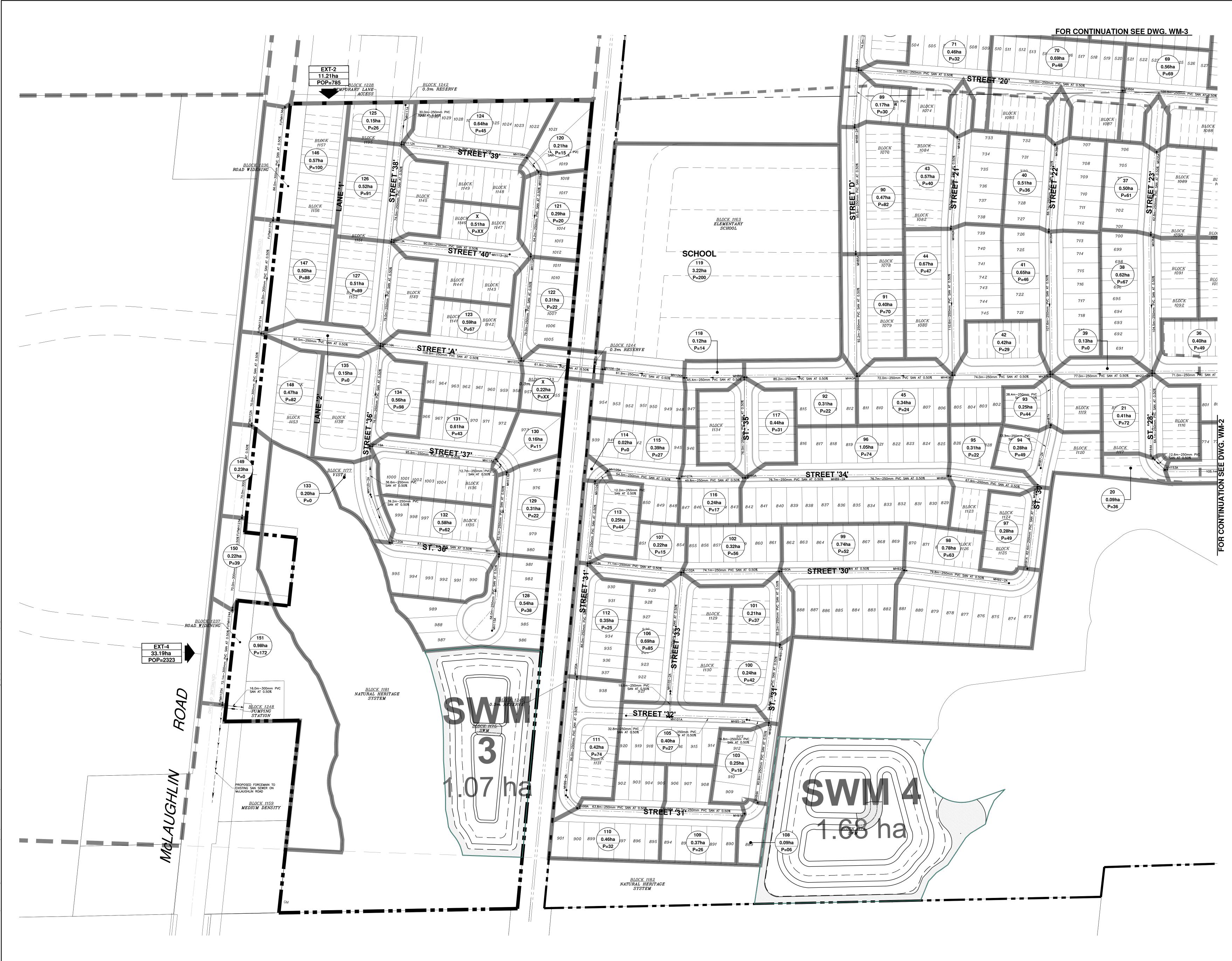
Brohm MONIKA BUDZIAK, OLS J.D. Barnes Ltd.

March 4, 2024 Date

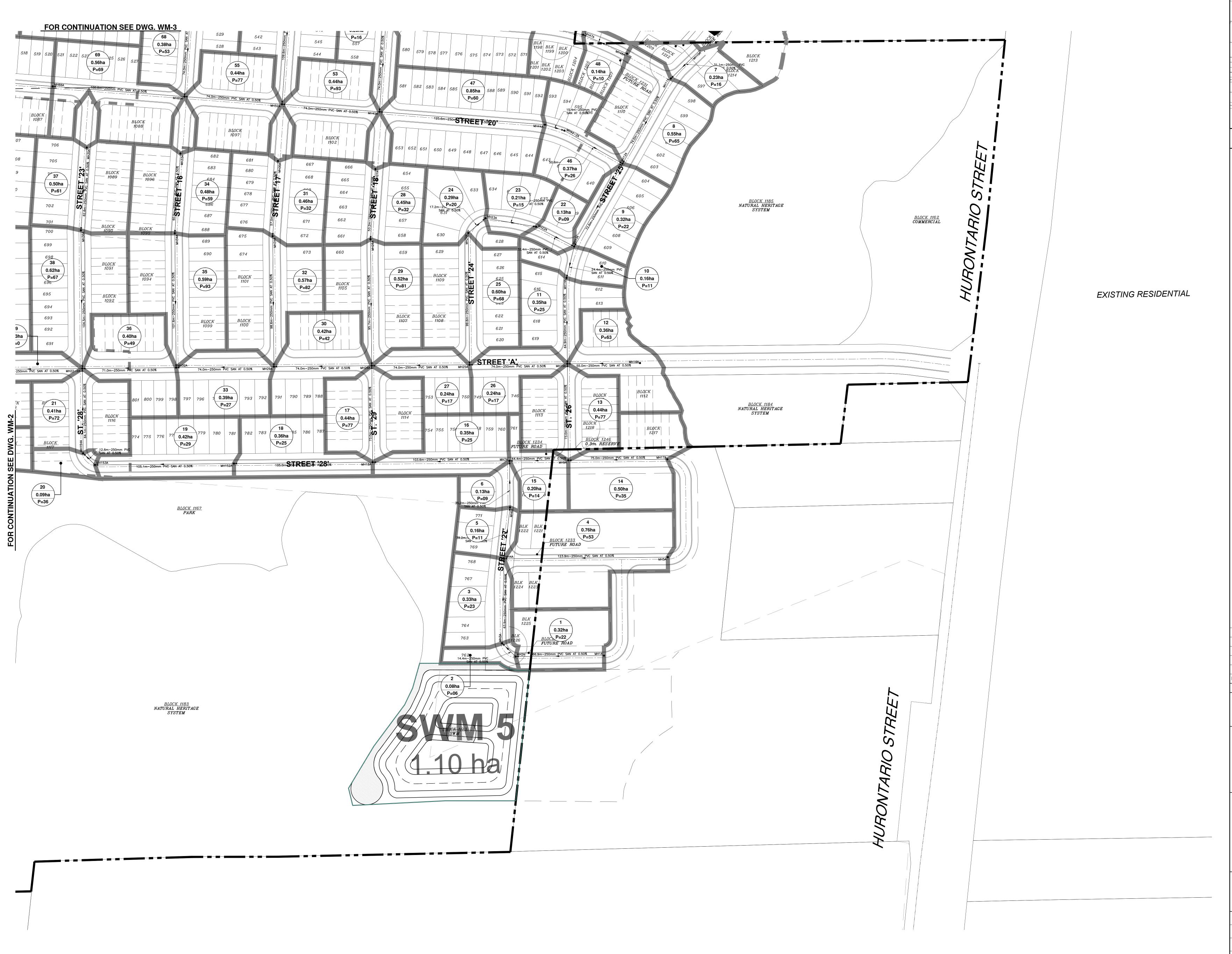
OWNER'S AUTHORIZATION

I hereby authorize Malone Given Parsons Ltd. to prepare and submit this Draft Plan of Subdivision to the City of Vaughan.

ADDITIONAL INFORMATION

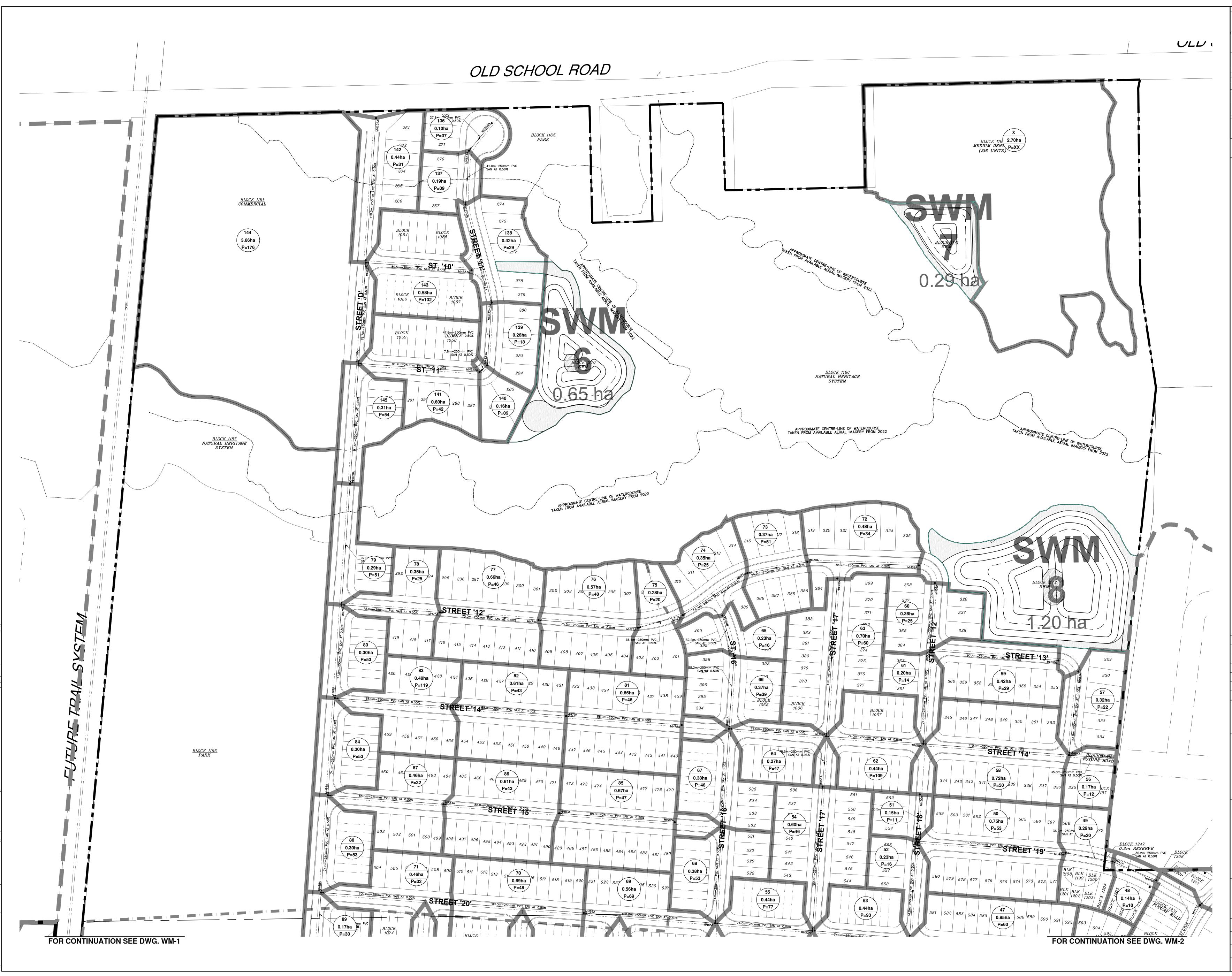

AS REQUIRED UNDER SECTION 51(17) OF THE PLANNING ACT, CHAPTER P.13(R.S.O. 1990).

(a),(e),(f),(g),(j),(I) - As shown of the Draft Plan. (b),(c) - As shown on the Draft and Key Plan. (d) - Land to be used in accordance with the Schedule of Land Use. (i) - Soil is clay loam. (h),(k) - Full municipal services to be provided.

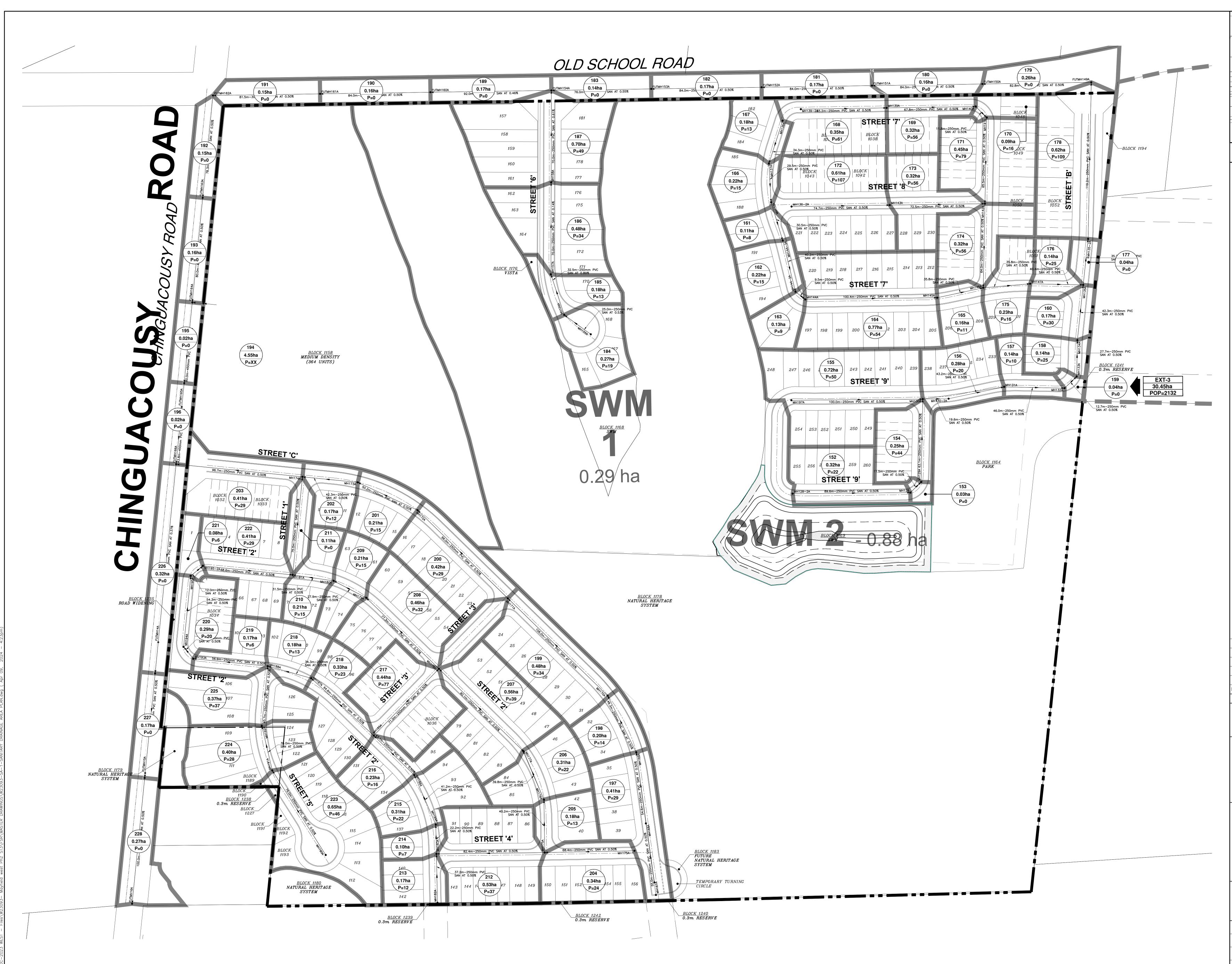

Date: March 28, 2024

Date Revision Malone Parsons

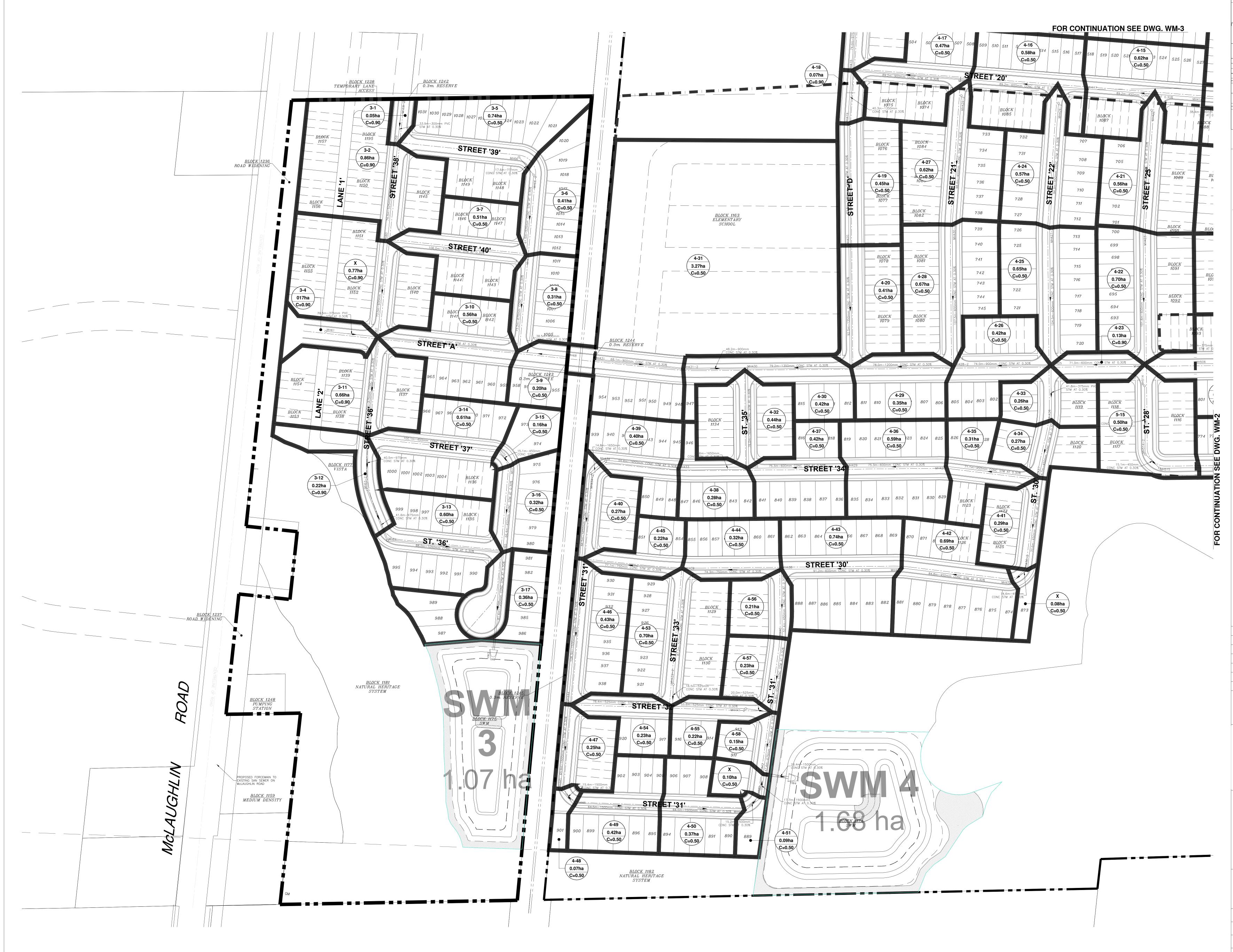
140 Renfrew Drive, Suite 201 | Markham, ON | L3R 6B3 905 513 0170 | mgp.ca

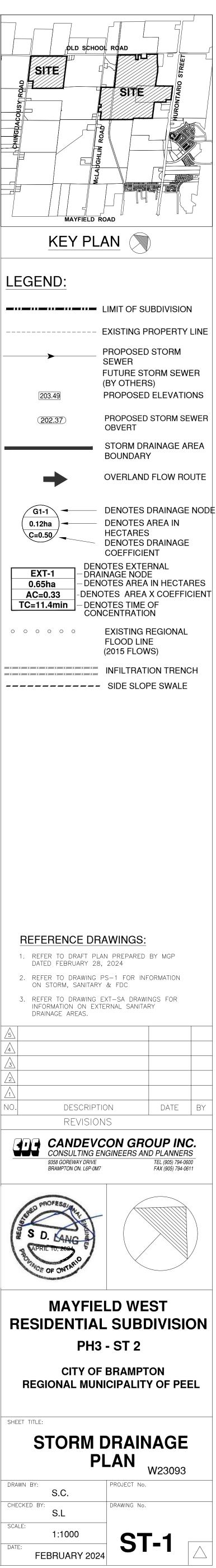


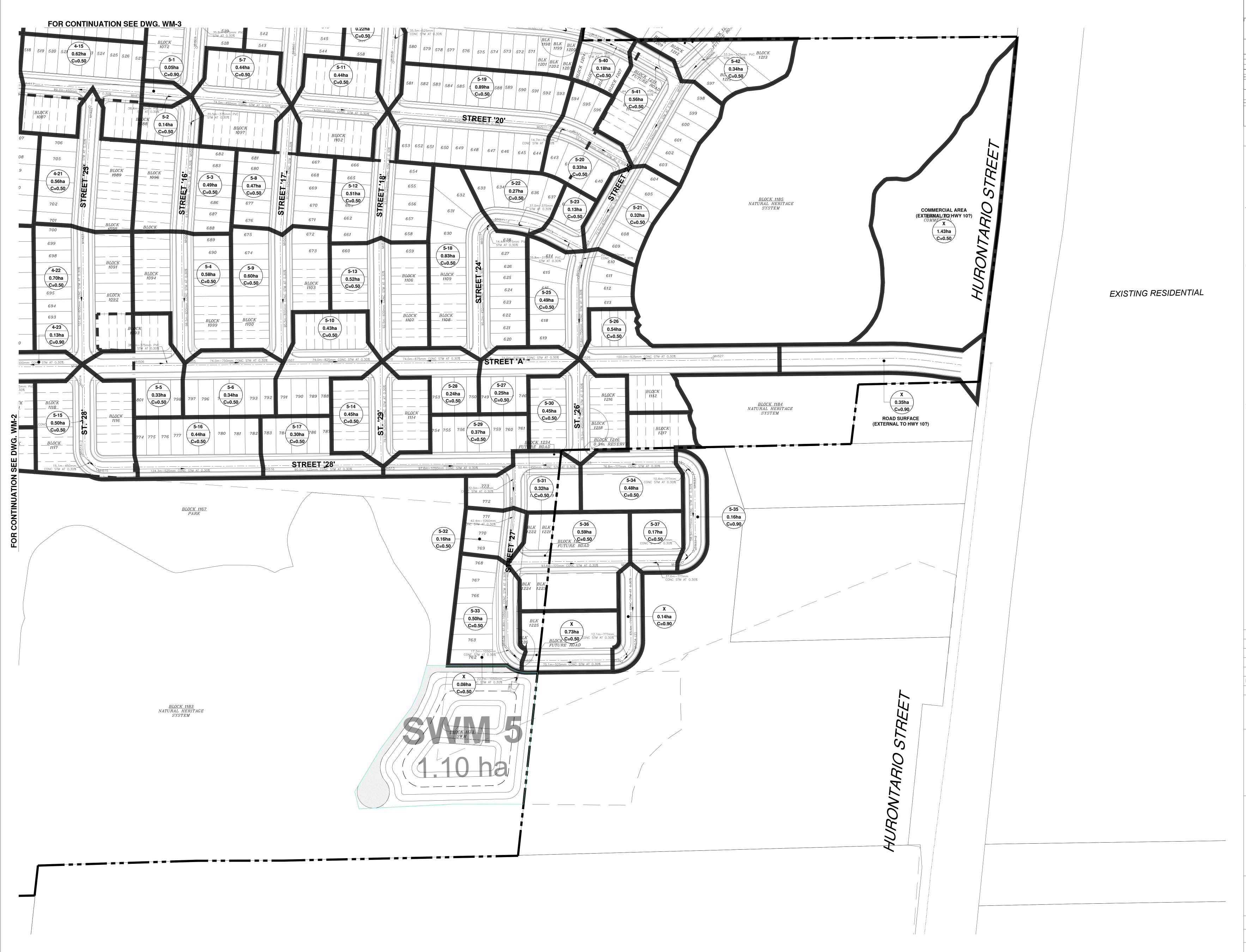
		1	_
	RØAD		
SITE		STREET	
L L L L L L L L L L L L L L L L L L L	SITE	URONTARIO STREET	
CHING ACOUSY ROAD		H	
CHINGD			
Weltable			_
KEY PLA	6		-
			_
LEGEND:			
		SAN SEWER	
MH1A N	XISTING SA		
	IUMBER DRAINAGE A BOUNDARY	REA	
— — — — E	XTERNAL D		
	IMIT OF SU		
		ROPERTY LINE	
0.12ha	ENOTES AF		
		QUIVALENT N	
REFERENCE DRA	WINGS:		
1. REFER TO DRAFT PLAN DATED FEBRUARY 28,		BY MGP	
 2. REFER TO DRAWING PS ON STORM, SANITARY 3. REFER TO DRAWING EX 	& FDC		
INFORMATION ON EXTEN DRAINAGE AREAS.			
<u>/5</u> /4			
			_
			_
NO. DESCRIPTIO REVISION		DATE BY	
CANDEVC CONSULTING ENC 3358 GOREWAY DRIVE BRAMPTON ON. L6P-0M7			
			-
Stated PROFESSION			
S D. LANG			
PRIL 10, 2020	X		
R. A. \ /		о т	_
MAYFIEL RESIDENTIAL			
	ST 2		
CITY OF I REGIONAL MUNI			
	7611 1		
SHEET TITLE:	ואסח		
-	AN	MAUE	
DRAWN BY: S.C.	PROJECT No.	W23093	
CHECKED BY: S.L SCALE:	DRAWING No.		
1:1000 DATE:	SA	-1 -	-
FEBRUARY 2024	-		7

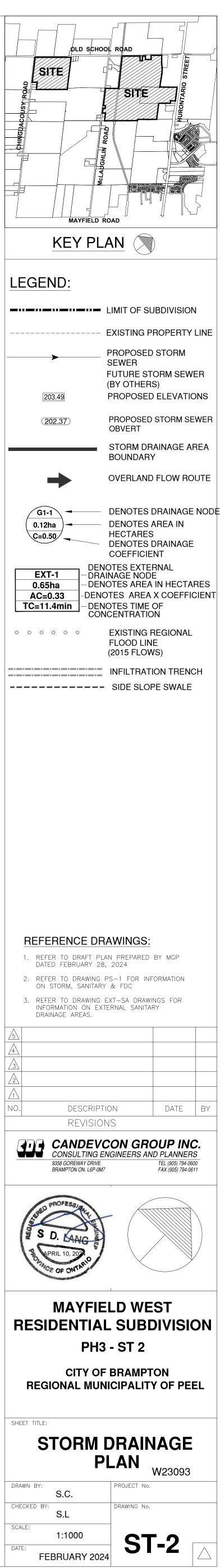


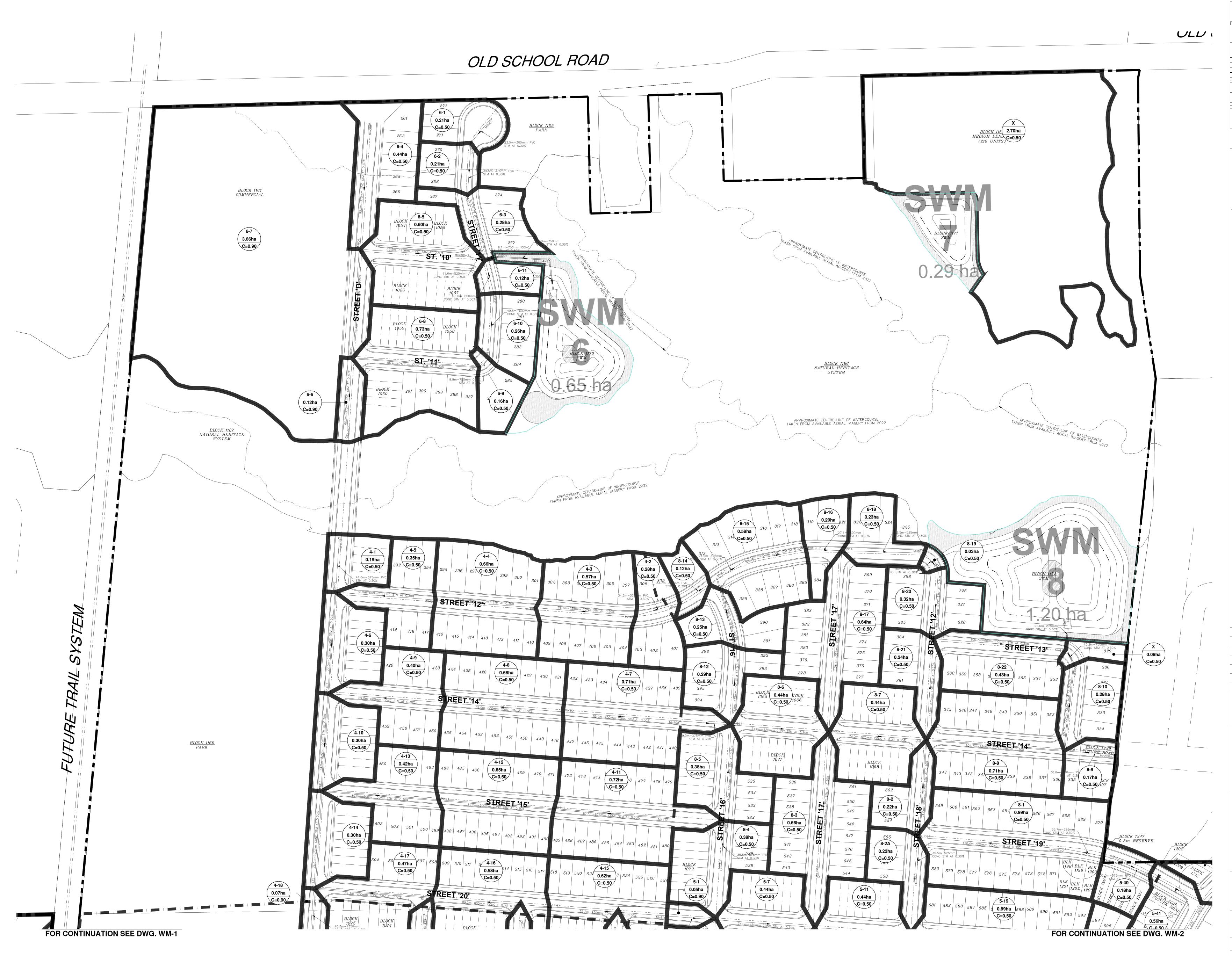
-2023 WEST - Files\W23093- Mayfield west Ph2 ST3\FSR\MASTER DRAWINGS\W23093-SA-1-SANITARY DRAINAGE AREA PLAN.dwg (Apr 09, 2024 -

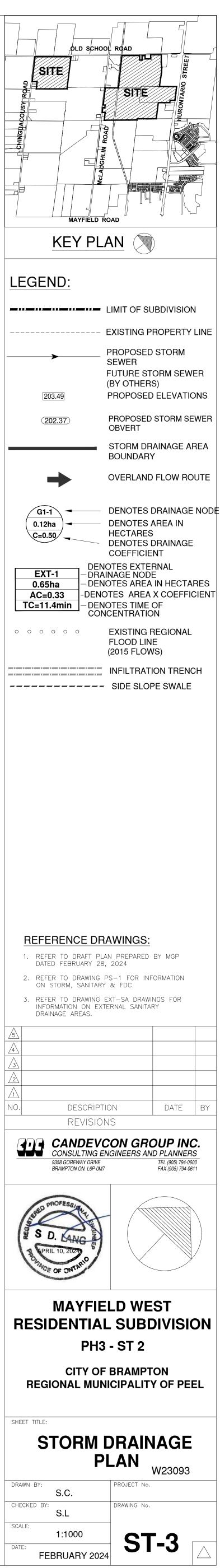

	RQAD		_			
SITE		STREET				
I LINE ON CONTROL	SITE	URONTARIO STREET				
CHINGDACOUSY ROAD		L L L L L L L L L L L L L L L L L L L				
CHINGD						
MCLANDER PORT						
KEY PLA	6					
LEGEND:						
_	PROPOSED					
	MAINTENAN NUMBER	CE HOLE				
) RAINAGE A BOUNDARY	REA				
	EXTERNAL [AREA BOUN		Ē			
	IMIT OF SU					
	EXISTING PF					
(0.12ha)	ENOTES AI		JТ			
	POPULATIO					
REFERENCE DRA						
1. REFER TO DRAFT PLAN DATED FEBRUARY 28,	I PREPARED E	BY MGP				
2. REFER TO DRAWING PS ON STORM, SANITARY		RMATION				
3. REFER TO DRAWING EX INFORMATION ON EXTEN DRAINAGE AREAS.						
NO. DESCRIPTIC REVISION		DATE	BY			
CANDEVC CONSULTING ENC 9358 GOREWAY DRIVE BRAMPTON ON. L6P-0M7			<u>S</u> 70			
SD PROFESSION		mm				
S D. CANC						
APRIL 10, 202						
CE OF ONT						
MAYFIEL			~~			
RESIDENTIAL PH3	SUBD - ST 2	11151	אוכ			
CITY OF I	BRAMPT					
REGIONAL MUNICIPALITY OF PEEL						
SHEET TITLE: SANITARY DRAINAGE PLAN						
DRAWN BY: S.C.	PROJECT No.	W23	093			
SCALE: 1:1000	~ -	~				
DATE: FEBRUARY 2024	SA	-2	\bigtriangleup			

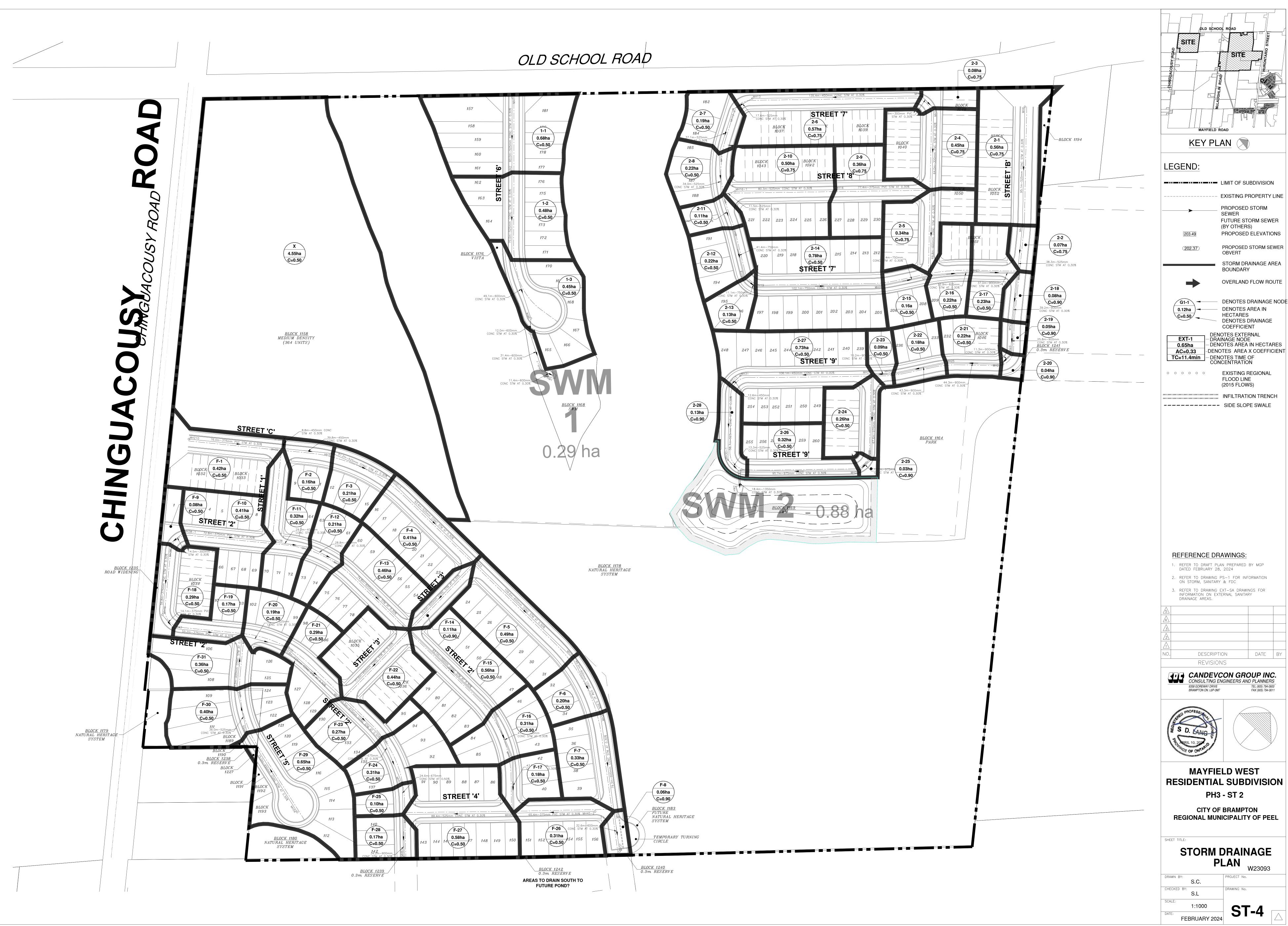



	1
SITE	
CHINGDACOUSY ROAD	URONTARIO STREET
CHINGDAC ROAD	
McLabGHLIN WCLABGHLIN	
MAYFIELD RO	
<u>LEGEND:</u> ───⊳─●── P	PROPOSED SAN SEWER
	EXISTING SAN SEWER
• N	MAINTENANCE HOLE
E	DRAINAGE AREA BOUNDARY EXTERNAL DRAINAGE
-	AREA BOUNDARY IMIT OF SUBDIVISION
	EXISTING PROPERTY LINE
$ \begin{array}{c} 1\\ 0.12ha\\ P=50\\ \end{array} $	ENOTES AREA IN IECTARES
	DENOTES EQUIVALENT POPULATION
REFERENCE DRA 1. refer to draft plan	
DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY of	5-1 FOR INFORMATION
3. REFER TO DRAWING EX INFORMATION ON EXTEN DRAINAGE AREAS.	
	N DATE BY
	s ON GROUP INC.
	GINEERS AND PLANNERS TEL (905) 794-0600 FAX (905) 794-0611
S D. MANO	
PRIL 10. 2024	
Chines OF ONTARIO	
MAYFIEL	_D WEST
	SUBDIVISION
	- ST 2 BRAMPTON
	CIPALITY OF PEEL
	DRAINAGE AN
DRAWN BY: S.C.	PROJECT No. W23093
CHECKED BY: S.L SCALE: 1:1000	DRAWING No.
1:1000 DATE: FEBRUARY 2024	SA-3 🔼

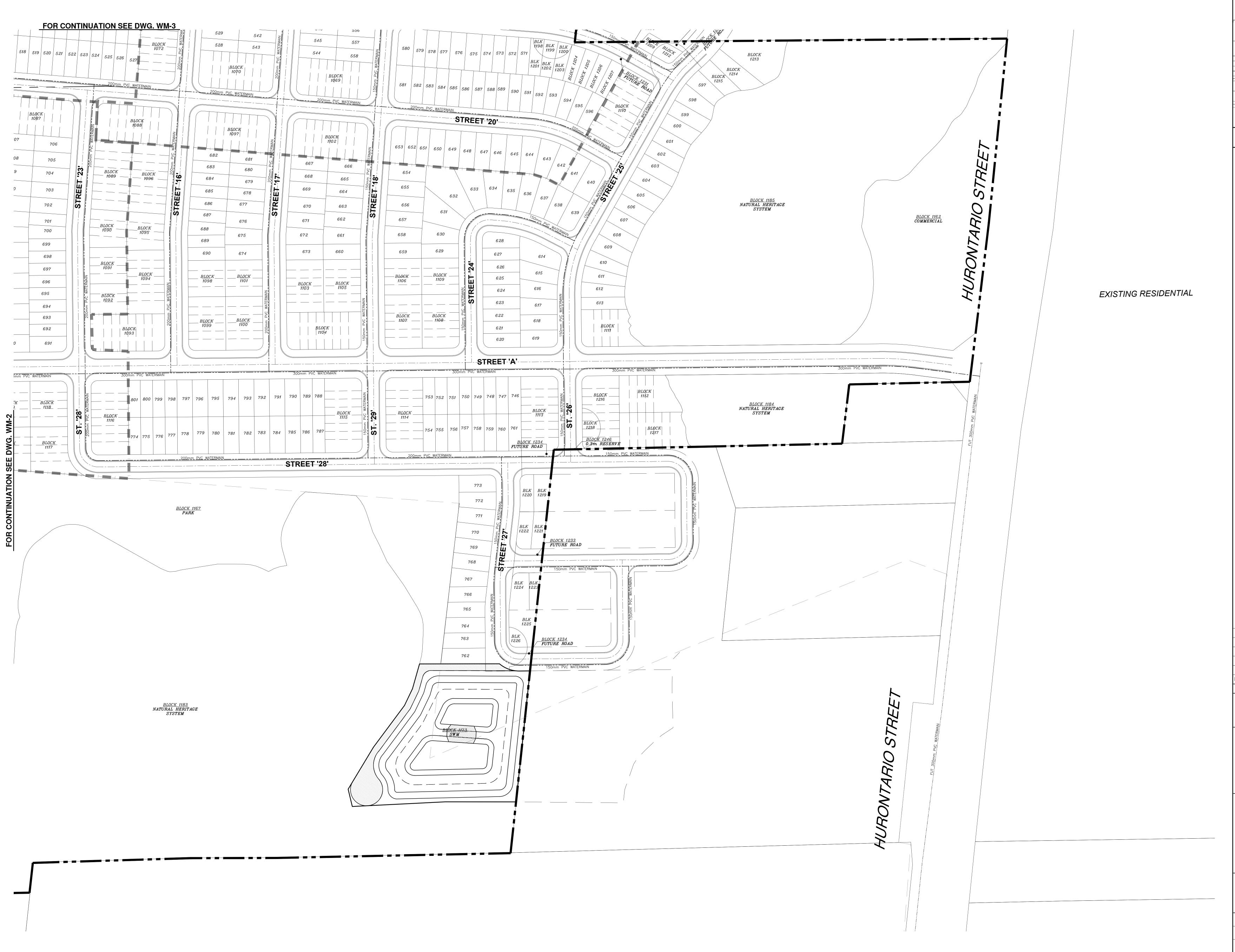


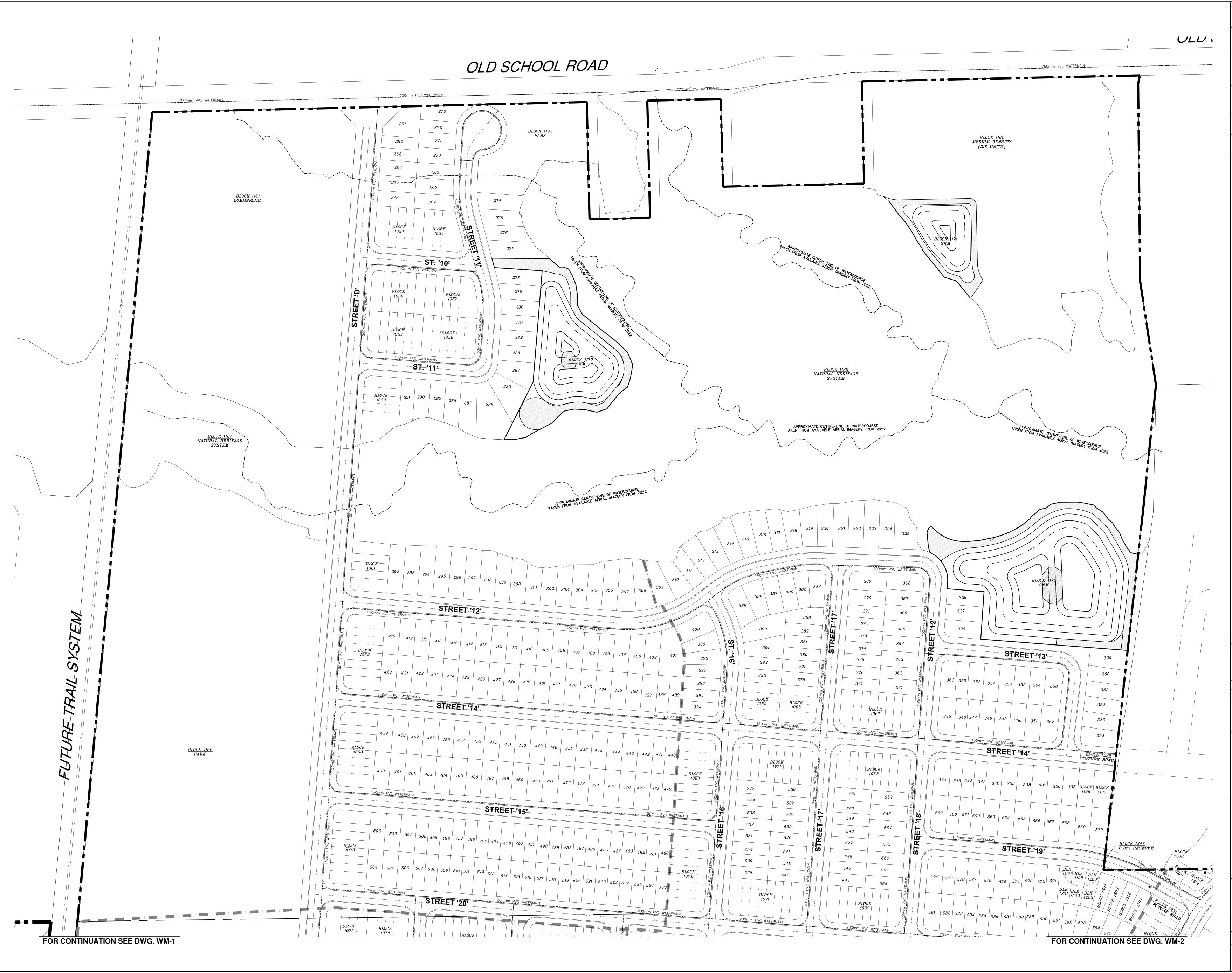

	1
SITE	HURONTARIO STREET
CHINGDACOUSY ROAD	TINONUM
Wetraden in the second se	
MAYFIELD RO	
KEY PLA	
LEGEND:	ROPOSED SAN SEWER
	EXISTING SAN SEWER
	AINTENANCE HOLE NUMBER DRAINAGE AREA
— — — — E	BOUNDARY EXTERNAL DRAINAGE AREA BOUNDARY
	IMIT OF SUBDIVISION
	ENOTES AREA NUMBER
P=50	ECTARES DENOTES EQUIVALENT POPULATION
REFERENCE DRA 1. REFER TO DRAFT PLAN DATED FEBRUARY 28,	PREPARED BY MGP
 2. REFER TO DRAWING PS ON STORM, SANITARY 3. REFER TO DRAWING EX 	S-1 FOR INFORMATION & FDC
INFORMATION ON EXTER DRAINAGE AREAS.	
NO. DESCRIPTIC REVISION	
	ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600 FAX (905) 794-0611
SUSED PROFESSION	
APRIL 10, 2024	
PACE OF ONTARIU	<u> </u>
	D WEST
	- ST 2
	BRAMPTON CIPALITY OF PEEL
-	DRAINAGE AN
DRAWN BY: S.C.	PROJECT No. W23093
CHECKED BY: S.L SCALE: 1:1000	
DATE: FEBRUARY 2024	SA-4 🖂



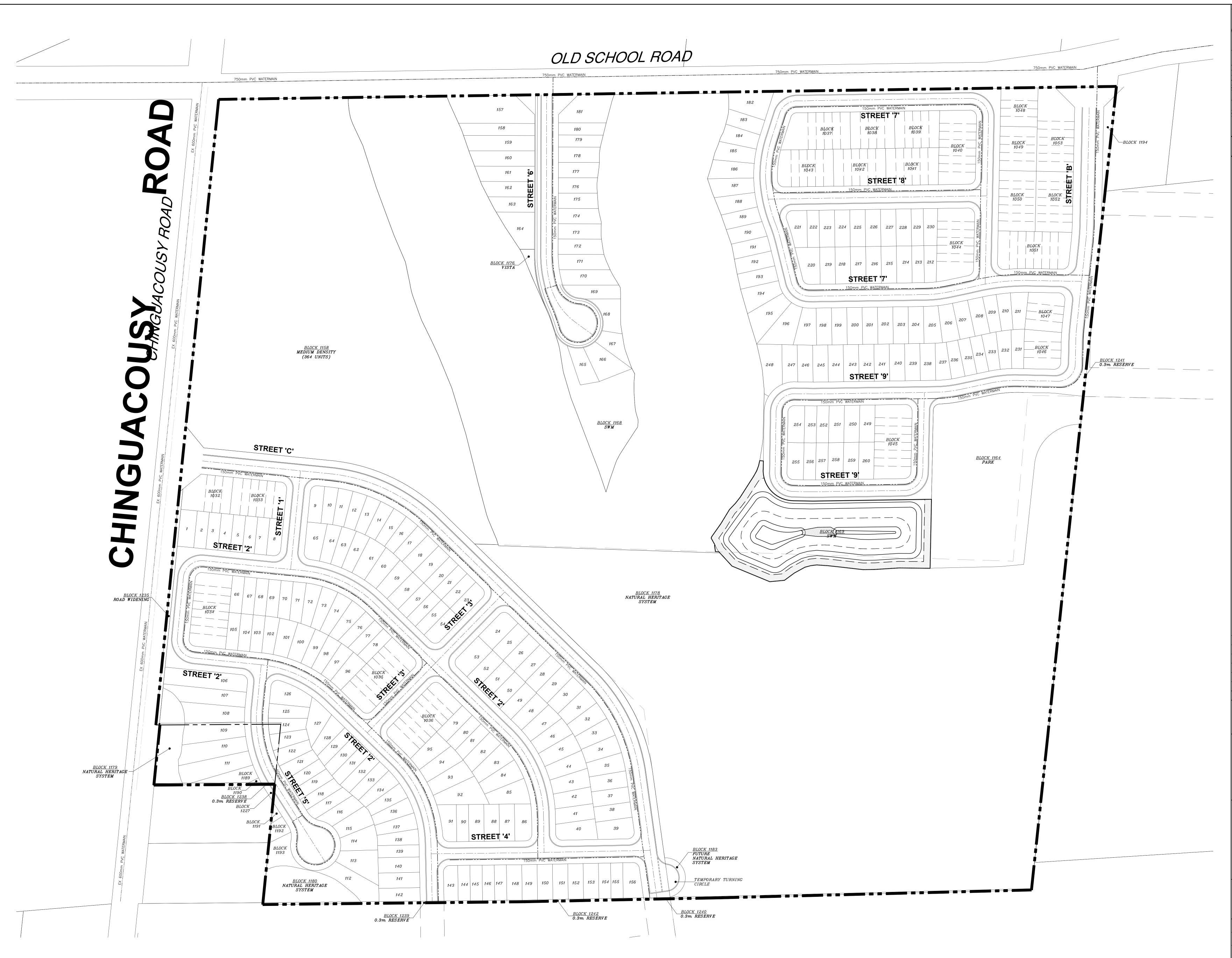








C-2023 WEST - Files\W23093- Mayfield west Ph2 ST3\FSR\MASTER DRAWINGS\W23093-WM-1-WATER DISTRIBUTION PLAN.dwg (Apr 09, 2024 - 4:2


	, 1
2 SITE	LILINONTARIO STREET
CHINGDACOUSY IROAD	SILE
Roab	
MCLABGHLIN WCLABGHLIN	
MAYFIELD RO	AD
KEY PLA	N 🔊
LEGEND:	
 L	IMIT OF SUBDIVISION
	XISTING PROPERTY LINE
E	EXISTING WATERMAIN
REFERENCE DRA	
2. REFER TO DRAWING PS	2024
ON STORM, SANITARY &	& FDC
INFORMATION ON EXTER DRAINAGE AREAS.	RNAL SANITARY
NO. DESCRIPTIO	
CANDEVCO CONSULTING ENCO 9358 GOREWAY DRIVE	ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600
9358 GOREWAY DHIVE BRAMPTON ON. L6P-0M7	TEL (905) 794-0600 FAX (905) 794-0611
D PROFESSIO	
S D. CANC	
B APRIL 10 202	
CHARLE OF ONTARIO	
	_D WEST SUBDIVISION
	SUBDIVISION ST 2
	BRAMPTON CIPALITY OF PEEL
SHEET TITLE:	
	STRIBUTION
DRAWN BY: S.C. CHECKED BY:	PROJECT No. W23093
S.L SCALE:	
1:1000 DATE:	WM-1
FEBRUARY 2024	- <u>/ </u>

	1
SITE	HURONTARIO STREET
	SITE
CHINGDACOUSY ROAD	
McLabGHLIN ROAD	
MAYFIELD RO	
<u>KEY PLA</u>	N N
LEGEND:	
	IMIT OF SUBDIVISION
E	XISTING PROPERTY LINE
F	PROPOSED WATERMAIN
E	EXISTING WATERMAIN
REFERENCE DRA	WINGS:
1. REFER TO DRAFT PLAN DATED FEBRUARY 28,	
2. REFER TO DRAWING PS ON STORM, SANITARY	
 REFER TO DRAWING EX INFORMATION ON EXTEN DRAINAGE AREAS. 	
NO. DESCRIPTIC REVISION	
	ON GROUP INC.
9358 GOREWAY DRIVE BRAMPTON ON. L6P-0M7	GINEERS AND PLANNERS TEL (905) 794-0600 FAX (905) 794-0611
\sim	
STATED PROFESSION	KUTTITI
S D. CANG	
PRIL 10, 2024	$ $ \vee \vee $ $
CE OF ONTP	
MAYFIEL	_D WEST
	SUBDIVISION
PH3 ·	- ST 2
	BRAMPTON
REGIONAL MUNI	CIPALITY OF PEEL
SHEET TITLE:	
	AN
DRAWN BY: S.C.	PROJECT No. W23093
CHECKED BY: S.L	DRAWING No.
SCALE: 1:1000	
DATE: FEBRUARY 2024	WM-2

рід зсноо	ROAD		
SITE	SITE	HURONTARIO STREET	
CHINGDACOUSY IROAD			
MeLAbGHLIN ROAD			
MAYFIELD RO			
<u>KEY PLA</u>	<u>N</u>)	
LEGEND:	IMIT OF SU	JBDIVISIO	N
	XISTING P PROPOSEE		
E	EXISTING V	VATERMAI	N
REFERENCE DRA 1. REFER TO DRAFT PLAN DATED FEBRUARY 28,	PREPARED	BY MGP	
 REFER TO DRAWING PS ON STORM, SANITARY of REFER TO DRAWING EX INFORMATION ON EXTEND 	& FDC (T—SA DRAWI	NGS FOR	
DRAINAGE AREAS.			
NO. DESCRIPTIO REVISION		DATE	BY
CANDEVC CONSULTING ENC 9358 GOREWAY DRIVE BRAMPTON ON. L6P-0M7	ON GRO GINEERS AN	DUP INC D PLANNER TEL (905) 794-06 FAX (905) 794-06	00
		T AX (503) 794-00	
S D. LANG			
APRIL 10, 202	X	<u> </u>	/
MAYFIEL		-	ОЛ
PH3 ·	- ST 2		
CITY OF I REGIONAL MUNI			EL
SHEET TITLE:		UTIOI	N
DRAWN BY:	AN PROJECT No.		
S.C. CHECKED BY: SCALE:	DRAWING No.	W23	
1:1000 DATE: FEBRUARY 2024	WI	M-3	\bigtriangleup

SITE	HURONTARIO STREET
	SITE
A A A A A A A A A A A A A A A A A A A	LINO LINO
CHINGLACOUSY ROAD WCLAUGHLIN ROAD	
<u>KEY PLA</u>	
LEGEND:	
	IMIT OF SUBDIVISION
-	
	XISTING PROPERTY LINE
F	PROPOSED WATERMAIN
E	EXISTING WATERMAIN
REFERENCE DRA	
REFERENCE DRA 1. REFER TO DRAFT PLAN DATED FEBRUARY 28,	I PREPARED BY MGP
1. REFER TO DRAFT PLAN	I PREPARED BY MGP 2024 S-1 FOR INFORMATION
 REFER TO DRAFT PLAN DATED FEBRUARY 28, REFER TO DRAWING PS ON STORM, SANITARY 0 REFER TO DRAWING EX 	I PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR
 REFER TO DRAFT PLAN DATED FEBRUARY 28, REFER TO DRAWING PS ON STORM, SANITARY 0 	I PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR
 REFER TO DRAFT PLAN DATED FEBRUARY 28, REFER TO DRAWING PS ON STORM, SANITARY 0 REFER TO DRAWING EX INFORMATION ON EXTEND 	I PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR
 REFER TO DRAFT PLAN DATED FEBRUARY 28, REFER TO DRAWING PS ON STORM, SANITARY 0 REFER TO DRAWING EX INFORMATION ON EXTEND DRAINAGE AREAS. 	I PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 0 3. REFER TO DRAWING EX INFORMATION ON EXTENDED DRAINAGE AREAS. 5. 4 3.	I PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR
 REFER TO DRAFT PLAN DATED FEBRUARY 28, REFER TO DRAWING PS ON STORM, SANITARY 0 REFER TO DRAWING EX INFORMATION ON EXTEND DRAINAGE AREAS. 	I PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 0 3. REFER TO DRAWING EX INFORMATION ON EXTENDED DRAINAGE AREAS. 5. 4 3.	I PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR RNAL SANITARY
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 0 3. REFER TO DRAWING EXINFORMATION ON EXTENDRAINAGE AREAS. 5. 4 3. 2. 5. 4 3. 2. 1. NO. DESCRIPTIC REVISION:	I PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR RNAL SANITARY
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 0 3. REFER TO DRAWING EXINFORMATION ON EXTENDED AND AND EXTENDED AND AND AND AND AND AND AND AND AND AN	I PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR RNAL SANITARY
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 0 3. REFER TO DRAWING EXINFORMATION ON EXTENDED AND AND EXTENDED AND AND AND AND AND AND AND AND AND AN	I PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR RNAL SANITARY
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 0 3. REFER TO DRAWING EXINFORMATION ON EXTENDRAINAGE AREAS. 5. 4 3. 2. 1. NO. DESCRIPTIC REVISION: PREVISION: PREVISION: PREVISION: PREVISION: PREVISION: PREVISION: PREVISION: PRAMPTON ON. L6P-0M7	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR RNAL SANITARY DN DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 0 3. REFER TO DRAWING EXINFORMATION ON EXTENDRAINAGE AREAS. 5. 4 3. 2. 1. NO. DESCRIPTIC REVISION: PREVISION: PREVISION: PREVISION: PREVISION: PREVISION: PREVISION: PREVISION: PRAMPTON ON. L6P-0M7	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR RNAL SANITARY DN DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 0 3. REFER TO DRAWING EXINFORMATION ON EXTENDRAINAGE AREAS. 5. 4 3. 2. 1. NO. DESCRIPTIC REVISION: PREVISION: PREVISION: PREVISION: PREVISION: PREVISION: PREVISION: PREVISION: PRAMPTON ON. L6P-0M7	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR RNAL SANITARY DN DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 0 3. REFER TO DRAWING EXINFORMATION ON EXTENDRAINAGE AREAS. 5. 4 3. 2. 4. 3. 2. 1. NO. DESCRIPTIC REVISION: VISION:	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR RNAL SANITARY DN DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 0 3. REFER TO DRAWING EXINFORMATION ON EXTENDRAINAGE AREAS. 5 4 3 2 1 NO. DESCRIPTIC REVISION: Structure Structure CONSULTING ENCLOSE Structure Structure CONSULTING ENCLOSE Structure Structure REVISION: CONSULTING ENCLOSE Structure	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR RNAL SANITARY DN DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 3 3. REFER TO DRAWING EXINFORMATION ON EXTENDRAINAGE AREAS. 5 4 3 2 1 NO. DESCRIPTIO REVISION Store Store 1 NO. DESCRIPTIO REVISION Store 1 NO. DESCRIPTIO REVISION Store Store <td>A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR RNAL SANITARY DN DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600</td>	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC (T-SA DRAWINGS FOR RNAL SANITARY DN DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING EXINFORMATION ON EXTEND OR STORM, SANITARY 4 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 5. 4 3. 2. 4 3. 2. 4. 3. 2. 4. 3. 2. 1. NO. DESCRIPTIC REVISION REVISION WOR Structure Structure Structure CONSULTING END Structure Struct	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC CT-SA DRAWINGS FOR RNAL SANITARY DATE BY S ON GROUP INC. GINEERS AND PLANNERS CON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600 FAX (905) 794-0611
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 4. A 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 4. A 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 4. A 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 4. A 3. REFER TO DRAWING EXING A 4. A 3. REFER TO DRAWING EXING A 4. A 5. D. CANDEVC CONSULTING END SD. CANDER DRIVE BRAMPTON ON. LGP-OM7 5. D. CANDER DRIVE BRAMPTON ON LGP-OM7	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC T-SA DRAWINGS FOR RNAL SANITARY DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0610 FAX (905) 794-0611 TEL (905) 794-0611 CON GROUP INC. CAN (905) 794-0611
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 4. A 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 4. A 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 4. A 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 4. A 3. REFER TO DRAWING EXING A 4. A 3. REFER TO DRAWING EXING A 4. A 5. D. CANDEVC CONSULTING END SD. CANDER DRIVE BRAMPTON ON. LGP-OM7 5. D. CANDER DRIVE BRAMPTON ON LGP-OM7	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC CT-SA DRAWINGS FOR RNAL SANITARY DATE BY S ON GROUP INC. GINEERS AND PLANNERS CON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600 FAX (905) 794-0611
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING EXINFORMATION ON EXTEND INFORMATION ON EXTEND DRAINAGE AREAS. 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 4. A 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 4. A 3. REFER TO DRAWING EXING PRIMATION ON EXTEND DRAINAGE AREAS. MO. DESCRIPTION REVISIONS DESCRIPTION DESCRIPTION REVISIONS ON STORMAN DRIVE BRAMPTON ON. LGP-OM7 STAR GOREWAY DRIVE BRAMPTON ON. LGP-OM7	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC T-SA DRAWINGS FOR RNAL SANITARY DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0610 FAX (905) 794-0611 TEL (905) 794-0611 CON GROUP INC. CAN (905) 794-0611
 REFER TO DRAFT PLAN DATED FEBRUARY 28, REFER TO DRAWING PS ON STORM, SANITARY REFER TO DRAWING EXTEND INFORMATION ON EXTEND DRAINAGE AREAS. A A D DESCRIPTION REVISION REVISION REVISION REVISION RESIDENTIAL RESIDENTIAL RESIDENTIAL RH3 - 	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC T-SA DRAWINGS FOR RNAL SANITARY DATE BY S ON GROUP INC. GINEERS AND PLANNERS CON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0610 FAX (905) 794-0611
 REFER TO DRAFT PLAN DATED FEBRUARY 28, REFER TO DRAWING PS ON STORM, SANITARY REFER TO DRAWING EXTEND DRAINAGE AREAS. REFER TO DRAWING EXTEND DRAINAGE AREAS. REFER TO DRAWING EXTEND DRAINAGE AREAS. DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION RESIDENTIAL RESIDENTIAL PH3 - CITY OF I 	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC T-SA DRAWINGS FOR RNAL SANITARY DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600 FAX (905) 794-0611 CONSTRUCTION FAX (905) 794-0611 CONSTRUCTION FAX (905) 794-0611 CONSTRUCTION FAX (905) 794-0611 CONSTRUCTION FAX (905) 794-0611 CONSTRUCTION FAX (905) 794-0611 CONSTRUCTION SUBDIVISION - ST 2
 REFER TO DRAFT PLAN DATED FEBRUARY 28, REFER TO DRAWING PS ON STORM, SANITARY REFER TO DRAWING EXTEND DRAINAGE AREAS. REFER TO DRAWING EXTEND DRAINAGE AREAS. REFER TO DRAWING EXTEND DRAINAGE AREAS. DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION RESIDENTIAL RESIDENTIAL PH3 - CITY OF I 	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC T-SA DRAWINGS FOR RNAL SANITARY DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600 FAX (905) 794-0611 CON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0611 CON GROUP INC. GINEERS AND PLANNERS CON GROUP INC. GINEERS AND PLANNERS CON GROUP INC. GINEERS AND PLANNERS CON GROUP INC. CON GROUP INC.
 REFER TO DRAFT PLAN DATED FEBRUARY 28, REFER TO DRAWING PS ON STORM, SANITARY REFER TO DRAWING EXTEND DRAINAGE AREAS. REFER TO DRAWING EXTEND DRAINAGE AREAS. REFER TO DRAWING EXTEND DRAINAGE AREAS. DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION REVISIONS DESCRIPTION RESIDENTIAL RESIDENTIAL PH3 - CITY OF I 	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC T-SA DRAWINGS FOR RNAL SANITARY DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600 FAX (905) 794-0611 CON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0611 CON GROUP INC. GINEERS AND PLANNERS CON GROUP INC. GINEERS AND PLANNERS CON GROUP INC. GINEERS AND PLANNERS CON GROUP INC. CON GROUP INC.
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 3 3. REFER TO DRAWING EXINFORMATION ON EXTED DRAINAGE AREAS. 3. REFER TO DRAWING EARLAS. 3. REFERENCE EARLAS. 3. REFERENCE EARLAS. 3. DESCRIPTION ON LEPONT RESIDENTIAL BRAYTON ON LEPONT STREESIDENTIAL PH3 - CITY OF I REGIONAL MUNIT SHEET TITLE:	A PREPARED BY MGP 2024 S=1 FOR INFORMATION & FDC CT-SA DRAWINGS FOR RNAL SANITARY DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0611 FAX (905) 794-0611 FAX (905) 794-0611 CONSTRUCTION FAX (905) 794-0611 CONSTRUCTION FAX (905) 794-0611 CONSTRUCTION FAX (905) 794-0611 CONSTRUCTION FAX (905) 794-0611 SUBDIVISION - ST 2 BRAMPTON CIPALITY OF PEEL
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING EXINFORMATION ON EXTENDRATION O	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC CT-SA DRAWINGS FOR RNAL SANITARY DIATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600 FAX (905) 794-0600 FAX (905) 794-0611 CONSTRUCTION SUBDIVISION - ST 2 BRAMPTON CIPALITY OF PEEL
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 3 3. REFER TO DRAWING EXISTENT ON EXTEND DRAINAGE AREAS. 3. REFER TO DRAWING EXISTENT ON EXISTENT ON EXISTENT ON EXISTENT ON EXISTENT ON THE DRAIN ON LEP-ONT MAYFIEL MAYFIEL BRAMPTON ON LEP-ONT MAYFIEL MAYFIEL PH3 - CITY OF I REGIONAL MUNIT SHEET TITLE: WATER DIS PLC	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC TI-SA DRAWINGS FOR RNAL SANITARY DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600 FAX (905) 794-0611 CONSTRUCTION FAX (905) 794-0611 CONSTRUCTION SUBDIVISION - ST 2 BRAMPTON CIPALITY OF PEEL
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 20, 3. REFER TO DRAWING EXINFORMATION ON EXTENDRAINAGE AREAS. 3. REFER TO DRAWING EXINFORMATION ON EXTENDRAINAGE AREAS. 3. REFER TO DRAWING EXINFORMATION ON EXTENDRAINAGE AREAS. 3. REFER TO DRAWING EXINFORMATION ON EXTENDRATION ON EXTENDRATI	A PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC CT-SA DRAWINGS FOR RNAL SANITARY DIATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600 FAX (905) 794-0600 FAX (905) 794-0611 CONSTRUCTION SUBDIVISION - ST 2 BRAMPTON CIPALITY OF PEEL
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 2 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 3. REFER TO DRAWING PS ON STORM, SANITARY 2 3. REFER TO DRAWING EXINFORMATION ON EXTEND DRAINAGE AREAS. 3. REFER TO DRAWING PAWING MAINAGE AREAS. 3. REFER TO DRAWING PS ON STORM, SANITARY 2 3. REFER TO DRAWING PS DRAWTON ON EXTEND SHEET TITLE: MATER DIS DRAWN BY:	PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC TT-SA DRAWINGS FOR RNAL SANITARY DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0601 FAX (905) 794-0611 CONSTRUCTION SUBDIVISION - ST 2 BRAMPTON CIPALITY OF PEEL
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 3. REFER TO DRAWING END INFORMATION ON EXTENDRAINAGE AREAS. 3. REFER TO DRAWING END INFORMATION ON EDUCTION REVISION: 3. REFER TO DRAWING END INFORMATION ON LOPONT 3. REFER TO DRAWING END INFORMATION ON LOPONT SUBS GOREWAY DRIVE BRAMPTON ON LOPONT Image: Stress of the stress o	PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC T-SA DRAWINGS FOR RNAL SANITARY TO DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (005) 794-0600 FAX (005) 794-0600
1. REFER TO DRAFT PLAN DATED FEBRUARY 28, 2. REFER TO DRAWING PS ON STORM, SANITARY 4 3. REFER TO DRAWING EARLAS. 3. REVISION: CONSULTING EARLAS. 3. REVISION: SUBB GOREWAY DRIVE BRAWTON ON. LEP-OMT BRANFTON ON. LEP-OMT BRANFTON ON. LEP-OMT BRANFTON ON. LEP-OMT BRANFTON ON. LEP-OMT BRANFTINIE BRANFTINIE BRANFTINIE BRANFTON ON. LEP-OMT BRANFTON ON. LEP-OMT BRANFTON ON LEP-OMT BRANFTON ON LEP-OMT BRANFTON ON LEP-OMT BRANFTON ON LE	PREPARED BY MGP 2024 S-1 FOR INFORMATION & FDC TT-SA DRAWINGS FOR RNAL SANITARY DATE BY S ON GROUP INC. GINEERS AND PLANNERS TEL (905) 794-0600 FAX (905) 794-0601 FAX (905) 794-0611 CONSTRUCTION SUBDIVISION - ST 2 BRAMPTON CIPALITY OF PEEL STRIBUTIONS CIPALITY OF PEEL