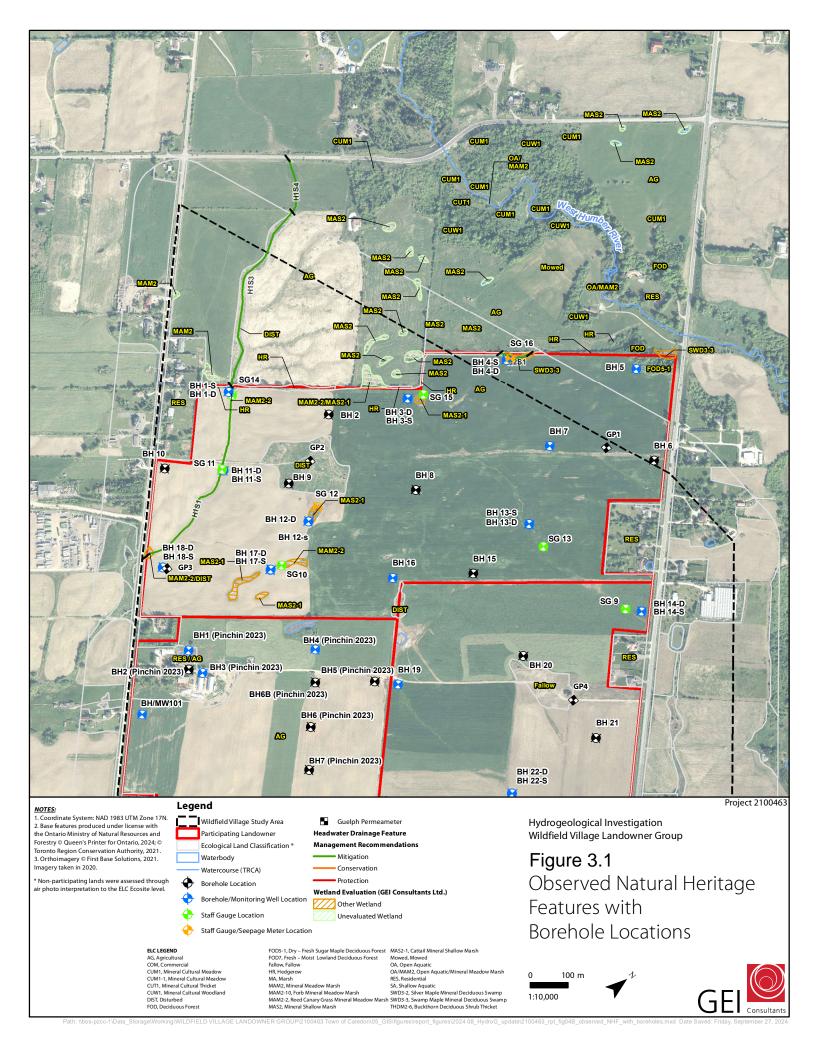
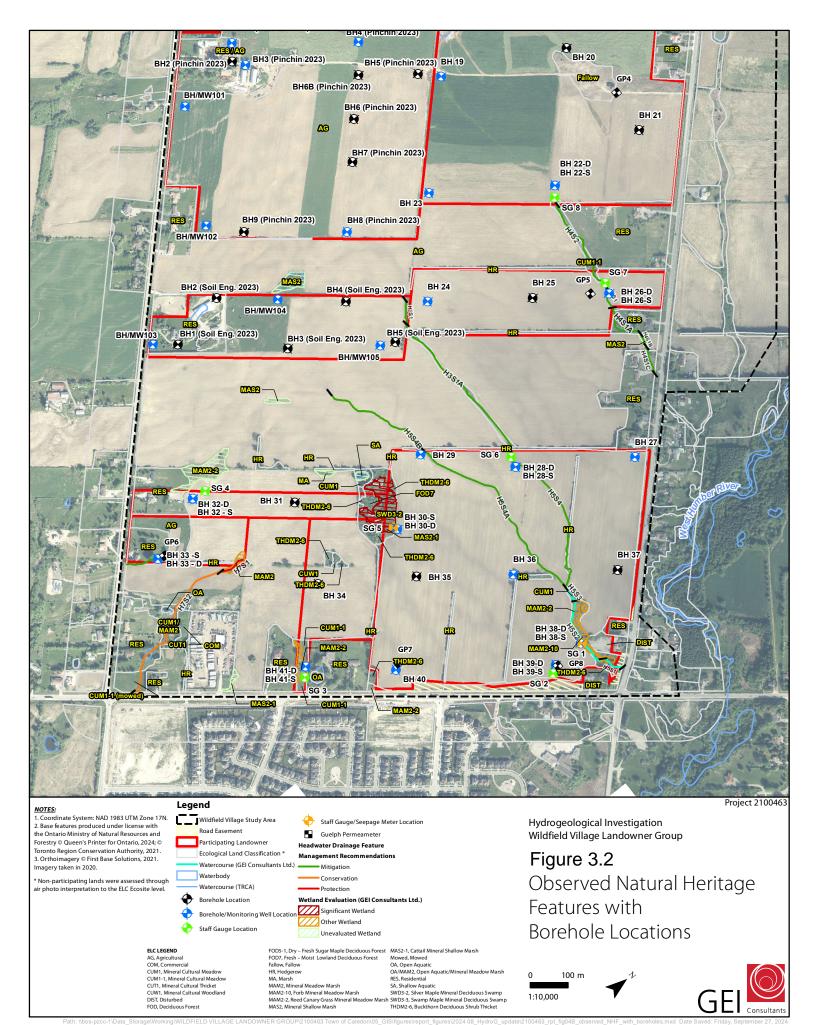
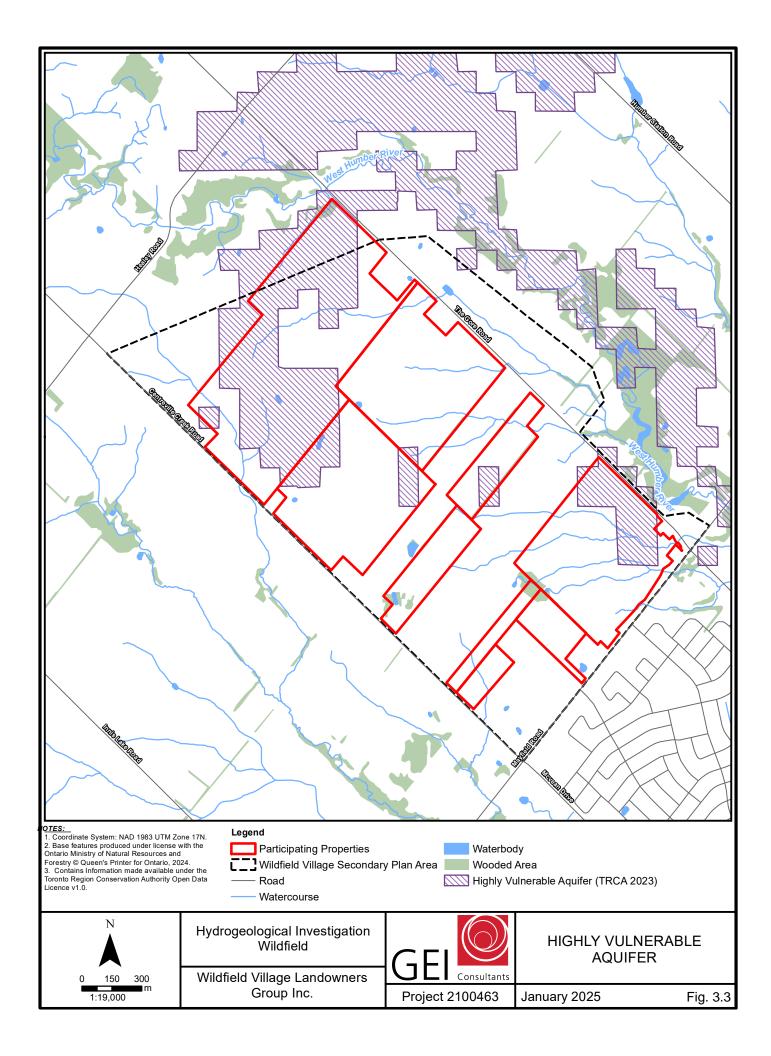
GROUNDWATER






FIGURES

TABLES

Local Subwatershed Study Wildfield Village Secondary Plan Phase 2 – Impact Assessment Appendix C2 - Tables

Table 3.1: Typical Drawdown Assumed for Various Construction Dewatering Efforts and Corresponding Radius of Influence

Potential Dewatering Location	Potential Drawdown (m)	ROI (m) ¹
Typical Site Servicing	5.0	10.6
Typical Residential Block	3.0	6.4
Typical Urban Corridor Block	7.0	14.8
Typical SWM Facility	4.0	8.5

¹⁻ Radius of Influence computed using the Sichardt equation.

Table 3.2: Estimated Rates of Construction Dewatering for Various Scenarios in the Proposed Development.

Potential Dewatering Location	Construction Dewatering Flow Estimate Without Safety Factor (L/day) ¹	Construction Dewatering Flow Estimate Including Safety Factor of 2.0 (L/day) ¹	Construction Dewatering Flow Estimate Including Safety Factor of 2.0 and a 10 mm Rainfall Event (L/day)
Typical Site Servicing	31,900	63,700	69,700
Typical Residential Block	7,300	14,600	63,600
Typical Urban Corridor Block	78,100	156,200	254,200
Typical SWM Facility	93,800	187,600	587,600

¹⁻ Accounts for contributions from groundwater only (i.e., precipitation is excluded).

Local Subwatershed Study Wildfield Village Secondary Plan Phase 2 – Impact Assessment Appendix C2 - Tables

Table 3.3: Typical Drawdown Assumed for Long-Term Foundation Drainage at Proposed Buildings and Corresponding Radius of Influence

Potential Dewatering Location	Potential Drawdown (m)	ROI (m)
Assumed Typical Residential Building (Single Detached Home or Smaller)	2.8	5.9
Assumed Urban Corridor Building	6.8	14.4

1- Accounts for contributions from groundwater only (i.e., precipitation is excluded).

Table 3.4: Estimated Rates for Long-Term Foundation Drainage for Anticipated Buildings.

Potential Dewatering Location	Permanent Dewatering Flow Estimate Without Safety Factor (L/day)	Permanent Dewatering Flow Estimate Including Safety Factor of 2.0 (L/day)
Assumed Typical Residential Building (Single Detached Home or Smaller)	6,060	12,120
Assumed Urban Corridor Building	76,300	152,600

Local Subwatershed Study Wildfield Village Secondary Plan Phase 2 – Impact Assessment Appendix C2 - Tables

Table 3.5: Summary of Subwatershed Catchment Characteristics used in Water Balance Estimation.

Subwatershed	Developable Area	Overall Percent Imperviousness
36.10	38.43 ha	71%
36.11	53.83 ha	78%
38.04	105.68 ha	76%
38.05	5.80 ha	71%
38.06	149.65	74%

Table 3.6: Summary of Results of Water Balance Estimates.

Condition	Permeable Areas	Impermeable Areas	Average Annual Runoff Volume (m³/year)	Average Annual Infiltration Volume (m³/year)
Pre-Development Land Use	95% (Farmland, Forest)	5% (Impermeable Areas)	681,781	307,550
Post-Development from Land Use Plan	25% (Lawns, Parkland, Open Space)	75% (Roads, Buildings, SWMPs, etc.)	1,913,649	115,399

DEWATERING CALCULATIONS

Typical Site Servicing - Construction

Inputs

Rs (m)	Ro (m)	H (m)	h (m)	k (m/s)	Trench Length, x (m)	Trench Width, b (m)
3.4	10.6	6.0	1.0	5.00E-07	100	6

Unconfined (Equation 6.10b)

Elevations (m
LICVACIOIIS	

Ground Surface	230
Highest Water Level	229.5
Base of Excavation	225
Drawdown Target	224.5
Aquifer Bottom	223.5

Groundwater Flows		
Flow Rate, Q=	0.0003687	m3/s
Q=	31,858	L/day
Safety Factor	2	
Q factored =	63,716	L/day

	Precipitation	
Rainfall Event	10	mm
Excavation Area	600	m2
Rainfall Q =	6,000	L/day

TOTAL Factored Q =	69,716 L/day

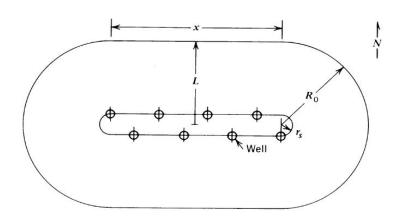


Figure 6.8 Approximate analysis of long, narrow systems.

$$Q = \frac{2\pi KB(H - h)}{\ln R_0/r_s} + 2\left[\frac{xKB(H - h)}{L}\right]$$
 (6.10a)

$$Q = \frac{\pi K(H^2 - h^2)}{\ln R_0 / r_s} + 2 \left[\frac{x K(H^2 - h^2)}{2L} \right]$$
 (6.10b)

Typical Residential Block - Construction

Inputs

Rs (m)	Ro (m)	H (m)	h (m)	k (m/s)	Trench Length, x (m)	Trench Width, b (m)
19.7	6.4	4.0	1.0	5.00E-07	140	35

Unconfined (Equation 6.10b), excluding second term

Elevations (m)

Ground Surface	230
Highest Water Level	229.5
Base of Excavation	227
Drawdown Target	226.5
Aquifer Bottom	225.5

Groundwater Flows			
Flow Rate, Q=	0.0000843	m3/s	
Q=	7,287	L/day	
Safety Factor	2		
Q factored =	14,574	L/day	

Precipitation		
Rainfall Event	10	mm
Excavation Area	4900	m2
Rainfall Q =	49,000	L/day

TOTAL Factored Q =	63,574 L/day

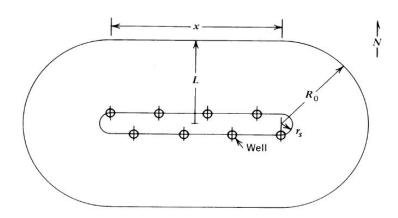


Figure 6.8 Approximate analysis of long, narrow systems.

$$Q = \frac{2\pi KB(H - h)}{\ln R_0/r_s} + 2\left[\frac{xKB(H - h)}{L}\right]$$
 (6.10a)

$$Q = \frac{\pi K(H^2 - h^2)}{\ln R_0 / r_s} + 2 \left[\frac{x K(H^2 - h^2)}{2L} \right]$$
 (6.10b)

Typical Urban Block - Construction

Inputs

Rs (m)	Ro (m)	H (m)	h (m)	k (m/s)	Trench Length, x (m)	Trench Width, b (m)
39.5	14.8	8.0	1.0	5.00E-07	140	70

Unconfined (Equation 6.10b), excluding second term

Elevations (m)

Ground Surface	230
Highest Water Level	229.5
Base of Excavation	223
Drawdown Target	222.5
Aquifer Bottom	221.5

Groundwater Flows			
Flow Rate, Q=	0.0009040	m3/s	
Q=	78,107	L/day	
Safety Factor	2		
Q factored =	156,214	L/day	

Precipitation		
Rainfall Event	10	mm
Excavation Area	9800	m2
Rainfall Q =	98,000	L/day

	-
TOTAL Factored Q =	254,214 L/day

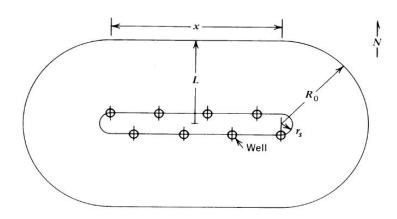


Figure 6.8 Approximate analysis of long, narrow systems.

$$Q = \frac{2\pi KB(H - h)}{\ln R_0/r_s} + 2\left[\frac{xKB(H - h)}{L}\right]$$
 (6.10a)

$$Q = \frac{\pi K(H^2 - h^2)}{\ln R_0 / r_s} + 2 \left[\frac{x K(H^2 - h^2)}{2L} \right]$$
 (6.10b)

Typical SWM Facility - Construction

Inputs

	Rs (m)	Ro (m)	H (m)	h (m)	k (m/s)	Trench Length, x (m)	Trench Width, b (m)
ĺ	112.8	8.5	5.0	1.0	5.00E-07	200	200

Unconfined (Equation 6.10b), excluding second term

Elevations (m)

Ground Surface	230
Highest Water Level	229.5
Base of Excavation	226
Drawdown Target	225.5
Aquifer Bottom	224.5

Groundwater Flows				
Flow Rate, Q= 0.0010856 m3/s				
Q=	93,799	L/day		
Safety Factor	2			
Q factored =	187,597	L/day		

Precipitation				
Rainfall Event 10 mm				
Excavation Area	40000	m2		
Rainfall Q =	400,000	L/day		

TOTAL Factored Q =	587,597 L/day
--------------------	---------------

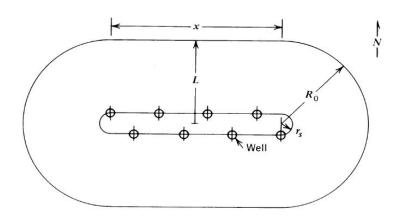


Figure 6.8 Approximate analysis of long, narrow systems.

$$Q = \frac{2\pi KB(H - h)}{\ln R_0/r_s} + 2\left[\frac{xKB(H - h)}{L}\right]$$
 (6.10a)

$$Q = \frac{\pi K(H^2 - h^2)}{\ln R_0 / r_s} + 2 \left[\frac{x K(H^2 - h^2)}{2L} \right]$$
 (6.10b)

Typical Residential Building - Permanent

Inputs

Rs (m)	Ro (m)	H (m)	h (m)	k (m/s)	Trench Length, x (m)	Trench Width, b (m)
16.9	5.9	3.8	1.0	5.00E-07	20	30

Unconfined (Equation 6.10b), excluding second term

Elevations (m)

Ground Surface	230
Highest Water Level	229.5
Base of Excavation	226.7
Drawdown Target	226.7
Aquifer Bottom	225.7

Groundwater Flows				
Flow Rate, Q=	0.0000702	m3/s		
Q=	6,064	L/day		
Safety Factor	2			
Q factored =	12,128	L/day		

Precipitation				
Rainfall Event 0 mm				
Excavation Area	600	m2		
Rainfall Q =	-	L/day		

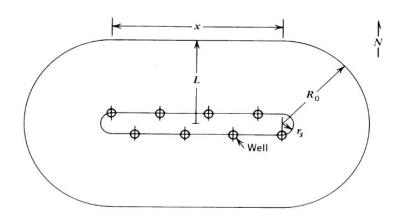


Figure 6.8 Approximate analysis of long, narrow systems.

$$Q = \frac{2\pi KB(H - h)}{\ln R_0/r_s} + 2\left[\frac{xKB(H - h)}{L}\right]$$
 (6.10a)

$$Q = \frac{\pi K(H^2 - h^2)}{\ln R_0 / r_s} + 2 \left[\frac{x K(H^2 - h^2)}{2L} \right]$$
 (6.10b)

Typical Urban Block - Permanent

Inputs

	Rs (m)	Ro (m)	H (m)	h (m)	k (m/s)	Trench Length, x (m)	Trench Width, b (m)
ĺ	39.5	14.4	7.8	1.0	5.00E-07	140	70

Unconfined (Equation 6.10b), excluding second term

Elevations (m)

Ground Surface	230
Highest Water Level	229.5
Base of Excavation	222.7
Drawdown Target	222.7
Aquifer Bottom	221.7

Groundwater Flows				
Flow Rate, Q=	0.0008827	m3/s		
Q=	76,264	L/day		
Safety Factor	2			
Q factored =	152,527	L/day		

Precipitation				
Rainfall Event 0 mm				
Excavation Area	9800	m2		
Rainfall Q =	-	L/day		

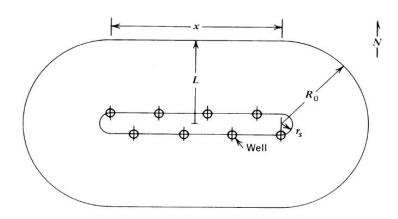


Figure 6.8 Approximate analysis of long, narrow systems.

$$Q = \frac{2\pi KB(H - h)}{\ln R_0/r_s} + 2\left[\frac{xKB(H - h)}{L}\right]$$
 (6.10a)

$$Q = \frac{\pi K(H^2 - h^2)}{\ln R_0 / r_s} + 2 \left[\frac{x K(H^2 - h^2)}{2L} \right]$$
 (6.10b)

WATER BALANCE CALCULATIONS

MONTHLY AND YEARLY WATER BALANCE COMPONENTS (Post-Development)														
		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	YEAR
E	Average Temperature: T (°C)	-6.6	-4.8	-0.4	6.6	12.9	18.1	20.8	19.6	15.4	9	3.1	-2.8	7.6
Potential Evapotranspiration Calculation	Heat Index: i=(T/5) ^{1.514}	0.00	0.00	0.00	1.52	4.20	7.01	8.66	7.91	5.49	2.43	0.48	0.00	37.7
Potential otranspira alculation	Unadjusted Daily Potential Evapotranspiration: U (mm)	0.0	0.0	0.0	29.5	61.5	89.1	103.7	97.2	74.7	41.5	12.9	0.0	510.1
apoti Cal	Adjusting Factor for U (Latitude 44°)	0.81	0.81	1.02	1.13	1.27	1.28	1.30	1.20	1.04	0.94	0.80	0.76	-
ā	Adjusted Potential Evapotranspiration - PET (mm)	0.0	0.0	0.0	33.4	78.1	114.0	134.9	116.7	77.6	39.0	10.3	0.0	604.0
	Precipitation: P (mm)	50.3	44.2	49.2	63.3	79.1	76.3	70.4	80.4	84.6	66.5	78.3	57.4	800.0
92	Adjusted Potential Evapotranspiration: PET (mm)	0.0	0.0	0.0	33.4	78.1	114.0	134.9	116.7	77.6	39.0	10.3	0.0	604.0
Pervious Components	P - PET	50.3	44.2	49.2	29.9	1.0	-37.7	-64.5	-36.3	7.0	27.5	68.0	57.4	196.0
od He	Change in Soil Moisture Storage (mm)	0.0	0.0	0.0	0.0	0.0	-37.7	-64.5	-36.3	7.0	27.5	0.0	0.0	-
S Cc	Water Holding Capacity (max. 75 mm)	75.0	75.0	75.0	75.0	75.0	37.3	0.0	0.0	7.0	34.5	75.0	75.0	-
Ž.	Water Surplus Available for Infiltration or Runoff	50.3	44.2	49.2	29.9	1.0	0.0	0.0	0.0	0.0	0.0	27.5	57.4	259.5
ď	Potential Infiltration based on MECP Infiltration Factor (mm)	25.2	22.1	24.6	15.0	0.5	0.0	0.0	0.0	0.0	0.0	13.7	28.7	129.7
	Potential Surface Water Runoff (mm)	25.2	22.1	24.6	15.0	0.5	0.0	0.0	0.0	0.0	0.0	13.7	28.7	129.7
us	Precipitation: P (mm)						-							800.0
Impervious Components	Potential Evaporation: PE (mm), Assume 15%						-							120.0
Con III	Potential Surface Water Runoff: P - PE (mm)	·									680.0			

POST-DEVELOPMENT WATER BALANCE (NO LOW IMPACT DEVELOPMENT MEASURES IN PLACE)										
		Total Land Area (m²)	Impervious Factor	Impervious Area (m²)	Pervious Area (m²)	Runoff (m³/annum)	Infiltration (m³/annum)	Runoff Increase Pre to Post		
								181%		
Existing Land Use (Pre-Development)		Infiltration Decrease Pre to Post								
(Fre-Development)		-62%								
	Subwatershed 36.10	384,300	71%	272,853	111,447	200,000	14,460			
	Subwatershed 36.11	538,300	78%	419,874	118,426	300,880	15,365	Infiltration Required to Meet Pre-		
		,	,	713,077	110,420	300,880	13,303	illilitiation kequired to wieet Fre-		
Proposed Land Use	Subwatershed 38.04	1,056,800	76%	803,168	253,632	579,062	32,908	Development Conditions (m³)		
(Post-	Subwatershed 38.04 Subwatershed 38.05			,	,	,		·		
(Post- Development)	Subwatershed 56.04	1,056,800	76%	803,168	253,632	579,062	32,908	•		

1. Both potential infiltration and surface water runoff are independent of temperature

- 2. Assumption is in January maximum soil moisture storage value is present (75mm)
- 3. Water Holding Capacity & Infiltration Factors taken from Table 3.1 of MOE SWMPDM, 2003
- 4. Average Temp. and Precip. taken from Environment Canada station "Woodbridge" between 1981 and 2010
- 5. Adjusting Factor for U based on Lorente, 1961

Notes

Infiltration Criteria Topography Soils Cover

Site Description - Post Development Flat Land - Average Slope Less Than 0.6 m/km Tight Impervious Clay Cultivated Land/AGR/ANTH/CGL **Sum of Infiltration Factors**

Infiltration Factor 0.3 0.1 0.1 0.5